Introduction Destination Prediction

Privacy Protection

Experimental Study

Conclusion

Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction

Andy Yuan Xue $^{\#1},$ Rui Zhang $^{\#2},$ Yu Zheng $^{\ddagger3},$ Xing Xie $^{\ddagger4},$ Jin Huang $^{\#5},$ Zhenghua Xu $^{\#6}$

University of Melbourne, Victoria, Australia
1andy.xue@unimelb.edu.au
5 jin.h@iojin.com 6 zhxu@student.unimelb.edu.au

[‡]Microsoft Research Asia, Beijing, P.R.China
^{3,4}{yuzheng, xingx}@microsoft.com

Introduction	Destination Prediction	Privacy Protection	Experimental Study	Conclusion

- Destination Prediction
 Overview
 - Algorithms

Experimental Study

Introduction ●○○	Destination Prediction	Privacy Protection	Experimental Study	Conclusion
Introducti	on			

Purpose: To predict destinations of travel based on public data.

A demo: Visitor drives from the Forbidden Palace in Beijing to the International Airport.

Introduction	Destination Prediction	Privacy Protection	Experimental Study	Conclusion
Introduct	ion			

Applications:

- Recommend sightseeing places
- Send targeted advertisements
- Automatically set destinations and route in navigation systems

An example of a baseline solution adapted from existing work:

- Settings
- A user travels from l_1 to l_4 : Predicted destinations l_7 and l_8
- Query trajectory $\{l_1, l_2, l_3\}$: no predicted destination due to lack of training data.
- Baye's rule

$$P(d \in I_j | T^p) = \frac{P(T^p | d \in I_j) \cdot P(d \in I_j)}{\frac{g^2}{\sum_{k=1}^{g^2} P(T^p | d \in I_k) \cdot P(d \in I_k)}}$$

Data Sparsity Problem

Introduction	Destination Prediction ●000000	Privacy Protection	Experimental Study	Conclusion
Destinatio	on Prediction			

Sub-Trajectory Synthesis (SubSyn):

- Solves the data sparsity problem by expanding the historical dataset.
- Two phases: Decomposition and Synthesis

Sub-Trajectory Synthesis (SubSyn): Decomposition

• Partition and group POIs into grid cells.

Sub-Trajectory Synthesis (SubSyn): Decomposition

- Partition and group POIs into grid cells.
- Decompose historical trajectories into sub-trajectories.

Sub-Trajectory Synthesis (SubSyn): Decomposition

- Use Markov model
- Transition matrix *M*: *p*₁₂, *p*₁₄, *p*₇₈, etc.

Figure: 3 × 3 Markov model

Sub-Trajectory Synthesis (SubSyn): Synthesis

- Starting from n_1 , what is the probability of travelling to n_9 ?
- Shortest Path is 4: $p_{1\rightarrow9} = M_{1,9}^4$
- M^4 : transition between cells with distance 4.

- Consider detour (within 1.2 times shortest path. $\alpha = 0.2$)
- Users may travel either distance 4 or 5 ($\lceil 4 \times 1.2 \rceil$) to reach n_9 : $p_{1\rightarrow 9} = M_{1,9}^4 + M_{1,9}^5$

Introduction	Destination Prediction ○○○○○●	Privacy Protection	Experimental Study	Conclusion
Algorithm	IS			

$$P(n_k|T^p) \propto rac{p_{c
ightarrow k}}{p_{s
ightarrow k}} \cdot P(n_k|n_s)$$

- Two stages: Training and Prediction
- SubSyn-Training constructs Markov model and computes various probabilities needed for prediction. (RHS of the equation)
- Efficiently perform huge matrix multiplications. E.g., compute M^{100} where *M* is a 2500 × 2500 matrix.
- SubSyn-Prediction retrieves these probabilities to compute the destination probabilities P(n_k)|T^p)

Introduction	Destination Prediction	Privacy Protection ●○	Experimental Study	Conclusion
Privacy I	Protection			

A demo: check-ins on your way home.

Introduction	Destination Prediction	Privacy Protection ○●	Experimental Study	Conclusion
Privacy F	Protection			

Exhaustive Generation Method

- Iteratively delete each node in query trajectory
- Inefficient

End-Points Generation Method

- **Theorem:** Only the starting and current nodes affect the probabilities of predicted destinations
- Is a property of first-order Markov model
- Dramatically reduced search space, efficient for online queries

Real-world taxi trajectory dataset in the city of Beijing.

Contains:

- 580,000 taxi trajectories
- 5 million kilometres of distance travelled

Introduction

Destination Prediction

Privacy Protection

Experimental Study

Conclusion

Experimental Study Grid Granularity

Figure: Map of Beijing with 30×30 grid overlay: Each cell ≈ 1.78 km²

- Randomly pick 1000 test/query trajectories
- Algorithms: Existing vs SubSyn
- Measurements: Coverage and Prediction Error

More experiments in the paper

Introduction	Destination Prediction	Privacy Protection	Experimental Study	Conclusion
Experimental Study				

SubSyn-Training

Grid Granularity	20	30	40	50
Running Time (hours)	0.03	0.5	3	17

Commodity computer: Intel i7-860 CPU 4GB RAM

Introduction	Destination Prediction	Privacy Protection	Experimental Study	Conclusion
Conclusio	on			

- Identified Data Sparsity Problem, and proposed a Sub-Trajectory Synthesis (SubSyn) algorithm which successfully addressed the problem.
- SubSyn decomposes historical trajectories into sub-trajectories to exponentially increase practicality.
- SubSyn can predict destinations for up to ten times more query trajectories than the existing algorithm.
- Runs over two orders of magnitude faster constantly.
- Also proposed an efficient method (two orders of magnitude faster) to avoid privacy leak.

Introduction	Destination Prediction	Privacy Protection	Experimental Study	Conclusion
Questio	ns			

Questions?

Demo:

http://spatialanalytics.cis.unimelb.edu.au/subsyndemo/

Contacts:

Andy Yuan Xue	andy.xue@unimelb.edu.au
	http://people.eng.unimelb.edu.au/yuanx/
Rui Zhang	rui.zhang@unimelb.edu.au
	http://people.eng.unimelb.edu.au/zr/

References:

- Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, Zhenghua Xu. Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction. IEEE International Conference on Data Engineering (ICDE) 2013.
- Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jianhui Yu, Yong Tang. DesTeller: A System for Destination Prediction Based on Trajectories with Privacy Protection. International Conference on Very Large Data Bases (VLDB) 2013 (Demo)