
Automated Dynamic Reconfiguration for High-
Performance Regular Expression Searching

Ken Eguro

Microsoft Research
Redmond, WA

eguro@microsoft.com

Abstract—Dynamic reconfiguration can be necessary to

produce fast and flexible FPGA-based applications. However, in
practice very few developers actually use this capability. One
reason that runtime reconfiguration is not more commonly used
is that it is very difficult to write and execute applications that
are spread across multiple configurations. This paper uses the
problem of regular expression searching for e-mail spam filtering
to illustrate the potential advantages of dynamic reconfiguration
and the inherent development problems associated with the
conventional design methodology. To solve these problems, we
present a regular expression system compiler. This automated
tool includes 1) a mechanism to split a large set of searches into
multiple hardware configurations and 2) a control system to
manage reconfiguration and I/O marshalling during execution.
Even with very rudimentary reconfiguration support from the
platform used in our testing, we are able to perform 3 to 4 orders
of magnitude faster than software.

I. INTRODUCTION

Perhaps the most powerful feature of most modern
commercial FPGAs is that they are configured merely by
changing bits held in memory. RAM-based configuration
allows FPGAs to be quickly reprogrammed an essentially
infinite number of times. This reconfigurability opens the
door for FPGAs to be extremely flexible and high-
performance devices. That said, very few FPGA application
developers truly make full use of this capability.

Most FPGA platforms available today contain an SRAM-
based FPGA alongside a non-volatile memory. In the most
common use, the non-volatile memory will feed a single
configuration to the FPGA at power-on and this configuration
will remain resident until power-off. With this type of use,
the reconfigurability of the FPGA could be viewed as more a
liability rather than an asset. Although such a system could
perform firmware updates and the like, the FPGA is really
being used as a static computing platform.

Even among applications that do make use of
reconfiguration, FPGAs are only generally reprogrammed on
a task-by-task basis. For example, an FPGA might run task A
for 30 seconds before being reconfigured to perform task B for
the next 30 seconds. In some sense, this is even the model of
execution that is used by the canonical example of dynamic
reconfiguration: software-defined radios. Reconfiguration is
almost never used during the processing of a single task.

Intra-task runtime reconfiguration may be necessary to
build practical FPGA-based solutions for many applications.
In this paper, we will discuss why dynamic reconfiguration is
needed to perform regular expression searching for e-mail

spam filtering. We will also investigate the issues that make
implementing runtime reconfiguration difficult: problems in
the classical design methodology, limitations of the
conventional CAD toolflow, and restrictions of the common
execution model. We address these concerns by introducing a
complete regular expression system-level compiler. This tool
automatically divides and executes regular expressions across
multiple virtual configurations without user intervention.

II. REGULAR EXPRESSION SEARCHING & FPGAS

Regular expressions are widely used in many different
fields, ranging from network intrusion detection to DNA
sequencing. Regular expression searches have a few
characteristics that make implementing them on spatial
computing devices, such as FPGAs, rather than conventional
microprocessors particularly attractive.

First, as shown in Fig. 1, regular expression searching is
eminently parallel. In this example we would like to search an
input stream for the words “CAT”, “POP” and “POD”. With
very simple parts (AND gates, flip-flops, and logic that can
match given letters) we can fully exploit the available
parallelism and search for all three strings simultaneously. An
equivalent memory-efficient search running on a
microprocessor would generally need to service these searches
serially. Since the number of regular expressions that can be
found in parallel on an FPGA is only a function of the
capacity of the device, it is possible for an FPGA-based
solution to have essentially constant throughput, regardless of
the number of regular expressions implemented. This is in
stark contrast to software in which the performance degrades
linearly with respect to the number of desired searches.

A second advantage that FPGA-based regular expression
searching has is that the circuits we build can have completely
deterministic performance. The circuit in Fig. 1 will always
be able to accept one new character of input data per clock
cycle, regardless of the searches desired or content of the
input data. The throughput of software, on the other hand, can

Fig. 1. Circuit to search for “CAT”, “POP” and “POD” in parallel.

=? C

=? A

=? T

=? P

=? O

=? D

AND

AND

AND
AND

AND

C

C

A
C
A

T

P

O
P

P

O
D

P

Input

Character

P

O

depend upon the nature of the searches desired (more or less
complex regular expressions) and the nature of the input data
(an input stream that has a high hit ratio versus one with a low
hit ratio). This is on top of that fact that software is generally
beholden to unpredictable events such as cache misses.

The natural affinity that regular expression searching has
for reconfigurable devices has lead to a number of previous
research efforts. Although some of these projects have
suggested systems more akin to processor-based solutions [1]
[3], most have, similar to our example in Fig. 1, spread the
regular expression processing spatially to fully exploit
parallelism [2][9][12][15]. One issue that these approaches
have is that they only consider the case in which the regular
expressions are implemented on a single static configuration.

III. IMPLICATIONS OF STATIC CONFIGURATION

Although FPGAs are capable of very high throughput
parallel processing, only using static configuration can lead to
problems for application developers. In this section, we will
focus on how the lack of dynamic reconfiguration can cause
two troubles for e-mail spam filtering: issues with problem
scaling and low resource utilization.

A. Hard Capacity Limit

The most serious side effect of static-only FPGA
configuration is that it creates a hard capacity limit. One key
advantage of microprocessors is that their sequential
execution model naturally virtualizes the computational
resources. This virtualization is important because it allows
the performance of the system to gracefully decline as a
problem becomes more complex.

In contrast, if an FPGA application developer only
considers static execution on a reconfigurable computing
platform, their computation must fit within a single
configuration. Although there may be hundreds of thousands
of LUTs and flip-flops on the FPGA, if we ignore any time-
multiplex sharing built into the circuit, all of the resources are
statically allocated. Thus, if the application is run through the
traditional set of CAD tools and it turns out that the resource
requirements exceed the capacity of the device, the system
will simply fail – suddenly and catastrophically.

This may not be an issue for applications in which the
resource requirements are constant. However, spam is a
constantly growing problem. While we might have 1,000
regular expressions today, tomorrow we will have the same
1,000 plus a few more. While most of the regular expressions
will eventually be retired, far more may be added to take their
place in the meantime. With purely static configuration, the
only upgrade path to accommodate additional regular
expressions is to add more FPGAs to the system. When the
user has enough regular expressions to fill the first FPGA,
they must get another. However, as will be discussed in the
next section, the first FPGA may not truly be “full”.

B. Inefficient Resource Utilization

Since FPGAs can take advantage of so much parallelism,
they can actually be too fast for an application. This is

because spam filtering is a naturally fixed data rate application.
Any real e-mail system will be connected to a network with a
fixed incoming capacity. For that matter, while the system
may be flooded by mail in short bursts, the latency of message
delivery is not terribly important, at least within reasonable
bounds. Thus, the processing required during periods of high
traffic can be amortized over periods of low traffic.

That said, statically configured FPGAs cannot take
advantage of this fixed data rate and may be underutilized.
For example, a user might want to look for 1,000 regular
expressions on an e-mail system with a nominal load of 10
Mbps. Let us assume that the user’s regular expressions
completely fill a single FPGA configuration and that it is
capable of processing at a rate of 1 Gbps. This performance is
well above the nominal workload. If the user is only able to
statically configure the FPGA, the device will be idle 99% of
the time.

C. Dynamic Configuration

If the user were able to take advantage of dynamic
reconfiguration, they could use it in two different ways. One
option is that the user could plan for the future. Rather than
purchasing an additional FPGA when they need 1,001 regular
expressions, they could map new searches to other
configurations and quickly swap between them. Ignoring
some practical considerations for the moment, this technique
will increase the potential capacity of the system to 100K
regular expressions while still maintaining adequate
performance. Beyond this point, the user still has the option
of running additional regular expressions with a gradually
increasing penalty in terms of throughput.

Another option is that the user could simply purchase a
cheaper platform with a smaller FPGA. In this case, the user
could opt to split their regular expressions across 100 different
configurations mapped to a device 1/100th the size. The
various configurations could be quickly swapped onto the
FPGA and still keep up with the expected workload. This
would increase the utilization of the board.

Either of these options give the user better alternatives to
either living with a fixed amount of logic, cursing the system
because a computation is too large and errors out in the CAD
tools, or buying lots of potentially underutilized devices.

IV. ROADBLOCKS TO DYNAMIC RECONFIGURATION

Despite the advantages of dynamic reconfiguration, it is
seldom used. However, this is generally not caused by some
intrinsic restriction of the FPGA platform itself. Rather, the
problem is that monolithic, single-configuration application
development is the only easy path through existing
commercial FPGA CAD tools. Simply put, spreading a
computation across multiple configurations can be a long and
complicated process. There are two fundamental problems
that users can face. First, how can we effectively divide a
large set of problems into smaller groups that can fit on a
given device? Second, how do we actually execute these sub-
problems when they are spread across multiple configurations?

The task of dividing a set of regular expressions among
multiple configurations can be extremely laborious and time
consuming. Coincidentally, this is also a problem if we do not
allow dynamic reconfiguration, but simply want to spread a
problem across multiple FPGAs. Dividing a workload is
troublesome because current FPGA CAD tools provide too
little feedback too late in the compilation process to be useful.

In order to divide a set of regular expressions into a small
number of different configurations, a developer would need to
make countless manual iterations through the CAD tools. If
the first regular expression could fit on a single configuration,
we could try the first five. If these fit, we could try the first
ten. If not, perhaps the first three. This trial-and-error search
process is a large problem because each run through the
mapping tools could take hours. This is an even more
daunting task if we consider re-ordering the regular
expressions to maximize utilization. As will be discussed in
more detail in Section V.B, this problem can be solved by
providing a fast estimate of the resource requirements of each
regular expression. After we have this information, we can
build a system to automatically partition the problem into
smaller sub-tasks.

The simple execution of an application that is spread across
multiple configurations is also an issue. This is because such
an arrangement requires a custom-made control system to
reprogram the device with the correct configuration at the
appropriate time and marshal the correct input and output data
to and from the various configurations. Developing the
software and hardware for such a control system requires
manual intervention each time that the regular expressions are
modified. This time-intensive and potentially error-prone
process can make dynamically configured systems impractical.
As will be discussed in Section V.C, this control can be
automated so that a user does not need any special knowledge
regarding FPGAs or hardware design to use the system.

V. REGULAR EXPRESSION SYSTEM GENERATION

To be truly deployable, applications that rely on dynamic
reconfiguration cannot be time-consuming to create or require
meticulous custom development. In this section we describe a
method to automatically generate a complete regular
expression execution engine. This system provides a very
simple interface that makes the actual implementation and
execution of the regular expressions invisible to the user. We
first outline the basic architecture of a single configuration.
Our discussion continues with a description of how a large set
of regular expressions can be divided into a minimal number
of difference configurations. Finally, we show how these
configurations can be run without user intervention.

A. Regular Expression Compilation and System Design

The process of simply converting a list of regular
expressions into gate-level state machines is relatively well
understood. Our approach is fairly basic in that we take an
incoming list of regular expressions and convert them into
Non-deterministic Finite Automata (NFA) using Thompson’s
Algorithm [16]. These NFA are then turned into one-hot-

encoded state machines by using techniques similar to those in
[15]. The operations that we support are shown in Fig. 2.

Fig. 2a shows the structure of the most basic unit in our
system. This building block can match a single character of
input data against a single character in a regular expression.
As will be discussed later, this structure can be extended to
also match against a single class of characters. Fig. 2b shows
that these simple units can be concatenated together to allow
multi-character strings. This is accomplished by simply
feeding the output of one matching unit into the input of
another. Fig. 2c shows how two sub-expressions can be OR-
ed together. Fig. 2d shows how we can match zero or one
instance of a sub-expression. Similarly, we can also match
zero or more or one or more instances of a sub-expression.
This is shown in Fig. 2e and Fig. 2f, respectively. More
sophisticated regular expression operators such as bounded
and unbounded quantification ({N}, {N, M}, {N, }) can be
implemented by combining these basic operations.

As shown in Fig. 3, each regular expression in our system
is turned into a unique state machine. The individual
matching units (Fig. 2a) within each state machine are fed by
either a byte decoder or a character class ROM. The byte
decoder simply indicates if the current input character matches
a single value between 0 and 255 (is the input character an
‘a’?). On the other hand, a character class ROM is a 256x1-
bit memory capable of matching the current character against
multiple values (is the input character a digit?).

The output of each regular expression is fed to a saturating
N-bit counter to determine how many times the regular
expression is matched during a given message. These results
are captured by an I/O control structure. This I/O controller
manages the transfer of the input data and output results
to/from a system controller running on the host computer.

Fig. 2. Gate-level implementations for fundamental NFA operations

Fig. 3. High-level diagram of the regular expressions mapped to one
configuration.

Match Single Instance

AND

match?

C1 | C2

C1

OR

C1 C2

C1 C2

C2

OR

C1

C1*

OR C1

C1+

C1

OR

C1?

a) b)

c)

d)

e)

f)

Byte Decoder
Input

Character
=?0x00 =?0x01

…

… =?0xFF

Reg Ex N

N-bit Sat. Counter

N-bit Sat. Counter

N-bit Sat. Counter

Char Class

ROM

Reg Ex 1

Reg Ex 2

Input and output controller

LX110T
To System Controller

B. Resource Estimation and Problem Partitioning

The conversion of set of regular expressions into a single
monolithic configuration is only the beginning of our solution.
To handle problems that require more resources than one
configuration can offer, we need an intelligent way to split the
searches into smaller, more appropriately-sized groups. This
must be done without iterative trial and error through the CAD
tools. Towards this end, we present a method to quickly and
accurately estimate the resource requirements of a given set of
regular expressions.

Our approach begins by estimating the resource
requirements of all of the desired regular expressions
individually. This is accomplished using the method shown in
Fig. 4. Each basic matching unit (Fig. 2a) requires 1 LUT to
implement its AND gate. As discussed earlier, if a regular
expression uses a character class, it requires a 256x1-bit ROM.
On the Virtex-5 device used in our testing, this requires 4
LUTs. All of the other basic operations rely on OR gates.
The resource requirements of a given OR gate depends upon
its fan-in. Each of the 6-input LUTs in the Virtex-5 can
accommodate up to a 6-input OR. Wider expressions require
a tree of cascaded LUTs. The resource requirements of a
given OR gate can be computed using the orEst equation.

Notice that we only track the LUT requirements of the
regular expressions and not the number of flip-flops. This is
acceptable for the platform used in our testing because each
slice in the Virtex-5 contains 1 flip-flop per LUT. The largest
ratio of flip-flops to LUTs needed for any of our basic units is
1:1. Platforms with fewer flip-flops per LUT may need to
also track the number of flip-flops used.

After the resource requirements of the regular expressions
are calculated, we can partition them into separate
configurations. As shown in Fig. 5, we give the partitioning
process a LUT threshold. This threshold represents the
maximum number LUTs a single configuration of regular
expressions should require. In our testing, we determined that
a reasonable threshold is 88% of the LUTs in the target FPGA.
This resulted in good utilization while offering a reliable
buffer for consistent placement and routing. This threshold is
certainly platform specific, but is likely easy to determine
through minimal empirical testing.

During the partitioning process, each configuration first
evaluates the LUTs needed by the I/O controller and byte
decoder. After this, we consider every regular expression in
turn to determine if it could fit within the current
configuration. If it can, we add it to the system. If not, we
create a new configuration and continue. When a
configuration is filled, we record the indices of regular
expressions that we put into the configuration. When all of
the regular expressions have been split up, we generate the
corresponding logic and state machine HDL files for each
configuration. These HDL files are sent through the normal
CAD toolflow to produce the actual FPGA bitstreams.

It is possible that a single regular expression may be too
large to fit on the target device. Although a single regular
expression could be spread across multiple configurations, we
did not deal with this situation in our proof-of-concept system.

Along the same lines, the packing algorithm we use is very
simple. Much better utilization may be obtained by
performing knapsack solving. However, a knapsack
algorithm is only feasible because we can reliably predict the
resource utilization of the various regular expressions.

It should also be noted that our resource estimation is only
that – an approximation of the resources required by a regular
expression after it is mapped to the hardware. We do not
consider any optimizations that the synthesis tool might make.
For example, if two regular expressions in the same
configuration use the same character class, the Xilinx toolflow
will realize that the ROMs are identical and remove one from
the system. Although this inaccuracy may result in
overestimating the hardware requirements in a configuration,
the resource estimation routine could be modified to identify
and compensate for these compiler optimizations. What is
critical, though, is that these estimations remain a pessimistic
upper bound. Any underestimation may result in the CAD
tools failing during compilation due to capacity problems.

 resourceEst(NFA for Reg Ex or sub-expression){
 current LUT count L = 0;
 for all sub-expressions S in X{
 if S is sub-expression
 L += resourceEst(S);
 else if S is match single char
 L += 1;
 else if S is match char class
 L += 1 + charClassLUTs;
 else if S is OR
 L += orEst(S.fanin);
 }
 return L;
 }

Fig. 4. Resource estimation pseudo-code. For the Virtex-5, charClassLUTs =
4 and lutInputs = 6.

 partition(set of Reg Exes R, LUT threshold T){
 current LUT count L = I/O controller + byte decoder;
 current configuration C.start = 0;
 for all Reg Exes r in R{
 tempLUT = resourceEst(r) + saturating counter;
 if (tempLUT > T - I/O controller + byte decoder)
 exit(-1);
 else if (tempLUT + L) < T
 L += tempLUT;
 else{
 C.end =r.index - 1;
 make new configuration C;
 C.start = r.index;
 L = I/O controller + byte decoder + tempLUT;
 }
 add r to configuration C;
 next r;
 }
 C.end = last r.index;
 return all C information;
 }

Fig. 5. Partitioning pseudo-code.

�����(fanin) = � ���������nn= ����� ℎ�− 1
�=0 � + ��������������� ℎ� ∗ !����ℎ"#

where ����ℎ = log��������� (fanin)

Fig. 6. System-level diagram of regular expression engine.

 systemController(configuration bitstreams B, configuration information C,
 input messages M, results buffer R, configuration interval I){
 configure FPGA with B[0];
 currMessageSet = M[0] to M[I];
 currEndMessage = I;
 while (currMessageSet.first < M.last){
 for all bitstreams b in B{
 for all messages m in currMessageSet{
 send message m to FPGA and receive results;
 place results into R[m][b][C[b].start to C[b].end];
 }
 configure FPGA with next b;
 }
 currEndMessage += I;
 currMessageSet = M[I+1] to M[currEndMessage] or M[last];
 }
 return R;
 }

Fig. 7. System controller pseudo-code.

Fig. 8. Sorted graphs of resource utilization and estimation accuracy – 49K
regular expressions split into 45 configurations. The two sets of data are
sorted independently. The reported average and standard deviation of
resource utilization does not include the spurious 0.22% utilization data point
that resulted at the end of the regular expression list.

C. Customized Runtime Support

The last part of our regular expression system generator is
responsible for automatically running the searches spread
across multiple configurations. Although various aspects of
the logic within each individual hardware configuration
change depending upon how the regular expressions are split
up, the system controller shown in Fig. 6 is portion of the
engine most seriously affected. The system controller is a C
program running on the host PC that provides the user
interface. It receives input messages to be processed from the
user and returns the completed results. It is also responsible

for determining which configuration is mapped to the FPGA,
when it is reconfigured, what data to send to the FPGA and
what to do with the results that come back from the hardware.

As seen in Fig. 7, the system controller takes in the
configuration bitstreams and configuration index information
generated from the partitioning process. It also receives the
input messages and a results buffer from the user. The last
parameter given to the system controller is a configuration
interval. The configuration interval determines how many
messages we process sequentially before we reconfigure the
device with another bitstream. Before execution is started, the
input messages are divided into sets of I messages. The
configuration interval can affect the performance of the
system because, as we will discuss in Section VI,
reconfiguration can be relatively time consuming. Increasing
the configuration interval allows us to reconfigure fewer times
during execution and amortize the reconfiguration delay that
we do incur over more messages.

Execution begins by mapping the first bitstream to the
FPGA. Then, each of the messages in the current set of input
data is sent to the FPGA for processing. The results that
return from the FPGA are placed in the results buffer. The
results are reordered based upon which message they
correspond to, which configuration the message was
processed with, and what regular expression indices were
mapped to that particular configuration. When the last
message in the current set has been processed with the first
configuration, the system controller reconfigures the FPGA
with the next bitstream. When all of the messages in current
input data set have been processed through all of the
configurations, the system controller moves to the next set of
messages.

VI. TESTING AND RESULTS

We tested our automated regular expression engine using a
set of ~49.6K regular expressions. These searches were
obtained from the IT system engineers responsible for spam
filtering at large corporation. They represent the complete
white and black term-lists used on all messages received by
the domain. All but the 14 largest regular expressions in this
list were implemented in our evaluation. The remaining 14
search terms use extensive nested quantification, resulting in
circuits that require 50% or more of the resources provided by
our target platform, the Virtex-5 LX110T on the Digilent
XUP-V5 board. Synthesis, placement and routing were
performed using the tools in ISE 10.1.

Fig. 8 shows the results of our resource estimation and
partitioning tool. The tool divided the 49.6K regular
expressions into 45 configurations. All 45 configurations
successfully placed, routed, and met timing constraints for
operation at 125 MHz. In gray, this graph shows the sorted
ratios of the LUT requirements estimated by our tool during
the partitioning phase versus the LUT/FF pair requirements as
reported by ISE after compilation. Across all 45
configurations, our tool overestimated the resource
requirements by an average of 7.7%. This suggests that,
although sufficient for our proof-of-concept system, we may

System Controller

LX110T

SystemACE

XUP V5

User InterfaceCPU

Configuration for Reg Ex N – M

To I/O Controller

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Lo
g

ic
 R

a
ti

o

Sorted Configurations

Resource Utilization and

Ratio of Partitioning Estimate to ISE Reported Final Requirements

Estimation Accuracy

Resource Utilization

Average = 1.077

Std Dev = 0.029

Average = 0.782

Std Dev = 0.022

benefit from using a more sophisticated estimation algorithm
that can account for some of the optimizations performed by
the Xilinx tool during synthesis.

Looking at this data more carefully, though, there is the
potential for one small problem. As discussed earlier, the
resource estimation must be an overestimate to avoid
encountering possible capacity problems. Our tool very
slightly underestimated (< 1%) the resource requirements for
one configuration. This small discrepancy may be the result
of some unforseen constraint for logic block packing or some
logic duplication performed during compilation to help meet
timing. Nevertheless, this small underestimation is unlikely to
cause problems in practice since we are only targeting 88% of
the platform’s capacity. Purposefully underutilizing an FPGA
by 10-15% is often customary to ensure successful placement
and routing. That said, with further investigation this
behaviour could be characterized and the estimation algorithm
could be modified to compensate.

On the other hand, our simple packing algorithm seems to
work acceptably. In black, Fig. 8 shows the sorted resource
utilization of the configurations as reported by ISE after
compilation. As mentioned earlier, our target was filling the
device to 88% capacity. Disregarding the small final
configuration that formed from the last handful of regular
expressions in the list, we averaged 78.2% utilization. Taking
into account our average 7.7% overestimate during
partitioning, we are likely coming very close to our desired
resource utilization.

We also tested the performance potential of our system.
For comparison, we used a single-threaded software
implementation running on a 2.54GHz/6MB L2/4GB RAM
Core 2 Duo machine. Five different sets of regular
expressions were tested with 1.1K, 2.2K, 4.5K, 8.9K and
49.6K searches. The input messages used for execution were
taken from the Enron mail corpus in [8]. These messages had
an average message size of 3.1KB. The best results from 3
independent runs are shown in Fig. 9.

The four sets of searches with 1.1K, 2.2K, 4.5K and 8.9K
regular expressions were also mapped to the FPGA. These
lists required 1, 2, 4 and 8 configurations, respectively.
Unfortunately, due to technical considerations we were not
able to test the hardware using the full set of regular
expressions. As seen in Fig. 6, our current implementation
relies on a SystemACE controller [18] to reconfigure the
FPGA. We used this setup because ISE 10.1 does not
implement support for partial reconfiguration on the Virtex-5.
Thus, our options for implementing dynamic reconfiguration
were relatively limited. We elected to use the SystemACE
because this offered the capability of reconfiguring the FPGA
with up to 8 bitstreams held on a CompactFlash card. Since
the SystemACE can only switch between these 8
configurations, the breadth of our performance testing was
limited. Testing on the hardware was repeated multiple times
using configuration intervals between 1 (reconfigure once for
every bitstream needed during the processing of each message)
and 32K (reconfigure once for every bitstream needed during
the processing of every group of 32K messages).

All of our testing results assume that the regular
expressions have been pre-compiled (either into NFAs for the
software version or into bitstreams for the FPGA) and that all
necessary data begins the CPU’s main memory. The software
results only include the actual search time, while the FPGA
results also include the CPUó FPGA transfer time and the
SystemACE reconfiguration time.

Looking at Fig. 9, we can make several interesting
observations. First, as the number of regular expressions is
increased, the performance of the software-based searches
degrades faster than that of hardware-based searches. This is
likely because while a small number of regular expressions
can be implemented in software within the cache, as the
number of regular expressions is increased the system very
quickly requires the capacity of main memory.

A second observation is that the performance of our
hardware implementations scales extremely predictably. For a
given configuration interval, the hardware’s performance
almost exactly halves when we double the number of
configurations used (ignoring when we only have a single
configuration). This means that, with a fair degree of
confidence, we can extrapolate the performance of the
hardware implementation if the SystemACE were able to
accommodate 45 configurations. The estimated performance
of searching for the full set of regular expressions is shown
with italicized data in Tables I and II.

A third observation is that the amount of reconfiguration
we perform can drastically affect performance. Looking at
Table II, increasing the configuration interval by a factor of 2
almost exactly doubles the achievable performance. Largely,
this is because the reconfiguration time dominates the runtime
of most of the hardware tests – the SystemACE on the XUP
board requires 1.5 seconds to complete each reconfiguration.
As shown in Fig. 10, the tests that used I ≤ 32 spent 99% or
more of their time waiting for reconfiguration. This likely
indicates that finding a faster reconfiguration mechanism is a
high priority.

On the other hand, though, looking at Fig. 10 and Table II,
the massive parallelism that the FPGA implementations offer
can still overcome the handicap of the reconfiguration
overhead. For example, searching for 8.9K regular
expressions using I = 128, the hardware spends 97% of its
time reconfiguring. It only spends 3% of its runtime
transferring data and actually executing. However, it still
manages to perform 138x faster than the software
implementation. That said, the achievable speedup does
increase with larger configuration intervals. Looking I = 512,
the speedup over software is 500x. At I = 32K, the speedup is
nearly 5000x.

One concern with large configuration intervals is that they
may not be practical in a real e-mail system. Batching a large
number of messages together may introduce unacceptable
latency or may require too much buffering for input message
replay and results reordering. To perform some general
calculations concerning the buffering requirements, let us
assume that the input messages are an average of 3.1KB a

TABLE I
AVERAGE MATCHING RATE (RAW DATA)

Average Matching
Rate (bytes/sec)

1.1 K
Reg Ex
(1 FPGA
config)

2.2 K
Reg Ex
(2 FPGA
configs)

4.5K
Reg Ex
(4 FPGA
configs)

8.9K
Reg Ex
(8 FPGA
configs)

49.6K
Reg Ex

(45 FPGA
configs)

 CPU 1.14E+4 5.68E+3 1.75E+3 2.34E+2 3.55E+1

F
P

G
A

I = 1 6.86E+6 8.74E+2 4.37E+2 2.18E+2 3.64E+1

I = 2 7.92E+6 1.75E+3 8.77E+2 4.38E+2 7.31E+1

I = 4 9.36E+6 3.51E+3 1.75E+3 8.77E+2 1.46E+2

I = 8 9.36E+6 7.02E+3 3.51E+3 1.75E+3 2.92E+2

I = 16 1.03E+7 1.40E+4 7.00E+3 3.50E+3 5.83E+2

I = 32 1.03E+7 2.81E+4 1.40E+4 6.97E+3 1.16E+3

I = 64 1.03E+7 5.62E+4 2.79E+4 1.39E+4 2.31E+3

I = 128 1.03E+7 1.30E+5 6.49E+4 3.25E+4 5.41E+3

I = 256 1.03E+7 2.52E+5 1.26E+5 6.16E+4 1.03E+4

I = 512 1.03E+7 4.81E+5 2.33E+5 1.17E+5 1.96E+4

I = 1K 1.03E+7 8.37E+5 4.42E+5 2.15E+5 3.59E+4

I = 2K 1.03E+7 1.51E+6 6.77E+5 3.34E+5 5.57E+4

I = 4K 1.03E+7 2.39E+6 1.18E+6 5.85E+5 9.75E+4

I = 8K 1.03E+7 3.32E+6 1.63E+6 8.17E+5 1.36E+5

I =16K 1.03E+7 4.12E+6 2.06E+6 1.02E+6 1.70E+5

I = 32K 1.03E+7 4.68E+6 2.39E+6 1.16E+6 1.93E+5

 “I=” refers to configuration interval. Italics indicate extrapolated results.

TABLE II
AVERAGE MATCHING RATE (NORMALIZED TO CPU RESULTS)

Average Matching
Rate (norm)

1.1 K
Reg Ex
(1 FPGA
config)

2.2 K
Reg Ex
(2 FPGA
configs)

4.5K
Reg Ex
(4 FPGA
configs)

8.9K
Reg Ex
(8 FPGA
configs)

49.6K
Reg Ex

(45 FPGA
configs)

 CPU 1.00 1.00 1.00 1.00 1.00

F
P

G
A

I = 1 601.19 0.15 0.25 0.93 1.12

I = 2 693.68 0.31 0.50 1.87 2.25

I = 4 819.80 0.62 1.00 3.73 4.49

I = 8 819.80 1.24 2.00 7.46 8.98

I = 16 901.79 2.47 3.99 14.90 17.94

I = 32 901.79 4.94 7.97 29.70 35.76

I = 64 901.79 9.89 15.94 59.03 71.05

I = 128 901.79 22.85 37.05 138.34 166.52

I = 256 901.79 44.41 71.97 262.36 315.81

I = 512 901.79 84.67 133.16 499.89 601.73

I = 1K 901.79 147.32 252.03 917.17 1104.01

I = 2K 901.79 266.47 386.34 1423.40 1713.36

I = 4K 901.79 421.40 674.99 2490.95 2998.38

I = 8K 901.79 584.52 932.12 3479.42 4188.22

I =16K 901.79 724.81 1174.48 4340.66 5224.90

I = 32K 901.79 823.65 1365.67 4925.92 5929.39
“I=” refers to configuration interval. Italics indicate extrapolated results.

piece and that we would like 1-bit saturating counters for each
regular expression (only determine if a regular expression was
present or not present in a message). For 8.9K searches and I
= 128, the system controller would only need about 530 KB of
buffering (input replay: 128 messages * 3.1KB/message ≈
390KB, reordering: 128 messages * 8.9K regular expressions
* 1 bit/regular expression/message ≈ 140KB). In comparison,
for the same 8.9K searches and I = 32K, the system controller
would need about 130MB of buffering space.

Fig. 9. Graph of CPU and FPGA performance. I refers to the configuration
interval.

Fig. 10. Graph of time spent during FPGA execution not waiting for device
reconfiguration. I is the configuration interval.

Even though very large configuration intervals may be not
be useful, the data collected during these tests provide
motivation for future work. This is because if we had access
to a faster reconfiguration mechanism, we could achieve much
better performance with small configuration intervals. For
example, if we were to shrink the reconfiguration time by a
factor of 10-20x (from 1.5 seconds to 75-150 milliseconds),
we expect the utilization curves in Fig. 10 to slide up
correspondingly. This would allow us to obtain level of
performance that currently requires I = 32K with only I = 256
or I = 128.

VII. RELATED WORK & FUTURE DIRECTIONS

Dynamic reconfiguration is defining characteristic of
RAM-based FPGAs. Thus, many previous projects have
looked into ways of using it or improving it. For example,
runtime reconfiguration is a natural part of research efforts
that explore dynamically extensible processors such as [6] and
[17]. These systems feature a CPU that can issue customized
instructions to a tightly coupled FPGA. However, since the
RFU operations that these systems generally map to the
reconfigurable fabric are fairly small and have limited or fixed

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 2000 4000 6000 8000 10000

B
y

te
s/

S
e

c

of Regular Expressions

Hardware vs. Software Performance

FPGA, I = 32768

FPGA, I = 16384

FPGA, I = 8192

FPGA, I = 4096

FPGA, I = 2048

FPGA, I = 1024

FPGA, I = 512

FPGA, I = 256

FPGA, I = 128

FPGA, I = 64

FPGA, I = 32

FPGA, I = 16

FPGA, I = 8

FPGA, I = 4

FPGA, I = 2

FPGA, I = 1

CPU

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2000 4000 6000 8000 10000

F
ra

ct
io

n
 o

f
N

o
n

-R
e

co
n

fi
gu

ra
ti

o
n

 T
im

e

of Regular Expressions

Reconfiguration Overhead

FPGA, I = 32768

FPGA, I = 16384

FPGA, I = 8192

FPGA, I = 4096

FPGA, I = 2048

FPGA, I = 1024

FPGA, I = 512

FPGA, I = 256

FPGA, I = 128

FPGA, I = 64

FPGA, I = 32

FPGA, I = 16

FPGA, I = 8

FPGA, I = 4

FPGA, I = 2

FPGA, I = 1

I/O requirements, they do not encounter the same capacity and
data marshalling problems as a system for larger, more open-
ended applications such as regular expression searching.

There have also been multiple papers that have focused on
multi-context FPGAs [7][14] or bitstream compression/
caching [11][10] to improve reconfiguration time.
Unfortunately, none of these techniques have been adopted by
commercial FPGA manufacturers. As we mentioned earlier,
although our results could be improved dramatically with
access to faster reconfiguration schemes, we are still able to
achieve compelling results with the level of support present in
today’s commercial devices.

That said, we would like to incorporate partial
reconfiguration through the internal ICAP in the future. To
accommodate this, the I/O controller in Fig. 3 would reside in
static logic. In addition to its current duties, it would also be
responsible for reconfiguring the regular expression logic in
rest of the FPGA. The bitstreams for the regular expressions
could come directly from the system controller or could be
stored in an external memory. Such an implementation would
provide two benefits. First, it would remove the 8
configuration limit that currently restricts the system. Second,
since the partial bitstreams would be smaller and the internal
ICAP is much faster than the JTAG from the SystemACE,
reconfiguration could be performed considerably faster.
However, the concept of partial reconfiguration may introduce
some problems that we didn’t address in this paper. For
example, [5] suggested a framework for simplifying the
process of dynamically scheduling the hardware resources in
the system and moving or reorienting partial bitstreams.

Finally, as we mentioned in Section VI, we would also like
to investigate more sophisticated resource estimation
algorithms. There has been previous research [4] [13] looking
into estimating the detailed resource requirements of
applications that are specified at a relatively high level. We
believe that incorporating some of these ideas could improve
our estimation accuracy and resource utilization.

VIII. CONCLUSIONS

In this paper we have shown that dynamic reconfiguration
is necessary to perform fast and flexible regular expression
searching on an FPGA. However, we highlighted two
problems that can discourage application developers from
using dynamic reconfiguration. The first issue is that that
when a user has a large set of problems that cannot be
implemented on a single configuration, the existing toolflow
makes it very difficult to intelligently split them across
multiple configurations. The second concern is that executing
an application that is spread across multiple configurations
requires a user to carefully design a custom control structure.

We solved these problems by developing an automated
regular expression system compiler. This tool uses fast
resource estimation so that it can divide a set of regular
expressions among a minimal number of separate
configurations. Once the application has been divided
adequately, it can be run using an automatically generated
controller that manages device reconfiguration and I/O

marshalling. During testing, we showed that this system can
achieve very high performance. Although we believe that it
could benefit from a faster reconfiguration mechanism, we
were able to perform up to 5000x faster than a software
implementation with only very basic reconfiguration support.
When we are able to incorporate partial reconfiguration in the
future, this will be a sophisticated and deployable regular
expression system.

Overall, dynamic reconfiguration gives FPGAs a capability
essential to any practical computing platform: resource
virtualization. This is an underutilized and relatively poorly
understood area of FPGA research. Further work is necessary
to make this feature truly accessible to application developers.

REFERENCES
[1] Z.K. Baker and V. K Prasanna, “Time and Area Efficient Pattern

Matching on FPGAs,” ACM Symposium on Field-Programmable Gate
Arrays, 2004, 223 – 32.

[2] J. Bispo, I. Sourdis, J. Cardoso, and S. Vassiliadis, “Regular
Expression Matching for Reconfigurable Packet Inspection,” IEEE
Conference on Field Programmable Technology, 2006, 119 – 126.

[3] I. Bonesana, M. Paolieri, and M. D. Santambrogio, “An Adaptable
FPGA-based System for Regular Rexpression Matching,” Conference
on Design, Automation and Test in Europe, 2009, 1262 – 1267.

[4] C. Brandolese, W. Fornaciari, and F. Salice, “An Area Estimation
Methdology for FPGA Based Designs at SystemC-Level,” Design
Automation Conference, 2004, 129 – 132.

[5] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. De Wit, “A Dynamic
Reconfiguration Run-time System,” IEEE Symposium on Field-
Programmable Custom Computing Machines, 1997, 66 – 75.

[6] W. W. S. Chu, R. G. Dimond, S. Perrott, S. P. Seng, and W. Luk,
“Customizable EPIC Processor: Architecture and Tools,” Conference
on Design, Automation and Test in Europe, 2004, 236 – 241.

[7] D. Jones and D. Lewis, “A Time-Multiplexed FPGA Architecture for
Logic Emulation,” IEEE Custom Integrated Circuits Conference, 1995,
495 – 498.

[8] B. Klimt and Y.Yang, “Introducing the Enron Corpus,” Conference on
Email and Anti-Spam, 2004.

[9] S. W. Lee, S. H. Hwang, and N. Park, “A High Performance NIDS
using FPGA-based Regular Expression Matching,” ACM Symposium
on Applied Computing, 2007, 1187 – 1191.

[10] Z. Li, K. Compton, and S. Hauck, "Configuration Cache Management
Techniques for FPGAs," IEEE Symposium on Field-Programmable
Custom Computing Machines, 2000, 22 – 36.

[11] Z. Li and S. Hauck, "Configuration Compression for Virtex FPGAs,"
IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

[12] C. H. Lin, C. T. Huang, C. P Jiang, and S. C. Chang, “Optimization of
Regular Expression Pattern Matching Circuits on FPGAs,” Conference
on Design, Automation and Test in Europe, 2006, 12 – 17.

[13] P. Milder, M. Ahmad, J. Hoe and M. Puschel, “Fast and Accurate
Resource Estimation of Automatically Generated Custom DFT IP
Cores,” ACM Symposium on Field-Programmable Gate Arrays, 2006,
211 – 220.

[14] S. Scalera and J. Vazquez, “The Design and Implementation of a
Context Switching FPGA,” IEEE Symposium on Field-Programmable
Custom Computing Machines, 1998, 78 – 85.

[15] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching
using FPGAs,” IEEE Symposium on Field-Programmable Custom
Computing Machines, 2001, 227 – 238.

[16] K. Thompson, “Regular expression search algorithm,”
Communications of the ACM 11(6) , June 1968, 419 – 422

[17] M. Wirthlin and B. Hutchings, “A Dynamic Instruction Set Computer,”
IEEE Symposium on Field-Programmable Custom Computing
Machines, 1995, 99 – 107.

[18] Xilinx Inc., “System ACE CompactFlash Solution,” DS080 v2.0, 2008.

