Sora: High Performance Software Radio using General Purpose Multi-Core Processors

Kun Tan† Jiansong Zhang† Ji Fang‡ He Liu§ Yusheng Ye§ Shen Wang§ Yongguang Zhang† Haitao Wu† Wei Wang† Geoffrey M. Voelker◊

† Microsoft Research Asia
‡ Tsinghua University, Beijing, China
§ Beijing Jiaotong University, Beijing, China
◊ UCSD, La Jolla, USA

NSDI 2009, Boston, USA
Software Radio

Benefits
✓ Promise of universal connectivity and cost saving
✓ Programmability => faster development cycle, faster to market
✓ Open platform for wireless research
Fundamental Challenges

• Large volume of high-fidelity digital signals
 – Require a high-speed system I/O

![Diagram showing Antenna, RF Frontend, D/A, A/D, Processor, Digital Samples, Hardware, Software]
Fundamental Challenges

- Large volume of high-fidelity digital signals
 - Require a high-speed system I/O
- Computation-intensive signal processing
Fundamental Challenges

- Large volume of high-fidelity digital signals
 - Require a high-speed system I/O
- Computation-intensive signal processing

Raw computation power required: 802.11b => 10Gops, 802.11a => 40Gops!
(now server-class CPU runs at 3GHz clock)
Fundamental Challenges

• Large volume of high-fidelity digital signals
 – Require a high-speed system I/O
• Computation-intensive signal processing
• Hard deadline and accurate timing control
 – 802.11 MAC requires response within a few μs
 – Event trigger timing accuracy at μs level
Approaches

Programmability vs. Performance

Programmable hardware (FPGA)
- Example: Rice WARP, TI SFF-SDR

Embedded DSP

Sora
- Resolving the SDR platform dilemma
 - Commodity PC w/ C program
 - High performance
 - sys tput: 10Gbps; ~μs latency
 - target wireless xput: 10M~1Gbps

Low-performance GPP-based SDR
- Example: GNU Radio/USRP(v1&2)
 - Interface USB/GbE: <1Gbps, >1ms
 - Achievable wireless xput: ~100Kbps

NSDI 2009, Boston, USA
Sora Approach

• New PCIe-based Interface card => high system throughput

• New optimizations to implement PHY algorithms and streamline processing on multi-core CPU => efficient PHY processing

• Core dedication => real-time support
Sora Architecture

Multi-core CPU

APP APP APP APP

Sora Sora APP APP

Sora Soft-Radio Stack

Digital Samples @Multiple Gbps

Mem

RCB

Sora Hardware

PCIe bus

General radio front-end: 700M/1.8G/2.4G/5GHz

NSDI 2009, Boston, USA
Radio Control Board

Multi-core CPU

APP
APP
APP
APP
Sora
Sora
APP
APP

Sora Soft-Radio Stack

Mem

Digital Samples
@Multiple Gbps

RCB

PCIe bus

Sora Hardware

PCIe-based High-speed Interface card

✓ PCIe is commodity in most modern PCs
✓ High throughput: 16Gbps at PCIe-8x
✓ Low latency: ~ 1 μs
✓ Separated with other I/O devices

NSDI 2009, Boston, USA
RCB Details

- PCIe-8x interface: up to 16Gbps throughput
- Versatile RF interface: up to 8 channels (8x8 MIMO)
RCB Details

- Versatile RF interface: up to 8 channels (8x8 MIMO)

Buffered data path: bridging the synchronous ops at RF and asynchronous processing at CPU (12.3Gbps measured)

Low latency control path for software (0.36 µs measured)
Sora Software

High-performance SDR processing w/ key software techniques
- Efficient PHY implementation using SIMD and LUTs
- Speed up PHY using multi-core streamline processing
- Core dedication for real-time support

NSDI 2009, Boston, USA
Efficient PHY Implementation

• Exploit large high-speed cache memory
 – Extensive use of lookup tables (LUT): trade memory for calculation; still well fit into L2 cache
 – Applicable for more than half of the common algorithms; speedup ranges from 1.5x to 22x

Ex: Convolutional encoder

Direct impl. 8 ops per bit

LUT impl. 2 Look-up op for 8 bits! (size 32KB)
Efficient PHY Implementation

• Exploit data parallelism in PHY
 – Utilize wide-vector SIMD extension in CPU
 – Applicable to many PHY algorithms with significant speedups (1.6x ~ 50x)

Ex. (I)FFT
Speed up PHY using multi-core streamline processing

- Efficiently partition and schedule the PHY processing across cores
 - Interconnecting sub-pipeline with light-weight, synchronized FIFOs
 - Static scheduling of processing modules in PHY pipeline
Core Dedication for Real-time Support

• Exclusively allocate enough cores for SDR processing in multi-core systems
 – Guarantee the CPU, cache and memory bandwidth resources for predictable performance
 – Achieve μs-level timing control
 – Simple abstraction, and easier to implement in standard OSes than RT-scheduler
 • Implemented in WinXP without modifications to Kernel
Implementation

• Sora software platform on Win XP
 – 14K lines of C code, including PCIe driver framework, memory management, FIFO management, etc

• SoftWiFi: full implementation of IEEE 802.11a/b/g PHY and DCF MAC
 – 9K lines of C code; 4 man-month for dev & test
 – DSSS 1, 2, 5.5, 11Mbps for 11b; OFDM 6, 9, 12, 18, 24, 36, 48, 54Mbps for 11a/g
Results: PHY Processing

After Sora Optimization

802.11b 802.11a/g

NSDI 2009, Boston, USA
Results: PHY Processing

Sora enables software implementation of today’s high-speed wireless system in standard PC with a few cores.
Results: End-to-end Throughput

Communicating with commercial 802.11a/b/g card

Throughput (Mbps)

- Sora-Commercial
- Commercial-Commercial
- Commercial-Sora

Modulation Mode

NSDI 2009, Boston, USA
Results: End-to-end Throughput

Communicating with commercial 802.11a/b/g card

Seamlessly interoperate with commercial WiFi
- Correctness of all PHY algorithms
- Satisfying timing requirements of standards
- Commercial equivalent performance
Extensions

Jumbo frames in 802.11

TDMA MAC

<table>
<thead>
<tr>
<th>$\epsilon/\sigma (\mu s)$</th>
<th>10ms</th>
<th>50ms</th>
<th>100ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlier</td>
<td>0.5%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\epsilon/\sigma (\mu s)$</th>
<th>0.85/0.5</th>
<th>0.96/0.54</th>
<th>0.98/0.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlier</td>
<td>0.5%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Extensions: New Applications
Conclusion

• Sora is a fully programmable software radio platform on commodity PC architecture
 – Easy C programming on multi-core CPU
 – High performance: high processing speed, low latency, and performance guarantee
 • Confirmed by SoftWiFi, the first fully interoperable IEEE 802.11 (PHY and MAC) on general purpose processors

• Plan to release Sora SDK to research community
 – H/W: RCB + 2.4G RF front-end set (~$2K USD)
• Sora demo in the demo session this evening
• You can interact with Sora with your own laptop, iPhone, or other smart phones
Q&A