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Abstract 

Usage of cellular phones and small form factor devices as 
PDAs and other handhelds has been increasing rapidly. Their 
use is varied, with scenarios such as communication, internet 
browsing, audio and video recording just to name a few. This 
requires better sound capturing system as the sound source is 

already at larger distance from the device’s microphone. In 
this paper we propose sound capture system for small devices 
which uses two unidirectional microphones placed back-to-
back close to each other. The processing part consists of 
beamformer and a non-linear spatial filter. The speech en-
hancement processing achieves an improvement of 0.39 MOS 
points in the perceptual sound quality and 10.8 dB improve-
ment in SNR.  

Index Terms: sound capture, speech enhancement, beam-
forming, spatial filter. 

1. Introduction 

Cellular phones have increased their CPU power and 
amount of memory, which is quickly moving them into the 
entertainment devices and personal assistants category. Most 
of them contain cameras, capable of taking still photos and 
recording video and audio. With advancement of the 3G and 
4G wireless technologies, the high speed connection to Inter-

net soon will become standard in the calling plans. This opens 
the door for mobile video telephony. Often, a multimodal user 
interface is used for quick access to information on Internet, 
combining speech recognition and a graphic screen. In these 
cases, moving the phone close to the mouth to speak and then 
returning it to roughly an arm’s length away to see the screen 
can be quite awkward. Besides cellphones, other devices such 
as PDAs and ultra small mobile personal computers have also 

grown in popularity and proliferation, particularly among 
users which need more computing power. All of the devices 
above have something in common: they need good sound 
capture from one meter distance (about one arm’s length) in 
an increasingly noise adverse environment.  Unfortunately, 
these devices historically have only one microphone which, in 
most of the cases, is omnidirectional. This leads to the pick-up 
of too much ambient noise and reverberation, making these 
devices useless under higher noise conditions. And in the case 

of video streaming and capture, mobile phone requires good 
sound capture for sound sources up to three meters away. 

The most trivial way to improve the sound capture quality 
is to use a unidirectional microphone. This increases the SNR 
about 4.3 dB, but worsens the audio quality during video re-
cording, as usually the video camera is on the opposite side of 
the phone. Still, even this small advantage in SNR helps the 
stationary noise suppressor [1] to do a better job, as it is less 

efficient with input SNRs below 5-10 dB.  
The next logical improvement is to add one more micro-

phone and to use one of the standard beamforming 

technologies [2] to improve the SNR and sound quality. Due 
to the small size of the device and the need to keep the micro-
phones as far as possible from the loudspeaker, the distance 

between the two microphones is limited to 30-50 millimeters. 
The efficiency of the classic beamforming techniques with 
small-base microphone arrays is quite low.  

Assuming that the linear processing exhausted its ability 
to reduce the ambient noises, a non-linear microphone array 
postprocessor can be further utilized. It applies variable real 
gain in real-time, based on the sound source position. Even 
microphone arrays with small distance between the micro-

phones can detect relatively well the direction towards the 
sound source. Building spatial noise models [3], or direct 
estimation of the probability the sound come from the desired 
direction [4] can be used for suppressing the sounds coming 
from unwanted directions. 

In this paper we propose a microphone array geometry 
which consists of two unidirectional microphones placed 
back-to-back and pointing in opposite directions. The beam-

former has two beams, pointing towards the front and rear 
directions, designed to provide maximum difference front-
back. The consequent non-linear spatial filter uses the differ-
ence between the signals in the two beams to build spatial 
statistical models and to compute the probability the signal 
come from the desired direction for each frequency bin. Then 
it is applied suppression gain, reducing the signal from am-
bient noise and unwanted sound sources. For evaluation of the 
results, improvements in SNR and MOS are used, computed 

using algorithms for objective sound quality measurement.  

2. Modeling 

The block diagram of the processing chain is shown on 
Figure 1. The signals from the two microphones are processed 
by two beamformers optimized to provide maximum differ-
ence front-back. Then, a feature extractor, assisted by a binary 
voice activity detector (VAD), computes the differences in the 
outputs of the beamformers. Based on dynamically updated 
statistical models, the probability of the speech signal to be 

coming from the desired direction is computed, which is then 
applied as suppression gain.  

 
Figure 1. Block diagram of the processing algorithm. 
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We assume processing in frequency domain using Hann 
weighting and the standard overlap and add scheme. We omit 
the notations for frequency bin and frame number whenever it 
is possible to do so without reducing the clarity.  

2.1. Microphones identification 

For the beamformers’ design, we assume knowledge of 
the front and rear microphones’ directivity patterns as a func-

tion of the frequency and the incident body angle, ( , )FU f   

and ( , )RU f   respectively.  

2.2. Beamformers design 

In most cases, the used unidirectional microphones are not 
perfect. The purpose of the beamformers is to form a beam 
directivity pattern that maximizes the difference for signals 
coming from front and rear. We have to compute beamformer 
weights: 
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Here,   is the half of the desired beamwidth, ( )F X , and 

( )R X  are signals generated by a sound source placed at 

direction . The distance to the sound source is fixed to 

ρ=1m, which is close to the average working distance. Then: 
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Here dF is the vector of coordinates {x,y,z} of the front mi-
crophone. The middle of the distance between the two micro-
phones is the center of our left oriented coordinates system, 
with x axis pointing forward, y axis pointing left (view from 
top) and z axis pointing up. Then the front speaker is at direc-
tion 0O and the rear speaker is at direction -180O. The first 

member of the expression ( , )FX f   is the signal magnitude 

decay due to the distance, the second represents the delay 
(and the phase shift), and the third is the front microphone 

directivity pattern. ( , )RX f   is modeled in the same way. 

The beamformer weights can be computed analytically or 
using one of the algorithms for mathematical optimization. 
The maximums should be searched for under constrains of 
unity gain and zero phase shift for signal coming from the 
desired direction. This can be done by adding punishing func-
tions to the optimization criterion [5]. 

2.3. Voice activity detector 

For building the statistical model of the wanted and unwanted 
signals a simple, energy based, binary VAD is used, applied 
to the front beamformer output.  It employs a minimum ener-
gy tracking and is implemented as a state machine with thre-
sholds for switching between “noise” and “voice” states.  

2.4. Features and statistical models 

Distinguishing between desired and unwanted signals is based 
on their spatial position. As the beamformers are optimized to 
increase the difference between front and rear signals, we 
choose four features:  difference in signal level (r.m.s.) for the 
whole frame, difference in signal magnitude per frequency 

bin, delay for the whole frame, and delay per frequency bin.  

2.4.1. Level difference per frame 

Under ideal conditions (perfect microphones matching, 
identical directivity patterns and isotropic ambient noise), the 
levels should be the same and the average difference should 
be zero. Potential non-zero difference in the pauses can occur 

when the real microphones have different-than-modeled cha-
racteristics due to channel mismatch. To compensate for this, 
we have to compute the level difference mean in addition to 
the variation. The noise model update happens in the noise 
frames only: 
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Here T  is the frame duration and 
W  is the adaptation time 

constant. Then the level differences for the current frame is:  

 ( ) ( ) ( )n n n

W CL L L    (6) 

and this is the first of the four features. The couple ,C WL   

characterizes a Gaussian process for the level differences 
fluctuation during noise-only frames. The level difference 
during speech frames is modeled as statistical process with 
asymmetric PDF:  exponential for the positive differences and 
Gaussian shape for the negative differences: 
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Here the exponential distribution parameter is estimated dur-
ing voiced frames and positive level differences as: 
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The statistical model parameter for the sound coming from 

the rear 
( )n

RW  is estimated and updated in the same way when 

the level differences are negative.  

2.4.2. Level difference per bin 

The second feature is the magnitude difference per fre-
quency bin. We build the same statistical models as above, 

estimating the parameters ( ) ( )n

CbL k , ( ) ( )n

FWb k , and ( ) ( )n

RWb k  for 

each frequency bin. The adaptation time constant is 
Wb . 

2.4.3. Time delay per frame 

The third feature is the time delay between the signals 
from the two microphones. The delay is estimated using 
PHAT weighting and Generalized Cross Correlation method: 
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see [6] for more details. Quadratic interpolation for finding 

the maximum is used to achieve sub-sampling period resolu-
tion. Based on the classification from the VAD and the delay 
sign (negative or positive), three statistical models are built:  
noise (updated during non-voiced frames), front (updated 
during voiced frames and positive delays), and rear (updated 
during voiced frames and negative delays). The models as-
sume Gaussian distribution, same variances, and means com-
puted from the geometrical positions of the microphones. This 

leaves only one parameter to estimate in real time – the va-

riance. The adaptation time constant is 
D . 

2.4.4. Time delay per bin 

The fourth feature is delay per frequency bin, estimated 
from the phase differences of the microphone signals: 
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normalized in the range of  ,   . The adaptation time 

constant is 
Db . 

2.5. Probability estimation 

Given frame level difference ( )n

WL  between the front and 

back beams, the probability this frame to be dominated by a 
signal coming from front is: 
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where  ( )n

FW Wp L ,  ( )n

RW Wp L ,  ( )n

NW Wp L  are the values 

of the front, rear and noise PDFs for this level difference. The 
probabilities for the other three features are estimated in the 
same manner.  

2.6. Features fusion 

Once we have the probability estimations for speech sig-
nal coming from the desired direction we can combine them: 
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where ( )n

kP  is the probability to have signal coming from 

desired direction in -thn  frame and -thk  bin, ( ) ( )n

iP k  is the 

probability for the -thi  feature and 
iG  is the feature gain. 

When the gain is one the feature is disabled; when it is zero – 
the feature is in its full weight.  

The overall probability can be used as suppression gain, 
reducing the presence of sounds coming from unwanted direc-
tions. This is an MMSE solution for the time domain wave-
form, [7].  

 

2.7. Optimization goal 

The algorithm above (besides means and variances which 
are estimated in real time from the input signals), has adapta-
tion time constants and gains with values that cannot be esti-
mated mathematically. To find the optimal values for them, 
we use mathematical optimization with parameters the values 
of the adaptation time constants and gains – a total of eight 

parameters: , , , , , , ,W Wb D Db W Wb D DbG G G G    . 

A source consisting of a recorded human voice played 
through a mouth simulator, placed in the desired position can 
be recorded with the sound capture system in low noise and 
reverberation conditions – in an anechoic chamber, for exam-

ple. This can be repeated for various speakers with different 
gender and age. Ambient noises in various conditions – cafe-
teria, office, street, etc. can be recorded using the same de-
vice. The sum of any combination of these two signal types is 
what would be recorded in the same conditions with a real 
human speaker. This allows creation of a substantial number 
of test recordings. All three files (clean, noise-only, mixture) 
from each set are processed in parallel. Having separated 

clean speech and noise recordings allows for computing a 
precise Wiener gain for each frame and frequency bin: 
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which is an MMSE estimator when applied to the input sig-

nal. Here ( )n

kX  and ( )n

kN  are the clean speech and the noise 

signals respectively. As the probability estimator in (12) is an 
MMSE estimator as well, then we should minimize: 
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where R  is the vector of the parameters for optimization. To 
keep the values of the adaptation time constants, especially 

the gains in the allowed boundaries, we convert the con-
strained optimization goal (14) into non-constrained by add-
ing punishing functions: 
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For estimation of the parameters optimal values, almost any 
algorithm for mathematical optimization can be used.  

3. Experimental results 

The sound capturing device consists of two unidirectional 
microphones placed back-to-back with distance between the 

microphones of 9.6 mm. They were installed in a cell phone 

 
Figure 3. Directivity pattern of the front beam. 

 
Figure 2. Directivity pattern of the front microphone. 



mock-up to model the same acoustical parameters. The sam-
pling rate for all recordings was 16 kHz, the audio frame size 

was 512 samples.  
The microphones directivity patterns were measured in an 

anechoic chamber by recording chirp signals, played by a 
reference loudspeaker. The recording was repeated 36 times 
after rotating the device 10O. The measured directivity pattern 
of one of the two microphones is shown on figure 2.  

The beamformer coefficients were estimated by maximiz-
ing (2) and (3) using a steepest gradient descent algorithm. 

We maximized the difference between the signal energy in 

the range 30  and 150 , 150    , i.e. 30  . The result-

ing beamshape for the front beam is shown on Figure 3. It is 
substantially improved, compared with the subcardiod direc-
tivity pattern of the microphones on previous figure. 

For minimizing (15), a set of sixteen files with various 
voices and input SNRs are used. The average duration of each 
file is about one minute. The first 80% of each file was used 
for optimization, the last 20% - for testing. The same steepest 
gradient descent algorithm was used for finding the minimum. 

After each iteration of the steepest gradient descent algorithm, 
the test parts were evaluated using the same optimization 
criterion. The optimization procedure was stopped when there 
was no further improvement in the test set evaluation after 
five iterations in a row. This is done to prevent overtraining of 
the optimization parameters. The estimated optimal parame-
ters were used to evaluate a second set of recordings, which 
did not participate in the optimization. These are the results 

we discuss further.  The optimal gains per feature are shown 
in the first line of Table 1. It is obvious that the optimization 
procedure practically turned off the last two features: delay 
per frame and delay per frequency bin. This is due to the 
small distance between the microphones, equivalent to delay 
of one quarter of the sampling period. The same table presents 
the estimated gains for various feature combinations. The 
combination level difference per frame and level difference 
per bin produces best results and only these two features are 

chosen to be part of the further evaluation. 
To verify the correctness of the statistical models and the 

assumed PDFs, we computed the real distributions from the 
recorded signals. Figure 4 shows the model and the actual 
distribution for the signal level difference per frame. The 
estimated models cover well the real probability distribution. 

Table 2 shows the results of the processing using two 
evaluation parameters: SNR and MOS. The second is esti-

mated using PESQ algorithm [8]. The noise suppression and 

speech enhancement chain is well balanced across processing 
blocks, and shows very good noise suppression and audible 
increase in the perceptual sound quality.  

4. Conclusion and acknowledgements 

This paper presents a sound capturing configuration and 
speech enhancement procedure suitable for integration in 
mobile phones and handheld devices. The algorithm uses the 
difference between the signals captured from two unidirec-

tional microphones pointing in opposite directions. Novel 
statistical method for estimation of the probability that the 
signal is coming from the desired direction was derived. We 
propose a procedure to optimize the values of the algorithm 
parameters which cannot be estimated. From the four features 
experimented with, two were eliminated by this optimization 
procedure. The algorithm relies only on the differences in the 
signal levels for the frame and per frequency bin.  

Authors would like to thank Pavan Davuluri for the sup-

port, and Fraser Midstokke and Michael Jonson for making 
the actual recordings. 
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Figure 4. Modeled and actual probability distributions 

for level difference per frame. 
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Table 2. Improvements in SNR and MOS. 

Processing stage BF SF Total 

 Av. SNR improv. 5.12 5.31 10.43 

 MOS improv. 0.15 0.24 0.39 

 

Table 1. Gains for different feature combinations. 

Features    Gain     AvSNR 

combination Lev/fr Lev/bin Del/fr Del/bin improv. 

All four 0.00 0.00 0.89 0.99 11.06 

Lev/bin&fr, Del/fr 0.02 0.00 0.68   10.82 

Lev/bin&fr 0.00 0.19     10.43 

Lev/bin, Del/fr   0.00 0.48   4.83 

Lev/fr 0.00       5.25 

Lev/bin   0.00     5.12 

Del/fr     0.00   6.21 

Del/bin       0.00 1.96 

 


