Automated Dynamic Reconfiguration for High-
Performance Regular Expression Searching

Ken Eguro

Microsoft Research
Redmond, WA
egur o@ri crosoft.com

Abstract—Dynamic reconfiguration can be necessary to
produce fast and flexible FPGA-based applicationsHowever, in
practice very few developers actually use this capdity. One
reason that runtime reconfiguration is not more conmonly used
is that it is very difficult to write and execute gplications that
are spread across multiple configurations. This paer uses the
problem of regular expression searching for e-magpam filtering
to illustrate the potential advantages of dynamic econfiguration
and the inherent development problems associated thi the
conventional design methodology. To solve thesegiiems, we
present a regular expression system compiler. Thigutomated
tool includes 1) a mechanism to split a large sef searches into
multiple hardware configurations and 2) a control gstem to
manage reconfiguration and 1/0O marshalling during eecution.
Even with very rudimentary reconfiguration support from the
platform used in our testing, we are able to perfam 3 to 4 orders
of magnitude faster than software.

I. INTRODUCTION

spam filtering. We will also investigate the issubat make
implementing runtime reconfiguration difficult: golems in
the classical design methodology, limitations ofe th
conventional CAD toolflow, and restrictions of tetemmon
execution model. We address these concerns mditing a
complete regular expression system-level compiliris tool
automatically divides and executes regular expoassacross
multiple virtual configurations without user intemtion.

Il. REGULAR EXPRESSIONSEARCHING & FPGAs

Regular expressions are widely used in many differe
fields, ranging from network intrusion detection BNA
sequencing.
characteristics that make implementing them on ialpat
computing devices, such as FPGAs, rather than coiovel
microprocessors particularly attractive.

First, as shown in Fig. 1, regular expression dgagcis

Perhaps the most powerful feature of most mode?minently parallel. In this example we would ltkesearch an

commercial FPGAs is that they are configured meigyy
changing bits held in memory. RAM-based configiorat

input stream for the words “CAT”, “POP” and “PODWith
very simple parts (AND gates, flip-flops, and logkat can

allows FPGAs to be quickly reprogrammed an essgntiaMaich given letters) we can fully exploit the ashle

infinite number of times. This reconfigurabilitypens the

door for FPGAs to be extremely flexible and highéguivalent

performance devices. That said, very few FPGA ieafpbn
developers truly make full use of this capability.

parallelism and search for all three strings siamdbusly. An
memory-efficient search running on

microprocessor would generally need to servicedtlsearches
serially. Since the number of regular expressibias can be

a

Most FPGA platforms available today contain an SRAMoUnd in parallel on an FPGA is only a function tfe

based FPGA alongside a non-volatile memory. In rtroest
common use, the non-volatile memory will feed agken
configuration to the FPGA at power-on and this gunftion
will remain resident until power-off. With thispgg of use,
the reconfigurability of the FPGA could be viewedraore a
liability rather than an asset. Although such stay could
perform firmware updates and the like, the FPGAeally
being used as a static computing platform.

Even among applications that do make use
reconfiguration, FPGAs are only generally reprograd on
a task-by-task basis. For example, an FPGA mighttaskA
for 30 seconds before being reconfigured to perfiaskB for
the next 30 seconds. In some sense, this is éeemodel of
execution that is used by the canonical exampldyofamic
reconfiguration: software-defined radios. Recamfagion is
almost never used during the processing of a siagle

Intra-task runtime reconfiguration may be necessary
build practical FPGA-based solutions for many aggilbns.
In this paper, we will discuss why dynamic recoofafion is
needed to perform regular expression searchingeforall

capacity of the device, it is possible for an FPBased
solution to have essentially constant throughpegardless of
the number of regular expressions implemented.s Thiin
stark contrast to software in which the performadegrades
linearly with respect to the number of desired cees.

A second advantage that FPGA-based regular expressi
searching has is that the circuits we build caretmpletely
deterministic performance. The circuit in Fig. ilhalways
Be able to accept one new character of input detecipck
cycle, regardless of the searches desired or cowifethe
input data. The throughput of software, on theeptiand, can

Input i

Fig. 1. Circuit to search for “CAT”, “POP” and “RID in parallel.

Regular expression searches have a few

depend upon the nature of the searches desirec (andess because spam filtering is a naturally fixed date egplication.
complex regular expressions) and the nature ofrjhiet data Any real e-mail system will be connected to a nekweith a
(an input stream that has a high hit ratio versawswith a low fixed incoming capacity. For that matter, whilee thystem
hit ratio). This is on top of that fact that soétve is generally may be flooded by mail in short bursts, the lateocsnessage
beholden to unpredictable events such as cachesmiss delivery is not terribly important, at least withreasonable
The natural affinity that regular expression semghhas bounds. Thus, the processing required during geras high
for reconfigurable devices has lead to a numbeprefiious traffic can be amortized over periods of low traffi
research efforts. Although some of these projdwse That said, statically configured FPGAs cannot take
suggested systems more akin to processor-baseiibasl{il] advantage of this fixed data rate and may be utitized.
[3], most have, similar to our example in Fig. pread the For example, a user might want to look for 1,00Qutar
regular expression processing spatially to fullypleit expressions on an e-mail system with a nominal lofdO
parallelism [2][9][12][15]. One issue that thesppeoaches Mbps. Let us assume that the user's regular esjomes
have is that they only consider the case in whighregular completely fill a single FPGA configuration and tha is
expressions are implemented on a single statidgumation. capable of processing at a rate of 1 Gbps. Thifemeance is
well above the nominal workload. If the user idyoable to
Hll. IMPLICATIONS OFSTATIC CONFIGURATION statically configure the FPGA, the device will lotbei 99% of
Although FPGAs are capable of very high throughptite time.
parallel processing, only using static configunatéan lead to
problems for application developers. In this settiwe will
focus on how the lack of dynamic reconfiguratiom cause
two troubles for e-mail spam filtering: issues withoblem
scaling and low resource utilization.

C. Dynamic Configuration

If the user were able to take advantage of dynamic
reconfiguration, they could use it in two differemays. One
option is that the user could plan for the futuiRather than
o purchasing an additional FPGA when they need 1r8@ular
A. Hard Capacity Limit expressions, they could map new searches to other

The most serious side effect of static-only FPGgonfigurations and quickly swap between them. igmp
configuration is that it creates a hard capacityiti One key some practical considerations for the moment, téifinique
advantage of microprocessors is that their secalentvill increase the potential capacity of the system100K
execution model naturally virtualizes the compuwiagil regular expressions while still maintaining adegquat
resources. This virtualization is important beeaitsallows performance. Beyond this point, the user still ties option
the performance of the system to gracefully declazea of running additional regular expressions with adymally

problem becomes more complex.

increasing penalty in terms of throughput.

In contrast, if an FPGA application developer only Another option is that the user could simply pusgha

considers static execution on a reconfigurable adging
platform,
configuration. Although there may be hundredtholisands
of LUTs and flip-flops on the FPGA, if we ignoreatime-

cheaper platform with a smaller FPGA. In this cake, user

their computation must fit within a siegl could opt to split their regular expressions act®3 different

configurations mapped to a device 1/10the size. The
various configurations could be quickly swappedootite

multiplex sharing built into the circuit, all oféhresources are FPGA and still keep up with the expected workloathis

statically allocated. Thus, if the applicatiorrus through the
traditional set of CAD tools and it turns out tilhé resource
requirements exceed the capacity of the device,syistem
will simply fail — suddenly and catastrophically.

This may not be an issue for applications in whibb
resource requirements are constant. However, sisa@
constantly growing problem. While we might havé®QD
regular expressions today, tomorrow we will have fame
1,000 plus a few more. While most of the regulgressions
will eventually be retired, far more may be addedatke their
place in the meantime. With purely static confagion, the
only upgrade path to accommodate additional
expressions is to add more FPGAs to the systemenVihe
user has enough regular expressions to fill thet HPGA,
they must get another. However, as will be disedss the
next section, the first FPGA may not truly be “full

B. Inefficient Resource Utilization

reguldevelopment

would increase the utilization of the board.

Either of these options give the user better adivas to
either living with a fixed amount of logic, cursirige system
because a computation is too large and errorsnotitei CAD
tools, or buying lots of potentially underutilizeldvices.

IV. ROADBLOCKS TODYNAMIC RECONFIGURATION

Despite the advantages of dynamic reconfiguratibris
seldom used. However, this is generally not calmsesdome
intrinsic restriction of the FPGA platform itselfRather, the
problem is that monolithic, single-configurationpdipation

commercial FPGA CAD tools.
computation across multiple configurations can teng and
complicated process. There are two fundamentabl@nts
that users can face. First, how can we effectivBlyde a
large set of problems into smaller groups that fiaron a
given device? Second, how do we actually exeddset sub-

Since FPGAs can take advantage of so much pasafigli problems when they are spread across multiple gorgtions?

they can actually be too fast for an applicatiofhis is

is the only easy path through existing
Simply put, spreading a

The task of dividing a set of regular expressionsmrg
multiple configurations can be extremely laboriarsl time
consuming. Coincidentally, this is also a probiéme do not
allow dynamic reconfiguration, but simply want tpread a
problem across multiple FPGAs. Dividing a workload
troublesome because current FPGA CAD tools provabe
little feedback too late in the compilation processe useful.

In order to divide a set of regular expressions mtsmall
number of different configurations, a developer ldaweed to
make countless manual iterations through the CAdsto If
the first regular expression could fit on a singbafiguration,
we could try the first five. If these fit, we coutry the first

ten. If not, perhaps the first three. This taad-error search instance of a sub-expression.

encoded state machines by using techniques sitoitaiose in
[15]. The operations that we support are showrign 2.

Fig. 2a shows the structure of the most basic wnibur
system. This building block can match a singleratigr of
input data against a single character in a regepgression.
As will be discussed later, this structure can kiemded to
also match against a single class of charactegs.2B shows
that these simple units can be concatenated tagtsthalow
multi-character strings. This is accomplished bmpsy
feeding the output of one matching unit into theuin of
another. Fig. 2c shows how two sub-expressionshea®@R-
ed together. Fig. 2d shows how we can match zerone
Similarly, we cawo ahatch

process is a large problem because each run thrthegh zero or more or one or more instances of a subesspn.

mapping tools could take hours.
daunting task if we consider re-ordering the
expressions to maximize utilization. As will bescissed in
more detail in Section V.B, this problem can bevedl by
providing a fast estimate of the resource requirgmef each
regular expression. After we have this informatiae can
build a system to automatically partition the pesbl into
smaller sub-tasks.

The simple execution of an application that is agracross

This is an everremdrhis is shown in Fig. 2e and Fig. 2f, respectiveliMore
regulaophisticated regular expression operators suchoasded

and unbounded quantification ({N}, {N, M}, {N, }) an be
implemented by combining these basic operations.

As shown in Fig. 3, each regular expression insystem
is turned into a unique state machine. The indiaid
matching units (Fig. 2a) within each state maclireefed by
either a byte decoder or a character class ROMhe Hyte
decoder simply indicates if the current input cbgamatches

multiple configurations is also an issue. Thibézause such a single value between 0 and 255 (is the inputacar an
an arrangement requires a custom-made control reyste ‘a’?). On the other hand, a character class ROK 256x1-
reprogram the device with the correct configurateinthe bit memory capable of matching the current charaatginst
appropriate time and marshal the correct input@ngut data multiple values (is the input character a digit?).

to and from the various configurations. Developitig The output of each regular expression is fed tatarating
software and hardware for such a control systenuires) N-bit counter to determine how many times the ragul
manual intervention each time that the regular @sgipns are expression is matched during a given message. eTiessilts

modified. This time-intensive and potentially erpyone
process can make dynamically configured systemsaiatigal.
As will be discussed in Section V.C, this contreincbe
automated so that a user does not need any spaciledge
regarding FPGAs or hardware design to use thersyste

V. REGULAR EXPRESSIONSYSTEM GENERATION

To be truly deployable, applications that rely omaimic
reconfiguration cannot be time-consuming to createequire
meticulous custom development. In this sectiordescribe a
method to automatically generate a complete
expression execution engine. This system provalegery
simple interface that makes the actual implemesiatind
execution of the regular expressions invisiblehi aiser. We
first outline the basic architecture of a singlenfiguration.
Our discussion continues with a description of leolarge set
of regular expressions can be divided into a mihimenber
of difference configurations. Finally, we show hdhese
configurations can be run without user intervention

A. Regular Expression Compilation and System Design

expressions into gate-level state machines isivelgtwell
understood. Our approach is fairly basic in that take an
incoming list of regular expressions and convegnthinto
Non-deterministic Finite Automata (NFA) using Thosop's
Algorithm [16]. These NFA are then turned into dra-

1
1
1
1
1
' |
The process of simply converting a list of regular I I
1
1
1
1

regular

are captured by an 1/O control structure. This ¢@ntroller
manages the transfer of the input data and outesalts
to/from a system controller running on the host patar.

9 |I— === 1 |

e)+| :

LX110T 1
| Input and output controller | 1
N |
— > Byte Decoder 1
npu
=? =?) =?
Character ?0x00 ?0x01 ?0xFF :
Reg Ex 1 MN-bitSat.Counterl 1
|
> Ch::)cl\l/?ss —>] Reg Ex2 > N-bit sat. Counter| |
v : v |
| Reg ExN [—>{ N-bit sat. Counter | 1
1

Fig. 3. High-level diagram of the regular expressiamapped to one
configuration.

B. Resource Estimation and Problem Partitioning

The conversion of set of regular expressions intngle
monolithic configuration is only the beginning afrcsolution.
To handle problems that require more resources tam
configuration can offer, we need an intelligent iasplit the
searches into smaller, more appropriately-sizedigso This
must be done without iterative trial and error tigb the CAD
tools. Towards this end, we present a method toktyuand
accurately estimate the resource requirementgyofem set of
regular expressions.

Our approach begins by estimating the
requirements of all of the desired regular expossi
individually. This is accomplished using the mettstown in
Fig. 4. Each basic matching unit (Fig. 2a) requiteLUT to
implement its AND gate. As discussed earlier, ifegular
expression uses a character class, it require$xl A%t ROM.
On the Virtex-5 device used in our testing, thiguiees 4
LUTs. All of the other basic operations rely on @Rtes.
The resource requirements of a given OR gate depepdn
its fan-in. Each of the 6-input LUTs in the Virtéxcan
accommodate up to a 6-input OR. Wider expressieqsire
a tree of cascaded LUTs. The resource requiremanes
given OR gate can be computed usingdtiest equation.

Notice that we only track the LUT requirements bé t
regular expressions and not the number of flipfloghis is
acceptable for the platform used in our testingabse each
slice in the Virtex-5 contains 1 flip-flop per LUTThe largest
ratio of flip-flops to LUTs needed for any of ouadic units is
1:1. Platforms with fewer flip-flops per LUT mayed to
also track the number of flip-flops used.

After the resource requirements of the regular esgions
are calculated, we can partition them
configurations. As shown in Fig. 5, we give thetitianing
process a LUT threshold. This threshold represehés
maximum number LUTs a single configuration of regul
expressions should require. In our testing, werddhed that
a reasonable threshold is 88% of the LUTs in thgetaFPGA.
This resulted in good utilization while offering r@liable
buffer for consistent placement and routing. Thigshold is
certainly platform specific, but is likely easy ttetermine
through minimal empirical testing.

During the partitioning process, each configuratimst
evaluates the LUTs needed by the 1/O controller aptd
decoder. After this, we consider every regularreggion in
turn to determine if it could fit within the curren
configuration. If it can, we add it to the systeri.not, we
create a new configuration and continue. When
configuration is filled, we record the indices oégular
expressions that we put into the configuration. ewlall of
the regular expressions have been split up, wergtn¢he
corresponding logic and state machine HDL files éach
configuration. These HDL files are sent through ttormal
CAD toolflow to produce the actual FPGA bitstreams.

It is possible that a single regular expression rnayoo
large to fit on the target device. Although a &ngegular
expression could be spread across multiple cordtours, we
did not deal with this situation in our proof-offezept system.

. }
into separate

Along the same lines, the packing algorithm we isseery
simple. Much better utilization may be obtained by
performing knapsack solving. However, a knapsack
algorithm is only feasible because we can religdict the
resource utilization of the various regular expiess

It should also be noted that our resource estimaswnly
that — an approximation of the resources required begular
expression after it is mapped to the hardware. di/enot
consider any optimizations that the synthesis maight make.
For example, if two regular expressions in the same

resouré@nfiguration use the same character class, thaxxibolflow

will realize that the ROMs are identical and remove from
the system. Although this inaccuracy may result
overestimating the hardware requirements in a gardition,
the resource estimation routine could be modifeddentify

and compensate for these compiler optimizationshatWs
critical, though, is that these estimations renamipessimistic
upper bound. Any underestimation may result in @#D

tools failing during compilation due to capacitpptems.

resour ceEst(NFA for Reg Ex or sub-expression){
current LUT count L = O;
for all sub-expressions Sin X{
if Sis sub-expression
L += resourceEst(S);
elseif Sismatch single char
L+=1;
elseif Sismatch char class
L += 1+ charClassLUTs;
elseif SisOR
L += orEst(Sfanin);
}

returnlL;

n=|dept h|-1
orEst(fanin) = lutinputs™ |+ [lut]nputslde”‘“ * {depth}]
n=0
where depth = 108 impues (fanin)

Fig. 4. Resource estimation pseudo-code. Fo¥ittex-5, charClassLUTs
4 and lutinputs = 6.

partition(set of Reg Exes R, LUT threshold T){
current LUT count L = I/O controller + byte decoder;
current configuration C.start = 0;
for all Reg Exesr in R{
tempLUT = resourceEst(r) + saturating counter;
if (tempLUT > T - 1/O controller + byte decoder)
exit(-1);
elseif (tempLUT + L)< T
L += tempLUT;
elsef
C.end =r.index - 1;
make new configuration C;
C.start = r.index;
L = 1/O controller + byte decoder + tempLUT;

add r to configuration C;
nextr;

}

C.end = last r.index;

return all C information;

}

Fig. 5. Partitioning pseudo-code.

______________________________ for determining which configuration is mapped te fRPGA,

input messages and a results buffer from the u3dre last
| S - --—---—-—----—-—-—-—-—--—=—C . parameter given to the system controller is a goméition
interval. The configuration interval determineswhaany
messages we process sequentially before we recoafipe
systemController (configur ation bitstreams B, configuration informationC, | device with another bitstream. Before executiostasted, the

'CPU ™ ormterace . J&—>] System Controller] | when it is reconfigured, what data to send to tR&K and
L L _ _ _1 what to do with the results that come back fromhthedware.
IXoPVs T T T T T T T T T T T T As seen in Fig. 7, the system controller takes he t
: [Cswstemace] 1 configuration bitstreams and configuration indefoimation
P O £ TolQContoller _ _ V. _ _ | generated from the partitioning process. It alsteives the
I LX110T v T
|

Fig. 6. System-level diagram of regular expressiogine.

input messages M, results buffer R, configuration interval I){ input messages are divided into setslainessages. The
configure FPGA with B[0]; configuration interval can affect the performanck the
gﬁ[[gﬁﬁgjﬁq toM[I]; system because, as we will discuss in Section VI,
while (currMessageSet first < M.last){ reconfiguration can be relatively time consumirigcreasing
for all bitstreams b in B{ the configuration interval allows us to reconfigéegver times
for all messages min currMessageSet{ during execution and amortize the reconfiguratietag that

send message mto FPGA and receive results;

place resultsinto R{m[b][C[b] start to C[b] .end] we do incur over more messages.

} Execution begins by mapping the first bitstreamthe
configure FPGA with next b; FPGA. Then, each of the messages in the cusetrdf input
data is sent to the FPGA for processing. Theltesbat

currEndMessage += 1; .
currMessageSet = M[1+1] to M[currEndMessage] or M[lasf]: return from the FPGA are placed in the results dnuffThe
} results are reordered based upon which message they
return R, correspond to, which configuration the message was
} processed with, and what regular expression indigese

mapped to that particular configuration. When tlast
message in the current set has been processedhsitfirst
Resource Utilization and configuration, the system controller reconfigurbe FPGA
o Ratio of Partitioning Estimate to ISE Reported Final Requirements Wlth the next bitStream. When a" Of the meSSdgaﬂJrrent
input data set have been processed through allhef t
100 configurations, the system controller moves toribgt set of

messages.

Fig. 7. System controller pseudo-code.

0.80

VI. TESTING ANDRESULTS
0.60 - FHEHHHE ERREENERE Estimation Accuracy

verage=1.077 We tested our automated regular expression engimg @
i m resource utiiation | S€L Of ~49.6K regular expressions. These searolere
Saver=a0as obtained from the IT system engineers responsitiespam
ozo i HHEL L filtering at large corporation. They represent the complete
white and black term-lists used on all messagesived by
PEORLARARELLRARRRRRARARARRRARERAARRRRARAINARRRANE the domain. All but the 14 largest regular exgm@ssin this
PR T B ed Configurations R ® list were implemented in_our evaluation. _'_I'he_ rerrng 14
search terms use extensive nested quantificatesulting in
Fig. 8. Sorted graphs of resource utilization astimation accuracy — 49K ircuits that require 50% or more of the resoupewided by
regular expressions split into 45 configurationShe two sets of data are latf he Vi 5 LX110T h .
sorted independently. The reported average anddataé deviation of our target platiorm, the _'rtex' on the _Dﬂ!}ﬂt
resource utilization does not include the spurid22% utilization data point XUP-V5 board. ~ Synthesis, placement and routing ewer
that resulted at the end of the regular expredision performed using the tools in ISE 10.1.
C. Customized Runtime Supoort Fig. 8 shows the results of our resource estima#nd
- Lustomized Runtime Suppor _ _ partitioning tool. The tool divided the 49.6K régu
The last part of our regular expression system igéoeis expressions into 45 configurations. All 45 confagions
responS|bIe'for autqmatpally running the ;earcbpsead successfully placed, routed, and met timing coirgafor
across multiple configurations. ~ Although variouspects of operation at 125 MHz. In gray, this graph showe sbrted
the logic within each individual hardware configima ratios of the LUT requirements estimated by our thaing
change depending upon how the regular expressiensptit the partitioning phase versus the LUT/FF pair regaents as
up, the system controller shown in Fig. 6 is portaf the reported by ISE after compilation. Across all 45
engine most seriously affected. The system cdatr@d a C configurations, our tool overestimated the resource
program running on the host PC that provides ther usequirements by an average of 7.7%. This suggesis

interface. It receives input messages to be predefsem the although sufficient for our proof-of-concept systewe may
user and returns the completed results. It is edsponsible

LogicRatio

benefit from using a more sophisticated estimatitgorithm
that can account for some of the optimizations qvenéd by
the Xilinx tool during synthesis.

Looking at this data more carefully, though, thésethe
potential for one small problem. As discussediearthe

All of our testing results assume that the regular
expressions have been pre-compiled (either into \feA the
software version or into bitstreams for the FPGAJ ¢hat all
necessary data begins the CPU’s main memory. dtware
results only include the actual search time, wttie FPGA

resource estimation must be an overestimate todavegsults also include the CPUFPGA transfer time and the

encountering possible capacity problems. Our teety
slightly underestimated (< 1%) the resource requars for
one configuration. This small discrepancy may e result
of some unforseen constraint for logic block pagkin some
logic duplication performed during compilation telp meet
timing. Nevertheless, this small underestimat®anlikely to
cause problems in practice since we are only teng@&8% of
the platform’s capacity. Purposefully underutiligian FPGA
by 10-15% is often customary to ensure successdicement
and routing. That said, with further investigatighis
behaviour could be characterized and the estimatfigorithm
could be modified to compensate.

On the other hand, our simple packing algorithnmree&
work acceptably. In black, Fig. 8 shows the soresburce
utilization of the configurations as reported byElSfter
compilation. As mentioned earlier, our target ilig the
device to 88% capacity.
configuration that formed from the last handful refgular
expressions in the list, we averaged 78.2% utibmat Taking
into account our average 7.7%
partitioning, we are likely coming very close toralesired
resource utilization.

We also tested the performance potential of outesys
For comparison,

SystemACE reconfiguration time.

Looking at Fig. 9, we can make several interesting
observations. First, as the number of regular esgions is
increased, the performance of the software-basedctses
degrades faster than that of hardware-based sesardtés is
likely because while a small number of regular egpions
can be implemented in software within the cache,thas
number of regular expressions is increased thessystery
quickly requires the capacity of main memory.

A second observation is that the performance of our
hardware implementations scales extremely predictafor a
given configuration interval, the hardware’s penfiance
almost exactly halves when we double the number of
configurations used (ignoring when we only haveirals
configuration). This means that, with a fair degref
confidence, we can extrapolate the performance haf t

Disregarding the smallalfinhardware implementation if the SystemACE were alle

accommodate 45 configurations. The estimated peece
of searching for the full set of regular expressid® shown

overestimate durimgth italicized data in Tables | and II.

A third observation is that the amount of reconfaion
we perform can drastically affect performance. Liogkat
Table 11, increasing the configuration interval &yactor of 2

we used a single-threaded softwaenost exactly doubles the achievable performaricagely,

implementation running on a 2.54GHz/6MB L2/4GB RAMhis is because the reconfiguration time domin#ieguntime

Core 2 Duo machine.
expressions were tested with 1.1K, 2.2K, 4.5K, 8.8#d

49.6K searches. The input messages used for éxeauére

taken from the Enron mail corpus in [8]. These sages had
an average message size of 3.1KB. The best rdsaoits 3

independent runs are shown in Fig. 9.

The four sets of searches with 1.1K, 2.2K, 4.5K 8K
regular expressions were also mapped to the FPGlese
lists required 1, 2, 4 and 8 configurations, retipely.
Unfortunately, due to technical considerations werevnot
able to test the hardware using the full set ofulag
expressions. As seen in Fig. 6, our current implaation
relies on a SystemACE controller [18] to reconfiguhe
FPGA. We used this setup because ISE 10.1 does
implement support for partial reconfiguration oe ttirtex-5.
Thus, our options for implementing dynamic recoufagion
were relatively limited. We elected to use the tSysACE
because this offered the capability of reconfigyrine FPGA
with up to 8 bitstreams held on a CompactFlash.c&uhce
the SystemACE can only switch between these
configurations, the breadth of our performanceingstvas
limited. Testing on the hardware was repeatedipi@ltimes
using configuration intervals between 1 (reconfggonce for

Five different sets of regulaf most of the hardware tests — the SystemACE enxtiP

board requires 1.5 seconds to complete each regoafion.
As shown in Fig. 10, the tests that used 32 spent 99% or
more of their time waiting for reconfiguration. ighlikely
indicates that finding a faster reconfiguration heagsm is a
high priority.

On the other hand, though, looking at Fig. 10 aatld I,
the massive parallelism that the FPGA implementatioffer
can still overcome the handicap of the reconfigarat
overhead. For example, searching for 8.9K regular
expressions using = 128, the hardware spends 97% of its
time reconfiguring. It only spends 3% of its rumgi
transferring data and actually executing. Howeverstill
manages to perform 138x faster than the software
implementation. That said, the achievable speedops
increase with larger configuration intervals. Loakl = 512,
the speedup over software is 500x. | At 32K, the speedup is
nearly 5000x.

One concern with large configuration intervalshattthey
mBay not be practical in a real e-mail system. Biatga large
number of messages together may introduce unadgepta
latency or may require too much buffering for inputssage
replay and results reordering. To perform someegsn

every bitstream needed during the processing df ssssage)calculations concerning the buffering requiremenét, us
and 32K (reconfigure once for every bitstream ndediring assume that the input messages are an averagd KB &
the processing of every group of 32K messages).

TABLE |
AVERAGE MATCHING RATE (RAW DATA)

Hardware vs. Software Performance
1.0E+07

) 1.1K 22K 45K 8.9K 49.6K : "'FPGA"fams
Average Matching | Reg Ex | Reg Ex | Reg Ex | Reg Ex | Reg Ex e
Rate (bytes/sec) | (1 FPGA | (2 FPGA | (4 FPGA | (8 FPGA | (45 FPGA 1.0E406 -)—FPGAVI:4096
config) configs) | configs) | configs) | configs) f +FPGA’ \ ; 2008
CPU 1.14E+4| 5.68E+3| 1.75E+3| 2.34E+2| 3.55E+1 —I—FPGA:I=1024
1=1 6.86E+6| 8.74E+2| 4.37E+2| 2.18E+2| 3.64E+1 —+-FPGA, | =512

|=2 7.92E+6| 1.75E+3| 8.77E+2| 4.38E+2| 7.31E+1

~e-FPGA, | = 256
| =4 |9.36E+6| 3.51E+3| 1.75E+3| 8.77E+2| 1.46E+2 N

—<FPGA, =128
1.0E+04 v
=8 |9.36E+6| 7.02E+3| 351E+3| 1.75E+3| 202642 : \\ Treen 116
1.0E+03

1.0E+05

Bytes/Sec

=-FPGA, 1= 64
| =16 | 1.03E+7| 1.40E+4| 7.00E+3| 3.50E+3| 5.83E+2 FPGA, 1= 8

| =32 |1.03E+7| 2.81E+4| 1.40E+4| 6.97E+3| 1.16E+3 : \ A
| =64 | 1.03E+7| 5.62E+4| 2.79E+4| 1.39E+4| 2.31E+3 [FPGA:I:l
g | = 128 | 1.03E+7| 1.30E+5| 6.49E+4| 3.25E+4| 5.41E+3 romez oo o oo w000 Iianie
& | = 256 | 1.03E+7| 2.52E+5| 1.26E+5| 6.16E+4| 1.03E+4 # of Regular Expressions

| =512 | 1.03E+7| 4.81E+5] 2.33E+5) 1.17E+5) 1.96E+4 Fig. 9. Graph of CPU and FPGA performanc¢eaefers to the configuration
| = 1K | 1.03E+7| 8.37E+5| 4.42E+5| 2.15E+5| 359E+4 | interval.

| = 2K | 1.03E+7| 1.51E+6| 6.77E+5| 3.34E+5| 5.57E+4

Reconfiguration Overhead

| = 4K | 1.03E+7| 2.39E+6| 1.18E+6[5.85E+5| 9.75E+4 L0E400 — FPOA, 1= 32768

| = 8K | 1.03E+7| 3.32E+6| 1.63E+6| 8.17E+5| 1.36E+5 [— ~+-FPGA, | = 16384

| =16K | 1.03E+7| 4.12E+6| 2.06E+6| 1.02E+6| 1.70E+5 —_— *':z‘::j;::
i e FPGA I -

1.0E-01

| = 32K | 1.03E+7| 4.68E+6| 2.39E+6| 1.16E+6| 1.93E+5
“I="refers to configuration interval. ltalicsdicate extrapolated results.

- . ~—FPGA, | = 2048

-#-FPGA, | = 1024
~+~FPGA, | =512

Fraction of Non-Reconfiguration Time

TABLE Il Loroz —_— ~-FPGA, 1= 256
AVERAGE MATCHING RATE (NORMALIZED TO CPURESULTQ ' 3 = —<FPGA,1=128
-=~FPGA, | =64
) 1.1K 22K 45K 8.9K 49.6K ——FPGA, | = 32
Average Matching | Reg Ex | Reg Ex | Reg Ex | Reg Ex | Reg Ex Loros ~-FPGA, 1= 16
Rate (norm) (LFPGA | (2 FPGA | (4 FPGA | (8 FPGA | (45 FPGA ' FPGA, 1=8
config) | configs) | configs) | configs) | configs) f FPGA, =4
CPU 1.00 1.00 1.00 1.00 1.00 FPGA,1=2
FPGA,1=1
1=1 601.19 0.15 0.25 0.93| 112 10804 ' ' ' '
0 2000 4000 6000 8000 10000
|1=2 693.68 0.31 0.50 1.87| 225 #of Regular Expressions

=4 819.80 062 1.00 3.73] 449 Fig. 10. Graph of time spent during FPGA executiohwaiting for device
=8 | 81980 1.24 2.00 7.46| 898 reconfiguration.| is the configuration interval.

|=16 | 901.79 2.47 3.99 1490 17.94
| =32 | 901.79 4.94 7.97 29.70 35.76
| =64 | 901.79 9.89 15.94 59.03 71.05
| =128 | 901.79 22.85 37.05 138.34 166.52

Even though very large configuration intervals nigynot
be useful, the data collected during these testsvigh
motivation for future work. This is because if Wad access
C to a faster reconfiguration mechanism, we couldeaghmuch
| =256 | 901.79 | 4441| 7197] 2623p 3158l | poyer performance with small configuration intésva For
| =512 | 90179 | 84.67| 13316 499.8 60173 example, if we were to shrink the reconfiguratiomet by a
| =1K | 901.79 | 147.32] 252.03 917.17110401| factor of 10-20x (from 1.5 seconds to 75-150 neitisnds),
| =2K | 901.79 | 266.47| 386.34 14234071336 | \ye expect the utilization curves in Fig. 10 to slidip
|=4K | 901.79 | 421.40] 67499 2490.9999%838 | correspondingly. This would allow us to obtain dewof
=8K | 90179 | 584.52) 932.12 347942118822 | performance that currently requires 32K with onlyl = 256
| =16K | 901.79 | 724.81| 117448 4340.66224.90 | or| = 128.
| =32K | 901.79 | 823.65 1365.67 4925.95929.39

“|=" refers to configuration interval. ltalics ifchte extrapolated results. VILI. RELATED WORK & FUTURE DIRECTIONS
piece and that we would like 1-bit saturating ceusifor each R A?\X.nbzrzécd ?ggﬂfura.}.'ﬁﬂs Ism:r?;m;)?gvic?:sa rzc;gje;jsgn‘ have
regular expression (only determine if a regularegpion was looked into ways of.using it’or improving it. Fexample,
present or not present in a message). For 8.9iCemand runtime reconfiguration is a natural part of reshaefforts

= 128, the system controller would only need ab& KB of that explore dynamically extensible processors sscl6] and

gggﬁgng (m(;j)ut. re.pllagg 128 messzg;;K* 3'1}|<B/ mgssa [17]. These systems feature a CPU that can isssiemized
, reorgenng: messages ° ©.91 régular &gI0nS .ot ctions to a tightly coupled FPGA. Howeveance the

* 1 bit/regular expression/messagd40KB). In comparison, RFU operations that these systems generally maph¢o

for the same 8.9K searches drrl 32K, the system controller) : . o .
would need about 130MB of buffering space. reconfigurable fabric are fairly small and haveited or fixed

FPGA

I/O requirements, they do not encounter the sarpadify and

data marshalling problems as a system for largereropen-

ended applications such as regular expressiontsegrc
There have also been multiple papers that haveséaton

marshalling. During testing, we showed that thistem can
achieve very high performance. Although we beligat it
could benefit from a faster reconfiguration meckaeni we
were able to perform up to 5000x faster than awso

multi-context FPGAs [7][14] or bitstream compresgio implementation with only very basic reconfiguratisapport.

caching [11][10] to improve reconfiguration

time When we are able to incorporate partial reconfiionain the

Unfortunately, none of these techniques have bdeptad by future, this will be a sophisticated and deployat#gular

commercial FPGA manufacturers. As we mentionedlesar
although our results could be improved dramaticaliyh
access to faster reconfiguration schemes, we dralde to
achieve compelling results with the level of supgwesent in
today’s commercial devices.

That said, we would like to
reconfiguration through the internal ICAP in thduiie. To
accommodate this, the I/O controller in Fig. 3 wbraside in

static logic. In addition to its current dutieswiould also be [1]
responsible for reconfiguring the regular exprasdayic in
rest of the FPGA. The bitstreams for the reguiquressions 2]

could come directly from the system controller auld be
stored in an external memory. Such an implementatiould
provide two benefits. First, it would remove the 83l
configuration limit that currently restricts thessgm. Second,

since the partial bitstreams would be smaller dedinternal [4]
ICAP is much faster than the JTAG from the SysterBAC
reconfiguration could be performed considerably tefas 5]
However, the concept of partial reconfiguration retyoduce
some problems that we didn’t address in this papEor
example, [5] suggested a framework for simplifyitige [6]
process of dynamically scheduling the hardware uness in
the system and moving or reorienting partial bésins. 7]
Finally, as we mentioned in Section VI, we wouldaalike
to investigate more sophisticated resource estimati
algorithms. There has been previous researchLp}]lpoking [&!
into estimating the detailed resource requiremenfs [9]
applications that are specified at a relativelyhhigvel. We
believe that incorporating some of these ideasccouprove
our estimation accuracy and resource utilization. (10]
VIII. CONCLUSIONS [11]

In this paper we have shown that dynamic reconditjoin
is necessary to perform fast and flexible regubgoression 12]
searching on an FPGA. However, we highlighted tho
problems that can discourage application develofems
using dynamic reconfiguration. The first issuethat that
when a user has a large set of problems that cabeot
implemented on a single configuration, the existioglflow
makes it very difficult to intelligently split thenacross [14]
multiple configurations. The second concern is &xaecuting
an application that is spread across multiple cpmétions
requires a user to carefully design a custom costrocture.

We solved these problems by developing an automated
regular expression system compiler. This tool ufest [16]
resource estimation so that it can divide a setegfular 7]
expressions among a minimal number of separa[ile
configurations. Once the application has been déii
adequately, it can be run using an automaticallyegeted
controller that manages device reconfiguration dfd

[13]

[15]

[18]

expression system.

Overall, dynamic reconfiguration gives FPGAs a tsfig
essential to any practical computing platform: uzse
virtualization. This is an underutilized and relaty poorly
understood area of FPGA research. Further worleégssary
incorporate partialo make this feature truly accessible to applicatievelopers.

REFERENCES

Z.K. Baker and V. K Prasanna, “Time and Area Efidi Pattern
Matching on FPGAs,ACM Symposium on Field-Programmable Gate
Arrays, 2004, 223 — 32.

J. Bispo, I. Sourdis, J. Cardoso, and S. VassdljiadRegular
Expression Matching for Reconfigurable Packet Iotpe,” IEEE
Conference on Field Programmable Technology, 2006, 119 — 126.

|. Bonesana, M. Paolieri, and M. D. Santambrogién “Adaptable
FPGA-based System for Regular Rexpression Matchi@gyriference
on Design, Automation and Test in Europe, 2009, 1262 — 1267.

C. Brandolese, W. Fornaciari, and F. Salice, “AredrEstimation
Methdology for FPGA Based Designs at SystemC-LevBlgsign
Automation Conference, 2004, 129 — 132.

J. Burns, A. Donlin, J. Hogg, S. Singh, and M. D& WA Dynamic
Reconfiguration Run-time System,/JEEE Symposium on Field-
Programmable Custom Computing Machines, 1997, 66 — 75.

W. W. S. Chu, R. G. Dimond, S. Perrott, S. P. Semgl W. Luk,
“Customizable EPIC Processor: Architecture and TbdBenference
on Design, Automation and Test in Europe, 2004, 236 — 241.

D. Jones and D. Lewis, “A Time-Multiplexed FPGA Aiteftture for
Logic Emulation,”|EEE Custom Integrated Circuits Conference, 1995,
495 — 498.

B. Klimt and Y.Yang, “Introducing the Enron Corpugonference on
Email and Anti-Spam, 2004.

S. W. Lee, S. H. Hwang, and N. Park, “A High Perfance NIDS
using FPGA-based Regular Expression MatchireM Symposium
on Applied Computing, 2007, 1187 — 1191.

Z. Li, K. Compton, and S. Hauck, "Configuration Cadtianagement
Techniques for FPGASs,IEEE Symposium on Field-Programmable
Custom Computing Machines, 2000, 22 — 36.

Z. Li and S. Hauck, "Configuration Compression fdrt& FPGAs,"
IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

C. H. Lin, C. T. Huang, C. P Jiang, and S. C. ChdBgtimization of
Regular Expression Pattern Matching Circuits on AR®GConference
on Design, Automation and Test in Europe, 2006, 12 — 17.

P. Milder, M. Ahmad, J. Hoe and M. Puschel, “Fastl #ccurate
Resource Estimation of Automatically Generated GustoFT IP
Cores,”ACM Symposium on Field-Programmable Gate Arrays, 2006,
211 - 220.

S. Scalera and J. Vazquez, “The Design and Impleti@entaf a
Context Switching FPGA,TEEE Symposium on Field-Programmable
Custom Computing Machines, 1998, 78 — 85.

R. Sidhu, and V. K. Prasanna, “Fast Regular ExpesMatching
using FPGAs,”|EEE Symposium on Field-Programmable Custom
Computing Machines, 2001, 227 — 238.

K. Thompson, “Regular expression search
Communications of the ACM 11(6) , June 1968, 419 — 422
M. Wirthlin and B. Hutchings, “A Dynamic InstructicSet Computer,”
IEEE Symposium on Field-Programmable Custom Computing
Machines, 1995, 99 — 107.

Xilinx Inc., “System ACE CompactFlash Solution,” C&Dv2.0, 2008.

algorithm,”

