
Automated Dynamic Reconfiguration for High-
Performance Regular Expression Searching 

Ken Eguro 

Microsoft Research 
Redmond, WA 

eguro@microsoft.com 

 
Abstract—Dynamic reconfiguration can be necessary to 

produce fast and flexible FPGA-based applications.  However, in 
practice very few developers actually use this capability.  One 
reason that runtime reconfiguration is not more commonly used 
is that it is very difficult to write and execute applications that 
are spread across multiple configurations.  This paper uses the 
problem of regular expression searching for e-mail spam filtering 
to illustrate the potential advantages of dynamic reconfiguration 
and the inherent development problems associated with the 
conventional design methodology.  To solve these problems, we 
present a regular expression system compiler.  This automated 
tool includes 1) a mechanism to split a large set of searches into 
multiple hardware configurations and 2) a control system to 
manage reconfiguration and I/O marshalling during execution.  
Even with very rudimentary reconfiguration support from the 
platform used in our testing, we are able to perform 3 to 4 orders 
of magnitude faster than software. 

I. INTRODUCTION 

Perhaps the most powerful feature of most modern 
commercial FPGAs is that they are configured merely by 
changing bits held in memory.  RAM-based configuration 
allows FPGAs to be quickly reprogrammed an essentially 
infinite number of times.  This reconfigurability opens the 
door for FPGAs to be extremely flexible and high-
performance devices.  That said, very few FPGA application 
developers truly make full use of this capability. 

Most FPGA platforms available today contain an SRAM-
based FPGA alongside a non-volatile memory.  In the most 
common use, the non-volatile memory will feed a single 
configuration to the FPGA at power-on and this configuration 
will remain resident until power-off.  With this type of use, 
the reconfigurability of the FPGA could be viewed as more a 
liability rather than an asset.  Although such a system could 
perform firmware updates and the like, the FPGA is really 
being used as a static computing platform. 

Even among applications that do make use of 
reconfiguration, FPGAs are only generally reprogrammed on 
a task-by-task basis.  For example, an FPGA might run task A 
for 30 seconds before being reconfigured to perform task B for 
the next 30 seconds.  In some sense, this is even the model of 
execution that is used by the canonical example of dynamic 
reconfiguration: software-defined radios.  Reconfiguration is 
almost never used during the processing of a single task.   

Intra-task runtime reconfiguration may be necessary to 
build practical FPGA-based solutions for many applications.  
In this paper, we will discuss why dynamic reconfiguration is 
needed to perform regular expression searching for e-mail 

spam filtering.  We will also investigate the issues that make 
implementing runtime reconfiguration difficult: problems in 
the classical design methodology, limitations of the 
conventional CAD toolflow, and restrictions of the common 
execution model.  We address these concerns by introducing a 
complete regular expression system-level compiler.  This tool 
automatically divides and executes regular expressions across 
multiple virtual configurations without user intervention. 

II.  REGULAR EXPRESSION SEARCHING &  FPGAS 

Regular expressions are widely used in many different 
fields, ranging from network intrusion detection to DNA 
sequencing.  Regular expression searches have a few 
characteristics that make implementing them on spatial 
computing devices, such as FPGAs, rather than conventional 
microprocessors particularly attractive. 

First, as shown in Fig. 1, regular expression searching is 
eminently parallel.  In this example we would like to search an 
input stream for the words “CAT”, “POP” and “POD”.  With 
very simple parts (AND gates, flip-flops, and logic that can 
match given letters) we can fully exploit the available 
parallelism and search for all three strings simultaneously.  An 
equivalent memory-efficient search running on a 
microprocessor would generally need to service these searches 
serially.  Since the number of regular expressions that can be 
found in parallel on an FPGA is only a function of the 
capacity of the device, it is possible for an FPGA-based 
solution to have essentially constant throughput, regardless of 
the number of regular expressions implemented.  This is in 
stark contrast to software in which the performance degrades 
linearly with respect to the number of desired searches. 

A second advantage that FPGA-based regular expression 
searching has is that the circuits we build can have completely  
deterministic performance.  The circuit in Fig. 1 will always 
be able to accept one new character of input data per clock 
cycle, regardless of the searches desired or content of the 
input data.  The throughput of software, on the other hand, can  

 
Fig. 1.  Circuit to search for “CAT”, “POP” and “POD” in parallel. 
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depend upon the nature of the searches desired (more or less 
complex regular expressions) and the nature of the input data 
(an input stream that has a high hit ratio versus one with a low 
hit ratio).  This is on top of that fact that software is generally 
beholden to unpredictable events such as cache misses. 

The natural affinity that regular expression searching has 
for reconfigurable devices has lead to a number of previous 
research efforts.  Although some of these projects have 
suggested systems more akin to processor-based solutions [1] 
[3], most have, similar to our example in Fig. 1, spread the 
regular expression processing spatially to fully exploit 
parallelism [2][9][12][15].  One issue that these approaches 
have is that they only consider the case in which the regular 
expressions are implemented on a single static configuration. 

III.  IMPLICATIONS OF STATIC CONFIGURATION 

Although FPGAs are capable of very high throughput 
parallel processing, only using static configuration can lead to 
problems for application developers.  In this section, we will 
focus on how the lack of dynamic reconfiguration can cause 
two troubles for e-mail spam filtering: issues with problem 
scaling and low resource utilization. 

A. Hard Capacity Limit 

The most serious side effect of static-only FPGA 
configuration is that it creates a hard capacity limit.  One key 
advantage of microprocessors is that their sequential 
execution model naturally virtualizes the computational 
resources.  This virtualization is important because it allows 
the performance of the system to gracefully decline as a 
problem becomes more complex. 

In contrast, if an FPGA application developer only 
considers static execution on a reconfigurable computing 
platform, their computation must fit within a single 
configuration.    Although there may be hundreds of thousands 
of LUTs and flip-flops on the FPGA, if we ignore any time-
multiplex sharing built into the circuit, all of the resources are 
statically allocated.  Thus, if the application is run through the 
traditional set of CAD tools and it turns out that the resource 
requirements exceed the capacity of the device, the system 
will simply fail – suddenly and catastrophically.   

This may not be an issue for applications in which the 
resource requirements are constant.  However, spam is a 
constantly growing problem.  While we might have 1,000 
regular expressions today, tomorrow we will have the same 
1,000 plus a few more.  While most of the regular expressions 
will eventually be retired, far more may be added to take their 
place in the meantime.  With purely static configuration, the 
only upgrade path to accommodate additional regular 
expressions is to add more FPGAs to the system.  When the 
user has enough regular expressions to fill the first FPGA, 
they must get another.  However, as will be discussed in the 
next section, the first FPGA may not truly be “full”.   

B. Inefficient Resource Utilization 

Since FPGAs can take advantage of so much parallelism, 
they can actually be too fast for an application.  This is 

because spam filtering is a naturally fixed data rate application.  
Any real e-mail system will be connected to a network with a 
fixed incoming capacity.  For that matter, while the system 
may be flooded by mail in short bursts, the latency of message 
delivery is not terribly important, at least within reasonable 
bounds.  Thus, the processing required during periods of high 
traffic can be amortized over periods of low traffic. 

That said, statically configured FPGAs cannot take 
advantage of this fixed data rate and may be underutilized.  
For example, a user might want to look for 1,000 regular 
expressions on an e-mail system with a nominal load of 10 
Mbps.  Let us assume that the user’s regular expressions 
completely fill a single FPGA configuration and that it is 
capable of processing at a rate of 1 Gbps.  This performance is 
well above the nominal workload.  If the user is only able to 
statically configure the FPGA, the device will be idle 99% of 
the time.   

C. Dynamic Configuration 

If the user were able to take advantage of dynamic 
reconfiguration, they could use it in two different ways.  One 
option is that the user could plan for the future.  Rather than 
purchasing an additional FPGA when they need 1,001 regular 
expressions, they could map new searches to other 
configurations and quickly swap between them.  Ignoring 
some practical considerations for the moment, this technique 
will increase the potential capacity of the system to 100K 
regular expressions while still maintaining adequate 
performance.  Beyond this point, the user still has the option 
of running additional regular expressions with a gradually 
increasing penalty in terms of throughput.   

Another option is that the user could simply purchase a 
cheaper platform with a smaller FPGA. In this case, the user 
could opt to split their regular expressions across 100 different 
configurations mapped to a device 1/100th the size.  The 
various configurations could be quickly swapped onto the 
FPGA and still keep up with the expected workload.  This 
would increase the utilization of the board. 

Either of these options give the user better alternatives to 
either living with a fixed amount of logic, cursing the system 
because a computation is too large and errors out in the CAD 
tools, or buying lots of potentially underutilized devices. 

IV.  ROADBLOCKS TO DYNAMIC RECONFIGURATION 

Despite the advantages of dynamic reconfiguration, it is 
seldom used.  However, this is generally not caused by some 
intrinsic restriction of the FPGA platform itself.  Rather, the 
problem is that monolithic, single-configuration application 
development is the only easy path through existing 
commercial FPGA CAD tools.  Simply put, spreading a 
computation across multiple configurations can be a long and 
complicated process.  There are two fundamental problems 
that users can face.  First, how can we effectively divide a 
large set of problems into smaller groups that can fit on a 
given device?  Second, how do we actually execute these sub-
problems when they are spread across multiple configurations? 



The task of dividing a set of regular expressions among 
multiple configurations can be extremely laborious and time 
consuming.  Coincidentally, this is also a problem if we do not 
allow dynamic reconfiguration, but simply want to spread a 
problem across multiple FPGAs.  Dividing a workload is 
troublesome because current FPGA CAD tools provide too 
little feedback too late in the compilation process to be useful.   

In order to divide a set of regular expressions into a small 
number of different configurations, a developer would need to 
make countless manual iterations through the CAD tools.  If 
the first regular expression could fit on a single configuration, 
we could try the first five.  If these fit, we could try the first 
ten.  If not, perhaps the first three.  This trial-and-error search 
process is a large problem because each run through the 
mapping tools could take hours.  This is an even more 
daunting task if we consider re-ordering the regular 
expressions to maximize utilization.  As will be discussed in 
more detail in Section V.B, this problem can be solved by 
providing a fast estimate of the resource requirements of each 
regular expression.  After we have this information, we can 
build a system to automatically partition the problem into 
smaller sub-tasks. 

The simple execution of an application that is spread across 
multiple configurations is also an issue.  This is because such 
an arrangement requires a custom-made control system to 
reprogram the device with the correct configuration at the 
appropriate time and marshal the correct input and output data 
to and from the various configurations.  Developing the 
software and hardware for such a control system requires 
manual intervention each time that the regular expressions are 
modified.  This time-intensive and potentially error-prone 
process can make dynamically configured systems impractical.  
As will be discussed in Section V.C, this control can be 
automated so that a user does not need any special knowledge 
regarding FPGAs or hardware design to use the system. 

V. REGULAR EXPRESSION SYSTEM GENERATION 

To be truly deployable, applications that rely on dynamic 
reconfiguration cannot be time-consuming to create or require 
meticulous custom development.  In this section we describe a 
method to automatically generate a complete regular 
expression execution engine.  This system provides a very 
simple interface that makes the actual implementation and 
execution of the regular expressions invisible to the user.  We 
first outline the basic architecture of a single configuration.  
Our discussion continues with a description of how a large set 
of regular expressions can be divided into a minimal number 
of difference configurations.  Finally, we show how these 
configurations can be run without user intervention. 

A. Regular Expression Compilation and System Design 

The process of simply converting a list of regular 
expressions into gate-level state machines is relatively well 
understood.  Our approach is fairly basic in that we take an 
incoming list of regular expressions and convert them into 
Non-deterministic Finite Automata (NFA) using Thompson’s 
Algorithm [16].  These NFA are then turned into one-hot-

encoded state machines by using techniques similar to those in 
[15].  The operations that we support are shown in Fig. 2.  

Fig. 2a shows the structure of the most basic unit in our 
system.  This building block can match a single character of 
input data against a single character in a regular expression.  
As will be discussed later, this structure can be extended to 
also match against a single class of characters. Fig. 2b shows 
that these simple units can be concatenated together to allow 
multi-character strings.  This is accomplished by simply 
feeding the output of one matching unit into the input of 
another.  Fig. 2c shows how two sub-expressions can be OR-
ed together.  Fig. 2d shows how we can match zero or one 
instance of a sub-expression.  Similarly, we can also match 
zero or more or one or more instances of a sub-expression.  
This is shown in Fig. 2e and Fig. 2f, respectively.  More 
sophisticated regular expression operators such as bounded 
and unbounded quantification ({N}, {N, M}, {N, }) can be 
implemented by combining these basic operations. 

As shown in Fig. 3, each regular expression in our system 
is turned into a unique state machine.  The individual 
matching units (Fig. 2a) within each state machine are fed by 
either a byte decoder or a character class ROM.   The byte 
decoder simply indicates if the current input character matches 
a single value between 0 and 255 (is the input character an 
‘a’?).  On the other hand, a character class ROM is a 256x1-
bit memory capable of matching the current character against 
multiple values (is the input character a digit?). 

The output of each regular expression is fed to a saturating 
N-bit counter to determine how many times the regular 
expression is matched during a given message.  These results 
are captured by an I/O control structure.  This I/O controller 
manages the transfer of the input data and output results 
to/from a system controller running on the host computer. 

 

 
Fig. 2.  Gate-level implementations for fundamental NFA operations 

 
Fig. 3.  High-level diagram of the regular expressions mapped to one 
configuration. 
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B. Resource Estimation and Problem Partitioning 

The conversion of set of regular expressions into a single 
monolithic configuration is only the beginning of our solution.  
To handle problems that require more resources than one 
configuration can offer, we need an intelligent way to split the 
searches into smaller, more appropriately-sized groups.  This 
must be done without iterative trial and error through the CAD 
tools.  Towards this end, we present a method to quickly and 
accurately estimate the resource requirements of a given set of 
regular expressions. 

Our approach begins by estimating the resource 
requirements of all of the desired regular expressions 
individually.  This is accomplished using the method shown in 
Fig. 4.  Each basic matching unit (Fig. 2a) requires 1 LUT to 
implement its AND gate.  As discussed earlier, if a regular 
expression uses a character class, it requires a 256x1-bit ROM.  
On the Virtex-5 device used in our testing, this requires 4 
LUTs.  All of the other basic operations rely on OR gates.  
The resource requirements of a given OR gate depends upon 
its fan-in.  Each of the 6-input LUTs in the Virtex-5 can 
accommodate up to a 6-input OR.  Wider expressions require 
a tree of cascaded LUTs.  The resource requirements of a 
given OR gate can be computed using the orEst equation.  

Notice that we only track the LUT requirements of the 
regular expressions and not the number of flip-flops.  This is 
acceptable for the platform used in our testing because each 
slice in the Virtex-5 contains 1 flip-flop per LUT.  The largest 
ratio of flip-flops to LUTs needed for any of our basic units is 
1:1.  Platforms with fewer flip-flops per LUT may need to 
also track the number of flip-flops used. 

After the resource requirements of the regular expressions 
are calculated, we can partition them into separate 
configurations.  As shown in Fig. 5, we give the partitioning 
process a LUT threshold.  This threshold represents the 
maximum number LUTs a single configuration of regular 
expressions should require.  In our testing, we determined that 
a reasonable threshold is 88% of the LUTs in the target FPGA.  
This resulted in good utilization while offering a reliable 
buffer for consistent placement and routing.  This threshold is 
certainly platform specific, but is likely easy to determine 
through minimal empirical testing. 

During the partitioning process, each configuration first 
evaluates the LUTs needed by the I/O controller and byte 
decoder.  After this, we consider every regular expression in 
turn to determine if it could fit within the current 
configuration.  If it can, we add it to the system.  If not, we 
create a new configuration and continue.  When a 
configuration is filled, we record the indices of regular 
expressions that we put into the configuration.  When all of 
the regular expressions have been split up, we generate the 
corresponding logic and state machine HDL files for each 
configuration.  These HDL files are sent through the normal 
CAD toolflow to produce the actual FPGA bitstreams. 

It is possible that a single regular expression may be too 
large to fit on the target device.  Although a single regular 
expression could be spread across multiple configurations, we 
did not deal with this situation in our proof-of-concept system.  

Along the same lines, the packing algorithm we use is very 
simple.  Much better utilization may be obtained by 
performing knapsack solving.  However, a knapsack 
algorithm is only feasible because we can reliably predict the 
resource utilization of the various regular expressions.  

It should also be noted that our resource estimation is only 
that – an approximation of the resources required by a regular 
expression after it is mapped to the hardware.  We do not 
consider any optimizations that the synthesis tool might make.  
For example, if two regular expressions in the same 
configuration use the same character class, the Xilinx toolflow 
will realize that the ROMs are identical and remove one from 
the system.  Although this inaccuracy may result in 
overestimating the hardware requirements in a configuration, 
the resource estimation routine could be modified to identify 
and compensate for these compiler optimizations.  What is 
critical, though, is that these estimations remain a pessimistic 
upper bound.  Any underestimation may result in the CAD 
tools failing during compilation due to capacity problems. 

 
 resourceEst(NFA for Reg Ex or sub-expression){ 
  current LUT count L = 0; 
  for all sub-expressions S in X{ 
   if S is sub-expression 
    L += resourceEst(S); 
   else if S is match single char 
    L += 1; 
   else if S is match char class 
    L += 1 + charClassLUTs; 
   else if S is OR 
    L += orEst(S.fanin); 
  } 
  return L; 
 } 

 

Fig. 4.  Resource estimation pseudo-code.  For the Virtex-5, charClassLUTs = 
4 and lutInputs = 6. 

 partition(set of Reg Exes R, LUT threshold T){ 
  current LUT count L = I/O controller + byte decoder; 
  current configuration C.start = 0; 
  for all Reg Exes r in R{ 
   tempLUT = resourceEst(r) + saturating counter; 
   if (tempLUT > T - I/O controller + byte decoder) 
    exit(-1); 
   else if (tempLUT + L) < T 
    L += tempLUT; 
   else{ 
    C.end =r.index - 1; 
    make new configuration C; 
    C.start = r.index; 
    L = I/O controller + byte decoder + tempLUT; 
   } 
   add r to configuration C; 
   next r; 
  } 
  C.end = last r.index; 
  return all C information; 
 } 

Fig. 5.  Partitioning pseudo-code. 
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Fig. 6.  System-level diagram of regular expression engine. 

 systemController(configuration bitstreams B, configuration information C, 
    input messages M, results buffer R, configuration interval I){ 
  configure FPGA with B[0]; 
  currMessageSet = M[0] to M[I]; 
  currEndMessage = I; 
  while (currMessageSet.first < M.last){ 
   for all bitstreams b in B{ 
    for all messages m in currMessageSet{ 
     send message m to FPGA and receive results; 
     place results into R[m][b][C[b].start to C[b].end]; 
    } 
    configure FPGA with next b; 
   } 
   currEndMessage += I; 
   currMessageSet = M[I+1] to M[currEndMessage] or M[last]; 
  } 
  return R; 
 } 

Fig. 7.  System controller pseudo-code. 

 
Fig. 8.  Sorted graphs of resource utilization and estimation accuracy – 49K 
regular expressions split into 45 configurations.  The two sets of data are 
sorted independently.  The reported average and standard deviation of 
resource utilization does not include the spurious 0.22% utilization data point 
that resulted at the end of the regular expression list. 

C. Customized Runtime Support 

The last part of our regular expression system generator is 
responsible for automatically running the searches spread 
across multiple configurations.  Although various aspects of 
the logic within each individual hardware configuration 
change depending upon how the regular expressions are split 
up, the system controller shown in Fig. 6 is portion of the 
engine most seriously affected.  The system controller is a C 
program running on the host PC that provides the user 
interface. It receives input messages to be processed from the 
user and returns the completed results.  It is also responsible 

for determining which configuration is mapped to the FPGA, 
when it is reconfigured, what data to send to the FPGA and 
what to do with the results that come back from the hardware. 

As seen in Fig. 7, the system controller takes in the 
configuration bitstreams and configuration index information 
generated from the partitioning process.  It also receives the 
input messages and a results buffer from the user.  The last 
parameter given to the system controller is a configuration 
interval.  The configuration interval determines how many 
messages we process sequentially before we reconfigure the 
device with another bitstream.  Before execution is started, the 
input messages are divided into sets of I messages.  The 
configuration interval can affect the performance of the 
system because, as we will discuss in Section VI, 
reconfiguration can be relatively time consuming.  Increasing 
the configuration interval allows us to reconfigure fewer times 
during execution and amortize the reconfiguration delay that 
we do incur over more messages. 

Execution begins by mapping the first bitstream to the 
FPGA.    Then, each of the messages in the current set of input 
data is sent to the FPGA for processing.   The results that 
return from the FPGA are placed in the results buffer.  The 
results are reordered based upon which message they 
correspond to, which configuration the message was 
processed with, and what regular expression indices were 
mapped to that particular configuration.  When the last 
message in the current set has been processed with the first 
configuration, the system controller reconfigures the FPGA 
with the next bitstream.  When all of the messages in current 
input data set have been processed through all of the 
configurations, the system controller moves to the next set of 
messages. 

VI.  TESTING AND RESULTS 

We tested our automated regular expression engine using a 
set of ~49.6K regular expressions.  These searches were 
obtained from the IT system engineers responsible for spam 
filtering at large corporation.  They represent the complete 
white and black term-lists used on all messages received by 
the domain.  All but the 14 largest regular expressions in this 
list were implemented in our evaluation.  The remaining 14 
search terms use extensive nested quantification, resulting in 
circuits that require 50% or more of the resources provided by 
our target platform, the Virtex-5 LX110T on the Digilent 
XUP-V5 board.  Synthesis, placement and routing were 
performed using the tools in ISE 10.1. 

Fig. 8 shows the results of our resource estimation and 
partitioning tool.  The tool divided the 49.6K regular 
expressions into 45 configurations.  All 45 configurations 
successfully placed, routed, and met timing constraints for 
operation at 125 MHz.  In gray, this graph shows the sorted 
ratios of the LUT requirements estimated by our tool during 
the partitioning phase versus the LUT/FF pair requirements as 
reported by ISE after compilation.  Across all 45 
configurations, our tool overestimated the resource 
requirements by an average of 7.7%.  This suggests that, 
although sufficient for our proof-of-concept system, we may 
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benefit from using a more sophisticated estimation algorithm 
that can account for some of the optimizations performed by 
the Xilinx tool during synthesis.   

Looking at this data more carefully, though, there is the 
potential for one small problem.  As discussed earlier, the 
resource estimation must be an overestimate to avoid 
encountering possible capacity problems.  Our tool very 
slightly underestimated (< 1%) the resource requirements for 
one configuration.  This small discrepancy may be the result 
of some unforseen constraint for logic block packing or some 
logic duplication performed during compilation to help meet 
timing.  Nevertheless, this small underestimation is unlikely to 
cause problems in practice since we are only targeting 88% of 
the platform’s capacity.  Purposefully underutilizing an FPGA 
by 10-15% is often customary to ensure successful placement 
and routing.  That said, with further investigation this 
behaviour could be characterized and the estimation algorithm 
could be modified to compensate. 

On the other hand, our simple packing algorithm seems to 
work acceptably.  In black, Fig. 8 shows the sorted resource 
utilization of the configurations as reported by ISE after 
compilation.  As mentioned earlier, our target was filling the 
device to 88% capacity.  Disregarding the small final 
configuration that formed from the last handful of regular 
expressions in the list, we averaged 78.2% utilization.  Taking 
into account our average 7.7% overestimate during 
partitioning, we are likely coming very close to our desired 
resource utilization. 

We also tested the performance potential of our system.  
For comparison, we used a single-threaded software 
implementation running on a 2.54GHz/6MB L2/4GB RAM 
Core 2 Duo machine.  Five different sets of regular 
expressions were tested with 1.1K, 2.2K, 4.5K, 8.9K and 
49.6K searches.  The input messages used for execution were 
taken from the Enron mail corpus in [8].  These messages had 
an average message size of 3.1KB.  The best results from 3 
independent runs are shown in Fig. 9. 

The four sets of searches with 1.1K, 2.2K, 4.5K and 8.9K 
regular expressions were also mapped to the FPGA.  These 
lists required 1, 2, 4 and 8 configurations, respectively.  
Unfortunately, due to technical considerations we were not 
able to test the hardware using the full set of regular 
expressions.  As seen in Fig. 6, our current implementation 
relies on a SystemACE controller [18] to reconfigure the 
FPGA.  We used this setup because ISE 10.1 does not 
implement support for partial reconfiguration on the Virtex-5.  
Thus, our options for implementing dynamic reconfiguration 
were relatively limited.  We elected to use the SystemACE 
because this offered the capability of reconfiguring the FPGA 
with up to 8 bitstreams held on a CompactFlash card.  Since 
the SystemACE can only switch between these 8 
configurations, the breadth of our performance testing was 
limited.  Testing on the hardware was repeated multiple times 
using configuration intervals between 1 (reconfigure once for 
every bitstream needed during the processing of each message) 
and 32K (reconfigure once for every bitstream needed during 
the processing of every group of 32K messages). 

All of our testing results assume that the regular 
expressions have been pre-compiled (either into NFAs for the 
software version or into bitstreams for the FPGA) and that all 
necessary data begins the CPU’s main memory.  The software 
results only include the actual search time, while the FPGA 
results also include the CPUó FPGA transfer time and the 
SystemACE reconfiguration time. 

Looking at Fig. 9, we can make several interesting 
observations.  First, as the number of regular expressions is 
increased, the performance of the software-based searches 
degrades faster than that of hardware-based searches.  This is 
likely because while a small number of regular expressions 
can be implemented in software within the cache, as the 
number of regular expressions is increased the system very 
quickly requires the capacity of main memory. 

A second observation is that the performance of our 
hardware implementations scales extremely predictably.  For a 
given configuration interval, the hardware’s performance 
almost exactly halves when we double the number of 
configurations used (ignoring when we only have a single 
configuration).  This means that, with a fair degree of 
confidence, we can extrapolate the performance of the 
hardware implementation if the SystemACE were able to 
accommodate 45 configurations.  The estimated performance 
of searching for the full set of regular expressions is shown 
with italicized data in Tables I and II. 

A third observation is that the amount of reconfiguration 
we perform can drastically affect performance. Looking at 
Table II, increasing the configuration interval by a factor of 2 
almost exactly doubles the achievable performance.  Largely, 
this is because the reconfiguration time dominates the runtime 
of most of the hardware tests – the SystemACE on the XUP 
board requires 1.5 seconds to complete each reconfiguration.  
As shown in Fig. 10, the tests that used I ≤ 32 spent 99% or 
more of their time waiting for reconfiguration.  This likely 
indicates that finding a faster reconfiguration mechanism is a 
high priority. 

On the other hand, though, looking at Fig. 10 and Table II, 
the massive parallelism that the FPGA implementations offer 
can still overcome the handicap of the reconfiguration 
overhead.  For example, searching for 8.9K regular 
expressions using I = 128, the hardware spends 97% of its 
time reconfiguring.  It only spends 3% of its runtime 
transferring data and actually executing.  However, it still 
manages to perform 138x faster than the software 
implementation.  That said, the achievable speedup does 
increase with larger configuration intervals.  Looking I = 512, 
the speedup over software is 500x.  At I = 32K, the speedup is 
nearly 5000x. 

One concern with large configuration intervals is that they 
may not be practical in a real e-mail system.  Batching a large 
number of messages together may introduce unacceptable 
latency or may require too much buffering for input message 
replay and results reordering.  To perform some general 
calculations concerning the buffering requirements, let us 
assume that the input messages are an average of 3.1KB a  
 



TABLE I 
AVERAGE MATCHING RATE (RAW DATA) 

Average Matching 
Rate (bytes/sec) 

1.1 K 
Reg Ex 
(1 FPGA 
config) 

2.2 K 
Reg Ex 
(2 FPGA 
configs) 

4.5K  
Reg Ex 
(4 FPGA 
configs) 

8.9K 
Reg Ex 
(8 FPGA 
configs) 

49.6K 
Reg Ex 

(45 FPGA 
configs) 

 CPU 1.14E+4 5.68E+3 1.75E+3 2.34E+2 3.55E+1 

F
P

G
A

 

I = 1 6.86E+6 8.74E+2 4.37E+2 2.18E+2 3.64E+1 

I = 2 7.92E+6 1.75E+3 8.77E+2 4.38E+2 7.31E+1 

I = 4 9.36E+6 3.51E+3 1.75E+3 8.77E+2 1.46E+2 

I = 8 9.36E+6 7.02E+3 3.51E+3 1.75E+3 2.92E+2 

I = 16 1.03E+7 1.40E+4 7.00E+3 3.50E+3 5.83E+2 

I = 32 1.03E+7 2.81E+4 1.40E+4 6.97E+3 1.16E+3 

I = 64 1.03E+7 5.62E+4 2.79E+4 1.39E+4 2.31E+3 

I = 128 1.03E+7 1.30E+5 6.49E+4 3.25E+4 5.41E+3 

I = 256 1.03E+7 2.52E+5 1.26E+5 6.16E+4 1.03E+4 

I = 512 1.03E+7 4.81E+5 2.33E+5 1.17E+5 1.96E+4 

I = 1K 1.03E+7 8.37E+5 4.42E+5 2.15E+5 3.59E+4 

I = 2K 1.03E+7 1.51E+6 6.77E+5 3.34E+5 5.57E+4 

I = 4K 1.03E+7 2.39E+6 1.18E+6 5.85E+5 9.75E+4 

I = 8K 1.03E+7 3.32E+6 1.63E+6 8.17E+5 1.36E+5 

I =16K 1.03E+7 4.12E+6 2.06E+6 1.02E+6 1.70E+5 

I = 32K 1.03E+7 4.68E+6 2.39E+6 1.16E+6 1.93E+5 

 “I=” refers to configuration interval.  Italics indicate extrapolated results. 

TABLE II 
AVERAGE MATCHING RATE (NORMALIZED TO CPU RESULTS) 

Average Matching 
Rate (norm) 

1.1 K 
Reg Ex 
(1 FPGA 
config) 

2.2 K 
Reg Ex 
(2 FPGA 
configs) 

4.5K  
Reg Ex 
(4 FPGA 
configs) 

8.9K 
Reg Ex 
(8 FPGA 
configs) 

49.6K 
Reg Ex 

(45 FPGA 
configs) 

 CPU 1.00 1.00 1.00 1.00 1.00 

F
P

G
A

 

I = 1 601.19 0.15 0.25 0.93 1.12 

I = 2 693.68 0.31 0.50 1.87 2.25 

I = 4 819.80 0.62 1.00 3.73 4.49 

I = 8 819.80 1.24 2.00 7.46 8.98 

I = 16 901.79 2.47 3.99 14.90 17.94 

I = 32 901.79 4.94 7.97 29.70 35.76 

I = 64 901.79 9.89 15.94 59.03 71.05 

I = 128 901.79 22.85 37.05 138.34 166.52 

I = 256 901.79 44.41 71.97 262.36 315.81 

I = 512 901.79 84.67 133.16 499.89 601.73 

I = 1K 901.79 147.32 252.03 917.17 1104.01 

I = 2K 901.79 266.47 386.34 1423.40 1713.36 

I = 4K 901.79 421.40 674.99 2490.95 2998.38 

I = 8K 901.79 584.52 932.12 3479.42 4188.22 

I =16K 901.79 724.81 1174.48 4340.66 5224.90 

I = 32K 901.79 823.65 1365.67 4925.92 5929.39 
“I=” refers to configuration interval.  Italics indicate extrapolated results. 
 

piece and that we would like 1-bit saturating counters for each 
regular expression (only determine if a regular expression was 
present or not present in a message).  For 8.9K searches and I 
= 128, the system controller would only need about 530 KB of 
buffering (input replay: 128 messages * 3.1KB/message ≈ 
390KB, reordering: 128 messages * 8.9K regular expressions 
* 1 bit/regular expression/message ≈ 140KB).  In comparison, 
for the same 8.9K searches and I = 32K, the system controller 
would need about 130MB of buffering space.   

 

 
Fig. 9.  Graph of CPU and FPGA performance.  I refers to the configuration 
interval. 

 
Fig. 10.  Graph of time spent during FPGA execution not waiting for device 
reconfiguration.  I is the configuration interval. 

Even though very large configuration intervals may be not 
be useful, the data collected during these tests provide 
motivation for future work.  This is because if we had access 
to a faster reconfiguration mechanism, we could achieve much 
better performance with small configuration intervals.  For 
example, if we were to shrink the reconfiguration time by a 
factor of 10-20x (from 1.5 seconds to 75-150 milliseconds), 
we expect the utilization curves in Fig. 10 to slide up 
correspondingly.  This would allow us to obtain level of 
performance that currently requires I = 32K with only I = 256 
or I = 128. 

VII.  RELATED WORK &  FUTURE DIRECTIONS 

Dynamic reconfiguration is defining characteristic of 
RAM-based FPGAs.  Thus, many previous projects have 
looked into ways of using it or improving it.  For example, 
runtime reconfiguration is a natural part of research efforts 
that explore dynamically extensible processors such as [6] and 
[17].  These systems feature a CPU that can issue customized 
instructions to a tightly coupled FPGA.  However, since the 
RFU operations that these systems generally map to the 
reconfigurable fabric are fairly small and have limited or fixed 
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I/O requirements, they do not encounter the same capacity and 
data marshalling problems as a system for larger, more open-
ended applications such as regular expression searching. 

There have also been multiple papers that have focused on 
multi-context FPGAs [7][14] or bitstream compression/ 
caching [11][10] to improve reconfiguration time.  
Unfortunately, none of these techniques have been adopted by 
commercial FPGA manufacturers.  As we mentioned earlier, 
although our results could be improved dramatically with 
access to faster reconfiguration schemes, we are still able to 
achieve compelling results with the level of support present in 
today’s commercial devices. 

That said, we would like to incorporate partial 
reconfiguration through the internal ICAP in the future.  To 
accommodate this, the I/O controller in Fig. 3 would reside in 
static logic.  In addition to its current duties, it would also be 
responsible for reconfiguring the regular expression logic in 
rest of the FPGA.  The bitstreams for the regular expressions 
could come directly from the system controller or could be 
stored in an external memory.  Such an implementation would 
provide two benefits.  First, it would remove the 8 
configuration limit that currently restricts the system.  Second, 
since the partial bitstreams would be smaller and the internal 
ICAP is much faster than the JTAG from the SystemACE, 
reconfiguration could be performed considerably faster.  
However, the concept of partial reconfiguration may introduce 
some problems that we didn’t address in this paper.  For 
example, [5] suggested a framework for simplifying the 
process of dynamically scheduling the hardware resources in 
the system and moving or reorienting partial bitstreams. 

Finally, as we mentioned in Section VI, we would also like 
to investigate more sophisticated resource estimation 
algorithms.  There has been previous research [4] [13] looking 
into estimating the detailed resource requirements of 
applications that are specified at a relatively high level.  We 
believe that incorporating some of these ideas could improve 
our estimation accuracy and resource utilization. 

VIII.  CONCLUSIONS 

In this paper we have shown that dynamic reconfiguration 
is necessary to perform fast and flexible regular expression 
searching on an FPGA.  However, we highlighted two 
problems that can discourage application developers from 
using dynamic reconfiguration.  The first issue is that that 
when a user has a large set of problems that cannot be 
implemented on a single configuration, the existing toolflow 
makes it very difficult to intelligently split them across 
multiple configurations.  The second concern is that executing 
an application that is spread across multiple configurations 
requires a user to carefully design a custom control structure.   

We solved these problems by developing an automated 
regular expression system compiler.  This tool uses fast 
resource estimation so that it can divide a set of regular 
expressions among a minimal number of separate 
configurations.  Once the application has been divided 
adequately, it can be run using an automatically generated 
controller that manages device reconfiguration and I/O 

marshalling.  During testing, we showed that this system can 
achieve very high performance.  Although we believe that it 
could benefit from a faster reconfiguration mechanism, we 
were able to perform up to 5000x faster than a software 
implementation with only very basic reconfiguration support.  
When we are able to incorporate partial reconfiguration in the 
future, this will be a sophisticated and deployable regular 
expression system. 

Overall, dynamic reconfiguration gives FPGAs a capability 
essential to any practical computing platform: resource 
virtualization.  This is an underutilized and relatively poorly 
understood area of FPGA research. Further work is necessary 
to make this feature truly accessible to application developers. 
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