
Enabling TDMA for Today’s Wireless LANs
Zhice Yang1†, Jiansong Zhang2†, Kun Tan2, Qian Zhang1, Yongguang Zhang2

zyangab@connect.ust.hk, jiazhang@microsoft, kuntan@microsoft, qianzh@cse.ust.hk, ygz@microsoft
1CSE, Hong Kong University of Science and Technology, 2Microsoft Research Asia

†Co-primary Authors

Abstract—Today’s WLANs are struggling to provide desirable
features like high efficiency, fairness and QoS because of the
use of Distributed Coordination Function (DCF). In this paper
we present OpenTDMF, an architecture to enable TDMA on
commodity WLAN devices. Our hope is to provide the desirable
features without entirely rebuilding the WLAN infrastructure.
OpenTDMF is inspired by and architecturally similar to Software
Defined Networking (SDN). Specifically, we leverage the backhaul
of WLAN to coordinate all the stations for channel access. This
fine-grained coordination is performed in a decoupled control
plane which includes a central controller and programmable
APs. To realize OpenTDMF on commodity WLAN devices,
we develop several novel techniques to achieve µs-level time
synchronization among all the APs. We also enable AP-triggered
uplink transmission so that all the transmissions in the WLAN
can be determined. We implemented a prototype of OpenTDMF
based on commodity WLAN devices. Empirical results validate
the OpenTDMF design and demonstrate its benefits.

I. INTRODUCTION

Wireless LANs are based on distributed coordination func-
tion (DCF) to share the wireless medium. Benefit from its dis-
tributed and asynchronous nature, DCF makes WLANs low-
cost to implement and deploy, which is an important reason
for its wide adoption today as the indispensable infrastructure
for Internet access. However, on the other hand, it has been
well understood that DCF is inefficient in resolving congestion
and weak in handling interference, e.g. the hidden/exposed
terminal problems. As a consequence, today’s WLANs still
struggle to provide efficient and fair channel access and QoS,
which are especially desirable in enterprise environments to
support voice/video conferencing, video broadcasting, etc.

It has been proved in cellular networks that TDMA, which
schedules channel access in a synchronized and centralized
manner, is an effective means to support these desirable fea-
tures. Thus, our goal in this paper is to build TDMA on top of
today’s WLANs. The hope is to provide these features without
rebuilding the entire WLAN infrastructure. In literatures, some
efforts have been made for similar purposes. For example,
CENTAUR [1] and TRACK [2] schedule downlink traffic to
mitigate hidden/exposed terminals. Different from these work,
we target to provide an architecture to schedule all the traffic
including downlink and uplink, and to support all the desirable
features including efficiency, fairness and QoS.

We present OpenTDMF1, an arcitecture that enables TDMA
for today’s enterprise WLANs. OpenTDMF borrows from the
Software Defined Networking (SDN) design, in that it separates

1TDMF stands for Time Division Multiple Flows

ClientA

Ethernet

AP1
OpenTDMF

AP2
OpenTDMF

ClientB ClientC

OpenTDMF
Controller

Fig. 1. OpenTDMF Architecture. OpenTDMF enables TDMA with com-
modity devices in today’s enterprise WLANs. The central controller coordi-
nates flow-level channel access for the whole WLAN. Every AP coordinates
packet-level channel access for its locally associated stations.

control plane from data plane and exposes the channel access
functions to higher layers. As illustrated in Fig. 1, data plane
is controlled by the OpenTDMF interface which resides in
APs. Analogous to the OpenFlow [3] interface, OpenTDMF
interface operates over a table of {FlowID, Actions} tuples,
where an action specifies how a flow access wireless channel.
Flow-level actions prevent the backhaul from overwhelmed
by packet-level information. OpenTDMF interface also allows
every AP to focus on coordinating its locally associated
devices without worrying about the interference across APs.
The control plane in our design is managed by OpenTDMF
Controller, which takes input per-flow QoS requirements (e.g.
bandwidth and delay) specified by applications and channel
status (e.g. link quality, collision graph, etc.) reported by APs.
According to these QoS requirements and channel information,
OpenTDMF controller calculates actions for every flow and
sends these actions to every AP periodically.

To realize OpenTDMF on commodity devices, we need
to address two main technical challenges. First, OpenTDMF
performs centralized coordination for channel access which
requires time synchronization among APs. In OpenTDMF, we
perform time synchronization on backhaul network. Specifi-
cally, we use Precise Time Protocol (PTP) and develop several
novel techniques to handle the delay variance on Ethernet
and in AP’s firmware (non-realtime linux), which can easily
reach hundreds of microseconds otherwise [1]. As a result,
we provides an accuracy in microsecond level, which is un-
perceivable because it is much smaller than transmission time
of a WLAN packet (100 ∼ 1000µs). Comparing to solutions
performed in air interface, our solution does not hurt spectrum
efficiency and has better scalability [4]. Second, OpenTDMF
APs should determine channel access for all the traffic of their
locally associated stations. While determining downlink traffic

Ethernet IP TCP/UDP Channel Access

Src Dst Type Src Dst Proto ToS Src Port Dst Port Time Slots Priority

Fig. 2. OpenTDMF Flow Table . OpenTDMF defines flows based on packet
headers, similar to OpenFlow.

is straightforward, determining uplink traffic is fundamentally
challenging because today’s WLANs assume every device
determines channel access by itself. Our solution is inspired
by an interesting observation on commodity Wi-Fi chip, based
on which we realize AP-triggered uplink transmissions on
commodity Wi-Fi devices.

We implemented OpenTDMF in TP-Link 4900 APs by
modifying the firmware. Evaluation results validated OpenT-
DMF’s ability in enabling TDMA. We also demonstrate
OpenTDMF’s benefit on a small-scale network, which shows
significant performance gain over DCF.

Our contributions in this paper are summarized as follows:
• We provide a thoughtful study towards providing high

accuracy time synchronization among commodity APs over
backhaul networks. Our solution is able to synchronize the
transmission of APs within 10µs even under near-saturated
data traffic in the backhaul.

• To the best of our knowledge, we are the first to enable AP-
triggered uplink transmission on commodity Wi-Fi devices.
Moreover, we show that network efficiency can be improved
by up to 30% benefit from contention-free channel access.

• We implemented and evaluated the OpenTDMF design on
commodity WLAN devices and demonstrates the feasibility
of enabling TDMA. Tests on small-scale network show
210% gain with exposed links, significant improvement on
fairness in hidden links and the ability to provide QoS.

II. OPENTDMF’S ARCHITECTURE

To enable TDMA, we need to schedule and enforce channel
access in a synchronized and centralized manner. OpenTDMF
provides a means by leveraging backhaul networks to coor-
dinate channel access for all the devices in WLANs, thereby
enabling TDMA.

Architecturally, OpenTDMF borrows from the SDN design
in that it separates control plane from data plane, and exposes
channel access functions to higher layers which are deeply
hidden in lower layer of network stack traditionally. The
data plane is controlled by OpenTDMF interface which is
managed in software by OpenTDMF controller. In this section,
we first elaborate OpenTDMF’s components. We then use an
example to illustrate how TDMA is enabled with OpenTDMF.
Finally, we discuss the technical challenges to realize TDMA
on commodity WLAN devices.

A. OpenTDMF Components

OpenTDMF contains a centralized controller and a set of
APs which are connected using Ethernet. The controller and
all APs jointly perform the coordination function for the
whole WLAN. Specifically, OpenTDMF controller coordinates
all APs in coarse-grain, and each AP coordinates its locally
associated stations in fine-grain. The communication channel

Knowledge of the Controller
 AP1<->B conflicts with AP2<->C & AP1<->B requires high priority

Control Policy for AP1

AP1

AP2

A A B B A A A

C C C C C

10

Control Policy for AP2

…

Flow ID Time Slots Priority

AP1<->B 11 High

AP1<->A 10,11,12 Normal

Flow ID Time Slots Priority

AP2<->C 11,12 Normal

11 12 …

A A

C

Fig. 3. Example of TDMA with OpenTDMF. Corresponding topology is
shown in Fig. 1. OpenTDMF enables TDMA and brings the benefits that (i)
random back-offs are eliminated, (ii) collisions are avoided, (iii) transmission
order can be flexibly set.

between OpenTDMF controller and APs is the OpenTDMF
interface.

OpenTDMF interface operates over a table indexed by
flows, which means OpenTDMF controller coordinates chan-
nel access in flow-level. Flows are identified using packet
headers of various layers as in Fig.2. The actions specified
for each flow contains two elements: slots and priority.

OpenTDMF divides time domain into slots. Formally, a slot
with index K is defined as: [T s

K , T
e
K) := [T0 +K × S, T0 +

(K + 1)× S), where T s
K and T e

K are start time and end time
of slot K. T0 is an arbitrary reference time. S is the slot size.
The slot size should be large enough to carry multiple packets,
and small enough to be unperceivable to upper layer protocols
and applications, therefore typical slot size is 2ms ∼ 10ms.
For the sake of simplicity, slot size is identical in our design.
Moreover, to ensure a consistent view on all APs, slot should
be synchronized in terms of both boundary time and index.

Through the OpenTDMF interface, OpenTDMF controller
assigns a set of slots for each flow. In its set of slots, packets of
this flow can be transmitted into the air. Typically, OpenTDMF
controller assign non-overlapping slots to interfering flows.
OpenTDMF controller also assign earlier slots or more slots
to provide low latency or high throughput for flows having
QoS requirements. Therefore, by scheduling slots through
OpenTDMF interface, spectrum efficiency and fairness could
be optimized, QoS could be guaranteed.

OpenTDMF controller also assigns priority to each flow
for the purpose of supporting QoS in finer-grain. According
to the value of priority, every AP determines packet-level
transmission orders of its local flows. Basically, flows have
higher priority value will be transmitted earlier. Flows have the
same priority value will be transmitted in a round-robin fashion
to ensure fairness. OpenTDMF controller determines priority
of flows either by referencing the IP layer Type of Service
(ToS) element of a flow, or the QoS requirement explicitly
specified by the corresponding application.

The slots and priority values are computed by OpenTDMF
controller using a scheduling algorithm, such as weighted fair
queuing [5]. The scheduling algorithm takes input collision
graph of the whole WLAN. The collision graph can be com-
puted using existing techniques, such as micro-probing [1].

B. TDMA with OpenTDMF

To illustrate the benefits brought by OpenTDMF, we use an
example to demonstrate the results of TDMA based channel
access enabled by OpenTDMF. The example uses the topology
in Fig.1 in which client A and client B are associated to AP1,
client C is associated to AP2. AP2 interferes with client B
therefore flows on AP2 and flows on client B should not
transmit simultaneously. The example includes three flows on
three clients respectively, in which the flow on client B has
high priority whereas the other two flows have normal priority.
The detailed transmission order in 3 slots {10,11,12} as well
as the behavior of OpenTDMF are shown in Fig. 3. We can
see the controller assigns all slots to the flow on A because it
does not interfere with any other flow. The flow on B and the
flow on C are assigned to non-overlapping slots so that their
transmission will not collide. As a result, in slot 10 and slot 12,
flow on A and flow on C transmit concurrently. In slot 11, flow
on C is stopped to prevent from interfering with the flow on B.
Moreover, in slot 11, packets of the flow on B are transmitted
first because this flow has higher priority. Finally, since the
order of packets inside a slot is solely determined by the
AP, random back-offs are no longer needed. To conclude this
example, we can see TDMA based channel access enabled by
OpenTDMF brings a lot of benefits including higher efficiency
and guaranteed fairness and QoS.

C. Challenges on Commodity Devices

To implement OpenTDMF on today’s WLAN devices, we
need to address two main technical challenges. First, we need
to synchronize AP’s time on us-level. One option for time
synchronization is using broadcast in air interface. 802.11
standards define Timing Synchronization Function (TSF) to
synchronize clocks on multiple Wi-Fi devices through bea-
cons [6]. The problem of TSF and other air interface solutions
[4], [7], [8] is that the synchronization error accumulates
with increased number of hops. Moreover, it requires full
connectivity of APs which is not necessarily satisfied. In
OpenTDMF, we choose to perform time synchronization on
backhaul network to avoid above problems. However, it is still
non-trivial because we need to handle the delay variance on
Ethernet and in AP’s firmware (non-realtime linux) which can
easily reach hundreds of microseconds [1].

Second, OpenTDMF APs should be able to determine
channel access for all their locally associated devices. Deter-
mining channel access for uplink traffic is challenging because
commodity devices assume every device determines channel
access by itself. We need a solution that is both feasible on
commodity devices and unharmful to spectrum efficiency.

In next two sections, we elaborate our solutions for these
challenges.

III. TIME SYNCHRONIZATION AND ACCURATE
EXECUTION

OpenTDMF requires APs to accurately execute the arranged
transmissions, i.e. APs should synchronize their slot bound-
aries and exactly start their transmissions at the boundaries. In

this section, we describe how we achieve us-level time syn-
chronization on commodity APs and how we ensure accurate
execution of transmission actions on non-realtime OS.

A. Time Synchronization on Commodity APs

In OpenTDMF, we take advantage of the backhaul network
of WLANs and employ IEEE 1588 Precise Time Protocol
(PTP) [9] to enable high accuracy synchronization. In this
subsection, we first briefly describe the PTP protocol. Then
we show the practical problem on applying PTP to commodity
APs and our solution.

1) PTP Basics: Different from Network Time Protocol
(NTP) [10] which solely relies on time server’s broadcasting
messages, PTP further designs handshaking protocols to esti-
mate the propagation delay on network and compensates the
delay, therefore it is possible to achieve high-accuracy time
synchronization using PTP.

In real systems, the main challenge for PTP is delay
estimation, whose achievable accuracy is normally bounded
by the variance of delay measurements. The variance mainly
comes from the queuing delay in the software network stack.
Since OS handles incoming packets in the soft interrupt (sirq),
packets are processed in first come first serve manner. The
embedded CPU on commodity AP does not have the ability
to handle all the packets in the line rate, so the PTP packet is
queued in the hardware and its timestamping by the software
stack is delayed by the bursty traffic. If the PTP software
takes delayed timestamp, the timestamping process itself will
introduce non-trivial variance that easily exceeds tens of µs.
Therefore, the synchronization accuracy goes down when the
PTP packet encounters the incoming traffic. Fortunately, we
observe that in commodity devices, it is popular the Network
Interface Card (NIC) hardware adds timestamp for every
incoming packets before the software stack. These devices in-
clude the TP-Link 4900 AP we use for our prototyping as well
as most network adapters for PC. Therefore in OpenTDMF,
we take hardware timestamping as an assumption.

TP-Link 4900 AP

Switch
Chip SoC

Notebook

Desktop

(a) Experiment Setup

Wireless Access Point
Switch Chip

SoC

Port0 Port3

Port1 Port6

NIC0

NIC1

PCIE

LAN/WAN
Wireless

NIC

(b) Architecture of Commodity AP

500 600 700

5

0

5

10

Measurement Time (s)

Sy
nc

 E
rr

or
 (
µs

)

0 2 4 6
0

1

Sync Error (µs)

C
D

F

PacketLen=0
PacketLen=500B
PacketLen=1000B
PacketLen=1500B

(c) Synchronization Results With Hardware Timestamp

Fig. 4. PTP Experiment. This experiment demonstrates that even the PTP
packets are set to higher priority. Non-trivial delay variance still exists.

2) None-preemptive Swithing Delay: Hardware timestamp
can solve the queuing delay problem, however, we found that

Data Data PTP

Before
Port0

After
Port0

Delayed PTP Packet Normal PTP Packet

Data Data
PTP

Data Data PTP

Data Data PTP

∆ == ∆ >

Fig. 5. Delay Detection. Figuring out those PTP packets that are delayed by
a data packet and filtering them out.

it does not solve all the problem.
We use experiment results to demonstrate the problem. We

set up the experiment as Fig. 4(a). We use a desktop equipped
with Intel 217 Ethernet NIC as the master clock and use TP-
Link 4900 wireless AP as the slave. The desktop is connect
to one of the LAN ports of AP. Both the master and slave are
running the open source linuxptp [11] software. One notebook
is connected to another LAN port of the AP and generates
UDP packets with different length to emulate normal data
traffic. We summarize the results as below:

The left subfigure of Fig. 4(c) shows the synchronization
error when the notebook generate traffic with 1500byte pack-
ets. A lot of spikes show that the AP is not consistently syn-
chronized. Moreover, it is interesting that the right subfigure
of Fig. 4(c) shows high correlation between synchronization
error and packet length, which implies that the PTP packets
are still delayed by data packets though higher priority has
been set.

Finally, we figure out the problem is caused by the non-
preemptive packet switching in AP’s embedded switch and
NIC. Specifically, as the hardware structure shown in Fig. 4(b),
both incoming PTP packets and data packets are forwarded to
the same port which connects to the NIC of AP’s embedded
processor. When the PTP packet arrivals at the switch, the
forwarding will be delayed if some data packet is under trans-
mission. This is because normally AP’s switch does not allow
the PTP packet to preempt the ongoing data transmission.

To mitigate this problem, we propose to filter out those PTP
packets that are delayed by data packets. The heuristic metric
is shown in Fig. 5. We compare the timestamp of a PTP packet
and the data packet priori to it. We denote the time difference
between these two packets as T∆. We also record the packet
length of the previous data packet as Tdata. If the PTP packet
is delayed by the data packet, T∆ will be equal to Tdata,
otherwise T∆ will be greater than Tdata. Using this metric, we
modify the Linuxptp program to identify those delayed PTP
packet and drop them. When there are larger volume of traffic,
PTP packets will be dropped in higher probability. The PTP
master then increases the measurement frequency to maintain
consistent synchronization accuracy.

B. Accurate Execution

OpenTDMF also requires every AP to start transmission
exactly at slot boundaries, i.e. accurate execution. Timer is
an intuitive choice to generate event for the start of each time
slot. The challenge comes from the fact that the current OS on
the commodity APs such as Openwrt [12] is not a realtime
OS, so the start of time of the event cannot be guaranteed.

10 … 11 … Scheduling Time Slot

Scheduled Timer Event

Rx Sirq Processing

Real Timer Event

Waiting

Fig. 6. Timer+Waiting. Timer events are scheduled earlier than the beginning
of the scheduled time slot. The timer event handler busy wait for the scheduled
time to avoid delay caused by other process.

When the timer fires, it is likely that some other routine is
in processing and cannot be preempted. Moreover, usually the
embedded processor of commodity AP is weak, meaning that
the the timer event could be delayed for a long time.

We solve this problem using a “Timer+Waiting” timer
design. As shown in Fig. 6, for each scheduled time event,
the AP sets its software timer a little bit earlier than the
required time. After the software timer fires, the timer handler
continuously polls the current time and blocks other process.
Once the scheduled time is reached, the transmission starts.
In this way, the error is bounded by the time spend in
getting current time, which only takes several hundreds of
nanoseconds in our testbed AP.

In order to estimate the waiting time, we reference the
logged timestamps of repeated timer events under different
traffic load. Due to the space limitation, we just describe the
results here. The timer (hrtimer) in our test bed performs quite
well in most of time but has the maximum value up to several
µs in very rare cases. So we adopt 20µs in the implementation.
When the slot size is 5ms, the overhead for AP’s processor
is merely less than 1%.

IV. DETERMINE CHANNEL ACCESS FOR UPLINK TRAFFIC

OpenTDMF also requires APs to determine channel access
for all of its local associated clients. One possible approach
is to synchronize all the clients through air interface, and
assign different transmission time to different clients. The
problem of this method is that AP needs to send fine-grained
scheduling information to all clients using air interface, which
may significantly hurt spectrum efficiency. Moreover, the
synchronization error using air interface could be large on
commodity WiFi devices. In details, the air interface method
only synchronizes WiFi NIC’s clock, since the timestamp
of WiFi packet is generated by NIC’s clock. However, the
transmission execution is triggered using processor’s clock,
which is different from NIC’s clock. These two independent
clocks require additional effort to synchronize. Moreover,
synchronization with multiple wireless hops adds additional
synchronization error which can be more than 20µs [13].

In this section, we describe how we determine channel
access for uplink traffic on commodity AP and client devices.

A. Polling

We use polling based method to realize tight control for
uplink traffic, meaning all uplink transmissions are triggered
by AP’s packets. The concern for polling based method
is the delay that a client reponds to a poll packet. If the
response is generated in client’s software, the delay caused

AP: Poll+Data Client: Data AP: ACK

Fig. 7. Polling Illustration. This is the time-domain waveform of a polled
transmission captured by software radio.

Poll Data ACK Poll+Data Data ACK

SIFS Time

Fig. 8. Uplink Transmission with Polling. The timing diagram of one polled
uplink transmission. .

Group Poll Client1 Info Client3 Info Client2 Info Client4 Info

Random SIFS: Client1+0 slots Client2+3 slots Client3+1 slots Client4+4 slots

Time

Fig. 9. Group Polling. Four clients contend for the transmission opportunity
in the group polling period. Each client chooses its number of backoff slots
randomly.

by network queuing could be as large as hundreds of us or
more. This large response delay wastes much air time therefore
may render polling based methods undesirable. Fortunately,
we observe that commodity Wi-Fi devices usually support
the feature of responding to poll packets in hardware chip,
in which the response delay is merely 10us Short Inter-
Frame Space (SIFS) required by 802.11 standards [6]. This
hardware feature is designed to support the Point Coordination
Function (PCF) mode which is an optional mode of 802.11 [6].
Although PCF itself is usually not implemented in WiFi
devices’ software, the feature of responding poll is normally
implemented by chip vendors for the purpose of supporting
possible future extension. Moreover, we can even avoid the
overhead introduced by the poll packets because 802.11 allows
to set a downlink data packet as poll [6]. In Fig. 7, we show
the waveform of a polled transmission captured by a software
radio. We can see the gap between a poll+data packet and the
polled data packet is almost the same as the gap between the
polled data packet and its ACK which must be SIFS.

In OpenTDMF, we extensively leverage this hardware fea-
ture for uplink control. Specifically, we set all the clients to
a “gated” mode in which packets are gated to wait for trans-
mission until a poll packet destined for the client is received.
In this way, OpenTDMF APs can solely determine channel
access for all its associated clients. We always try to transmit a
downlink packet as poll to trigger a uplink transmission for the
purpose of reducing the overhead introduced by poll packets.
We also notice that even every uplink transmission is triggered
by a short non-data poll packet, the spectrum efficiency is still
improved because back-off is no longer needed. In Fig. 8, we
show an example of OpenTDMF’s uplink transmissions.

OpenTDMF APs need to learn the number of buffered
packets in clients’ queue so that they can determine whether
to send poll packets. We piggyback this information on some
uplink packets, for which we only need to pad several bytes to
the MAC packet encapsulated in the WiFi driver. For the case
that a client needs to send the first packet of a flow, we develop
the group poll technique which is described subsection.

Other Network Stack

ath9k System
Clock

OpenTDMF Agent

Wireless NIC

Regs Data Buffer

User
Space

Kernel
Space

Uplink
Table

Device

Ethernet NIC

Timestamping

Flow
Table
Transmission

Control

Timer
Event

Ethernet
Driver

Packet Delay
Detection

PTP Slave

Other Network Stack

Fig. 10. Software Architecture of OpenTDMF AP.

B. Group Polling Periods

An important issue of the polling based method is the first
access, i.e. how can a silent client starts a new uplink flow?
or how can a newly coming client initiates the first packet?
To solve this problem, we introduce group polling periods in
which a group of clients can contend for transmitting their first
uplink packets. Specifically, at the beginning of a group polling
period, a poll packet carrying a group address is sent by AP. In
order to reply to this group poll packet, new clients and silent
clients who have a first packet to sent temporarily modify
their chip’s MAC address to the group address. To avoid
collisions among multiple replying clients, we also mimic
the random back-offs by temporarily modifying chip’s SIFS
(a configurable parameter) to a randomly selected value in a
window, so that multiple clients can stagger their replies, as
shown in Fig. 9.

To fit in OpenTDMF’s slot based structure, we force the
group polling period to be less than one slot. To ensure this,
we decide that every client only transmits an ACK-size small
packet to reply a group poll, which only carries necessary flow
information. In our current design, we can allow up to 15
clients to reply in a single group polling period. If the number
of silent clients is too large, we further divide them into
multiple groups by allocating multiple group addresses. The
mapping from a slient client to a group address is determined
by AP and carried in beacon. After a group polling period, the
silent clients change back to their own MAC addresses for the
purpose of being able to reply ACK to its normal downlink
packets.

V. IMPLEMENTATION

We implement OpenTDMF on commodity devices (sources
are available at http://www.yangzhice.com). The AP for pro-
totyping is TP-Link 4900 wireless access point. Its SoC is
freescale P1014 with 800MHz PowerPC CPU and hardware-
assisted-PTP NIC. The WiFi chips in the AP are Atheros
AR9381 and AR9580 for 2.4G and 5G correspondingly,
and they are compatible with ath9k driver. The AP runs
Openwrt ver 12.09. As Fig. 10 shows, we patch Openwrt,
ath9k driver and linuxptp to implement OpenTDMF
interface. Some unpatched APs are set to station mode to act
as clients, whose ath9k driver is enabled to support Polling.
We use another two desktops with Debian 7.6 and Intel I217

Ethernet card. One is used as PTP master clock running
PTP in master mode and the other running PTP in client
mode is implemented as central controller. The controller
communicates with APs with an user space agent through TCP.
The agent controls the driver settings such as slot length and
maintains the flow table through debugfs.

A. PTP Synchronization with Packet Delay Detection

To support accurate synchronization, we first enable PTP
hardware timestamp function of the SoC by modifying and
porting the PTP driver and device tree to Openwrt. The PTP
enabled NIC is driven by 400MHz clock, in principle, the
synchronization error can be as low as ±5ns. In the network
stack of the kernel, we add entries for each packet to record
its previous packet’s packet length and receiving timestamp.
The Ethernet driver is modified to be able to recognize the
above information and identify the delayed packets and tag
them. In the user space, Linuxptp is modified to be able
to identify and drop the delayed PTP packets. We increase
the synchronization frequency by up to 4× to supplement the
dropped ones when the network traffic is extremely busy.

B. Accurate Execution

To support the accurate execution, we implement the
“timer+waiting” mechanism in section III-B. The software
timer is implemented by hrtime in Linux. The waiting func-
tion is implemented by polling time through get_time().
To make the software transmission command feasible for the
WiFi chip we implemented bellowing features in ath9k:

In order to arrange the packet for each slot, normal trans-
mission packets are redirected to a new priority queue which
provides slot based arrangement by estimating packet duration
and transmission rate. We disable the hardware retransmission
by setting the tx_tries flag on the packet to 1 to accurately
estimate transmission time of each packet. The retransmission
is implemented in software by adding multiple copy of the
packet the transmission queue. If the packet is acked, the
Tx interrupt handler, which is invoked after each packet
transmission, will destroy all the reference of the packet in
the software queue.

In order the control the transmission period of the
WiFi chip through software, we configure the chip as
CBR_GATED and set the CBR_INTERVAL to the minimum
one 1µs. In this mode, the transmission is enabled when
ONE_SHOT_ARM register is 1. As soon as the software writes
1 to ONE_SHOT_ARM, the transmission will start immediately
and the value of ONE_SHOT_ARM will be clear by the
hardware once the transmission is finished. The transmission
is finished when there is no packet or the WiFi chip receives
a packet with end_of_list flag. Therefore we tag the last
packet in each time slot with end_of_list.

In order to harness the legacy 802.11 MAC, we
first disable the carrier sense of the AP by enabling
FORCE_CHANNEL_IDLE register. The backoff is disabled by
setting IGNORE_BACKOFF register. Other inter frame timing

values such as SIFS can also be adjusted, but we leave them
as default.

C. Uplink Access Control with Polling

To arrange the uplink packets, we only modify the ath9k
driver. The driver is complied as kernel module, which can
be installed by the user just like installing a normal software.
First, we configure the chip as HCF poll gated, in which
the transmission is triggered by the received wireless packet
satisfies two conditions: (1) the destination MAC address is the
same as the client’s MAC address and (2) the subtype field has
QoS Poll function. Similar to the APs, other 802.11 MAC
features, e.g. carrier sense and retransmission, are disabled.
In practice, we find there are confusion in the WiFi chip
for handling QoS Poll packets on whether transmitting the
queued packet or sending ack. We solve this by adding no
ack tag in the poll packet, so that the client can transmit data
correctly. Second, we add a handler in the original beacon
processing function to enable group polling. The group poll
MAC address is write into STA_ID register to replace the
station’s MAC address. The SIFS is set according to a random
number. After the group polling period, the register settings
are back to normal.

VI. MICROBENCHMARK EVALUATION

A. Time Synchronization and Accurate Execution

1) Clock Synchronization on Commodity APs: To evaluate
the synchronization accuracy, we use the offset parameter in
PTP synchronization, which describes the difference between
the PTP master clock and the local clock. As our goal is to
synchronized all the APs to the same master clock, the offset
value is just the synchronization error. In the evaluation, we
use two TP-Link 4900 APs as slave clock and record the
time offset from the master PC during the synchronization
period (10mins). To emulate the background traffic, each AP
is connected to a traffic generator, which is continuously
generating UDP packets. The maximum background is fixed
to 600M, at which the CPU of the AP is in 99% usage for
handling sirqs of incoming packets.

We first compare normal PTP software implementation [14]
and the normal hardware-assisted PTP implementation [11]
without delay detection. Results are shown in Fig. 11. The
maximum synchronization error of the software implementa-
tion goes to hundreds of microseconds when the background
traffic increases to 600Mbps. The value of the error is close to
the duration for several WLAN packets. Even with less traffic
load, the synchronization error is tens of microseconds due to
the software queuing delay as we mentioned in section III-A1.
The hardware timestamping is much stable since it is finished
by device in hardware.

Second, we compare our scheme using delay detection and
the normal hardware-assisted PTP implementation. Although
the normal hardware PTP does provide significant stability in
providing accurate timestamp, it suffers switching delay when
background traffic increases. As shown in Fig. 11(b), APs

0 100 200 300 400 500 600
0

200

400

600

800

Ethernet Backgroud Traffic (Mbps)

Sy
nc

hr
on

iz
at

io
n

E
rr

or
 (
µs

)

Software Max

Hardware w/o Delay Detection Max

(a) Software v.s. Hareware Timestamp

0 100 200 300 400 500 600
0

5

10

15

20

25

Ethernet Backgroud Traffic (Mbps)

Sy
nc

hr
on

iz
at

io
n

E
rr

or
 (
µs

)

Hardware w/o Delay Detection Mean

Hardware w/ Delay Detection Mean

Hardware w/o Delay Detection Max

Hardware w/ Delay Detection Max

(b) Hareware w/ and w/o Delay Detection

Fig. 11. PTP Synchronization Accuracy.

0 100 200 300 400 500 600
0

5

10

15

Ethernet Backgroud Traffic(Mbps)

T
im

in
g

E
rr

or
(µ

s)

Timer w/o Waiting Max

Timer w/ Waiting Max

Fig. 12. Timer Timing Error w/ and w/o Waiting.

0 100 200 300 400 500 600
0

2

4

6

8

10

Ethernet Backgroud Traffic(Mbps)

T
im

in
g

E
rr

or
(µ

s)

Mean

Median

Max

Fig. 13. Synchronized Execution Timing Error.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sp
ec

tru
m

 E
ff

ec
ie

nc
y

Number of Clients

Legacy, 2ms agg.
Polling, 2ms agg.

(a) Polling Efficiency

0 2 4 6 8 10
0

10

20

30

La
te

nc
y

(m
s)

Number of Clients

Polling
Legacy

(b) Polling Delay

Fig. 14. Polling Evaluation for Uplink Scheduling.

with delay detection achieves stable synchronization within
2µs even under extreme background traffic.

2) Local Execution Timing: As the execution timing is
affected by multiple factors across the AP platform, we use a
TP-Link WDN4800 wireless card in monitor mode to sniff
the air interface to capture the transmitted packets by the
AP platform. The received wireless packets in the card are
timestamped in µs resolution by the hardware. We fix the
time interval of the transmission in the AP platform to 5ms,
and measure the inter-packet time spacing as the metrics for
the accuracy of the local execution time. Tests with different
background traffic are measured with 8000 wireless packets.

Results in Fig. 13 show that the waiting mechanism is
effective in increasing the timing accuracy of the scheduled
transmission. Note that the accuracy of the measurement
of inter-packet time depends on the timestamping accuracy
of the sniffer card, the reported accuracy is 5µs [13]. We
believe our timing accuracy is hided by the measurement
limitation. Nevertheless, the maximum timing error is bounded
to microseconds level and is not higher than 7µs.

3) Synchronized Execution Timing: The overall perfor-
mance of synchronized execution timing is evaluated with
two APs with their local clocks synchronized through PTP
with delay detection. The timing measurement method is the
same as that of the previous subsubsection. The two APs are
assigned with neighboring time slots, thus the inter-packet time
is a indicator of the timing accuracy of their synchronized
execution.

Results are shown in Fig. 13. Under different traffic load,
the error of synchronized execution timing is normally around
1µs and is less than 10µs in the worst case.

B. Uplink Traffic Arrangement

We evaluate the uplink traffic arrangement ability with
polling in two aspects. The first is the ability in providing
high efficient access. The second is the ability in scheduling
prioritized uplink traffic. The evaluation is taken in single

AP without slot scheduling, or it can be viewed as the local
scheduling ability of the AP in the assigned time slot.

Fig. 14 (a) shows the results for the first aspect. The
evaluation is performed with one OpenTDMF AP and ten
clients. Ten clients are sending uplink traffic to the AP. In
legacy method, client contend for channel randomly. Collisions
and backoffs reduces the spectrum efficiency. With polling
ability and AP use downlink traffic to poll them one by one.
With negligible overhead, the polling access increased the
throughput by 30%.

Fig. 14(b) shows the results for the second aspect. the
experiment settings are the same are the previous one, except
one additional client is added to accept pings from the AP. To
illustrate the prioritize arrangement ability of the uplink, the
ping packets are set to of high priority. The results shows the
polling method can constantly ensure the access delay of the
high priority ping compare to legacy random access.

VII. TDMA SCHEDULING

In this section, we demonstrate the feasibility and benefit
of TDMA over commodity WLAN with OpenTDMF enabled
devices. Specifically, three examples are used to compare
the wireless network performance of scheduled TDMA with
legacy WLANs in scenarios containing hidden terminal, ex-
posed terminal and node with requirement on bandwidth-
guarantee.

We conduct the evaluation in our indoor office. The topol-
ogy of the three examples is shown in Fig. 15. APs in TDMA
scheduling are enabled with OpenTDMF interface and con-
nected to the central controller through Ethernet. Experiments
with legacy WLAN settings share the same infrastructure but
APs are with default factory firmware. All the wireless nodes
are set to 802.11a mode in channel 165. The transmission are
generated with UDP packets with payload of 1470 bytes. The
time slot in OpenTDMF is set to 5ms, which is selected in
the same level as the maximum A-MPDU2 time in 802.11n.

2For aggregated packet, the maximum aggregation time is 5.484ms

AP1 AP2

ClientA ClientB

(a) Example1

AP1 AP2

ClientA ClientB

(b) Example2

AP1 AP2

ClientA ClientB ClientC

(c) Example3

Fig. 15. Topology of Scheduling Examples. Solid arrow denotes the direction of the
data transmission through wireless links. Dash arrow denotes the interference signal.

Example1 Example2 Example3
Control
Policy Flow ID Time

Slot Priority Flow ID Time
Slot Priority Flow ID Time

Slot Priority

AP1
A->AP1 1 mod 2 Normal AP1->A ALL Normal AP1->B 1,2 mod 3 High

AP1->A ALL Normal

AP2 B->AP2 0 mod 2 Normal AP2->B ALL Normal AP2->C 0 mod 3 Normal

Fig. 16. Scheduling Polices. Time slot and priority assignment in
three interference topology.

Example 1: Uplink Hidden Links Example 1 is designed to
compare the performance with hidden links. In Fig. 15 (a), as
ClientA and ClientB can not sense each other, the transmission
from ClientB generates collisions in AP1.

Throughput results across 10 mins are shown in Fig. 17(a).
As CTS/RTS is normally not enabled in APs, legacy 802.11a
can not suppress the transmission form ClientB, so almost all
the packets are corrupt in AP1 and the throughput falls to
280Kbps. On the contrary, transmission from ClientB to AP2
reaches 28.6Mbps, which is 102 times. The Jain’s fairness
index of legacy throughput is 0.5049, meaning that the two
flows are externally unfair.

Through the OpenTDMF interface, the central controller
issues scheduling policy in Fig. 16 to direct the two uplink
flows to different time slots. In this case, AP1 and AP2
generate dedicated polling packets for uplink in indifferent
time slots, so that the the packet from ClientB has no chance
to collide with packet to AP1. The two flows achieve similar
throughput around 16Mbps. The Jain’s fairness index of sched-
uled throughput is 0.9999, meaning that the wireless spectrum
is fairly shared.
Example 2: Exposed Links Examples 2 is designed to
compare the performance with exposed Links. In Fig. 15
(b), as ClientA and ClientB can not overhear each other, the
concurrent transmission is possible.

Throughput results across 10 mins are shown in Fig. 17(b).
As AP1 and AP2 can sense each other, the legacy nodes
can not fully utilize the spectrum. The throughput of the two
clients are 44.1% and 68.9% if the throughput of legacy AP2
in Fig. 17(a), which can be treated the baseline throughput
case without sharing. This is mainly because the carrier sense
mechanism in AP1 do not allow transmission when AP2 is
transmitting and vice versa.

To enable the concurrent transmission opportunity, OpenT-
DMF schedules the two flows in same slots. Note that OpenT-
DMF disable carries sense except the group polling periods.
The transmission of the two flows will concurrently start. To
avoid the collision of ACKs from ClientA and ClientB, we
disable per-packet ACK and use software block ACK instead.
The total throughput of the two clients is 59.96Mbps, which
is 210% of the throughput of the legacy AP2 in Fig. 17(a).
The gain is larger than 2 times, this is mainly because of the
reduced time in backoff.
Example 3: Bandwidth Guarantee Example 3 is designed
to show the ability of OpenTDMF for providing bandwidth
guarantee through scheduling. The setting is the same as the
previous examples (Fig.1 and Fig.3). The flow of ClientB starts
at 40s with 16Mbps and increases to 30Mbps at 50s. The

Legacy OpenTDMF
0

10

20

30

40

T
hr

ou
gp

ut
 (

M
bp

s)

AP1

AP2

(a) Uplink Hidden Terminal

Legacy OpenTDMF
0

10

20

30

40

T
hr

ou
gp

ut
 (

M
bp

s)

AP1

AP2

(b) Downlink Exposed Terminal

20 40 60 80 100 120
0

20

40

T
hr

ou
gp

ut
 (

M
bp

s) Legacy

ClientA
ClientB
ClientC

20 40 60 80 100 120
0

20

40

Time (s)

T
hr

ou
gp

ut
 (

M
bp

s) OpenTDMF TDMA

(c) Bandwidth Guarantee for ClientB

Fig. 17. Results of Scheduling Examples. We compare the performance of
legacy 802.11a with the OpenTDMF Scheduling

flow of ClientB is end at 100s. ClientB requires the bandwidth
guarantee for its flow for at least 25Mbps, but both the flow
from ClientA and the flow from AP2 contend for wireless
medium.

In legacy AP, the traffic in the same AP cannot iden-
tify the importance of ClientB’s flow and divides the band-
width equally between ClientA and ClientB. ClientB get
about 15Mbps from 40s-60s. Even worse, when AP2 starts
transmitting from 50s, the throughput of ClientB decreases
dramatically. The packet loss of ClientB is resulted from
the collision with packets from AP2, which can not hear
AP1. The large amount of retransmission of ClientB also
decreases the available airtime of AP1, so the throughput of
ClientA decreases to several Mbps before the end ClientB’s
flow. The bandwidth of ClientB is not guaranteed during its
transmission.

OpenTDMF guarantees the bandwidth of ClientB by (1) as-
signing high priority in time slots and (2) stagging interfering
flows from ClientB’s slots. First, according to the bandwidth
requirement, the scheduler decides to increase ClientB’s pri-
ority in 2/3 of transmission slots, so that ClientB can grab
airtime from ClientA. Second, based on the knowledge of the
interference flow from AP2, the scheduler also avoids ClientB
and ClientC sharing the same slot. As a result, ClientB’s flow
are restricted in several slots with high priority (Fig. 16).

In Fig. 17(c). During the whole transmission of ClientB’s
flow, 2/3 of the bandwidth is accommodated to ClientB with
higher priority. Therefore, ClientA can only get 1/3 bandwidth
if ClientB has traffic larger than 2/3 bandwidth. From 70-
100s, ClientC’flow has no impact on ClientB as they are not
in same slots. After ClientB’s flow is end in 100, ClientA
can obtain full usage of slots, and its throughput goes up to
the full bandwidth. As the scheduler keeps the scheduling
policy, ClientC still keep 1/3 bandwidth from 100s in the
example. The example demonstrates the bandwidth-guarantee
for ClientB.
Throughput Gain in Contention-Free Access As transmis-
sions in OpenTDMF do not require contention. The benefit
is two folds, first, it avoids collisions after random backoff.
Second, the backoff time is reduces. Therefore we notice that
the maximum throughput under TDMA scheduling is higher
than legacy schemes in the above examples. As the number
of nodes in the examples are small, the gain is mainly comes
from the saved backoff time. Though theoretical study, the
maximum bandwidth for UDP 1470 payload with 54Mbps
PHY in legacy 802.11a is 29 Mbps, the same value for TDMA
scheduling is 37.6 Mbps, which has 30% gain. For uplink
traffic, the upper bond of gain is the same as the downlink.
The lower bound of the gain is 13.8%, which is in the situation
with dedicated polling packets.

VIII. RELATED WORK

Medium Access Control in WLANs. IEEE 802.11 stan-
dards introduce Point Control Function (PCF) [6] which is
designed for a single AP and partially coordinates transmis-
sions in a centralized manner. Different from PCF, OpenT-
DMF is designed for the whole WLAN which may consist
of tens/hundreds of APs. MiFi [15] proposed a centralized
scheme based on PCF to improve fairness for the whole
WLAN. Although its goal overlaps with OpenTDMF, it does
not target for commodity WLAN devices as us. Time division
MACs [8], [16] are also proposed for mesh networks. These
schemes rely on air interface for synchronization and coordi-
nation, which is limited by the the problems as discussed in
Section III. Domino [17] targets WLANs but also solely relies
on air interface for coordination.

Coordination on the Backhaul. Recently, some literatures
have also discussed the idea of leveraging the backhaul to
improve performance for WLAN [1], [2], [5], [7], [13].
These designs generally have different goals, e.g. mitigating
hidden/exposed terminals [1], [2] which is one of the benefits
that TDMA can bring, or enabling new features [5], [7], [13]
which is complimentary to TDMA. Centaur [1] also builds on
commodity WLAN devices therefore is the most similar to
OpenTDMF. However, it focus on hidden/exposed terminals
and leaves uplink transmissions unscheduled. Centaur is also
different from OpenTDMF in its architecture that it redirects
some traffic to the central controller, whereas OpenTDMF
controller only manages the decoupled control plane, therefore
OpenTDMF has advantage in scalability.

Software Defined Network. OpenTDMF is inspired by
SDN and the OpenFlow [3] design. There are also proposals
to bring SDN to the wireless WLAN, their goals are different
therefore complimentary to us. For example, OpenRF [5]
exposes PHY layer interface to control beamforming and
interference alignment in commodity devices. OpenRadio [18]
reuses physical layer blocks to support multiple technologies
such as LTE or WiFi.

IX. CONCLUSION

This paper introduces OpenTDMF, an architecture that en-
ables TDMA for today’s WLANs. To realize the OpenTDMF
design on commodity devices, we propose solutions to achieve
µs-level time synchronization among APs through backhual
network, and develop polling based approach to tightly control
uplink transmissions. Experimental results on the OpenTDMF
prototype show that OpenTDMF can significantly improve
spectrum efficiency, fairness and QoS.

X. ACKNOWLEDGEMENT

This work was supported by grants from 973 project
2013CB329006, China NSFC under Grant 61173156,
RGC under the contracts CERG 622613, 16212714,
HKUST6/CRF/12R, and M-HKUST609/13, the grant from
Huawei-HKUST joint lab.

REFERENCES

[1] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav, K. Pa-
pagiannaki, and A. Mishra, “CENTAUR: Realizing the full potential of
centralized wlans through a hybrid data path,” ser. MobiCom ’09.

[2] J. Huang, G. Xing, and G. Zhou, “Unleashing exposed terminals in
enterprise wlans: A rate adaptation approach,” in IEEE INFOCOM, 14.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev.

[4] V. Shrivastava, S. K. Rayanchu, S. Banerjee, and K. Papagiannaki, “Pie
in the sky: Online passive interference estimation for enterprise wlans.”
in NSDI, vol. 11, 2011, p. 20.

[5] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, “Bringing cross-
layer MIMO to today’s wireless LANs,” ser. SIGCOMM ’13.

[6] ANSI/IEEE Std 802.11-2012, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specification. IEEE Press.

[7] N. Ahmed, S. Keshav, and K. Papagiannaki, “OmniVoice: A mobile
voice solution for small-scale enterprises,” ser. MobiHoc ’11.

[8] P. Djukic and P. Mohapatra, “Soft-TDMAC: A software TDMA-based
MAC over commodity 802.11 hardware,” in IEEE INFOCOM 2009.

[9] “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,” pp. c1–269.

[10] ntp.org: Home of the network time protocol. [Online]. Available:
http://www.ntp.org/index.html

[11] Linux ptp project. [Online]. Available: http://linuxptp.sourceforge.net/
[12] Openwrt. [Online]. Available: https://openwrt.org/
[13] J. Manweiler, N. Santhapuri, S. Sen, R. Roy Choudhury, S. Nelakuditi,

and K. Munagala, “Order matters: Transmission reordering in wireless
networks,” ser. MobiCom ’09.

[14] The ptp daemon. [Online]. Available: http://ptpd.sourceforge.net/
[15] Y. Bejerano and R. Bhatia, “MiFi: a framework for fairness and

QoS assurance for current IEEE 802.11 networks with multiple access
points.”

[16] D. Koutsonikolas, T. Salonidis, H. Lundgren, P. LeGuyadec, Y. C. Hu,
and I. Sheriff, “TDM MAC protocol design and implementation for
wireless mesh networks,” ser. CoNEXT ’08.

[17] W. Zhou, D. Li, K. Srinivasan, and P. Sinha, “DOMINO: Relative
scheduling in enterprise wireless LANs,” ser. CoNEXT ’13.

[18] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a pro-
grammable wireless dataplane.” ACM.

