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Abstract—Multiclass classification has been investigated for many years in the literature. Recently, the scales of real-world multiclass

classification applications have become larger and larger. For example, there are hundreds of thousands of categories employed in the

Open Directory Project (ODP) and the Yahoo! directory. In such cases, the scalability of classification methods turns out to be a major

concern. To tackle this problem, hierarchical classification is proposed and widely adopted to get better trade-off between

effectiveness and efficiency. Unfortunately, many data sets are not explicitly organized in hierarchical forms and, therefore,

hierarchical classification cannot be used directly. In this paper, we propose a novel algorithm to automatically mine a hierarchical

structure from the flat taxonomy of a data corpus as a preparation for the adoption of hierarchical classification. In particular, we first

compute matrices to represent the relations among categories, documents, and terms. And, then, we cocluster the three substances at

different scales through consistent bipartite spectral graph copartitioning, which is formulated as a generalized singular value

decomposition problem. At last, a hierarchical taxonomy is constructed from the category clusters. Our experiments showed that the

proposed algorithm could discover very reasonable taxonomy hierarchy and help improve the classification accuracy.

Index Terms—Clustering, data mining, singular value decomposition, text processing.
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1 INTRODUCTION

MULTICLASS classification has been actively investigated
for many years. On one hand, several m-way

classifiers such as k-nearest neighbors (k-NN) [5] and Naive
Bayes (NB) [5], [18] were developed. On the other hand,
people have developed some strategies to extend well-
performed binary classifiers such as Support Vector
Machines (SVM) [21] to the multiclass case. To the best of
our knowledge, the earliest and the most popular strategy is
one-against-rest, in which each of the binary classifiers is
trained to distinguish one category from all other categories
and all these classifiers will make YES/NO decisions on a
given instance in the test phase. As a result, the instance will
be classified into the category corresponding to the highest
confidence score. Many benchmark evaluations [15], [21]
have shown that one-again-rest SVM classifiers (denoted by
flat SVM) lead to higher classification accuracy as compared
to NB and k-NN.

The flat SVM works pretty well when the category
number is small. However, in recent years, the problem scale
of multiclass classification has been larger and larger. For

instance, the well-known large-scale Web directories Open
Directory Project (http://dmoz.org/) and Yahoo! directory
(http://dir.yahoo.com/) have 118,488 and 292,216 cate-
gories, respectively. In such large-scale cases, flat SVM will
suffer from its poor scalability because its training complex-
ity is OðMNÞ and its test complexity is OðMÞ, where M and
N are the total numbers of categories and documents in the
corpus [16], [24].

To tackle this problem, people proposed using the inner
hierarchical structures among the categories to divide the
classification task. This resulted in the so-called hierarchical
SVM, in which a SVM classifier is trained to distinguish
each child category only from other categories with the
same parent, rather than from all other categories in the
corpus. For the test phase, pachinko-machine search is used
(i.e., a lower-level SVM classifier is activated only if its
parent gives a YES decision). Empirical studies on large-
scale data sets have shown that hierarchical SVM often
excels flat SVM in both complexity and accuracy [6], [16]:
On one hand, local feature selection and parameter tuning
might improve the effectiveness; on the other hand, the
training complexity is reduced because the training docu-
ments of each local task are much less than the flat setting,
and the pachinko-machine search will significantly reduce the
time consumption for testing.

However, as we all know, it is not a necessity that data
corpora have explicitly-given hierarchical taxonomies.
Therefore, for many cases, hierarchical classification can
not be adopted even if we know it is superior to flat
classification. To tackle this problem, one possible solution
is to mine a hierarchical configuration by our own and use it
to organize the hierarchical classifiers. In other words, we
need to preprocess the data corpus so as to do some
essential preparations for hierarchical classification.
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To our knowledge, there have been some attempts in this
direction, although not many. Vural and Dy [22] proposed a
method named divided-by-two (DB2), where the categories
of a data corpus is recursively divided into two subsets until
each subset consists of only one category. As a result, a binary
taxonomy tree is generated. The subset division is done
through clustering categories based on the similarities
among their documents. Godbole et al. [8], [9] proposed
another method to automatically generate the hierarchical
taxonomy. They used an NB classifier to quickly compute a
category-by-category confusionmatrix and adopted a graph-
based clustering method to extract a hierarchical taxonomy.

From the above previous works, we can see that
clustering might be a very important step for hierarchical
taxonomy mining. However, the clustering methods used in
these works are not very effective because they have not
made full use of the information contained in categories,
documents, and terms. This is very similar to what
happened in the field of document clustering. As we know,
most early document clustering algorithms directly defined
the similarity of documents by the similarity of their term
representations (i.e., the cosine distance between two TF-IDF
[1] vectors) until the concept of document-term coclustering
was proposed [2], [3], [25]. In the philosophy of coclustering,
the similarity between documents is defined by their term
representations while the similarity between terms is
defined by their occurrences in documents. In other words,
document similarity and term similarity are defined in a
reinforcing manner. In such a way, it has been shown that
the clustering performance can be greatly improved [2], [3],
[25]. Similarly, we believe that, by using the information
contained in categories, documents, and terms for category
clustering rather than only using the category information or
document information, we can get more reasonable results
on taxonomy mining. Actually, in our previous work [23],
we have proposed a coclustering framework named ReCoM
with the similar philosophy. However, in that work,
heterogeneous objects were treated as homogeneous objects
under some heuristic scaling factors. Sometimes this
assumption might be too strong and the tuning of the
scaling factor is theoretically difficult. Therefore, we want to
avoid it in the method proposed in this paper.

In particular, in this paper, we use one bipartite graph to
represent the relationship between categories and docu-
ments and use another to represent the relationship
between documents and terms. Then, we partition these
two bipartite graphs consistently by solving a generalized
singular value decomposition problem. Experiments
showed that our method could not only lead to a very
reasonable taxonomy hierarchy, but also result in higher
classification accuracy than previous methods.

The rest of this paper is organized as follows: In Section 2,
the background knowledge and related work are intro-
duced. Then, Section 3 describes the proposed method in
detail, while experimental results are discussed in Section 4.
Some concluding remarks and future work directions are
listed in the last section.

2 RELATED WORKS

As the proposed method is illumined by the thought of
document-term coclustering, in this section, we will

introduce some essential background knowledge and
review a representative work in this direction.

For the first step, we need to introduce the widely-used
document representation in information retrieval and text
categorization, vector space model (VSM) [1], because most
thepreviousworks on coclusteringwere built on topof it. The
main ideaofVSMis todirectly treat terms in thedocuments as
features, so as to map a document to a vector in the feature
space. Specifically, in VSM, D ¼ d1; d2; . . . ; dn denotes the
documents in the corpus and T ¼ w1; w2; . . . ; wt denotes the
terms. Then, each document di in D can be represented by a
t-dimensional vector di ¼ xi1; xi2; . . . ; xit, where xij is the term
frequency [1] (or TF-IDF [1]) of term wj in document di.

The problem of document-term coclustering is to
cluster the documents D ¼ d1; d2; . . . ; dn and terms T ¼
w1; w2; . . . ; wt in a reinforcing manner. There are several
methods to tackle this problem [2], [3], [13], [25], among
which Dhillon et al. proposed an approach based on
bipartite spectral graph partitioning. To illustrate how
their algorithm works, we need to introduce some
essential knowledge on graph partitioning as below.

A graph G ¼ ðV ;EÞ is composed by a set of vertices V ¼
f1; 2; . . . ; jV jg and a set of edges E ¼ f< i; j > ji; j 2 V g,
where jV j represents the number of vertices. If using Eij to
denote the weight of edge < i; j > , we can further define
the adjacency matrix M of the graph by

Mij ¼
Eij if < i; j >2 E
0; otherwise:

�
ð1Þ

Suppose the vertex set V is partitioned into two subsets V1

and V2, then the corresponding cut is defined as:

cutðV1; V2Þ ¼
X

i2V1;j2V2
Mij: ð2Þ

The above definition can be easily extended to k subsets:

cutðV1; V2; . . . ; VkÞ ¼
X

�<�
cutðV�; V�Þ: ð3Þ

If the vertices of a graph can be decomposed into two disjoint
subsets such that no two vertices within the same set are
adjacent, the graph is named a bipartite graph. In other
words, a bipartite is a tripletG ¼ ðV1; V2; EÞ, where V1 and V2

are two vertex sets, within each of which no vertices are
adjacent and E is a set of edges connecting vertices from
different vertex sets, i.e., E ¼ f< i; j > ji 2 V1; j 2 V2g. Spe-
cifically, in [2], an undirected bipartite graph, as shown in
Fig. 1, is used to represent the relationship between
documents and terms. Here, V1 and V2 are replaced with D
and T , which represent the subsets of document vertices and
term vertices, respectively, and E denotes the set of edges
f< di; wj > jdi 2 D;wj 2 Tg. An edge < di; wj > exists if
and only if the term wj occurs in document di and its weight
Eij equals the corresponding term frequency.

If we use B to denote the document-by-term matrix in
which Bij equals the edge weight Eij, the adjacency matrix
of the bipartite graph, as shown in Fig. 1, can be written as:

M ¼
D T

D
T

0 B
BT 0

� �
; ð4Þ

where the vertices have been ordered such that the first
n vertices index the documents (denoted by D) while the
last t index the terms (denoted by T ).

1264 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005



The key idea of [2] is to find a partition of the vertices in the
graph such that the cut as defined in (2) (or normalized cut
[19], ratio cut [11], min-max cut [4], etc.) can be minimized.
For instance, if the dashed line in Fig. 1 shows the very
partition that minimizes the cut, we will obtain two subsets,
fd1; d2; d3; w1; w2g and fd4; . . . ; dn; w3; . . . ; wtg. Therefore, the
documents are clustered into two groups, fd1; d2; d3g and
fd4; . . . ; dng, while the terms are clustered into fw1; w2g and
fw3; . . . ; wtg at the same time. It was proved in [2], [10], [19]
that the eigenvector associated with the second smallest
eigenvalue �2 of the generalized eigenvalue problem L! ¼
�Q! is an optimal embedding for the partition of the vertices
that minimizes the cut. Here, Q is a diagonal matrix with
Qii ¼

P
k Eik; L ¼ Q�M is the Laplacian matrix, and ! is a

column vector. After some trivial deduction, the above
problem can be converted to a singular value decomposition
(SVD) problem, which can be computedmore efficiently. For
the details of this algorithm, please refer to [2], [25]. Although
there are some other works on document-term coclustering,
since their basic philosophy is not relevant to our proposed
method, we will not review them in details in this section.
One can find these reference works in [3], [13].

3 COCLUSTERING-BASED HIERARCHICAL

TAXONOMY MINING

As shown in the introduction and the related works,
clustering might be a key technology in unsupervised
taxonomy mining. In this section, we will also use this
methodology to mine hierarchical taxonomy from data
corpora. Specifically, we propose a novel clustering algo-
rithm, which coclusters categories, documents, and terms
based on consistent bipartite spectral graph copartitioning.
We will first explain how this new algorithm is formulated
from Section 3.1 to 3.3, and then discuss how to construct
the taxonomy hierarchy based on the output of this
algorithm in Section 3.4.

Before going into the details of the algorithm description,
we need to give some additional notations. Besides the
document ðD ¼ fd1; d2; . . . ; dngÞ and term ðT ¼ fw1; w2;
. . . ; wtgÞ representations as mentioned in Section 2, for our
application, text categorization, we also have one more
substance, category. Each document will be assigned a
category label from the set C ¼ fc1; c2; . . . ; cmg, where m is
the number of categories. The coclustering will be conducted
on all these three substances of C, D, and T .

3.1 Coclustering-Based on Category-Document
Bipartite Spectral Graph Partitioning

It is not difficult to acknowledge the analogy between
document-category coclustering and document-term coclus-
tering: Categories are similar because the documents in

them are similar, while documents are similar because they
are likely to be classified into similar categories. Therefore,
we can construct a bipartite graph to represent the relation-
ship between categories and documents as well (see Fig. 2).

The category-by-document matrix A can be easily built
according to the information from the corpus. In this matrix,
rows correspond to categories and columns to documents.
Each element Aij indicates the correlation between docu-
ment dj and category ci. If document dj belongs to
k categories c1; c2; . . . ; ck, the weights A1j; A2j; . . . ; Akj are
set to 1=k, and the other elements of the jth column of
matrix A are set to zero. Then we can write the adjacency
matrix of the bipartite graph in Fig. 2 as follows:

M ¼
C D

C
D

0 A
AT 0

� �
; ð5Þ

where the vertices have been ordered such that the first
m vertices index the categories (denoted by C) while the last
n index the documents (denoted by D).

It is easy to understand that the coclustering of categories
and documents can also be mapped to solving the general-
ized eigenvalue problem L! ¼ �Q!. Here, Q is a diagonal
matrix with Qii ¼ �kMik and L ¼ Q�M is the Laplacian
matrix. Similar to Dhillon’s method [2] described in
Section 2, we can solve this problem by computing a
singular value decomposition. The corresponding algo-
rithm is given as below:

Algorithm 1.

1. Given A, form its normalized version,

ÂA ¼ P�1=2AR�1=2;

where P and R are diagonal matrices with
Pii ¼ �jAij; Rii ¼ �jAji.

2. Compute the left singular vector u2 and the right
singular vector v2 corresponding to the second largest
singular value of ÂA and get the eigenvector corre-
sponding to the second smallest eigenvalue of L! ¼
�Q! as !2 ¼ ½P�1=2u2 R�1=2v2�T .

3. Cluster on the one-dimensional data P�1=2u2 and
R�1=2v2 to obtain the desired bipartition of categories
and documents, respectively.

The same manner as described in [2] can be used to
extend this algorithm to its multipartitioning version. While
we use the second singular vector to partition the graph into
two parts, we could use l ¼ log2 kd e singular vectors on each
side (u2; u3; . . . ; ulþ1 and v2; v3; . . . ; vlþ1) when partitioning
the graph into k parts. In such a way, Algorithm 1 can be
updated as below:
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Algorithm 2.

1. Given A, form P , R, and ÂA ¼ P�1=2AR�1=2.
2. Compute l ¼ log2 kd e singular vectors of ÂA; u2; u3;

. . . ; ulþ1 and v2; v3; . . . ; vlþ1, and form � as in (6):

� ¼ P�1=2U
R�1=2V

� �
; with

U ¼ ½u2; u3; . . . ; ulþ1�
V ¼ ½v2; v3; . . . ; vlþ1�

�
: ð6Þ

3. Cluster on the l-dimensional data P�1=2U and R�1=2V
to obtain the desired k-partitioning of categories and
documents, respectively.

It seems that Algorithm 1 and 2 are natural and workable;
however, we have to point out a critical problem of these
formulations. Although, in the case of multilabel classifica-
tion, the above methods might be able to cluster correlated
categories together, in the single-label case, the graph is
actually made up of m unconnected subgraphs correspond-
ing to the m categories because the weights of those edges
between a category and a document which does not belong
to the category will be zero. Therefore, we cannot get a
desirable partitioning because the connectivity of the graph
is not guaranteed. To avoid this situation, one possible way
is to further add the term information to the category-
document graph so that the graph can be well connected.

3.2 Coclustering Based on Category-Document-
Term Tripartite Spectral Graph Partitioning

As the similarity between documents can be defined not
only by categories but also by terms, the bipartite graph
proposed in Section 3.1 reflects only partial information of
the data corpus. To compensate it and avoid the failure case
in single-label categorization, a straightforward way is to
leverage the term information so as to cocluster the
category, document, and term at the same time.

Superimposing Fig. 2 upon Fig. 1, we will obtain a
category-by-document-by-term tripartite graph as shown in
Fig. 3. Here, a k-partite graph is a graph whose graph
vertices can be partitioned into k disjoint sets so that no
two vertices within the same set are adjacent.

It is easy to derive the adjacency matrix for the above
graph:

M ¼

C D T
C
D
T

0 A 0
AT 0 �B
0 �BT 0

2
4

3
5 ; ð7Þ

where � is a weighting parameter and the vertices have been
ordered such that the first m vertices index the categories
(denoted by C), the next n index the documents (denoted by
D), and the last t index the terms (denoted by T ).

Up to now, by introducing the term information, we
might have the chance to solve the failure case caused by
lack of graph connectivity. Then, does everything go
smoothly? And can the coclustering be worked out by
solving the generalized eigenvalue problem corresponding
to this adjacency matrix? Unfortunately, the answers to the
above questions are once again negative. In fact, if we move
the category vertices in Fig. 3 to the side of the term vertices,
the original tripartite graph will turn out to be a bipartite
graph. This can also be proved through the following
deductions: In the tripartite case, as shown in Fig. 3,

Q ¼
P 0 0
0 R 0
0 0 S

2
4

3
5 and L ¼

P �A 0
�AT R ��B
0 ��BT S

2
4

3
5; ð8Þ

where P , R, and S are diagonal matrices such that
Pii ¼ �jAij, Rii ¼ �jAji þ ��jBij, and Sii ¼ ��jBji. Let
vector ! ¼ ðx; y; zÞT , where x, y, and z are column vectors
of m, n, and t dimensions, respectively. Then, L! ¼ �Q!
may be written as:

P �A 0
�AT R ��B
0 ��BT S

2
4

3
5 x

y
z

2
4

3
5 ¼ �

P 0 0
0 R 0
0 0 S

2
4

3
5 x

y
z

2
4

3
5: ð9Þ

Assuming that P , R, and S are all nonsingular, the above
equations can be rewritten as:

P�1=2Ay ¼ ð1� �ÞP�1=2x
R�1=2ATxþ �R�1=2Bz ¼ ð1� �ÞR�1=2y
�S�1=2BTy ¼ ð1� �ÞS�1=2z:

8<
: ð10Þ

If we set u ¼ P 1=2x, v ¼ R1=2y, and s ¼ S1=2z, we will get the
following equations after a little algebraic simplification:

P�1=2AR�1=2v ¼ ð1� �Þu
R�1=2ATP�1=2uþ �R�1=2BS�1=2s ¼ ð1� �Þv
�S�1=2BTR�1=2v ¼ ð1� �Þs:

8<
: ð11Þ

Uniting the first and the last formulae in (11) together and
considering that P , R, and S are all diagonal matrices, we
will have:

P�1=2AR�1=2

S�1=2ð�BÞTR�1=2

� �
v ¼ ð1� �Þ u

s

� �

P�1=2AR�1=2

S�1=2ð�BÞTR�1=2

� �T
u
s

� �
¼ ð1� �Þv:

8>><
>>:

ð12Þ

Let � ¼ ðu; sÞT and

F ¼ P�1=2AR�1=2

S�1=2ð�BÞTR�1=2

� �
:

Then, we have:

Fv ¼ ð1� �Þ�
FT� ¼ ð1� �Þv:

�
ð13Þ

Therefore, (1� �) is the singular value of F and the
generalized eigenvalue problem L! ¼ �Q! is converted to
an SVD problem, where � ¼ ðu; sÞT and v are the left and
right singular vectors, respectively. Note that u and s,
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representing categories and terms, respectively, are both
embedded into the left singular vectors of F . That is, Fig. 3 is
actually equivalent to a bipartite graph and we have to
distinguish (by theweighting parameter�) the loss of cutting
a category-document edge from the loss of cutting a
document-term edge since they contribute to the same loss
function. However, it is nontrivial to choose a proper value
for �: if it is too small, the influence from the matrix B will
make little sense and this graph will degenerate to the graph
in Fig. 2. On the contrary, if it is too large, we will risk the
situation of assigning all category vertices into one subset.

To summarize the above discussions, analyzing the
matrix M in (7) by traditional spectral clustering methods
does not work as it is expected. To tackle this problem, we
will propose a novel algorithm based on consistent bipartite
graph copartitioning. In this algorithm, we no longer need to
tune the weight to balance document-category and docu-
ment-term edges. Instead, we use generalized SVD to fuse
the two bipartite graphs as shown in Fig. 1 and Fig. 2. The
corresponding details will be described in the next section.

3.3 Coclustering Based on Consistent Bipartite
Spectral Graph Copartitioning

As aforementioned, the motivation of coclustering cate-
gories, documents, and terms is to leverage the comple-
mentary information contained in Fig. 1 and Fig. 2. As we
know, a document is the bridge between these two bipartite
graphs. Therefore, if we can design a method to iteratively
refine the partitioning of each graph by the information
contained in the other, the stationary state will have the
same partitioning of documents in these two graphs and the
corresponding category clustering will be more reasonable
and effective. We name this stationary state by consistent
copartitioning of the two bipartite graphs.

In the following discussions, we will first show that
standard SVD on Fig. 1 and Fig. 2 can hardly result in
consistent copartitioning and, then, propose a new method
to guarantee the consistent copartitioning.

3.3.1 Standard SVD Does Not Guarantee Consistent

Copartitioning

To proceed with our discussions, we use M1 to denote the
adjacency matrix of Fig. 2 and M2 to denote the adjacency
matrix of Fig. 1:

M1 ¼
C D

C
D

0 A
AT 0

� �
; M2 ¼

D T
D
T

0 B
BT 0

� �
; ð14Þ

where A and B are defined as aforementioned and the
normalized forms of them are:

ÂA ¼ P
�1=2
1 AR

�1=2
1 ; B̂B ¼ P

�1=2
2 BR

�1=2
2 : ð15Þ

Here, P1, R1, P2, and R2 are diagonal matrices as defined in
Algorithm 1.

Due to the spectral graph theory [2], [25], if we conduct
the singular value decompositions on ÂA and B̂B as

ÂA ¼ UA�AV
T
A ; B̂B ¼ UB�BV

T
B ; ð16Þ

unitary matrix UA will embed the clustering information of
categories, VA and UB will embed the clustering information
of documents, and VB will be the embedding for term
clustering.

Our consistent copartitioning will ask for the same
partitioning of documents in both graphs. Therefore, if
using SVD for clustering as above, we need to guarantee the
clustering results of the corresponding columns of VA and
UB to be the same. However, it is not difficult to understand
that the above consistence cannot be satisfied in many cases
due to the different properties of the two pregiven matrices
ÂA and B̂B [10]. To illustrate this, let us see an example as
follows. Suppose matrices A and B of a single-labeled
problem are:

A ¼
d1 d2 d3 d4

c1
c2
c3

1 1 0 0
0 0 1 0
0 0 0 1

2
4

3
5 ; B ¼

t1 t2 t3 t4 t5
d1
d2
d3
d4

4 3 0 0 0
3 4 0 0 0
0 0 3 4 0
0 0 0 4 3

2
664

3
775 :

After forming ÂA and B̂B and conducting the singular value
decompositions on them, we will get:

VA ¼

0:70711 0 0 �0:70711

0:70711 0 0 0:70711

0 1 0 0

0 0 1 0

2
6664

3
7775;

UB ¼

0:70711 0 0 �0:70711

0:70711 0 0 0:70711

0 0:70711 �0:70711 0

0 0:70711 0:70711 0

2
6664

3
7775:

Now, we can see that the document clustering results based
on UB is fd1; d2; d3; d4g while the clustering results based on
VA is fd1; d2; d4; d3g. Obviously, these two results are not
consistent at all.

To overcome this problem, we suggest that we should
relax the unitary constraint on VA and UB to get a tradeoff.
In other words, for both graphs, we might not use the
optimal embedding for clustering provided that these
two embeddings can be consistent. As will be shown
below, generalized SVD is just such a tool that can meet our
requirement. Due to the following theory, we can find a
consistent copartitioning of documents in these two graphs
based on generalized SVD:

Theorem 1. If we have ÂA 2 Rm�n and B̂B 2 Rn�t; m � n � t,
then there exists unitary matrices U 2 Rm�m; V 2 Rt�t and
invertible matrix X 2 Rn�n such that:

ÂA ¼ UCXT

B̂B ¼ XSV T ;

�
ð17Þ

where C ¼ diagðc1; c2; . . . ; cmÞ; ci � 0 and S ¼ diagðs1; s2;
. . . ; snÞ; si � 0.

Proof. Please refer to [10]. tu

Theorem 1 indicates that there exists a partitioning of
documents (whose embedding is X) that can meet the
constraints of both graphs. The corresponding partitioning
of categories and terms are embedded in U and V ,
respectively. However, a follow-up question is whether
these embeddings are good and how to refine these
embeddings if they are not. This will also be a critical part
in the success of our proposed idea of consistent spectral
bipartite graph copartitioning.

As shown in Theorem 1, X is an invertible matrix. This
condition is much more relaxed as compared to standard
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SVD where the embedding of document (i.e., VA) will be a
unitary matrix. Therefore, the coclustering information
contained in X is not as explicit as in VA. While the second
singular vector of VA has been a good embedding for
document clustering, the same embedding can only be
achieved by considering many nonorthogonal columns in
X. As a chain reaction, this will also affect the explicitness of
the coclustering information embedded in U . Therefore, we
could not use the second columns of U , X, and V directly
but should think of a way to extract useful information from
them. In the mathematical manner, it is equal to finding a
proper linear transformation.

For this purpose, we multiply CXT and XS to form a
mixture matrix H and conduct SVD decomposition on H to
get two unitary matrices UH and VH :

H ¼ CXTXS; H ¼ UH�HV
T
H : ð18Þ

Then, we use UH and VH as the linear transformations to
refine U and V :

U� ¼ UUH; V � ¼ V VH: ð19Þ
Eventually, U� and V � are regarded as the modified
embeddings for coclustering.

To summarize, the consistent bipartite spectral graph
copartitioning algorithm (CBSGC) is given as below:

Algorithm 3.

1. Given A and B, form P1, P2, R1, R2, and ÂA; B̂B.
2. Compute GSVD of ÂA; B̂B to get U , X, V , C, and S.
3. Form H ¼ CXTXS and compute SVD of it to get

UH; VH .
4. Form U� ¼ UUH; V

� ¼ V VH and take the second
column vectors of them, u2 and v2, to form the
normalized embedding vector

!2 ¼ ½P�1=2
1 u2 R

�1=2
2 v2�T :

5. Cluster on the one-dimensional data P
�1=2
1 u2 and

R
�1=2
2 v2 to obtain the desired bipartition of categories

and terms, respectively.

Similar to the method in Section 3.1, we can extend the
above bipartitioning algorithms to adapt the k-partition-
ing case. We would like to use l ¼ log2 kd e vectors on
each side (u2; u3; . . . ; ulþ1 and v2; v3; . . . ; vlþ1) to obtain
desired k-partitioning. As the extension form is quite
similar to Algorithm 2, we omit the details here.

The reasoning of our consistent copartitioning process
can be explained as follows: Since we can hardly get a
consistent document partitioning if we partition both
graphs optimally (corresponding to SVD decomposition),
for compromise, we look for nonoptimal partitioning for
each graph which can be consistent with each other.
Although the partitioning for each graph is not optimal,
when considering the two graphs as a whole, the resulting
partitioning may be more effective.

For the above algorithm description, considering that our
motivation is to get category clusters, one may argue that
another approach to tackle the single-label trap is to use the
category-term bipartite graph directly. We agree with that,
but want to point out it is nontrivial to build the category-
term relationship. If we use some heuristics to get it, we
may lose some unrecoverable information. Comparatively,
our approach is to use the consistency on the document
partitioning to bridge categories and terms. This is a more

natural and lossless way, because category and term are
actually connected by documents in the real world. And
Algorithm 3 is just one of the realizations of our idea. That
is, we are not necessarily restricted to matrix multiplication
or similar linear operations. The algorithm space that we
can explore is very rich, under the same idea of consistency.

3.4 Building Hierarchical Classifier

After designing the above consistent copartitioning algo-
rithm, we can move onto the part of building the taxonomy
hierarchy. As shown in Fig. 4, initially, we regard the whole
collection of categories as the root of the hierarchical
taxonomy and run the k-partitioning CBSGC algorithm on
it to get several subsets of categories in level 2. This process
is done recursively until each subset at the leaf nodes of the
tree consists of only one category.

It is clear that k for different subsets should not be fixed.
However, as we all know, it is a hard problem to determine
k in clustering algorithms, although there have been some
papers working on it [12]. In the field of spectral clustering,
the eigengap [20] is often suggested as a way to determine
the number of clusters; however, it does not always work,
especially for real-world complex problems [17]. With the
above concerns, we adopt a classical strategy to enumerate
k in our method. We try different k values (k ¼ 1; 2; 3; . . . ;K,
where K is the category number of the concerned subset) for
clustering to get a Je-k curve, where Je is the minimum
value for the objective function of a clustering algorithm.
For example, Je for k-means [5] takes the form of:

Je ¼ min
Xk
i¼1

X
y2�i

y� �ik k2; ð20Þ

where �1; �2; . . . ; �k are centers of the clusters �1;�2; . . . ;�k.
Then, the very k at the inflexion point of the curve is
chosen as the number of the clusters. For the above process,
one may argue that the time complexity is high because of
the enumeration. We agree with that, but want to point out
that taxonomy mining could be an offline task. If we can
get a reasonable taxonomy hierarchy and can thus improve
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the classification efficiency and effectiveness by much,
these additional offline data preparations are definitely
worthy of being done.

After the hierarchical taxonomy is ready, we can build
the hierarchical SVM classifiers. At each node of the mined
taxonomy, a SVM classifier is trained to distinguish each of
its child categories from other children of it. That is, the one-
against-rest strategy is adopted at each node. The training
process starts at the root node and covers all the categories
using a breadth-first traversal of the taxonomy.

4 EXPERIMENTAL RESULTS

In this section, we conducted experiments on two real data
sets to show the outputs of taxonomy mining as well as the
classification performance of hierarchical SVM on the
mined taxonomy.

4.1 20-Newsgroups

The data set of 20-newsgroups contains about 20,000 articles
evenly divided from 20 newsgroups. The human-labeled
hierarchical taxonomy of 20-newsgroups is shown in Fig. 5.
Our task is to mine this structure out by automatic methods.

As for the preparation, we randomly selected 100 articles
per category to form the training set for taxonomy mining
and classifier training. Then, we used the remaining
18,000 instances for testing. The experimental settings and
external tools are summarized below:

1. For weighting, we used the method described in
Section 3.1 to build the category-by-document
matrix A and used term frequency to build the
document-by-term matrix B. Here, we only used
those terms that occur more than 10 times in the data
set when generating matrix B.

2. We used the SVD and GSVD functions in the famous
MATLAB (http://www.mathworks.com/) software

to compute the corresponding matrix decomposi-
tions of the matrices.

3. At last, an accelerated k-means algorithm [7] was
implemented to get the category clusters.

4. Microsoft Windows Server 2003 running on a work-
station with 3.06GHz Xeon(TM) CPU and 3.87GB
RAM was used for the experimental platform.

4.1.1 Coclustering Performance

In this section, we picked five categories (See Table 1) from
20-newsgroups to make up a mini set and randomly select
100 articles per category for coclustering. Here, we set k ¼ 2
to test the coclustering performance of the four algorithms:
Category-Document Bipartite spectral Graph Partitioning
(CDBGP), Category-Document-Term Tripartite spectral
Graph Partitioning (CDTTGP), Consistent Bipartite Spectral
Graph Copartitioning (CBSGC), and Category-by-Category
Confusion Matrix (CCCM) [8].

As the mini set is single-labeled, CDBGP made a random
partition of the categories according to the arrangement of
the documents. In our experiment, it regarded C5 as a
cluster and organized the others together. Then, we tuned
different values of � to see the performance of the CDTTGP.
From Table 2, we can see that the results are disappointing
no matter how this parameter was set. In fact, when � is
small, the algorithm degenerated to CDBGP. Otherwise, all
categories were assigned to one cluster.

Comparatively, CBSGC and CCCM algorithms both
exported a cluster of C4; C5 and another of C17; C18; C19.
The result was in accordance with our ground truth, which
showed that CBSGC and CCCM outperformed the other
two methods in category clustering.

4.1.2 The Mined Hierarchical Taxonomy

In this section, we ran the CBSGC algorithm on the whole
data set of 20-newsgroups tomine the hierarchical taxonomy.
During this process, we used the strategy described in
Section 3.4 to determine the cluster number for each nonleaf
node. For instance, Fig. 6 showed the Je-k curve for the root
node, in which the number 4 at the inflexion point of the
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A Mini Set Selected from 20-Newsgroups

Fig. 5. The natural taxonomy of 20-newsgroups.

TABLE 2
Performance under Different Values of �



curve was chosen for k. To make the taxonomy compact and
depress the computational cost, in our experiment, the
recursion stopped when a subset contained no more than
three categories. As a result, we mined the taxonomy
hierarchy as shown in Fig. 7 for the 20-newsgroups data set.

We can see from this taxonomy that correlated categories
such as rec.*, talk.*, comp.*, and sci.* were clustered together
in different levels respectively except for some overlaps
between comp.* and sci.*, and the single-handed categories
such as alt.atheism, misc.forsale, and soc.religion.christian were
separated solely from other clusters in certain levels.
Further observation shows that low level categories such
as comp.sys.* and rec.sport.* were also grouped together.

For comparison, we gave in Fig. 8 the taxonomy built in
[8] by CCCM. We can see that Group 1 and Group 3 mix
different kinds of categories together.

To summarize, the clusters of our mined taxonomy
looked more reasonable, and the local properties of this

hierarchy were more similar to those of the natural
taxonomy in Fig. 5. The weakness of CBSGC is that the
mined taxonomy often had more levels than the natural one.

4.1.3 Classification Performance

In this experiment, we investigated the accuracy of
hierarchical classification with the mined taxonomy. As
the baseline, we first constructed a flat SVM classifier. Then,
we trained three hierarchical SVM classifiers according to
the taxonomies shown in Fig. 8, Fig. 7, and Fig. 5,
respectively. The corresponding classification results and
time complexities of the above classifiers were summarized
in Table 3, in which Micro-F1 and Macro-F1 are used for
evaluating the classification performance [14].

As can be seen from Table 3, the performance of
hierarchical classification based on CBSGC was better than
both the flat classifier and the hierarchical classifier based
on CCCM. Furthermore, we find that the classification
performance of our method was very proximal to the
natural hierarchical classifier. This showed in an indirect
way that our taxonomy mining algorithm was very effective
and the mined hierarchy was reasonable and meaningful.
As one can see, the improvement brought by our method is
not very significant (about 2 percent). The reason is that the
20-newsgroups corpus is somehow easy to classify. With a
baseline of about 0.9 F1 scores, the space of improvement
could only be marginal.

For the time complexity of training and test, we could see
that hierarchical classifiers outperformed flat classifiers
significantly. Even if we further take the time of taxonomy
mining (including the time spent on running generalized
SVD and determining the cluster number k) into considera-
tion, the overall complexity of CBSGC-based hierarchical
SVM was still lower than flat SVM. It is very promising that

1270 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 6. The Je-k curve for the root node.

Fig. 7. The mined taxonomy of 20-newsgroups by CBSGC.

Fig. 8. The taxonomy of 20-newsgroups by CCCM.



our proposed method can improve both the effectiveness
and efficiency as compared to flat SVM classification.

4.2 A Subtree of the Yahoo! Directory

In this section, we conducted our algorithm on a subtree of
the Yahoo! directory. It has been discovered [16] that the
distribution of the Web pages (documents) in the Yahoo!
directory is seriously skewed; that is, many leaf-node
categories of the taxonomy contain very few documents
while several common categories consist of thousands of
documents. To avoid the influence of this ill distribution and
show the validity of our algorithm, we selected the Science
subtree for our experiment. The root node of the selected
corpus was Science, and three children Mathematics, Physics,
and Chemistrywere selected as the second level nodes. Then,
all the children of these three nodes were put in the third
level and all other nodes were omitted. Table 4 gave a rough
view of the selected subtree. (The data was crawled in Oct.
2004.) With such a setting, this subtree contained 91 leaf-
node categories and 3,073 Web pages (documents). We
randomly chose 80 percent (2,451) documents for training
and the rest 20 percent (622) for testing. The weighting
process for matrices A and B was the same as in Section 4.1.

4.2.1 Coclustering Performance and the Mined

Hierarchical Taxonomy

After applying CBSGC on it, we got the embeddings of the
category nodes in Fig. 9, where the second, third, and fourth
columns of the embedding matrix U� were plotted and the
ground truth of category labels were shown (children of
Mathematics, Physics, and Chemistry were denoted by “x,”
“+,” and “.,” respectively).

Figs. 9a, 9b, 9c, and 9d showed the embeddings in
different points of view. We could see that most of the
nodes that belonged to the same category in level 2 were
embedded very close to each other. For example, in Fig. 9d,
most mathematical nodes were on the right side of the
vertical axis; most physical nodes lay on the left of the
vertical axis and below the horizontal axis; and most
chemical nodes lay on the left of the vertical axis but over
the horizontal axis. We could also see a few error-
embedded nodes. For instance, the ”x” point near (0.2, 0)
in Fig. 9d wasWavelets, a child ofMathematics, but it seemed
more close to the children of Physics and Chemistry. In some
sense, this might also be reasonable because from the bag-
of-word view, ”wave” can be quite relevant to Physics.

Another finding is that there were some nodes far away

from the majority, such as the ”x” point near (-0.4, 0.1) in

Fig. 9d, which was Mathematics/Education. One explanation

is that these categories had much more training documents

than other categories. In other words, this charges upon the

skewed category distribution. If we ran k-means on the

embedding data as done in Section 4.1, these isolated points

would tend to be clustered as separate clusters. To tackle this

problem, we used the simplest method to get the clusters,

that is, we chose the zero points of different dimensions as

thresholds to partition the embedding points, and mined the

taxonomy described in Table 5. From this table, we can see

the clustering performance is quite good: Most categories

are correctly clustered to their ground-truth labels, while

only a few categories are wrongly clustered.

4.2.2 Classification Performance

In this section, we examine the classification performance of
the mined taxonomy as shown in Table 5. We first
constructed a flat SVM classifier composed of 91 one-
again-rest SVM classifiers. Then, we trained two hierarch-
ical SVM classifiers according to the taxonomies shown in
Tables 4 and 5, respectively. The corresponding classifica-
tion results and time complexities of the above classifiers
were summarized in Table 6, from which we could see that
the performance of hierarchical classification based on
CBSGC was not only higher than flat SVM, but even better
than the hierarchical classifier based on the natural
taxonomy. This phenomenon is so promising for automatic
taxonomy mining: some local structure of the artificial
taxonomy might be unsuitable for machine classification.
And for the complexity, we can get very similar conclusion
to that from the 20-newsgroups data set: Even if we take the
time for taxonomy mining into account, the time complexity
of CBSGC-based hierarchical SVM classification is still
much lower than flat SVM classification.

5 CONCLUSION AND FUTURE WORK

In this paper, our target is to prepare a hierarchical
taxonomy automatically in order to applying hierarchical
classification. For this purpose, we proposed a method to
cluster categories, documents, and terms by consistent
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The Selected Subtree of the Yahoo! Directory

TABLE 3
Experimental Results of the Classifiers on 20-Newsgroups

(The time spent on mining the taxonomy by CBSGC was 273.902s.)



bipartite spectral graph copartitioning. Compared to pre-
vious approaches, this method used more information
embedded in the data corpus to assist the taxonomy mining
and the hierarchical classifier training. Experimental results
showed that the proposed method worked well in category
clustering and could produce a very similar hierarchical
taxonomy to the natural hierarchy in both the appearance
and the corresponding hierarchical classification perfor-
mance. For future work, we plan to provide some reason-
able objective functions for the consistent copartitioning
problem and design fast algorithms to get the optimal
solution. We would also like to find a more efficient way to
select k automatically in the process of generating the
hierarchical taxonomy.
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