Enabling TDMA for Today's Wireless LANs

Zhice Yang^{1*}, Jiansong Zhang^{2*}, Kun Tan², Qian Zhang¹, Yongguang Zhang²
¹CSE, Hong Kong University of Science and Technology ²Microsoft Research Asia *Co-Primary Author

- Limitations of Distributed Coordination Function (DCF) in Current Wireless LANs
 - Weak Interference Management
 - Inefficient Channel Access
 - Lacking Guarantee in QoS

- Limitations of Distributed Coordination Function (DCF) in Current Wireless LANs
 - Weak Interference Management
 - Inefficient Channel Access
 - Lacking Guarantee in QoS

- Demands for Higher-Efficiency Wireless Network
 - Proliferation of Wireless Devices
 - Emerging Network QoS Sensitive Applications

How to Fill the Gap?

How to Fill the Gap? -- TDMA

- Arrange the transmission of all the wireless packets in the air to
 - Manage interfering transmissions
 - Reduce contention overhead
 - Provide priorities for QoS transmissions

Research Question

- Arrange the transmission of all the wireless packets in the air to
 - Manage interfering transmissions
 - Reduce contention overhead
 - Provide priorities for QoS transmissions

Is TDMA possible with commodity WLAN devices?

Feasibility for TDMA in WLAN

- Time Synchronization
 - Backhaul network
- Scheduling
 - Central controller

Exist

Architecture Borrowed from SDN

Architecture Borrowed from SDN

 10	11	12	
			→ Time

Time

Challenges

• Time Synchronization

Commodity WLAN devices lack means for accurate synchronization

Challenges

• Time Synchronization

Commodity WLAN devices lack means for accurate synchronization

• Uplink Scheduling Enforcement

Commodity WLAN devices is designed for distributed access and determines channel access independently

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement
- Experiment Results
- Scheduling Examples
- Conclusion

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement
- Experiment Results
- Scheduling Examples
- Conclusion

Backhaul Time Synchronization

- Using IEEE 1588 Precise Time Protocol (PTP) to Synchronize the Wired APs
 - Assumption: The network delay is symmetrical

The Problem

• Large Variation

Analyze the Problem

• The Architecture of the Commodity AP Introduces Variance in the Delay Measurement

Analyze the Problem

• The Architecture of the Commodity AP Introduces Variance in the Delay Measurement

Our Solution

Scheduling Enforcement

Use busy waiting to ensure accurate software timer event

• Use transmission gate handler in WiFi chip to ensure accurate transmission control

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement
- Experiment Results
- Scheduling Examples
- Conclusion

Uplink Control

- Polling for Uplink Transmission
 - Poll packet is a normal packet with a poll flag in the control filed of the MAC header
 - Clients response the poll packet with the uplink data
 - Uplink can be treated as downlink

First Transmission Problem

- AP needs to know about the packet queue information in clients to schedule polling
 - Clients piggyback queue information in every uplink packet
- AP doesn't know when the client want to transmit the first uplink packet

- Group polling for the first transmission
 - Group poll packet is a poll packet with group address

	Client1	Client2	Client3	Client4
Random SIFS	+0 slots	+3 slots	+1 slots	+4 slots

- Group polling for the first transmission
 - Group poll packet is a poll packet with group address

	Client1	Client2	Client3	Client4
Random SIFS	+0 slots	+3 slots	+1 slots	+4 slots
Group Poll				Time
C	Client1 Info			•
	Client2 Info			
	Client3 Info			
	Client4 Info			

- Group polling for the first transmission
 - Group poll packet is a poll packet with group address

- Group polling for the first transmission
 - Group poll packet is a poll packet with group address

- Group polling for the first transmission
 - Group poll packet is a poll packet with group address

	Client1	Client2	Client3	Client4
Random SIFS	+0 slots	+3 slots	+1 slots	+4 slots

Group Poll	Client1 Info	Client3 Info	Client2 Info	Client4 Info
				`
				Time

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement

• Experiment Results

- Scheduling Examples
- Conclusion

Implementation

- Implemented with TP Link 4900 with Atheros AR9381 and AR9580 WiFi Chip
- Modified ath9k driver
- Modified linuxptp program

Timing Error

Backhaul Network

Uplink Efficiency

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement
- Experiment Results
- Scheduling Examples
- Conclusion

Topology and Policy

Knowledge of the Controller

AP1<->B conflicts with AP2<->C & AP1<->B requires high priority

Control Policy for AP1				
Flow ID	Time Slots	Priority		
AP1<->B	1,2 mod 3	High		
AP1<->A	ALL	Normal		

iority
ormal

Outline

- OpenTDMF Design
 - Time Synchronization
 - Uplink Scheduling Enforcement
- Experiment Results
- Scheduling Examples
- Conclusion

Conclusion

- Thoughtful study of accurate synchronization in commodity AP
- Enable polling based uplink transmission in commodity WiFi chips
- Build the OpenTDMF system and validate the feasibility of TDMA in commodity WLANs.

Thank you !