
MICROSOFT RESEARCH

The Sora Manual
The Microsoft Research Software Radio

(Sora) Project

The Sora Core Team
(Ver 1.5)

July, 2011

The Microsoft Research Software Radio (Sora) Project is an initiative from the Wireless and
Network Group, Microsoft Research Asia.

 1

 2

Contents

Chapter 1. Introduction ... 7

1.1 What is new in Sora SDK ver 1.5? .. 7

1.2 Target Operating Systems ... 8

1.3 Target Hardware .. 8

Chapter 2. Getting Started .. 10

2.1 Install Sora SDK .. 10

2.2 Install RCB Driver and HwTest Driver .. 10

2.3 Test Hardware ... 11

2.3.1 Hardware Verification Tool ... 11

2.3.2 Receiving frames from a commercial WiFi card .. 14

2.4 Build and Install SoftWiFi Driver .. 16

2.4.1 Build environment ... 16

2.4.2 Install SoftWiFi Driver .. 17

2.4.3 Configure the SoftWiFi driver .. 18

2.5 Directory Structure .. 19

Chapter 3. Sora Fundamentals .. 22

3.1 Architecture ... 22

3.2 Abstract Radio and Radio Object ... 25

3.2.1 Radio Allocation and Release .. 27

3.2.2 Radio Configuration and Start ... 27

 3

3.2.3 Radio example ... 27

3.3 Transfer and Transmission .. 28

3.3.1 PACKET_BASE object ... 28

3.3.2 Modulation .. 29

3.3.3 Transfer and Transmission .. 30

3.3.4 Example ... 30

3.4 Reception ... 33

3.4.1 Example ... 34

Chapter 4. MAC Programming .. 36

4.1 State Machine declaration and initialization ... 36

4.2 FSM Start, Stop, and State Transition ... 37

4.2.1 Example ... 37

Chapter 5. Real-Time Support ... 40

5.1 Using Sora thread .. 40

5.2 Interrupt affinity .. 42

5.2.1 Installing and Configuring Interrupt Filter ... 42

Chapter 6. Signal Cache ... 44

6.1 Example ... 44

Chapter 7. User-Mode Extension .. 48

7.1 UMX Initialization and Configuration .. 48

7.2 Reception ... 49

7.3 Transmission .. 51

7.4 Sample: UMXDot11 ... 52

Chapter 8. Vector1 Library .. 54

8.1 Data type ... 54

 4

8.2 Basic Operations .. 55

8.3 Vector1 References ... 55

8.3.1 abs ... 56

8.3.2 abs0 ... 56

8.3.3 add ... 56

8.3.4 and ... 56

8.3.5 andnot ... 57

8.3.6 average .. 57

8.3.7 comprise .. 57

8.3.8 conj .. 57

8.3.9 conj0 .. 57

8.3.10 conj_mul .. 57

8.3.11 conj_mul_shift ... 58

8.3.12 conjre ... 58

8.3.13 extract .. 58

8.3.14 Flip ... 58

8.3.15 hmax .. 58

8.3.16 hmin ... 58

8.3.17 interleave_high .. 59

8.3.18 interleave_low ... 59

8.3.19 is_great .. 59

8.3.20 is_less... 59

8.3.21 mul_high .. 60

8.3.22 mul_j .. 60

8.3.23 mul_low ... 60

 5

8.3.24 mul_shift .. 60

8.3.25 or.. 60

8.3.26 pack ... 60

8.3.27 pairwise_muladd ... 60

8.3.28 permutate .. 61

8.3.29 permutate_high ... 61

8.3.30 permutate_low .. 62

8.3.31 reduce4_add .. 62

8.3.32 reduce4_saturated_add .. 62

8.3.33 reduce_add .. 63

8.3.34 reduce_saturated_add .. 63

8.3.35 saturated_add ... 63

8.3.36 saturated_pack .. 63

8.3.37 saturated_sub .. 64

8.3.38 set_all .. 64

8.3.39 set_all_bits... 64

8.3.40 set_zero ... 64

8.3.41 shift_left .. 64

8.3.42 shift_right .. 64

8.3.43 sign ... 65

8.3.44 smax ... 65

8.3.45 smin ... 65

8.3.46 store ... 65

8.3.47 store_nt ... 65

8.3.48 sub ... 66

 6

8.3.49 unpack ... 66

8.3.50 xor .. 66

Chapter 9. The Sample SoftWiFi Driver ... 67

9.1 Configuring the SoftWiFi driver ... 68

9.2 Offline Wrapper ... 69

Chapter 10. Tools and Utilities .. 71

10.1 dut tool .. 71

10.1.1 Using dut to configure the HwTest driver ... 71

10.1.2 Using dut to transmit a signal .. 71

10.1.3 Dut usage summary ... 72

10.2 Oscilloscope ... 72

10.3 SrView .. 73

10.4 Hardware Verification Tool ... 76

10.4.1 The Sine Wave Test ... 76

10.4.2 The SNR Test .. 78

10.4.3 Misc functions ... 81

Chapter 11. Reference... 82

11.1 Kernel Mode API .. 82

11.2 UMX API ... 101

 7

Chapter 1.

Introduction

The Sora manual provides reference documentation for Microsoft Research Software Radio, also

known as Sora, which is a research project initiated in the Wireless and Networking Group

(WNG) at Microsoft Research Asia. Sora is a high-performance fully programmable software

radio based on general purpose processors (i.e., CPU) in commodity PC architecture. Sora

contains both hardware and software components. The hardware component is a high-speed,

low latency Radio Control Board (RCB) that interconnects the RF frontend and the PC memory.

RCB is based on PCI-Express interface and is capable of transferring large amounts of digital

samples in high speed. All these digital samples are processed by software running on the host

CPU. The software component is an SDK, containing critical drivers and libraries for

programming and running highly-efficient baseband in real-time on modern multi-core PCs.

The first Sora SDK (Microsoft Research Software Radio Academic Kit), version 1.02, was released

to academia in June 2010. An update, version 1.1, was released in November 2010. Sora version

1.5 was released in Sept 2011. This document contains updated information for the latest Sora

release.

More information on Sora is available online:

http://research.microsoft.com/en-us/projects/sora/

http://social.microsoft.com/Forums/en-us/sora

If you want to obtain Sora hardware, please find more information at

http://research.microsoft.com/en-us/projects/sora/academickit.aspx

1.1 What is new in Sora SDK ver 1.5?

Sora SDK ver 1.5 substaintially changes the implementation of the Sora core library and drivers,

providing programmers with a more flexible, robust, and friendly developing environment to

http://research.microsoft.com/en-us/projects/sora/
http://social.microsoft.com/Forums/en-us/sora
http://research.microsoft.com/en-us/projects/sora/academickit.aspx

 8

build powerful SDR applications. It also fixes almost all known bugs in the previous versions. The

key features of Sora SDK ver 1.5 includes:

 Full compatible with Windows XP. Previous Sora versions have several compatibility

issues across different variants of Windows XP due to an implementation limitation.

Sora SDK ver 1.5 has removed this limitation and is compatible to all Win XP versions by

implementing a new scheduler that dynamically assigns best cores to the time-critical

threads. While a real-time thread may run on different cores, its execution is not

interrupted. The new scheduler also greatly improves the responsiveness of the system

compared to previous versions.

 Full-fledged User-Mode Extension (UMX) API. The UMX API is first introduced in Sora

SDK ver 1.1. The new Sora SDK ver 1.5 has completed a full-fledged UMX API to build

powerful SDR applications. A new resource isolation and collection mechanism has been

implemented to protect the system against unsafe applications. Zero-copy mechanisms

are deployed when accessing both hardware Tx and Rx buffers. Therefore, the overhead

and latency of sending/receiving signals in user-mode are reduced to minimum. A new

UMX-based 802.11a/b/g decoder is included in the SDK to illustrate the usage of the

new UMX API.

 Enriched tools. Sora SDK ver 1.5 comes with a set of useful tools for SDR development.

The package contains software oscilloscopes for both 802.11b DSSS and 802.11a/g

OFDM. It also includes a handy Hardware Verification Tool to test your hardware and

also help you find the best parameter settings.

1.2 Target Operating Systems

Sora works on Microsoft Windows Operating System. All current versions of Sora require

Microsoft Windows XP with Service Pack 3.

Sora also requires Microsoft Windows Driver Kit (WDK) to be compiled. You can download WDK

from Microsoft downloads (http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx).

1.3 Target Hardware

In theory, Sora should work with any modern commodity multi-core PC with one spare PCIe-x8

or PCIe-x16 slot. Since Sora performs all Digital Signal Processing (DSP) in software, you may

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

 9

want to equip the PC with the latest CPU and as many cores as affordable. As a general guidance,

a quad-core CPU clocked at 2.66GHz or higher is recommended to run real-time software radio

applications like WiFi. Most Sora DSP software requires Intel SSE3 and above. Therefore, you

should double-check your CPU data-sheet to verify that SSE3 instructions are supported (most

Intel CPUs in the market should already support it).

Sora requires a compatible Radio Frequency (RF) Front-end to communicate over the air.

Currently, two RF boards are supported: RICE WARP RF daughter board and USRP XCVR2450

daughter board. Both are 2.4G/5GHz radios. In the future, we hope to support more and more

compatible RF front-ends. Please visit the Sora web site and forums for updated information.

Sora also requires an RF-specific Adaptor Board (RAB) to connect either USRP or WARP daughter

board to the RCB. You can find their order information on the Sora web site. The USRP RAB

further comes pre-clocked with two different rates: 40MHz or 44MHz, providing a sampling rate

of 40MSps or 44MSps respectively. Choosing which clock rate depends on your application. If

you mainly work with OFDM like 802.11a/g, you may find it handy to use 40MHz RAB. Otherwise,

if you want to work with 802.11b-like system, you can choose 44MHz RAB. WARP daughter

board only comes with 40MSps sampling rate.

Table 1 summarizes the hardware requirements for Sora.

Table 1. Hardware requirements for the Microsoft research Software Radio

CPU/Freq quad-core/2.66GHz (or above)

Memory 1GB or above

PCIe-x8/x16 slot 1

Hard Disk 100M of free space

Radio hardware Microsoft Research Software Radio Control
Board (RCB)

 Compatible RF front-end boards
(currently, WARP RF daughter board
or USRP XCVR2450 board with respective
RF Adaptor Board)

 10

Chapter 2.

Getting Started

2.1 Install Sora SDK

After you download the Sora SDK package, you can simply run SoraSDK.msi and follow the on-

screen instructions to install software. The Sora SDK package contains the following components:

 The Sora core driver for the RCB.

 The HwTest driver - implementing user-mode extension.

 The sample SoftWiFi driver – a kernel-mode miniport driver implementing full functional

IEEE 802.11a/b/g.

 Hardware Verification Tool – helping to test and configure the hardware.

 Software oscilloscopes for 802.11a/b/g.

 Other samples and tools.

Section 2.5 shows a complete directory tree of the Sora SDK ver 1.5.

2.2 Install RCB Driver and HwTest Driver

Before you install the RCB driver, please make sure that the RCB board is firmly plugged into

your motherboard and a RF front-end is properly connected to the RCB. Please follow the

instructions in "Sora Device Drivers Installation.pdf" to install and configure the RCB driver.

Then, you can install the HwTest driver. HwTest implements user-mode extension API that

allows applications to access the Sora radio resource. You can use Windows Device Manager

“Add Hardware Wizard” to install them. You should choose ‘manually add a new driver’ and

specify the driver files location. The binary of the HwTest driver is located

at %SORA_ROOT%\bin\hwtest\.

 11

Any time if you want to reset the RCB driver, you should reset the RCB hardware as well. After

disabling the RCB driver, you should press the reset buttons on both RCB and the RAB (if you use

USRP RF daughter boards) before you re-enable the RCB driver again. These reset buttons are

shown in the following Figure 1.

Figure 1. Reset buttons on USRP RAB (left) and RCB (right).

2.3 Test Hardware

2.3.1 Hardware Verification Tool

Sora SDK ver1.5 includes a new handy tool for testing your hardware: the Hardware Verification

Tool (HVT). HVT allows you to visually verify your RF hardware and tune proper parameter

settings (like central frequency offset and Tx/Rx gains).

You need two Sora boxes to run HVT, one as the sender and the other as the receiver. Before

starting HVT, you should make sure both the RCB driver and the HwTest driver are enabled.

Once you start HVT (you can find a short-cut at “Start Menu->Sora->Tools->Hardware

Verification Tool”), you will see the following window, as shown in Figure 2. Table 2 provides a

reference to each element on the HVT main window.

 12

Figure 2. The main window of HVT.

Table 2. HVT Reference.

Label Name Remark

a Test method
selection

Select test type (sine test/SNR test).

b Start button Start/stop a test.

c Dump button Take a snapshot of the received signal and save it to a dump file. It
is only available when HVT is working in the receiver mode.

d Suggestion button Open a what-to-do document. Only available when HVT is working
in the receiver mode.

e Auto calibration
button

Start an automatic central frequency offset (CFO) calibration.

f DC value Show the Direct Current value of the received signal.

g Central Frequency
Offset

Show the central frequency offset between the receiver and the
sender.

h I/Q imbalance Show the I/Q imbalance of the received signal (amplitude and
phase). It is only available in the sine test mode.

i Signal-to-Noise
Ratio (SNR)

Show the SNR of the currently received signal. It is only available in
the SNR test mode.

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

a

rsu t

 13

j Status bar Show the current status message.

k Log window Show the full logs during the test.

l Save log button Save the logs into a text file.

m Clear button Clear the logs.

n Save parameter
button

Save the parameters into a configuration file.

o Load button Load the parameters from a configuration file.

p AGC
enable/disable

Check/uncheck to enable/disable AGC (Automatic Gain Control).

q RxPa selection Select the value for RxPa. RxPa refers to the Low Noise Amplify
(LNA) at the receiving chain of USRP XCRV2450. It has three valid
settings: 0 or 0x1000 – 0dB; 0x2000 – 16dB; 0x3000 – 32dB.

r Sampling rate Set the sampling rate of the RAB (40/44MHz).

s Central Frequency Select the Central Frequency (channel) of the radio.

t Gain adjustment Drag to change gain setting. In the sender mode, it changes the Tx
gain; While in the receiver mode, it changes the Rx gain of the radio
chip.

u Mode selection Choose the sender or receiver mode of HVT.

HVT can perform two tests between two Sora boxes: the sine test (single tone test) and the SNR

test (wide-band test). In the sine test, the sender transmits one single 1MHz sine waveform.

Using this waveform, the receiver can compute the Central Frequency Offset (CFO) between the

sender and receiver radio, and reveal the best receiver gain setting. To perform a since test, you

can follow the steps listed below:

1. Run HVT on two Sora boxes. Select “sine test” at both machines.

2. Configure one as the sender and the other as the receiver.

3. Select the sampling rate at the receiver that matches your RAB sampling rate.

4. Click “start” at the sender. You may notice the sender’s status bar displays the message

“Sending 1MHz sine wave”.

5. Click “start” at the receiver. Now you should be able to see the received signal like

Figure 3. The left window shows the energy plot of the signal and the right window

shows the constellation plot of I/Q samples. Since the transmitted signal is single sine

waveform, the constellation plot is a circle.

 14

Figure 3. Received signal from the sine test.

You can perform the SNR test by selecting the SNR test mode and follow the similar steps as in

the sine test. In the SNR test, the sender transmits a wide-band 16-QAM modulated OFDM

signal. Figure 4 shows the received signal in both energy plot and constellation plot in the SNR

test. The actual SNR value is displayed in the SNR field in the main window.

You can further use HVT to find the best receiver gain parameters, I/Q imbalance and the CFO

between the two Sora boxes. For a complete reference of HVT, please refer to Chapter 10.4.

Figure 4. Received signal from the SNR test.

2.3.2 Receiving frames from a commercial WiFi card

If you have only a single set of Sora machine, you can use it as the receiver and use a laptop with

WiFi interface as the sender. The laptop should support flexible WiFi configurations (e.g.,

 15

Atheros NIC with MadWiFi driver) because you will need to set it to ad hoc mode with SSID “sdr”

at channel 3 (by default, the HwTest driver configures the RF front-end to channel 3). You will

also need a tool like iperf to send out broadcast packets.

At the Sora machine (receiver), you can use dut.exe to take a snapshot of the channel with the

following command sequence (text following “##” are comments and not meant to be included

in the command line).

dut start ## start the HwTest driver
dut centralfreq --value 2422 ## channel 3 in 2.4GHz band
dut rxpa --value 0x2000
dut rxgain --value 0x1000
dut dump ## store a snapshot of channel signal in a dump file

The generated dump file is located at c:\, with the “.dmp” extension. You can easily identify

them by examining the file creation time.

You can use the software oscilloscope tools to view the stored signals. These tools are located

at %SORA_ROOT%\bin. If the source signal is 802.1b (DSSS) signal, you should use sdscope-

11b.exe to view the recorded signal. Otherwise, you should use sdscope-11a.exe to view OFDM

modulated signals. After you start the software oscilloscope tool (e.g. sdscope-11b.exe), you can

press ‘o’ to bring up an open file dialog window, from which you can select the newly stored

dump file. sdscope-11b decodes and displays the result in screen as shown inFigure 5.

To view dumped OFDM signals (802.11g rates of 6Mbps ~ 54Mbps) with sdscope-11a, you

should also specify the sampling rate of the RAB with following command lines,

sdscope-11a.exe -s40 ## If your RAB’s sampling rate is 40MSps

or,

sdscope-11a.exe -s44 ## If your RAB’s sampling rate is 44MSps

 16

Figure 5. Displaying the dump file with sdscope-11b.

2.4 Build and Install SoftWiFi Driver

2.4.1 Build environment

You need to install Windows Driver Kit (WDK) before you can compile the sample SoftWiFi

miniport Driver. You can download WDK from Microsoft downloads.

The installer of Sora SDK package has created two shortcuts to build command windows in the

start-menu (located in Start\Programs\Microsoft Research Asia\ Software Radio Academic Kit

1.5). Before you can use them, you should configure the WDK path by adding an environment

variable, WINDDK_ROOT. This variable should point to the root path of the WDK. Environment

variables are configured using Windows Control Panel. Figure 6 shows a screen snapshot when

you add a new environment variable on Windows XP.

 17

Then, you can click the menu item of “SORA Build Environment (Free)” to open a command

window. You can type the command “bcz” to build the SoftWiFi driver (the sample SDR miniport

driver), Sora User-mode Extension (UMX) samples and other tools. All target files

(like .exe, .dll, .lib, .sys, etc.) are generated in the folder %SORA_ROOT%\target\

fre(chk)_wxp_x86\i386.

Figure 6. Setting up WINDDK_ROOT environment variable.

2.4.2 Install SoftWiFi Driver

After you successfully build the SoftWiFi source, the driver binary is generated

at %SORA_ROOT%\target\fre(chk)_wxp_x86\i386, where you can also find the corresponding

inf file (sdr.inf). You can use “Add Hardware Wizard” to install them on Windows. You should

choose ‘manually add a new driver’ and specify the driver files location. Since the HwTest and

SoftWiFi drivers are contending the hardware resources through the RCB driver, they cannot be

enabled simultaneously. You should disable the HwTest driver before enabling the SoftWiFi

driver. The SoftWiFi driver can be configured into DSSS mode (802.11b) or OFDM mode

 18

(802.11a/g). The default mode is OFDM. To change to a different mode, you can modify the

ModMode registry entry in sdr.inf by specifying value of “802.11a” or “802.11b”.

The SoftWiFi driver exposes an Ethernet interface to the operating system. You can try to use

the SoftWiFi driver to communicate with a commercial WiFi card in real-time. You should make

sure the SoftWiFi driver is configured in a proper mode, i.e. DSSS (802.11b) or OFDM (802.11a/g)

(The default mode is OFDM). If you are using OFDM mode, you should also make sure you have

specified the same sampling rate in sdr.inf file as your RAB. Chapter 2.4.3 lists all configurations

to the SoftWiFi driver.

2.4.3 Configure the SoftWiFi driver

The sample SoftWiFi driver can be configured by editing entries in sdr.inf file.

Table 3. Configuration with SDR.INF.

Entry Name Description Type Value

NetworkAddress MAC address String The default value is
"02-50-F2-00-00-
01". This default
value will make the
driver to randomly
select last three
bytes as the MAC
address.
A user can explicitly
specifies a MAC
address if needed
(the last three bytes
cannot be “00-00-
01”)

BSSID Basic service set
identification

String The driver will
automatically
replace the value
from a valid beacon
it receives.

ModMode Protocol of
modulation and
demodulation

String 802.11a / 802.11b

11ADataRate Data rate in Mbps in
802.11a modulation

String of decimal
number

6 / 9 / 12/ 18 / 24 /
36 / 48 / 54

DataRate Data rate in 100 String of hex- 0x0A / 0x14 / 0x37 /

 19

kbps in 802.11b
modulation

number 0x6E (in unit of
100Kbps)

ModSelect Modulation option
in 802.11b
modulation

String of number 0 for CCK, 1 for PBCC

PreambleType Preamble type in
802.11b modulation

String of number 0 for long, 1 for
short

SampleRate sample rate in MHz
of the radio PCB

String of number 40 / 44MSps

2.5 Directory Structure

The directory structure shown here assumes the Sora SDK is installed at d:\SORASDK1.5

D:\SORASDK1.5

│ AcademicKit-LA.pdf Agreement to purchase the academic kit

│ MSR-LA.pdf MSR License agreement

│ Sample Code-LA.pdf MSR License agreement for the sample source code

│ Readme.htm The ReadMe file

├─bin

│ │ dut.exe Hardware diagnosis tool. Run dut without any command

line parameter for help.

│ │ HwVeri.exe A helpful tool to test and configure Sora hardware

components. Refer to Chapter 10.4 for detail.

│ │ dot11config.exe SDR miniport driver configuration tool. See Chapter 9.1

for command line reference. Source code provided

in %SORA_ROOT%\src\driver\SDRMiniport\dot11config

│ │ demod11.exe Command line tool to demodulates 802.11a(b) dump

files and displays statistics about data frames. Source

code provided in %SORA_ROOT%\src\bb\demod11

│ │ UMXDot11.exe User mode 802.11 decoder based on UMX. It has a full

featured 802.11a/b/g decoder. It is also able to

modulate a frame and send it through UMX. Refer to

Chapter 7.4 for detail. Source code provided

in %SORA_ROOT%\src\bb\UMXDot11

│ │ sdscope-11a.exe User mode utility which demodulates 802.11a frames

from dump file and displays intermediate results in GUI.

Refer to Chapter 10.2 for detail.

 20

│ │ sdscope-11b.exe User mode utility which demodulates 802.11b

framesfrom dump file and displays intermediate results

in GUI. Refer to Chapter 10.2 for detail.

│ │ SrView.exe A simple Sora dump file viewer. See Chapter 10.3 for

detail.

│ │ IntFiltr.reg Interrupt-Affinity Filter registry setting

│ │ IntFiltr.sys Interrupt-Affinity Filter driver

│ │ IntFiltrCmd.exe Interrupt-Affinity Filter utility

│ ├─Config Configuration file used by sdscope-11b

│ ├─ProtocolRunInfo Configuration file used by sdscope-11b

│ ├─HWTest Test driver used by the diagnosis tool

│ └─PCIE Radio Control Board driver

├─build

├─doc Sora manual and hardware/driver installation guide

├─inc Software radio framework header files

├─lib Software radio framework library files

└─src Sora sample code

 ├─bb Baseband library sample

 │ ├─dot11a 802.11a source code

 │ ├─dot11b 802.11b source code

 │ ├─UMXDot11 UMX extension, a full featured user mode 802.11 a/b/g

decoder.

 │ └─demod11 Sample tools to modulate/demodulate 802.11a/b frames

 ├─driver Miniport driver sample

 │ ├─ll Link layer

 │ ├─mac Mac layer

 │ ├─phy Physical layer

 │ └─SDRMiniport

 │ ├─dot11config Miniport driver configuration tool

 │ └─sys5x NDIS5 miniport driver

 ├─UMXSample User mode extension sample

 ├─inc Header files used by the 802.11 a/b sample driver

 └─util Common utilities used by the 802.11 a/b sample driver

 21

 22

Chapter 3.

Sora Fundamentals

3.1 Architecture

The overall system architecture of Sora is illustrated in Figure 7. The RCB interconnects RF front-

ends to the PC. The RCB talks to the PC using the PCI-E interface, and with read/write digital

signal samples from/to PC memory using direct memory access (DMA). It connects to the RF

front-end boards with the Sora Fast Radio Link (SoraFRL). SoraFRL defines the necessary

protocol for the RCB to control the RF boards. Any Sora compatible RF boards should implement

SoraFRL. For more information on SoraFRL, please refer to the “Sora Fast Radio Link

Specification”.

Figure 7. Sora System Architecture.

Figure 8 shows the Sora software architecture. The RCB driver manages the RCB and RF front-

end hardware resources and provides APIs to the SDR miniport driver to send/receive digital

waveform samples. The SDR miniport driver usually exposes an Ethernet interface to the

operating system, so that all network applications can seamlessly use it for communication. In

Sora SDK, a sample SDR miniport driver, named SoftWiFi, is provided, which implements the

802.11a/b/g protocol. Alternatively, one can write user-mode SDR application programs that

Mem
RF

RF
RF

Sora

APP

Multi-core CPU

Software Radio Stack

High throughput

low latency PCIe bus

Digital Samples

@Multiple Gbps

RCB
A/D

D/A RF
Sora

APP

APP

APP

APP

APP

Commodity PC

 23

interact with RCB/RF hardware through Sora User-Mode Extension API (UMX API). Sora SDK

version 1.5 provides a set of highly optimized UMX API to facilitate high performance and low

latency DSP implementation in user-mode, including exclusive thread library, zero-copy sample

transport and integration with network stack. This new UMX framework allows programmers to

implement sophisticated user-mode SDR drivers, and greatly reduces the development efforts.

In Sora SDK version 1.5, we provide a sample UMX application that implements a full featured

802.11a/b/g receiver entirely in user-mode.

Figure 8. Sora Software Architecture.

Figure 9 shows the architecture of a typical Sora SDR miniport driver. It usually exposes an

Ethernet interface to the operating system based on the Windows NDIS framework. A SDR

miniport driver should implement the lower three layers, i.e. the link layer, MAC and the

physical layer. The link layer performs the frame conversion and encapsulation. For example, in

the sample SoftWiFi driver, the link layer converts the Ethernet frames to 802.11 frames and

back before and receiving. The MAC layer is basically a finite state machine (FSM) that handles

media access protocols. A set of FSM APIs are provided in Sora SDK to facilitate the MAC

programming. The Physical layer (PHY) contains all implementation of the baseband signal

Radio Control Board(RCB)

Sora SDR Miniport Driver

User Mode

Kernel Mode

Radio Control

Board Driver

PCIe Bus

Radio Manager
Tx/Rx Resource

Manager

Sora Core API

TCP/IP

Net App Net App

Sora User-mode

Application

Sora User Mode

Extension

Sora HWTest Driver

Sora Core API

TCP/

IP

Net

App

 24

processing. The basic routines that need to be implemented are modulation, demodulation and

channel monitoring (carrier sensing).

For ease of cross-reference, a global context, called SDR_CONTEXT, is used in the sample

SoftWiFi driver to pass data across different layers. This SDR_CONTEXT also contains pointers to

other useful data structures and is used as the sole parameter for many routines in the SoftWiFi

driver.

Figure 9. Typical Architecture of a Sora application Driver.

Radio Control Board(RCB)

MAC Layer

Physical Layer

(Base band

processing)

MAC FSM utility

Signal Process lib

Link Layer

downlink uplink

NDIS Wrapper

S
D

R
_
C

O
N

T
E

X
T Core Library

SDR Application Driver

TCP/IP

User Mode

Kernel Mode

Radio Control

Board Driver

PCIe Bus

Radio Manager
Tx/Rx Resource

Manager

Sora Core API

ethread lib

 25

3.2 Abstract Radio and Radio Object

An Abstract Radio (AR) is a software abstract of radio hardware. An abstract radio contains a Tx

channel, a Rx channel, and a set of control registers. A SDR application – either a SDR miniport

driver or a UMX-based user-mode program – is operating on abstract radio objects (ARO). The

RCB driver and hardware map every ARO to a real RF front-end. Figure 10 illustrates the

Abstract Radio architecture. If a SDR application sets a Control Register of an ARO, the command

is transferred to the RAB through the RCB driver and firmware. The RAB firmware is responsible

to translate the abstract command into the real operation sequence to the RF front-end chipset.

With this architecture, the same SDR application can ran on various RF front-end without

modification. Current RCB supports up to eight ARs. These ARs can map to different RF front-

ends, or they can be grouped to form a MIMO system.

Figure 10. Abstract Radio Architecture.

An ARO is represented as a SORA_RADIO structure. Figure 11 shows partial definition of the

structure. The full definition of SORA_RADIO can be found in the header file _radio_manager.h.

__ctrl_reg refers to the abstract control registers, _rx_queue manages the Rx channel, and

pTxResMgr manages the TX channel. Each AR is allocated a unique hardware ID as shown in

RadioID. To read from the Rx channel, a SDR driver can use a helper object named

SORA_RADIO_RX_STREAM. The RX_STREAM object hides the structure of RCB DMA buffer and

provides a simple stream of I/Q samples received from the RF front-end. Each ARO is allocated

single buffer for transmission, called TX sample buffer. Any modulated waveform samples are

placed in this buffer, from where they are downloaded into the RCB and sent to the RF front-

Tx Channel

Rx Channel

Abstract Control

Registers

SDR Application

Abstract Radio RF Adaptor

Abstract Control

Commands

RF RX Channel

Radio Specific

Control

Operations

RF TX Channel

Sora FRL

 26

end. The TX sample buffer is initialized at the beginning and is a shared resource. Therefore,

when the SDR driver uses multiple threads for modulation, the access to the TX sample buffer

from different threads should be properly coordinated by __TxBufLock.

The RCB hardware may also send PnP events to software. These PnP events may be passed to a

SDR driver as well. In particular, two PnP events should be monitored for a SDR driver. They are:

1) Power management notification. This event is defined as PnPEvent in a SORA_RADIO

object. The SDR driver is encouraged to monitor the event to handle unexpected

disconnection or power outage of the RF radio board.

2) Force release event. This event is actually generated by the RCB driver when it detects

an abnormal behavior of RCB, or if it is being unloaded. When receiving this event,

the SDR driver should release the resource immediately. The event is shown as

ForceReleaseEvent in the SORA_RADIO definition.

/*
 SORA_RADIO defines the basic abstract to a hardware radio.
 A Sora radio contains mainly three parts:
 1) A Control channel - control registers
 2) A Rx channel - Rx queues, further wrapped as rx_stream
 3) A Tx channel - Tx buffer, further with Tx resources.
 */
typedef struct __SORA_RADIO
{
 LIST_ENTRY RadiosList;

 // control registers
 __HW_REGISTER_FILE __ctrl_reg;

 // RX Channel
 __RX_QUEUE_MANAGER __rx_queue;

 // Reference to shared Tx Resource manager
 PTX_RM pTxResMgr;

 ULONG __radio_no; //radio index
 ULONG RadioID; //unique radio id

 __SORA_RADIO_STATUS __status; // radio status
 ULONG __uRxGain;
 ULONG __uTxGain;

 KSPIN_LOCK __HWOpLock;//DMA upload and TX lock
 LONG __Lock;

 KEVENT ForceReleaseEvent;
 KEVENT PnPEvent;

 /* Context - usually linked to a PHY bond on the radio */
 PVOID __pContextExt;

 27

 // RX_STREAM to access Rx queue DMA Buf
 SORA_RADIO_RX_STREAM __RxStream;

 ULONG __fCanWork;
 volatile BOOLEAN __fRxEnabled;

 // TX Channel - Tx Sample Buffer
 PTXSAMPLE __TxSampleBufVa;
 PHYSICAL_ADDRESS __TxSampleBufPa;
 ULONG __TxSampleBufSize;
 LONG __TxBufLock; // Lock to access the Tx sample buffer

 //FAST_MUTEX __ModSampleBufMutex;
} SORA_RADIO, *PSORA_RADIO, **PPSORA_RADIO, __SORA_RADIO, *__PSORA_RADIO;

Figure 11. Definition of the RADIO Object.

3.2.1 Radio Allocation and Release

The SDR driver should allocate abstract radios before accessing the radio resources, e.g., TX

channel, RX channel, or control registers. Abstract radios should also be released to the system

when no longer being used. Function SoraAllocateRadioFromDevice is used to allocate one or

more radios. Prepare a linked list to hold the returned SORA_RADIO objects before calling the

function. A name tag is provided by the caller to track the radio usage.

The SDR driver should call SoraReleaseRadios to release the allocated radio objects.

3.2.2 Radio Configuration and Start

After allocating a radio, the SDR driver should call SoraRadioInitialize to allocate TX and RX

resources for the radio object. After initialization, the SDR driver can call SoraRadioStart to

enable the abstract radio on the RCB. The function call also provides the Tx/Rx gain settings.

3.2.3 Radio example

Figure 12 shows a code piece that illustrates the allocation and initialization of a SORA_RADIO

object. You can find the full function in sdr_phy_main.c in the SDK.

HRESULT
SdrPhyInitialize(PPHY pPhy, PSDR_CONTEXT SDRContext, ULONG ulRadioNum)
{
 HRESULT hRes = S_OK;
 LIST_ENTRY* pRadiosHead = &pPhy->RadiosHead;
 …
 hRes = SoraAllocateRadioFromRCBDevice (
 pRadiosHead,
 ulRadioNum,
 NIC_DRIVER_NAME);
 If (FAILED (hRes))
 {
 DbgPrint("[Error]SoraAllocateRadioFromRCBDevice failed\n");

 28

 break;
 }
 // Successfully allocate radio resource..
 hRes = SoraRadioInitialize(
 RadioInPHY(pPhy, RADIO_RECV), // Get the radio in PHY list
 NULL, // reserved
 SAMPLE_BUFFER_SIZE, // buffer size for TX
 RX_BUFFER_SIZE);

 FAILED_BREAK(hRes);

 // Start radio

 hRes = SoraRadioStart(

 RadioInPHY(pPhy, RADIO_RECV),

 SORA_RADIO_DEFAULT_RX_GAIN,

 SORA_RADIO_DEFAULT_TX_GAIN,

 NULL);

 FAILED_BREAK(hRes);
 …
 return hRes;
}

Figure 12. Radio allocation and initialization.

3.3 Transfer and Transmission

Before sending out a waveform, a SDR driver should first download the waveform samples onto

the onboard memory of the RCB. Then, the SDR driver can issue another command to instruct

the RCB to emit the waveform through the RF front-end. The download operation is referred as

transfer, and we denote transmission (or simply TX) the behavior the send out waveform. The

benefits of this two-phase operation are two-folds. First, the RCB’s on-board memory naturally

absorbs the potential burstiness of the CPU processing and the PCIe-Bus communication,

thereby ensuring the correctness of the waveform transmission. Second, the RCB memory can

also be used to store pre-modulated signals, providing additional flexibility.

3.3.1 PACKET_BASE object

A SDR driver uses a PACKET_BASE object to allocate TX resources of an abstract radio object.

The PACKET_BASE object also contains a pointer to the original packet data. Figure 13 shows the

definition of the PACKET_BASE object, which can also be found in _packet_base.h.

 29

typedef struct __PACKET_BASE
{
 PMDL pMdl; // memory descriptors for original packet data
 PTX_DESC pTxDesc; // Refers to TX channel of an Abstract Radio
 LONG fStatus;
 ULONG PacketSize;
 ULONG Reserved1; //for customized attachment
 ULONG Reserved2; //for customized attachment
 ULONG Reserved3; //for customized attachment
 ULONG Reserved4; //for customized attachment
 PVOID pReserved;
} PACKET_BASE;

Figure 13. Definition of PACKET_BASE ojbect.

A PACKET_BASE object has a pointer to a Memory Descriptor List (MDL) that describes the data

in the original packet. MDL is a common data structure in the Windows kernel to describe a

memory buffer. For more information of the MDL, the reader may refer to WDK references.

The fStatus field tracks the packet’s current status. The SDR application driver should check this

status before conducting operations on it. The status can be one of following:

 PACKET_NOT_MOD: The modulated waveform of the packet has not been generated.

 PACKET_TF_FAIL: The Transfer operation failed.

 PACKET_CAN_TX: The Transfer operation succeeded. So the modulated waveform is not

in the RCB Waveform Cache and is ready for Transmission.

 PACKET_TX_PEND: The modulated waveform is being transmitted.

 PACKET_TX_DONE: The Transmission is done.

If a PACKET_BASE object is in the PACKET_TF_FAIL state, the SDR driver should not attempt to

transmit it.

3.3.2 Modulation

A SDR driver should call SoraPacketGetTxResource to bind a PACKET_BASE object to the TX

channel for a radio. SoraPacketGetTxResource will initialize the status to PACKET_NOT_MOD.

Then, the SDR driver can call SoraPacketGetTxSampleBuffer to obtain a sample buffer to hold

the waveform generated. The structure of this modulation sample buffer is shown in Figure 14.

It is basically an array of complex I/Q samples. Each I and Q component is 8-bit. The sample with

the smallest address is transmitted first by the RF front-end board.

 30

Figure 14. Structure of the TX sample buffer.

Once the SDR driver gets the modulation sample buffer, it should immediately generate

waveform samples from the packet data (modulation). The SDR application driver should call

SoraPacketSetSignalLength to specify the size of the buffer that is actually filled with the

waveform samples. The size MUST be a multiple of 128 bytes. Therefore, some padding may be

needed to ensure this.

3.3.3 Transfer and Transmission

A SDR driver calls SORA_HW_TX_TRANSFER to download the waveform samples from the Tx

sample buffer to the RCB’s memory. After the transfer operation, the SDR driver can call

SORA_HW_BEGIN_TX to instruct the RCB to send out the waveform. After the transmission, the

SDR application driver should call SoraPacketFreeTxResource to unbind the PACKET_BASE

object from the radio’s TX channel.

3.3.4 Example

Figure 15 shows a code excerpt for an SDR application driver to bind packets to the radio TX

channel and call PHY layer functions to modulate the packet data to waveform samples. The full

code can be found in sdr_mac_send.c. Figure 16 shows an excerpt where an SDR application

driver instructs the RCB to transmit a waveform already stored in the RCB’s memory. The full

code can be found in sdr_mac_tx.c.

VOID SdrMacSendThread (IN PVOID pVoid)
{
 NTSTATUS Status;
 HRESULT hRes;
 LARGE_INTEGER Delay;
 PDLCB pTCB = NULL;
 PSDR_CONTEXT pSdrContext =

 SORA_THREAD_CONTEXT_PTR(SDR_CONTEXT, pVoid);
 PMAC pMac = (PMAC)pSdrContext->Mac;
 PPHY pPhy = (PPHY)pSdrContext->Phy;
 PSEND_QUEUE_MANAGER
 pSendQueueManager = GET_SEND_QUEUE_MANAGER(pMac);
 PSORA_RADIO pRadio = NULL;

 // Thread start
 …
 Delay.QuadPart = -10 * 1000 * 10;

re0 im0 re1 im1 rei imi Rei+1 imi+1

 31

 do
 {
 …
 pRadio = RadioInPHY(pPhy, RADIO_SEND);
 do
 {
 // Try to dequeue a pending packet and do modulation
 SafeDequeue(pSendQueueManager, SendSrcWaitList, pTCB, DLCB);
 if (!pTCB)
 {
 break;
 }

 if (!DLCB_CONTAIN_VALID_PACKET(pTCB)) // invalid packet, pass through the pipeline
 {
 SafeEnqueue(pSendQueueManager, SendSymWaitList, pTCB);
 InterlockedIncrement(&pSendQueueManager->nSymPacket);
 InterlockedDecrement(&pSendQueueManager->nSrcPacket);
 continue;
 }

 // Allocate Tx Channel Resource for a packet
 if (IS_PACKET_NO_RES(&pTCB->PacketBase))
 {
 hRes = SoraPacketGetTxResource(pRadio, &pTCB->PacketBase);
 if (FAILED(hRes))
 {
 InterlockedIncrement(&pSendQueueManager->nSymPacket);
 InterlockedDecrement(&pSendQueueManager->nSrcPacket);
 SafeEnqueue(pSendQueueManager, SendSymWaitList, pTCB); // let it go
 DbgPrint("[Transfer][Error] insufficient TX resource \n");
 break;
 }
 }
 else
 {
 KeBugCheck(BUGCODE_ID_DRIVER); //src packet should not own TX resource.
 }

 // Call PHY Modulation Routine
 hRes = (*pPhy->FnPHY_Mod)(pPhy, &(pTCB->PacketBase));

 // Transfer operation
 hRes = SORA_HW_TX_TRANSFER(pRadio, &pTCB->PacketBase);
 SoraPacketAssert(&pTCB->PacketBase, pRadio); //for verification.

 if (FAILED(hRes))
 {
 SoraPacketPrint(&pTCB->PacketBase);
 SoraPacketFreeTxResource(pRadio, &pTCB->PacketBase);
 InterlockedIncrement(&pPhy->HwErrorNum);
 }

 SafeEnqueue(pSendQueueManager, SendSymWaitList, pTCB);
 InterlockedIncrement(&pSendQueueManager->nSymPacket);
 InterlockedDecrement(&pSendQueueManager->nSrcPacket);
 //both case: let the packet go.
 } while (TRUE);

 }while(!IS_SORA_THREAD_NEED_TERMINATE(pVoid));
 // Thread cleanup
 …
}

 32

Figure 15. Modulation and transfer.

VOID
SdrMacTx(IN PFSM_BASE StateMachine)
{
 HRESULT hRes = S_OK;
 PSDR_CONTEXT pSDRContext = SoraFSMGetContext(StateMachine);
 PMP_ADAPTER pAdapter = (PMP_ADAPTER)pSDRContext->Nic;
 PMAC pMac = (PMAC)pSDRContext->Mac;
 PPHY pPhy = (PPHY)pSDRContext->Phy;

PSEND_QUEUE_MANAGER
 pSendQueueManager = GET_SEND_QUEUE_MANAGER(pMac);

 PSORA_RADIO pRadio = RadioInPHY(pPhy, RADIO_SEND);
 PDLCB pTCB = NULL;

 do
 {
 SafeDequeue(pSendQueueManager, SendSymWaitList, pTCB, DLCB);
 if (!pTCB)
 {
 break;
 }

 if (pTCB->PacketBase.fStatus == PACKET_TF_FAIL) //The packet can't be TX out, so complete it.
 {
 DbgPrint("[TX][Error] I can't tx it out because transfer fail, make it TXDone to complete\n");
 // skip the packet
 …
 break;
 }

 pMac->fTxNeedACK = (pTCB->PacketType == PACKET_NEED_ACK);
 pTCB->RetryCount++;

 // Start transimission
 hRes = SORA_HW_BEGIN_TX(pRadio, &pTCB->PacketBase);
 if (FAILED(hRes))
 {
 DbgPrint("[TX][Error] TX hardware error , ret=%08x\n", hRes);
 SoraHwPrintDbgRegs(pRadio);
 InterlockedIncrement(&pPhy->HwErrorNum);
 }

 if (!IS_MAC_EXPECT_ACK(pMac) || pTCB->RetryCount > TX_RETRY_TIMEOUT)
 {
 pTCB->bSendOK = (pTCB->RetryCount <= TX_RETRY_TIMEOUT);

 // if retry is not so big, assume it is sent out successufully.
 SoraPacketFreeTxResource(pRadio, &pTCB->PacketBase);
 SoraPacketSetTXDone(&pTCB->PacketBase);

 InterlockedIncrement(&pSendQueueManager->nCompletePacket);
 InterlockedDecrement(&pSendQueueManager->nSymPacket);
 SafeEnqueue(pSendQueueManager, SendCompleteList, pTCB);
 //MarkModulatedSlotAsTxDone(pSendQueueManager); //dequeue the packet from send queue
 SDR_MAC_INDICATE_PACKET_SENT_COMPLETE(pMac); //indicate to complete NDIS_PACKET
 MAC_DISLIKE_ACK(pMac); // we don't need ACK any more.
 }
 else
 {
 SafeJumpQueue(pSendQueueManager, SendSymWaitList, pTCB);
 //wait for ack to retry or complete
 }

 33

 } while (FALSE);

 SoraFSMGotoState(StateMachine, Dot11_MAC_CS);

 return;

}

Figure 16. Waveform transmission and cleanup.

3.4 Reception

The RX channel of a radio is enabled by SORA_HW_ENABLE_RX. The SDR driver can read the RX

channel through an RX_STREAM object. The SDR driver can obtain a RX_STREAM object by

calling SoraRadioGetRxStream. The RX channel of a radio is organized as a stream of signal

blocks. Each signal block contains an array of 28 complex I/Q samples. The I or Q component are

both 16-bit long. Figure 17 shows the structure of a signal block. Function

SoraRadioReadRxStream loads a signal block into memory. It is blocking function that will not

return until a full signal block is delivered from the RCB (or timeout). The pbTouched flag is set

when the returned signal block is the last block in the RX channel, ie. the most recently received

signal block. The SDR driver can use __SoraRadioSetRxStreamPos to obtain the current position

of the RX channel.

I 0 Q 0

I 1 Q 1

RX_DESC (16 bytes)

I 27 Q 27

16 bits 16 bits

SignalBlock

RX_BLOCK

Figure 17. Structure of a signal block.

 34

3.4.1 Example

Figure 18 shows sample code to read from an RX_STREAM object. The full code can be found in

bbb_spd.c.

HRESULT BB11BSpd(PBB11B_SPD_CONTEXT pSpdContext, PSORA_RADIO_RX_STREAM
pRxStream)
{
 // ...
 FLAG touched;
 ULONG PeekBlockCount = 0;
 HRESULT hr = S_OK;
 SignalBlock block;
 do
 {
 // ...
 while (TRUE)
 {
 hr = SoraRadioReadRxStream(pRxStream, &touched, block);
 FAILED_BREAK(hr);

 // Estimate and update DC offset
 // ...
 PeekBlockCount++;

 // Measure energy
 // ...

 if (energyLevel != EL_NOISE)
 {
 if (pSpdContext->b_gainLevel == 0 && energyLevel == EL_HIGH)
 pSpdContext->b_gainLevelNext = 1;
 else if (pSpdContext->b_gainLevel == 1 && energyLevel == EL_LOW)
 pSpdContext->b_gainLevelNext = 0;

 pSpdContext->b_evalEnergy = BlockEnergySum[0];
 hr = BB11B_OK_POWER_DETECTED;
 break;
 }

 if (touched && PeekBlockCount > pSpdContext->b_minDescCount)
 {
 hr = BB11B_CHANNEL_CLEAN;
 break;
 }

 if (PeekBlockCount >= pSpdContext->b_maxDescCount)
 {
 hr = BB11B_E_PD_LAG;
 break;
 }
 }
 } while(FALSE);
 // ...
 return hr;

} Figure 18. Example code to read from RX_STREAM.

 35

 36

Chapter 4.

MAC Programming

Sora provides a utility library to program a Finite State Machine (FSM). An FSM is commonly

used in the MAC and other protocol implementations. For example, Figure 19 shows a simplified

MAC state-machine of 802.11 that contains three states: carrier sense, transmission (TX) and

reception (RX).

Figure 19. A simplified MAC state machine of 802.11.

4.1 State Machine declaration and initialization

The SDR driver declares an FSM through SORA_BEGIN_DECLARE_FSM_STATES,

SORA_END_DECLARE_FSM_STATES, and SORA_DECLARE_STATE. After that, the SDR driver

should further declare an FSM type using SORA_DECLARE_FSM_TYPE. An FSM instance can

then be declared for this FSM type. Each state of an FSM is associated with a state handler. At

initialization, the SDR driver should assign these handers to an FSM instance using

SORA_FSM_ADD_HANDLER.

In Sora, a state machine may usually run in an exclusive thread that provides real-time support.

The SDR driver uses SORA_FSM_CONFIG to assign a parameter to the FSM instance, which will

be passed to each state handler. This parameter is usually a pointer to SDR_CONTEXT. During

Carrier Sense

TxRx

Channel Free

Tx P
ending and

C
hannel Free

P
o
w

e
r

D
e
te

ct
e
d Tx D

one/

Failed

R
x
D
on

e/
Fai

le
d

 37

initialization, one should also specify the initial state on which the FSM starts using

SoraFSMSetInitialState.

Figure 20 shows an excerpt from sdr_mac.h to declare the simplified 802.11 MAC FSM. Figure

21 shows sample code from sdr_mac_main.c to initialize an FSM instance declared as a member

of the PMAC object.

// Declare MAC FSM states for 802.11
SORA_BEGIN_DECLARE_FSM_STATES(Dot11)
 SORA_DECLARE_STATE(Dot11_MAC_CS)
 SORA_DECLARE_STATE(Dot11_MAC_TX)
 SORA_DECLARE_STATE(Dot11_MAC_RX)
SORA_END_DECLARE_FSM_STATES(Dot11)

// Declare a FSM structure type for 802.11
SORA_DECLARE_FSM_TYPE(DOT11FSM, Dot11)

Figure 20. Example to declare an 802.11 MAC state machine.

VOID
SdrMacInitStateMachine(IN PMAC pMac, IN PSDR_CONTEXT SDRContext)
{
 // Associate the real state handlers to the FSM
 SORA_FSM_ADD_HANDLER(pMac->StateMachine, Dot11_MAC_CS, SdrMacCs);
 SORA_FSM_ADD_HANDLER(pMac->StateMachine, Dot11_MAC_TX, SdrMacTx);
 SORA_FSM_ADD_HANDLER(pMac->StateMachine, Dot11_MAC_RX, SdrMacRx);

 SORA_FSM_CONFIG (pMac->StateMachine, SDRContext, 0);

 // Set the initial start state
 SoraFSMSetInitialState ((PFSM_BASE)&pMac->StateMachine, Dot11_MAC_CS);

}

Figure 21. Initializing an FSM.

4.2 FSM Start, Stop, and State Transition

To start an FSM, the SDR driver should call SoraFSMStart, which starts the state machine in an

exclusive thread.

A call of SoraFSMStop from any state handler terminates the FSM. SoraFSMGotoState is called

before exiting the current state handler to transit to other states. The state handler of the new

state will be invoked by the FSM thread.

4.2.1 Example

 38

Figure 22 shows an example state handler from sdr_mac_cs.c for carrier sense. It enters

different states based on the result of the PHY sensing function.

VOID
SdrMacCs(IN PFSM_BASE StateMachine)
{
 HRESULT hRes = S_OK;

 //Get SDR context initialized by SORA_FSM_CONFIG;

PSDR_CONTEXT pSDRContext = (PSDR_CONTEXT)SoraFSMGetContext(StateMachine);

 // Get all references from SDR context
 PMP_ADAPTER pAdapter = (PMP_ADAPTER)pSDRContext->Nic; //initialized by SdrContextBind;
 PMAC pMac = (PMAC)pSDRContext->Mac; //initialized by SdrContextBind;
 PPHY pPhy = (PPHY)pSDRContext->Phy; //initialized by SdrContextBind;
 PSORA_RADIO pRadio = NULL;

 …

 pRadio = RadioInPHY(pPhy, RADIO_RECEIVE);
 if(!SoraRadioCheckRxState(pRadio))
 {
 DbgPrint("[MAC_CS] enable Rx for the first time\n");
 SORA_HW_ENABLE_RX(pRadio);

}

 if (pPhy->HwErrorNum > HW_ERROR_THRESHHOLD)
 {
 DbgPrint("[Error] Reset MAC send \n");
 InterlockedExchange(&pPhy->HwErrorNum, 0);
 //SdrMacResetSend(pMac);

}

 if(pMac->fDumpMode)
 {
 _Dump(pMac, pRadio);
 }

hRes = PhyDot11BCs(pPhy, RADIO_SEND);

 if (hRes == E_FETCH_SIGNAL_HW_TIMEOUT)
 {
 DbgPrint("[MAC_CS][Error] E_FETCH_SIGNAL_HW_TIMEOUT \n");
 }

 switch (hRes)
 {
 case BB11B_CHANNEL_CLEAN:
 if (IS_MAC_EXPECT_ACK(pMac))
 {
 hRes = __ExpectAck(pPhy);
 if (hRes != BB11B_OK_POWER_DETECTED)
 {
 DbgPrint("[MAC_CS][Error] Ack detect fail, we don't need ACK anymore \n");
 MAC_DISLIKE_ACK(pMac);
 }
 else
 {
 SoraFSMGotoState(StateMachine, Dot11_MAC_RX);
 return;
 }

 39

 }

 DbgPrint("[MAC_CS] channel clean, goto tx \n");
 SoraFSMGotoState(StateMachine, Dot11_MAC_TX);
 return;

 case BB11B_OK_POWER_DETECTED:
 SoraFSMGotoState(StateMachine, Dot11_MAC_RX);
 return;

 case E_FETCH_SIGNAL_HW_TIMEOUT: //Hardware error
 SoraFSMGotoState(StateMachine, Dot11_MAC_TX);
 DbgPrint("[Error] E_FETCH_SIGNAL_HW_TIMEOUT \n");
 //InterlockedIncrement(&pMac->pPhy->HwErrorNum);
 break;

 default:
 DbgPrint("[MAC_CS] CS return %x\n", hRes);
 break;
 }
}

Figure 22. An example state handler for Carrier Sense.

 40

Chapter 5.

Real-Time Support

5.1 Using Sora thread

Sora supports real-time behavior via exclusive threading. An exclusive thread (or ethread) is a

non-interruptible thread running on a multi-core system. In previous versions, an exclusive

thread is bound to a dedicated CPU core and the programmer should manually assign CPU cores.

In Sora SDK version 1.5, the core assignment is performed by the library that dynamically

allocates CPU cores to ethreads.

The SDR driver should allocate an ethread object by calling SoraThreadAlloc. Then, the SDR

driver can call SoraThreadStart to start the ethread. SoraThreadStart takes three parameters: a

valid ethread handle, a user-defined thread routine, and a user-defined parameter passed to the

thread routine. If the return value of the thread routine is FALSE, the ethread will be terminated;

otherwise, the routine will be called from the Sora core library after it re-computes the best core

allocation and reassigns each ethread to a proper core. Since the ethreads are scheduled in a

cooperative way, the ethread routine must return periodically (usually when critical tasks are

done). Note that the dynamic scheduling of ethread imposes minimal overhead.

To terminate an ethread, one should call SoraThreadStop. It should be note it is prohibitive to

call any Sora Thread API from the ethread routine; otherwise, a deadlock will occur. To exit from

the thread, a user-defined routine should return with a FALSE value.

Comments: For user mode applications, the corresponding thread APIs are SoraUThreadAlloc,

SoraUThreadStart, SoraUThreadStop and SoraUThreadFree.

Figure 23 shows code excerpts from sdr_phy_main.c to initialize and start a Sora thread that

performs Viterbi decoding.

HRESULT
SdrPhyInitialize(

IN PPHY pPhy,

 41

IN PSDR_CONTEXT SDRContext,
IN ULONG ulRadioNum)

{
 …
 if (pPhy->PHYMode == DOT_11_A) {
 hRes = NDIS_STATUS_FAILURE;
 pPhy->Thread = SoraThreadAlloc();
 if (pPhy->Thread)
 if (SoraThreadStart(pPhy->Thread, viterbi_proc, &pPhy->BBContextFor11A.RxContext))
 hRes = NDIS_STATUS_SUCCESS;

 if (hRes != NDIS_STATUS_SUCCESS)
 if (pPhy->Thread) {
 SoraThreadFree(pPhy->Thread);
 pPhy->Thread = NULL;
 }
 }
 …
}

BOOLEAN viterbi_proc(PVOID pVoid) {

 BB11ARxViterbiWorker(pVoid);

 return *((PBB11A_RX_CONTEXT)pVoid)->ri_pbWorkIndicator;
}

Figure 23. Using Sora thread.

Figure 24 shows the sample code of a Viterbi work routine from arx_bg1.c. The function calls

different Viterbi decoding modules based on the data rate. It starts by checking if there is work

to do. If not, the routine will immediately return. Otherwise, it will accept the work by clearing

the flag and perform the decoding task. After decoding, the routine returns to the state waiting

for a new task.

void BB11ARxViterbiWorker(PVOID pContext)
{
 PBB11A_RX_CONTEXT pRxContextA = (PBB11A_RX_CONTEXT)pContext;

 if (BB11A_VITERBIRUN_WAIT_EVENT(pRxContextA))
 {
 BB11A_VITERBIRUN_CLEAR_EVENT(pRxContextA);
 pRxContextA->bCRCCorrect = FALSE;

 switch (pRxContextA->bRate & 0x7)
 {
 case 0x3:
 VitDesCRC6(pRxContextA);
 break;
 case 0x7:
 VitDesCRC9(pRxContextA);
 break;

 case 0x2:
 VitDesCRC12(pRxContextA);
 break;
 case 0x6:

 42

 VitDesCRC18(pRxContextA);
 break;

 case 0x1:
 VitDesCRC24(pRxContextA);
 break;
 case 0x5:
 VitDesCRC36(pRxContextA);
 break;

 case 0x0:
 VitDesCRC48(pRxContextA);
 break;
 case 0x4:
 VitDesCRC54(pRxContextA);
 break;
 }

 _mm_mfence();
 BB11A_VITERBIDONE_SET_EVENT(pRxContextA);
 }
}

Figure 24. Example ethread routine.

5.2 Interrupt affinity

With ethread, the SDR application driver can prevent the task from being preempted by other

threads. But the task may still be interrupted by hardware. Although most hardware interrupt

handlers are very light-weight, some may still require a significant amount of time to finish (e.g.,

disk access) and thus cause a real-time task to miss deadlines. To address this issue, one could

set the interrupt affinity for all hardware devices to avoid sending interrupts to the reserved

core. On Windows 7, the interrupt affinity can be configured via the registry. But there is no

native system support on Windows XP. The Sora SDK includes a tool, called interrupt filter,

which can configure the interrupt affinity of hardware devices. The tool can be found

in %SDR_ROOT%\bin folder.

5.2.1 Installing and Configuring Interrupt Filter

To install the interrupt filter driver, first copy intfiltr.sys to Windows system driver folder (e.g.,

c:\windows\system32\drivers). Then, add the registry entries specified in intfiltr.reg, and, finally,

reboot the machine to enable the interrupt filter driver.

D:\SoraSDK\bin>IntFiltrCmd.exe
-a :

 43

Add interrupt affinity set filter driver

-r :
Remove interrupt affinity set filter driver

-m affinity mask :
Specify the affinity mask

Figure 25. Help page of intfiltrcmd.exe.

You can configure the interrupt affinity using intFiltrCmd.exe. Type intfiltrcmd, and you can see

the help page shown in Figure 25. The default interrupt affinity is 0xFFFFFFFF, meaning all cores

can be interrupted. You can turn off the bits corresponding to the reserved cores and specify the

new affinity using command

Intfiltrcmd –a –m <core affinity that allows to be interrupted>

To remove the affinity (or reset to default), run

Intfiltrcmd –r

 44

Chapter 6.

Signal Cache

One key design choice for the Sora system is to provide a large on-board memory on the RCB.

This on-board memory can serve as a cache for pre-generated signals. The SDR driver can call

SoraInitSignalCache to initialize a SIGNAL_CACHE structure. After initialization, a portion of the

RCB memory is allocated to the signal cache and the SDR driver can store signals in it. The cache

is organized into a number of equal size slots.

SoraInsertSignal adds a signal to a cache entry that is indicated by an 8-byte hash key. The signal

can be later retrieved using this hash key by calling SoraGetSignal. If the signal exists in the

cache, SoraGetSignal returns a TX_DESC of the signal, which can be passed to

SORA_HW_FAST_TX to send out the stored signal.

The SDR driver must clean up the cache before it is unloaded or the cache is no longer used.

SoraCleanSignalCache will release all resources allocated.

6.1 Example

In the Sora 802.11 sample driver, a signal cache is used to store ACK frames to corresponding

senders. It defines an ACK_CACHE_MAN structure that is inherited from the SIGNAL_CACHE.

Figure 26 shows the initialization function of the ACK cache from sdr_phy_ack_cache.c. The

function tries to allocate a SIGNAL_CACHE from the RCB onboard memory.

HRESULT SdrPhyInitAckCache(
 OUT PACK_CACHE_MAN pAckCacheMan,
 IN PDEVICE_OBJECT pDeviceObj,
 IN PPHY pOwnerPhy,
 IN PSORA_RADIO pRadio,
 IN ULONG MaxAckSize,
 IN ULONG MaxAckNum
)
{
 HRESULT hr;

 PHYSICAL_ADDRESS PhysicalAddress = {0, 0};
 PHYSICAL_ADDRESS PhysicalAddressLow = {0, 0};
 PHYSICAL_ADDRESS PhysicalAddressHigh = {0x80000000, 0};

 45

 NdisZeroMemory(pAckCacheMan, sizeof (ACK_CACHE_MAN)); //constructor
 NdisInitializeEvent(&pAckCacheMan->RemoveEvent);
 NdisAllocateSpinLock(&pAckCacheMan->ReqQueueLock);
 pAckCacheMan->pOwnerPhy = pOwnerPhy;
 do {
 hr = SoraInitSignalCache (&pAckCacheMan->AckCache,

 pRadio,
 MaxAckSize,
 MaxAckNum);

 FAILED_BREAK(hr);

 pAckCacheMan->pAckModulateBuffer
 = MmAllocateContiguousMemorySpecifyCache(
 MaxAckSize ,
 PhysicalAddressLow,
 PhysicalAddressHigh,
 PhysicalAddress,
 MmNonCached
);

 if (pAckCacheMan->pAckModulateBuffer == NULL)
 {
 hr = E_NOT_ENOUGH_RESOURCE;
 break;
 }

 pAckCacheMan->AckModulateBufferPA =
 MmGetPhysicalAddress((PVOID)pAckCacheMan->pAckModulateBuffer);

 pAckCacheMan->AckModulateBufferSize = MaxAckSize;

…

 }while(FALSE);

 MP_INC_REF(pAckCacheMan);

 if (FAILED(hr))
 {
 SdrPhyCleanupAckCache(pAckCacheMan);
 }

 return hr;
}

Figure 26. ACK_CACHE_MAN initialization.

When MAC detects that a required ACK frame is not in the cache, it will queue a request, wake

up a worker thread that does the modulation, and insert the generated waveform in the ACK

Cache. The key to identify the frame is the MAC address of the destination. Figure 27 shows the

sample code from sdr_phy_ack_cache.c.

VOID AckCacheMakeThread(
 IN PDEVICE_OBJECT DeviceObject,
 IN PVOID Context)
{

 PACK_CACHE_MAN pAckCacheMan = (PACK_CACHE_MAN)Context;

 46

 MAC_ADDRESS MacAddr;
 PHY_FRAME_KEY Key;
 ULONG Length = 0;
 HRESULT hr;

 UNREFERENCED_PARAMETER(DeviceObject);

 MP_INC_REF(pAckCacheMan);
 do
 {
 int i;
 __Dequeue(pAckCacheMan, &MacAddr);
 Key.QuadKey.u.HighPart = 0;
 Key.QuadKey.u.LowPart = 0;
 for (i = 0; i < MAC_ADDRESS_LENGTH; i++)
 {
 Key.KeyBytes[i] = MacAddr.Address[i];
 }
 Length = SdrPhyModulateACK(
 MacAddr,
 pAckCacheMan->pAckModulateBuffer);

 hr = SoraInsertSignal (
 &pAckCacheMan->PhyAckCache,
 pAckCacheMan->pAckModulateBuffer,
 &pAckCacheMan->AckModulateBufferPA,
 Length,
 Key);
 if (hr == E_TX_TRANSFER_FAIL)
 {
 DbgPrint("[TEMP1] Ack insert cache failed, return 0x%08x\n", hr);
 InterlockedIncrement(&pAckCacheMan->pOwnerPhy->HwErrorNum);
 }
 else
 {
 DbgPrint("[TEMP1] Ack insert cache succ, return 0x%08x\n", hr);
 }
 }while(InterlockedDecrement(&pAckCacheMan->PendingReqNum) != 0);

 MP_DEC_REF(pAckCacheMan);
 return;
}

Figure 27. Modulate an ACK and insert the waveform in the signal cache.

 47

 48

Chapter 7.

User-Mode Extension

Since version 1.1, Sora provides a new programming model, called User-Mode eXtension (UMX),

which allows user-mode applications to access the radio resources. With UMX APIs, developers

can write baseband processing in user-mode, and therefore the programming and debugging

efforts are greatly reduced. Sora SDK version 1.5 further enhances UMX APIs.

7.1 UMX Initialization and Configuration

UMX is based on the HWTest driver (see also Chapter 10.), as shown in Figure 28.

Figure 28. Architecture of Sora UMX.

The UMX application initializes UMX library with SoraUInitUserExtension. The function needs

the device name of the HWTest driver, which is “\\.\HWTest”. HWTest will allocate an abstract

radio from the RCB, and the UMX application can configure the radio parameters using the

corresponding APIs. After the radio is properly configured, the UMX application can start the

radio by calling SoraURadioStart. Before exiting, the SDR application should call

SoraUCleanUserExtension to clean up the resource that has been allocated.

RCB

UMX Application

Abstract Radio

HWTest

RCB Driver

UMX API

 49

Figure 29 shows the sample code from umx_sample.cpp to initialize and configure UMX.

void RadioConfig()
{
 SoraURadioStart(TARGET_RADIO);

 SoraURadioSetRxPA (TARGET_RADIO, SORA_RADIO_DEFAULT_RX_PA);
 SoraURadioSetRxGain (TARGET_RADIO, SORA_RADIO_DEFAULT_RX_GAIN);
 SoraURadioSetTxGain (TARGET_RADIO, SORA_RADIO_DEFAULT_TX_GAIN);
 SoraURadioSetCentralFreq (TARGET_RADIO, 2422 * 1000);//central frequency: 2422MHz
 SoraURadioSetFreqOffset (TARGET_RADIO, -5 * 1000 * 1000); //frequency offset: -5MHz
 SoraURadioSetSampleRate (TARGET_RADIO, 40); //sample rate: 40MHz
}

int __cdecl main(int argc, char *argv[])
{
 BOOLEAN isTx = FALSE;

 // Initialize Sora user mode extension
 BOOLEAN succ = SoraUInitUserExtension("\\\\.\\HWTest");
 if (!succ)
 {
 printf("Error: fail to find a Sora UMX capable device!\n");
 return -1;
 }

 RadioConfig();

…

 SoraUCleanUserExtension();

 return 0;
}

Figure 29. Sample code to initialize and configure UMX.

7.2 Reception

To access the RX channel of a radio object, the UMX application should first call

SoraURadioMapRxSampleBuf to obtain a pointer to the receiving buffer as well as the buffer

size. Then, the UMX application can get a RX_STREAM from the receiving buffer using

SoraURadioAllocRxStream, from which it can read I/Q samples. To read a signal block, the UMX

application needs to call SoraRadioReadRxStream. Before exiting, the UMX application should

call SoraURadioReleaseRxStream to release a RX_STREAM and SoraURadioUnmapRxSampleBuf

to release the memory mapped to the RX buffer of a radio.

Figure 30 shows an example to receive I/Q samples using UMX, from umx_sample.cpp.

 50

void RxRoutine ()
{
 PVOID pRxBuf = NULL;
 ULONG nRxBufSize = 0;
 HRESULT hr;
 …
 SORA_RADIO_RX_STREAM SampleStream;

 //
 // Map Rx Buffer
 //

hr = SoraURadioMapRxSampleBuf (
 TARGET_RADIO, // radio id

 & pRxBuf, // mapped buffer pointer
 & nRxBufSize // size of mapped buffer
);

 if (FAILED (hr)) {
 printf ("Error: Fail to map Rx buffer!\n");
 return;
 }

 printf ("Mapped Rx buffer at %08x size %d\n", pRxBuf, nRxBufSize);

 // Generate a sample stream from mapped Rx buffer
 SoraURadioAllocRxStream(&SampleStream,
 TARGET_RADIO,
 (PUCHAR)pRxBuf,
 nRxBufSize);

 // start reading the sample stream and compute the energy
 FLAG fReachEnd;

 int index = 0;
 SignalBlock block;
 …
 for (;;)
 {

 hr = SoraRadioReadRxStream(

 & SampleStream, // current scan point
 & fReachEnd, // indicate if end of stream reached (you must wait for hardware)
 block);

 if (FAILED(hr))
 {
 printf("stream ended, hr=%08x\n", hr);
 break;
 }

 QueryPerformanceCounter(&End);
 if (End.QuadPart - Start.QuadPart > Freq.QuadPart / 2)
 {
 Start = End;
 // almost 1s
 // compute the energy
 vcs* pSamples = &block[0];

 // single block contains 28 samples or 7 vector cs
 vi sum;
 set_zero (sum);

 // this is an approximated way to calc energy
 for (int i=0; i<7; i++) {

 51

 vi re, im;
 vcs s = pSamples[i];
 s = shift_right (s, 3);

 conj_mul (re, im, s, s); // (a+bj) * (a-bj)
 sum = add (sum, re);
 }

 sum = reduce_add (sum); // get a sum of the all element on the vector

 int energy = sum[0];
 printf(" \r"); //clean the line.
 printf ("%d --> Energy %10d \r", index++, energy / 1000);
 }

}

SoraURadioReleaseRxStream(&SampleStream, TARGET_RADIO);

 if (pRxBuf) {
 hr = SoraURadioUnmapRxSampleBuf (TARGET_RADIO, pRxBuf);
 }
 printf("Unmap hr:%08x\n", hr);
}

 Figure 30. Sample routine for receiving using UMX.

7.3 Transmission

To transmit waveform using UMX, the UMX application should obtain the Tx sample buffer of

the radio to store the modulated samples. To do so, it calls SoraURadioMapTxSampleBuf and fill

the buffer with I/Q samples. Then, the UMX application should call SoraURadioTransfer to bind

TX resources for the modulated signal and transfer the waveform to the RCB. A call to

SoraURadioTx can transmit the stored signal, possibly multiple times, and SoraURadioTxFree

can unbind all TX resources if the signal is no longer needed.

Figure 31 shows the sample routine for transmitting using UMX, from umx_sample.cpp. After

mapping the modulation buffer, it calls a user-defined function PrepareSamples to fill the buffer

with I/Q samples, which in this implementation is simply load from a sample file.

void TxRoutine (char* fname)
{
 // try to load the samples
 HRESULT hr;
 PVOID SampleBuffer = NULL;
 ULONG SampleBufferSize = 0;
 ULONG TxID = 0;

 do
 {
 hr = SoraURadioMapTxSampleBuf (
 TARGET_RADIO, //#0 radio, always 0 currently

 52

 &SampleBuffer,
 &SampleBufferSize);
 printf("map Tx Sample buffer ret: %08x\n", hr);
 FAILED_BREAK(hr);

 printf("Tx Sample buffer: %08x\n", SampleBuffer);
 printf("Tx Sample buffer size: %08x\n", SampleBufferSize);

 ULONG TxID;
 ULONG SigLength = PrepareSamples(fname, (char*)SampleBuffer, SampleBufferSize);
 if (SigLength == 0)
 {
 printf("file access violation\n");
 break;
 }
 //
 // First Allocate Tx Resource
 // The size should be a multiple of 128
 //
 ALIGN_WITH_RCB_BUFFER_PADDING_ZERO(SampleBuffer, SigLength);
 hr = SoraURadioTransfer (TARGET_RADIO, SigLength, &TxID);

 printf("paralle tx resource allocated, hr=%08x, id=%d, length=%d\n", hr, TxID, SigLength);
 if (SUCCEEDED(hr))
 {
 //
 // Tx to the radio
 //
 hr = SoraURadioTx(TARGET_RADIO, TxID);

 printf("tx return %08x\n", hr);

 hr = SoraURadioTxFree (TARGET_RADIO, TxID);
 printf("tx resource release return %08x\n", hr);
 }

 FAILED_BREAK(hr);

} while (FALSE);

 if (SampleBuffer)
 {
 hr = SoraURadioUnmapTxSampleBuf (TARGET_RADIO, (PVOID)SampleBuffer);
 printf("unmap Tx sample buffer ret: %08x\n", hr);
 }
}

Figure 31. A sample routine to send with UMX.

7.4 Sample: UMXDot11

In Sora SDK ver 1.5, we include a sample 802.11 decoder based on UMX, called umxdot11.

Umxdot11 has a full featured 802.11a/b/g decoder. It is also able to modulate a frame and send

it through UMX. You can find the source code at $SORA_ROOT$\src\bb\UMXDot11. UMXDot11

relies on the SoftWiFi modulation/demodulation library. UMXDot11 is configured through a file

 53

named umxdot11.ini. Both “.exe” and “.ini” files should be under the same folder. Figure 32

shows a sample ini file. The file defines the modulation method (802.11a OFDM or 802.11b

DSSS), the data rate, and a frame length. It also specifies the sampling rate of your RAB.

Command “umxdot11 rx” will launch umxdot11 in the receiving mode. Based on the

configuration, the umxdot11 searches OFDM or DSSS signals. However, it tries to demodulate

and decode frame with any valid rate.

Command “umxdot11 tx” will put umxdot11 in sending mode. It will continuously send a

random generated frame with the modulation method and the size specified in the

configuration file.

Note that you should use command “dut start” to enable the HwTest driver as well as the

UMX library.

;; Protocol: 802.11a / 802.11b
;;
;; Configuration for 802.11b / 802.11b.brick
;; Data Rate: 1000/2000/5500/11000
;;
;; Configuration for 802.11a
;; Data Rate: 6000/9000/12000/18000/24000/36000/48000/54000
;;
;; Sample Rate: 40 | 44
;;

[Modulation]
Protocol = 802.11a
DataRate = 6000
PayloadLength = 1000

[Hardware]
SampleRate = 44

Figure 32. A sample umxdot11.ini.

 54

Chapter 8.

Vector1 Library

Vector1 is a new template library for SIMD programming since Sora SDK 1.1. Vector1 library

provides new vector data types and vector operations to accelerate PHY signal processing.

Vector1 provides a general vector abstraction that is rather independent from the real processor

architecture. Therefore, it improves the portability of algorithms implemented using SIMD

instructions. When porting to a new SIMD processor, only a new implementation of Vector1

library is needed, while the algorithm implementations can remain unchanged (or with only

minor modification). Currently, Vector1 is implemented based on C++ SSE3 intrinsic functions,

which are supported in most modern C++ compiler. The implementation of Vector1 can be

found in the header file vector128.h.

8.1 Data type

Vector1 defines vector data type which contains an array of elements. An element can be of

various types, from integer, float, to complex values. The element type is typedef-ed as

elem_type in the vector type, for example vb::elem_type is defined as “Signed Byte”. Table 4

summarizes the vector types supported in the Vector1 library. It also summarizes the size of

each element and the number of elements in one vector type. For example, a vb variable

contains a vector of sixteen 8-bit long integers (a byte) and a vub presents a vector contains

sixteen unsigned bytes. Note that a vector type should be 16-byte aligned.

Vector Type Element Type Element Size No. of Elements

vb/vub Signed /Unsigned Byte 8b 16

vs/vus Signed /Unsigned Short 16b 8

vi/vui Signed /Unsigned Integer 32b 4

vq/vuq Signed/Unsigned Quad Word 64b 2

vf Float 32b 4

vcb/vcub Complex Signed / Unsigned Byte 16b 8

vcs/vcus Complex Signed / Unsigned Short 32b 4

vci/vcui Complex Signed / Unsigned Integer 64b 2

vcq/vcuq Complex Signed / Unsigned Quad Word 128b 1

 55

vcf Complex Float 64b 2

Table 4. Vector1 Data Types.

8.2 Basic Operations

The Vector1 library defines many operations on the vector types. The most common operations

are arithmetic operations on vector types, including abs, abs0, add, conj, conj0, conj_mul,

conj_mul_shift, conjre, mul_high, mul_j, mul_low, mul_shift, pairwise_muladd, reduce4_add,

reduce4_saturated_add, reduce_add, reduce_saturated_add, saturated_add, saturated_pack,

saturated_sub, and sign. For example, you can perform an “add” operation on two variables of

the same vector type. Each element in the resulting vector is the sum of the corresponding

elements from two vectors. Figure 33 shows sample code to remove the DC component from

incoming samples using Vector1.

Void RemoveDC (SignalBlock & block, vcs &dc) {
For (int i=0; i<7; i++) {
 block[i] = sub(block[i], dc);
}

}

Figure 33 Removing the DC component with Vector1.

There are also logic operations, including and, andnot, or, comparison operations, including

hmax, hmin, is_great, is_less, and smax, shift operations, like shift_left, shift_right, and

element data manipulation, including comprise, extract, flip, interleave_high, interleave_low,

pack, permutate, permutate_high, permutate_low.

One can also use set_all, set_all_bits, set_zero or assignment operator to initialize a vector.

8.3 Vector1 References

The following sections explain each operation defined in current Vector1 Library. For the sake of

simplicity, we use the following format:

 In the Vector type line, we define the list of vector types. We use T to refer any vector

type in the list.

 56

 In the prototype line, we define the prototype of the operation. The symbol T may refer

to any vector type defined in the Vector type line.

For example, we define abs operations as follows:

 Vector type: T = vb/s/i/q

Prototype: T abs (const T & a);

This means abs operation can be applied to a vb, vs, vi, or vq type. The prototype will take a

constant reference to a variable of any of above vector type, and return a same vector type as

the parameter.

8.3.1 abs

Vector type: T = vb/s/i/q

Prototype: T abs (const T & a);

Description: approximately compute the element-wise absolute value of a vector, based on “xor”

operation.

8.3.2 abs0

Vector type: T = vb/s/i/q

Prototype: T abs0 (const T & a);

Description: compute the actual element-wise absolute value of a vector.

8.3.3 add

Vector type: T = vb/s/i/q/f/ub/us/ui/uq/cb/cs/ci/cq/cf/cub/cus/cui/cuq

Prototype: T add(const T & a, const T & b);

Description: compute the sum of two vectors

8.3.4 and

Vector type: T = vb/s/i/f/ub/us/ui/cb/cs/ci/cf/cub/cus/cui

Prototype: T and(const T & a, const T & b);

 57

Description: compute the logic bit-wise and of two vectors

8.3.5 andnot

Vector type: T = vb/s/i/f/ub/us/ui/cb/cs/ci/cf/cub/cus/cui

Prototype: T andnot(const T & a, const T & b);

Description: compute the logic bit-wise and of the logic not of vector a and vector b. andnot

(a,b) = (not(a) and b).

8.3.6 average

Vector type: T = vub/us/cub/cus

Prototype: T average(const T & a, const T &b);

Description: Element-wise average of two operand vectors.

8.3.7 comprise

Prototype: void comprise(vci & r1, vci& r2, const vi& re, const vi& im);

Description: Make two complex vectors from two real number vectors. One real number vector

defines the real part and the other defines the imaginary part. The resulted complex vector r1

contains the first two complex numbers, and r2 gets the second two complex numbers.

8.3.8 conj

Prototype: vcs conj(const vcs & a);

Description: compute an approximate conjugate of each complex number in a vector, using the

“xor” operator for sign reversion. It is not accurate but has better performance.

8.3.9 conj0

Prototype: vcs conj0(const vcs & a);

Description: Compute the accurate conjugate of each complex number in a vector.

8.3.10 conj_mul

Prototype: void conj_mul(vi& re, vi& im, const vcs& a, const vcs& b);

 58

Description: Multiply the first source vector by the conjugate of the second source vector. re

gets all real parts of the product, and im gets all imaginary parts.

8.3.11 conj_mul_shift

Prototype: vcs conj_mul_shift(const vcs& a, const vcs& b, int nbits_right);

Description: Multiply the first operand by the conjugate of the second source, right shift the

results by nbits_right bits, and keep the low 16-bit of the results.

8.3.12 conjre

Prototype: vcs conjre(const vcs& a);

Description: Invert the sign of the real part of each complex numbers.

8.3.13 extract

Vector type: T = vb/s/i/q/ub/us/ui/uq

Prototype: typename T::elem_type extract(const T& a);

Description: Extract element from a vector type, similar to the index operator. The index is 0-

based and starts from the lowest address.

8.3.14 Flip

Vector type: T = vcs/vcus

Prototype: T flip(const T& a);

Description: Swap the real and imaginary parts of each complex number

8.3.15 hmax

Vector type: T = vb/s/ub/us

Prototype: T hmax(const T& a);

Description: Copy the largest element in the source vector to all elements of a vector128 type

8.3.16 hmin

Vector type: T = vb/s/ub/us

 59

Prototype: T hmin(const T& a);

Description: Copy the smallest element in the source vector to all elements of a vector128 type

8.3.17 interleave_high

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cub/cus/cui

Prototype: T interleave_high(const T& a, const T& b);

Description: Interleave the elements in the higher half of the 2 source vectors to a resulting

vector. The first source operand will be interleaved to the even indices, and the second source

to the odd indices.

8.3.18 interleave_low

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cub/cus/cui

Prototype: T interleave_low(const T& a, const T& b);

Description: Interleave the elements in the lower half of the 2 source vectors to a resulting

vector. The first source operand will be interleaved to the even indices, and the second source

to the odd indices.

8.3.19 is_great

Vector type: T = vb/s/i/f

Prototype: T is_great(const T& a, const T& b);

Description: Element-wise greater than (>) test for two vectors. The result is a vector of the

same type, with all-1 element for true test and all-0 for false test.

8.3.20 is_less

Vector type: T = vb/s/i/f

Prototype: T is_less(const T& a, const T& b);

Description: Element-wise less than (<) test for two vectors. The result is a vector of the same

type, with all-1 element for true test and all-0 for false test.

 60

8.3.21 mul_high

Prototype: vs mul_high(const vs& a, const vs& b);

Description: Element-wise multiplication, keeping only the higher half of the product.

8.3.22 mul_j

Prototype: vcs mul_j(const vcs& a);

Description: Multiply by the imaginary unit

8.3.23 mul_low

Prototype: vs mul_low(const vs& a, const vs& b);

Description: Element-wise multiplication, keeping only the lower half of the product

8.3.24 mul_shift

Prototype: vcs mul_shift(const vcs& a, const vcs& b, int nbits_right);

Description: Multiply and keep the low part product after right-shifting, i.e., return a * b >>

nbits_right

8.3.25 or

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cq/cub/cus/cui/cuq

Prototype: T or(const T& a, const T& b);

Description: Bitwise OR

8.3.26 pack

Prototype: vs pack(const vi& a, const vi& b);

Description: Pack elements in the two operand vectors into returned vector, keeping only the

low 16-bit for each element.

8.3.27 pairwise_muladd

Prototype: vi pairwise_muladd(const vs& a, const vs& b);

Description: Add the element-wise multiplication product pair-wise. i.e.,

 61

 result[0] := (a[0] * b[0]) + (a[1] * b[1])

 result [1] := (a[2] * b[2]) + (a[3] * b[3])

 result [2] := (a[4] * b[4]) + (a[5] * b[5])

 result [3] := (a[6] * b[6]) + (a[7] * b[7])

8.3.28 permutate

Vector type: T = vcs/i/ui

Prototype: template<int a0, int a1, int a2, int a3> T permutate(const T& a);

template<int n> T permutate(const T& a);

Description: Permute four elements in a vector.

Template parameter n: each 2-bit field (from LSB) selects the content of one element location

(from low address) in the destination operand. i.e.,

r[0] := a[n(1:0)]

r[1] := a[n(3:2)]

r[2] := a[n(5:4)]

r[3] := a[n(7:6)]

Template parameter a0 ~ a3: selects the contents of one element location in the destination

operand. ie.

r[0] := a[a0]

r[1] := a[a1]

r[2] := a[a2]

r[3] := a[a3]

8.3.29 permutate_high

 62

Vector type: T = vs/cs/us/ucs

Prototype: template<int a0, int a1, int a2, int a3> T permutate_high(const T& a);

template<int n> T permutate_high(const T& a);

Description: Permute 4 elements in the higher half vector.

The definitions of the template parameters are similar to permutate_low.

8.3.30 permutate_low

Vector type: T = vs/cs/us/ucs

Prototype: template<int a0, int a1, int a2, int a3> T permutate_low(const T& a);

template<int n> T permutate_low(const T& a);

Description: Permutate 4 elements in the lower half vector.

The definitions of template parameters are similar to permutate_low.

8.3.31 reduce4_add

Vector type: T = vcs/i

Prototype: T reduce4_add(const T& a0, const T& a1, const T& a2, const T& a3);

Description: Take for vector operands and perform horizontal addition to each vector. The

return vector contains the result for each operand vector.

Input: {A00, A01, A02, A03}, {A10, A11, A12, A13}, {A20, A21, A22, A23}, {A30, A31, A32, A33}

Output: {R0, R1, R2, R3},

R0 = A00+A01+ A02+ A03

R1= A10+A11+A12+A13

R2= A20+A21+A22+A23

R3= A30+A31+A32+A33

8.3.32 reduce4_saturated_add

 63

Prototype: vcs reduce4_saturated_add(const vcs& a0, const vcs& a1, const vcs& a2, const vcs&

a3);

Description: Take for vector operands and perform saturated horizontal addition to each vector.

The return vector contains the result for each operand vector.

Input: {A00, A01, A02, A03}, {A10, A11, A12, A13}, {A20, A21, A22, A23}, {A30, A31, A32, A33}

Output: {R0, R1, R2, R3},

R0 =saturated_add (A00, A01, A02, A03)

R1= saturated_add (A10, A11, A12, A13)

R2= saturated_add (A20, A21, A22, A23)

R3= saturated_add(A30, A31, A32, A33)

8.3.33 reduce_add

Vector type: T = vcs/i/ui

Prototype: T reduce_add(const T& a);

Description: Add all elements of the operand vector (horizontal addition). Every element of the

return vector contains the same result.

8.3.34 reduce_saturated_add

Prototype: T reduce_saturated_add(const vcs& a);

Description: Saturated add all elements of the operand vector (horizontal addition). Every

element of the return vector contains the same result.

8.3.35 saturated_add

Vector type: T = vb/s/ub/us/cb/cs/cub/cus

Prototype: T saturated_add(const T& a, const T& b);

Description: Element-wise saturated add

8.3.36 saturated_pack

Prototype: vb saturated_pack(const vs& a, const vs& b);

 64

Description: Saturated packs the 2 source vectors into one. The elements in the resulting vector

have half the length of the source elements.

8.3.37 saturated_sub

Vector type: T = vb/s/ub/us/cb/cs/cub/cus

Prototype: T saturated_sub(const T& a, const T& b);

Description: Element-wise saturated subtract

8.3.38 set_all

Vector type: T = vb/s/i/cs/q/f

Prototype: void set_all(T& x, typename T::elem_type a);

Description: Assign the same value to all elements in a vector

8.3.39 set_all_bits

Vector type: T = vb/s/i/q/f/ub/us/ui/uq/cb/cs/ci/cq/cf/cub/cus/cui/cuq

Prototype: void set_all_bits(T& a);

Description: Set all bits in a vector

8.3.40 set_zero

Vector type: T = vb/s/i/q/f/ub/us/ui/uq/cb/cs/ci/cq/cf/cub/cus/cui/cuq

Prototype: void set_zero(T& a);

Description: Clear all bits in a vector

8.3.41 shift_left

Vector type: T = vs/i/q/cs/ci/cq/us/ui/uq/cus/cui/cuq

Prototype: T shift_left(const T& a, int nbits);

Description: Element-wise arithmetic left shift

8.3.42 shift_right

 65

Vector type: T = vs/i/cs/ci/us/ui/cus/cui/ub

Prototype: T shift_right(const T& a, int nbits);

Description: Element-wise arithmetic right shift

8.3.43 sign

Vector type: T = vb/s/i/q/cs

Prototype: T sign(const T& a, const T& b);

Description: Element-wise polarization on the first operand based on the second operand, ie.

r[n] := (b[n] < 0) ? -a[n] : ((b[n] == 0) ? 0 : a[n])

8.3.44 smax

Vector type: T = vs/cs/ub/cub/b/cb/us/cus

Prototype: T smax(const T& a, const T& b);

Description: Compute element-wise maximum

8.3.45 smin

Vector type: T = vs/cs/ub/cub/b/cb/us/cus

Prototype: T smin(const T& a, const T& b);

Description: Compute element-wise minimum

8.3.46 store

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cq/cub/cus/cui/cuq

Prototype: void store(void *p, const T& a);

Description: Store 128-bit vector to the address p, which is not necessarily 16-byte aligned

8.3.47 store_nt

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cq/cub/cus/cui/cuq

Prototype: void store_nt(T *p, const T& a);

 66

Description: Store 128-bit vector to the address p without polluting the caches

8.3.48 sub

Vector type: T = vb/s/i/q/f/ub/us/ui/uq/cb/cs/ci/cq/cf/cub/cus/cui/cuq

Prototype: T sub(const T & a, const T & b);

Description: Element-wise Subtract

8.3.49 unpack

Vector type: T = vb/s/i/ub/us/ui

Vector type: T = vs/i/q/us/ui/uq

Prototype: void unpack(TO& r1, TO& r2, const T& a);

Description: Unpack elements in source vector to 2 destination vectors. Each element will be

unpacked to a double-length field; r1 gets the unpacked elements in the lower half of the source

vector, r2 get elements in the higher half.

8.3.50 xor

Vector type: T = vb/s/i/q/ub/us/ui/uq/cb/cs/ci/cq/cub/cus/cui/cuq

Prototype: T xor(const T & a, const T & b);

Description: Bitwise XOR

 67

Chapter 9.

The Sample SoftWiFi Driver

Since version 1.1, Sora SDK package includes the SoftWiFi sample SDR driver. SoftWiFi

implements the IEEE 802.11a/b/g standards. The driver follows the Windows NDIS 5 framework

and exposes a virtual Ethernet interface to the operating system. All applications can run on

SoftWiFi without modification.

The SoftWiFi driver can be found in folder %SORA_ROOT%\src\driver. The files in sub-folder

SDRMiniport implements the NDIS driver framework as well as the device I/O control to the

driver. Sub-folder ll contains the link layer implementation, whose main function is frame

format converting, i.e. from Ethernet to 802.11, and vice versa. Folder mac contains the

implementation of the MAC state machine; while folder phy contains the implementation of the

physical layer. It calls the baseband signal processing routines defined in

folder %SORA_ROOT%\src\bb.

The architecture of the SoftWiFi driver is shown in Figure 34. The Link Layer receives frames

from NDIS and converts them to 802.11 frames (see sdr_ll_send.c). The converted frames are

stored in a frame queue. A sending thread monitors the queue and calls PHY functions to

modulate the frame into waveform (see sdr_mac_send.c), which is then transferred to the RCB.

The MAC state machine implemented in this sample driver is shown in Chapter 4, Figure 19. The

state machine is initialized to the carrier sense state. It continuously calls the PHY function

FnPHY_Cs to read incoming samples and computes the energy. If it senses a frame, the state

machine goes to the RX state. Otherwise, it will continuously sense the channel. Carrier sense is

implemented in sdr_mac_cs.c and sdr_phy_cs.c. In the RX state, MAC calls the PHY function

FnPHY_Rx to demodulate the received signal. The RX functions are implemented in

sdr_mac_rx.c and sdr_phy_rx.c. For 802.11a/g, an additional thread is created for Viterbi

decoding, whose implementation is in arx_bg1.c. The demodulated/decoded frame is put into a

receiving queue. Another thread monitors this receiving queue, and indicates the correctly

received frames to NDIS.

 68

The initialization routines of the link layer, MAC and PHY are in sdr_ll_main.c, sdr_mac_main.c,

and sdr_phy_main.c.

Figure 34. Software Architecture of SoftWiFi.

A novice is encouraged to learn the NDIS programming model before working on the SoftWiFi

sample driver and you can find much information about NDIS at MSDN web site

(http://msdn.microsoft.com).

9.1 Configuring the SoftWiFi driver

You can use the dot11config.exe tool to configure the SoftWiFi driver. The table below shows a

summary of command line parameters for dot11config.exe.

-r | --datarate [Kbps] Transmission data rate, i.e., 1000 for 1Mbps,
5500 for 5.5Mbps, 6000 for 6Mbps, etc.

-c | --channel [channel NO.] Channel 1:2412MHz, 2:2417MHz,
3:2422MHz ..., 15: 2482MHz, 36:5180MHz,
40:5200MHz ...

Send Frame

Queue

Recv Frame

Queue

RCB (HW)

Tx Queue

Complete

Queue

Sample Link Layer

ACK Cache

NDIS Wrapper

Rx Stream

PHY Tx

Send thrd

PHY Rx

FSM thrd

MAC FSM

Frame Indication/

Completion

Recv thrd

Sample SDR driver

Decoder

thrd

 69

-f | --freqoffset [Hz] Set frequency offset, can be negative. Real
central frequency is channel frequency plus
this frequency offset value.

-a | --setmacaddr Set MAC address for SDR miniport driver.

-p | --preamble [0/1] 0/1 for long/short preamble for 11b

-s | --spdmax [blocks] set 802.11b power detection block timeout

-t | --spdthd [energy] set energy threshold for 802.11b power
detection

--spdthd_lh [energy] set energy threshold for 802.11b power
detection

--spdthd_hl [energy]

set energy threshold for 802.11b power
detection

--rxgain_preset0 [gain value] Set radio RX gain preset0 to gain value in
1/256 db, i.e., 0x1000

--rxgain_preset1 [gain value] Set radio RX gain preset1 to gain value in
1/256 db, i.e., 0x2400

-R | --rxgain [gain value] Set radio RX gain to gain value in 1/256 db, i.e.,
0x1000

--rxpa [power level] Set radio RX PA. This value is RF front-end
dependent.
For USRP XCVR2450 receives only values of 0,
0x1000, 0x2000, 0x3000. 0, 0x1000 – 0dB;
0x2000 – 16dB; 0x3000 – 32dB.
* Note that it is preferred to use high RxPa
instead of high RxGain.

-T | --txgain [gain value] Set radio TX gain to gain value in 1/256 db, i.e.,
0x1000

-S | --shift [bits] set shift bits after downsampling (for 11b only)

-d | --dump Dump RX signals into file which will be saved
at c:\. The dump file name is automatically
generated based on the timestamp.

-i | --info Show 802.11 adapter running status

-g | --regs Display Debug registers (reserved)

9.2 Offline Wrapper

Sora SDK ver 1.5 also provides an offline wrapper for SoftWiFi baseband library. The source code

of the wrapper application, named demode11, is located at %SORA_ROOT%\src\bb\exe. It is

very handy to use demode11 to read from a dump file to debug or test your modifications to

baseband algorithms. The usage of the demod11 tool is summarized below.

 70

-a | --802.11a specify 802.11a mode

-b | --802.11b specify 802.11b mode

-m | --mod To modulate

-c | --conv specify converting mode

-d | --demod specify demodulation

-k | --ack specify ack test mode

-f | --file [file name] specify signal file

-o | --out [file name] specify output file(mod/conv only)

-t | --spdthd [energy] set energy threshold for 802.11b power
detection(802.11b demod only)

--spdthd_lh [energy] set energy threshold for 802.11b power
detection(802.11b demod only)

--spdthd_hl [energy] set energy threshold for 802.11b power
detection(802.11b demod only)

-S | --shiftright [bits] set shift bits after downsampling(802.11b
demod only)

-s start processing from startDescCount(802.11b
demod only)

-r | --bitrate [bit rate] bit rate in unit of Kbps for modulation

-p | --samplerate [sampling rate] Specify the sampling rate at RAB (40/44MHz)

Example command lines:

1. Modulate an input file and store the generated waveform

demod11.exe –a –m –f d:\frame.bin –o d:\frame.tx

2. Convert a Tx signal file to a Rx signal file

demod11.exe –a –c –f d:\frame.tx –o d:\frame.dmp

3. Read a Rx signal file (dump file) and decode the frames

demod11.exe –a –d –f d:\frame.dmp

 71

Chapter 10.

Tools and Utilities

10.1 dut tool

10.1.1 Using dut to configure the HwTest driver

dut is the configuration tool for the HwTest driver. The command dut start will enable the driver

as well as the UMX library. You can use dut to configure radio parameters. For example, run

 dut txgain --value 0x1000

to set the transmission gain. Or, you can set the receiving gain with

 dut rxgain --value 0x1000.

Or you can set the central frequency of the radio with

 dut centralfreq --value 2414.

You can also use “dut dump” to take a snapshot of the channel and store the dump file at root

of disk C. You can use the software oscilloscope to load the dump file and check the signal.

10.1.2 Using dut to transmit a signal

To transmit a signal, you can first prepare the waveform in a Tx signal file. The Tx signal file is

simply an array of I/Q samples (each I or Q component is of 8-bit). The total file size should be

less than 2MB. The following command line transfers the signal to the RCB memory,

 dut transfer –-file d:\frame.tx.

You can use “dut info” to check the id of all signals stored on RCB and run “dut tx –-sid 0x01” to

transfer the cached waveform (assuming the id of the frame.tx returned is 0x01). You may

optionally specify a repeat number for the tx command. For example,

 dut tx --sid 0x01 --value 100

tells the hwtest driver to transmit the signal 0x01 for 100 times. You can use “dut stoptx” to

cancel a repeating transmission. When transmission is complete, you can remove the signal

from the RCB memory using

 72

 dut txdone --sid 0x01.

10.1.3 Dut usage summary

start Enable the radio hardware.

stop Disable the radio hardware.

tx Transmit a signal

txdone Remove a stored signal from the RCB memory

dump Dump the radio Rx channel

txgain Set Tx Gain

rxgain Set Rx Gain

rxpa Set RX PA. With USRP XCVR2450 can only be 0, 0x1000, 0x2000,
0x3000

info Get driver and RCB information

transfer Transfer a signal to the RCB memory

centralfreq Set the radio central frequency (in MHz)

freqoffset Set the radio frequency compensation (in Hz), i.e, -5Hz

stoptx Stop Tx

samplerate

Change sample rate. No effective to USRP XCVR2450 or WARP RF
daughter board

--value Specify a number value to the command

--sid

Specify a signal ID

--file

Specify a file name

10.2 Oscilloscope

Sora SDK ver 1.5 releases software oscilloscope applications for both 802.11b DSSS and

802.11a/g OFDM signals. You can find them, sdscope-11b and sdscope-11a at %SORA-

ROOT%\bin. Figure 35 and Figure 36 show the graphic interface and the annotation of each view

on the windows. The following table summarizes the basic operations for the scope applications.

You can press “o” to open a dump file and start/stop the processing with the space key. You can

also set a “processing point” by clicking on the overview panel.

 73

Sdscope-11a also allows you to specify the sampling rate of the dump file with command line,

sdscope-11a –s[40|44].

Key Function

o/O Open a dump file

Space Start or Pause the processing

s/S Rotate the sampling rate (sdscope-11a only)

Left Arrow/Right Arrow Speedup or Slow down

Up Arrow/Down Arrow Scale up/down of amplitude

10.3 SrView

SrView is a simple but handly GUI tool to view a Sora dump file. It can cut a portion of dumped

signal and store it to a separate file for further analysis. You can use Menu item File/open to

load a dump file. The window displays the energy of each recorded samples. You can use “up-

arrow” and “down-arrow” to zoom-out and zoom-in, or use the scroll-bar at the bottom of

window to view the different portion of the signal. You may select a portion of the signal – you

click on the window to set a start marker and shift-click to set an end marker. You can save the

selection into a separate file for later processing. Figure 35 shows a snapshot of Srview.

Figure 35. The main window of SrView.

 74

Figure 36. The main window of sdscope-11b.

Constellation view

of raw I/Q samples

Constellation view

after barker

despreading

Overview of

the whole

waveform

Amplitude of

raw I/Q samples

Demapper results

Descramble results
Frame content

Frame header

information

Amplitude after

barker despreading

Amplitude of

decimated I/Q samples
Constellation of decimated

I/Q samples

 75

Figure 37. The main window of sdscope-11a.

Constellation view of
raw I/Q samples

Energy and autocorrelation
view

Symbol view

Channel view

Constellation of
symbols

Information
panel

Overview panel Decoded bytes
CRC

Constellation view of
raw I/Q samples

Energy and
autocorrelation view

Symbol view

Channel view

Constellation
of symbols

Information
panel

Overview panel Decoded bytes CRC

 76

10.4 Hardware Verification Tool

The Hardware Verification Tool (HVT) is a helpful tool to test and configure Sora hardware

components. HVT supports two types of tests: the sine test (single tone test) and the SNR test

(wide-band test). To use HVT, you need two Sora boxes: one works as sender and the other is a

receiver.

In the sine test, the sender transmits a 1MHz sine signal; the receiver captures and analyzes the

received signal. Based on this simple test, HVT can compute many useful radio related

parameters, such as frequency offset between the two machines, I/Q imbalance, the direct

current (DC) value and the best receiver gain setting.

In the SNR test, the sender transmits a wide-band 16QAM-modulated OFDM signal. The receiver

can demodulate the signal and compute the wide-band signal-to-noise ratio (SNR). The SNR

value is one key parameter to assess channel quality.

Figure 2 (at page 17) shows the main window of HVT. A summary of all elements on the window

can also be found in Table 2 (at page 12). HVT is based on UMX APIs. Please make sure the RCB

driver and the HwTest driver are properly installed.

10.4.1 The Sine Wave Test

a) Start the test.

 Set up two Sora boxes. Place the two antennas about one meter apart.

 Select sine test on both boxes.

 Choose one box as the sender (select send) and the other as the receiver (select

receive).

 Click start button (b) at the sender. You will see the sender’s status bar (j) showing

“Sending 1MHz sine wave”. If a failure occurs, the error message will be shown in the

log window (k).

 Select a proper Tx gain (t) setting at the sender (for example 15dB).

 Choose the same sampling rate (r) as your RAB at the receiver.

 77

 Click start button (b) at the receiver to capture the signal. You will see the waveform

displayed on two popup windows, as shown in the first row of Table 5. If failures occur,

the error messages will be shown in the log window (k).

 By default, the receiver gain is automatically adjusted (The AGC box (p) is checked). But

the user can disable the AGC and adjust the receiver gain manually by unchecking the

box.

 The user can also start a central frequency offset (CFO) calibration by clicking the auto

calibration button (e). The tool will automatically compute the frequency offset

between the sender and receiver and adjust the receiver’s frequency setting to match

the sender’s. The calibration result will be shown in the log window (k).

 The calibration results (parameters) can be stored in a file and the user can late

configure the RF front-end based on these values. Figure 38 shows a sample

configuration file.

[Parameter]
freqOffset=8064
txgain=0xb80
rxgain=0x1800
rxpa=0x1000
centralFreq=2422
sampleRate=40

[Calibration]
freqOffsetLineSlope=-0.894473
freqOffsetLineIntercept=121178

Figure 38. A sample configuration file after calibration.

b) Diagnosis

The user can use the sine test to pin-point several hardware related issues. Table 5 summarizes

some typical graphs and their explanations. This table can be displayed anytime when the user

clicks the suggestion button (d) at the receiver.

Table 5. Typical graphs shown in the sine test and their descriptions.

Overview Constellation Description

 78

Normal signal.

The overview window displays the energy
level of the received signal. Since the sine
wave is sent in burst, the overview window
will show this on-off pattern.
The constellation view of the sine wave is a
circle.

No signal received.

The receiver receives no signal. Please try the
following actions to solve this problem:
1. Check if the hardware are connected

properly;
2. Check if the drivers are installed properly;
3. Move the antennas closer;
4. Increase txgain at the sender side;
5. Increase rxgain and rxpa, or enable AGC at

the receiver side;
6. Try to reset the hardware and

disable/enable drivers.

Saturated signal.

The received signal has been saturated. Please
try the following actions:
1. Decrease the rxpa and rxgain or enable

AGC at the receiver;
2. Decrease the txgain at the sender side;
3. Move the antennas further away.

10.4.2 The SNR Test

a) Start a test

 Set up two Sora boxes. Place the two antennas about one meter apart.

 Select snr test on both boxes.

 Choose one box as the sender (select send) and the other as the receiver (select

receive).

 79

 Click start button (b) at the sender. You will see the sender’s status bar (j) showing

“Sending 16QAM wave”. If a failure occurs, the error message will be shown in the log

window (k).

 Select a proper Tx gain (t) setting at the sender (for example 15dB).

 Choose the same sampling rate (r) as your RAB at the receiver.

 Click start button (b) at the receiver to capture the signal. You will see the waveform

displayed on two popup windows, as shown in the first row of Table 6. If failures occur,

the error messages will be shown in the log window (k).

 The SNR value, DC, as well as the frequency offset are computed and displayed on the

corresponding fields in the window.

b) Diagnosis

The user can use the SNR test to pin-point several hardware related issues. Table 6 summarizes

some typical graphs and their explanations. This table can be displayed anytime when the user

clicks the suggestion button (d) at the receiver.

Table 6. Typical graphs shown in the SNR test and their descriptions.

Overview Constellation Description

Channel quality is high.

The 16QAM constellation graph is
clearly displayed.

 80

No signal.

The receiver receives no signal.
Please try the following actions to
solve this problem:
1. Check if the hardware are

connected properly;
2. Check if the drivers are installed

properly;
3. Move the antennas closer;
4. Increase txgain at the sender

side;
5. Increase rxgain and rxpa or

enable AGC at the receiver side;
6. Try to reset the hardware and

disable/enable drivers.

Channel quality is poor.

The 16QAM constellation graph can
hardly be observed. Please try the
following actions to solve this
problem:

1. Adjust the radio parameters,

e.g. adjusting frequency offset,
gain. You can find proper values
using the sine test;

2. Reset hardware and
disable/enable the drivers;

3. Use better antennas or use a
cable connection.

No frame detected.

The receiver receives signals but no
valid frame is detected.

Please try the following actions to
solve this problem:
1. Make sure no other interfering

sources exist;
2. Increase txgain at the sender

side;
3. Increase rxpa and rxgain or

enable AGC at the receiver
side;

4. Move the antennas closer;
5. Adjust frequency offset. You

 81

can find proper values using the
sine test;

6. Reset hardware and
disable/enable the drivers.

10.4.3 Misc functions

a) Save/Load calibrated parameters

Click save button (n) in the parameters group to save calibrated parameters in a file. A saved file

can be loaded by clicking the load button (o) in the parameters group. In log window (k), the

loaded parameters are displayed.

b) Save/Clear logs

Click save button (l) to save the messages in the log window to a file. Click clear button (m) to

clear the messages in the log window.

c) Dump

HVT can also save a snapshot of received signal in a dump file for further analysis. To make a

dump, HVT must run in the receiving mode. Clicking dump button (c) will save the signal to a file.

 82

Chapter 11.

Reference

11.1 Kernel Mode API

1) SoraAllocateRadioFromRCBDevice

HRESULT
SoraAllocateRadioFromRCBDevice(

IN OUT PLIST_ENTRY pRadiosHead,
IN ULONG nRadio,

 IN PCWSTR UserName
);

Parameters

pRadiosHead

Pointer to a list head the returned radio objects are linked to.

nRadio

Number of the radios to allocate.

UserName

Pointer to a Unicode string specifying a tag for the allocated radios. Each allocation code

path should use an identical tag to help system to identify the code path.

Return Value

SoraAllocateRadioFromRCBDevice returns E_DEVICE_NOT_FOUND if the RCB device cannot

be found; it returns E_NOT_ENOUGH_FREE_RADIOS if there are not enough available radios

to allocate. Otherwise, it returns S_OK and the allocated radios are linked to pRadiosHead.

Comments

SoraAllocateRadioFromRCBDevice allocates one or more radios from the RCB device.

The allocated radios are linked to the list specified by pRadiosHead. Otherwise,

pRadiosHead will point to an empty list.

 83

The allocated radios should be released using SoraReleaseRadios.

Requirements

IRQL: PASSIVE_LEVEL

Headers: Include sora.h

See Also

SoraReleaseRadios, SoraRadioInitialize, SoraStartRadio.

2) SoraReleaseRadios

VOID
SoraReleaseRadios(

IN LIST_ENTRY *pRadiosHead
);

Parameters

pRadiosHead

Pointer to the radio list.

Return Value

None

Comments

SoraReleaseRadios releases radio objects allocated by SoraAllocateRadioFromRCBDevice.

Requirements

IRQL: PASSIVE_LEVEL

Headers: Include sora.h

See Also

SoraAllocateRadioFromRCBDevice, SoraRadioInitialize, SoraRadioStart.

3) SoraRadioInitialize

HRESULT
SoraRadioInitialize(

IN OUT PSORA_RADIO pRadio,
IN PVOID pReserved,
IN ULONG nTxSampleBufSize,
IN ULONG nRxSampleBufSize

);

Parameters

pRadio

 84

Pointer to a radio object.

pReserved

Reserved.

nTxSampleBufSize

The size of the buffer that holds the transmission digital samples. Each radio object is

assigned to a unique Tx sample buffer.

nRxSampleBufSize

 The size of the buffer that holds the received digital samples. The RCB will fill the Rx

sample buffer with latest received samples. The size must be a multiple of 4K.

Return Value

SoraRadioInitialize returns E_NOT_ENOUGH_CONTINUOUS_PHY_MEM if not enough

memory is available. It returns S_OK if succeeds.

Comments

SoraRadioInitialize initializes a radio object and allocates the Tx and Rx sample buffers. Any

allocated radio object should be first initialized before use.

Requirements

IRQL: PASSIVE_LEVEL

Headers: Include Sora.h

See also

SoraRadioStart

4) SoraRadioStart

HRESULT
SoraRadioStart (
 IN OUT PSORA_RADIO pRadio,
 ULONG RxGain,
 ULONG TxGain,
 PSORA_RADIO_CONFIG pConfig
);

Parameters

 85

 pRadio

 Pointer to the radio object to be enabled.

 RxGain

 Reception gain in units of 1/256 dB, e.g. a value of 0x200 means 2dB.

 TxGain

 Transmission gain in units of 1/256 dB, e.g. a value of 0x200 means 2dB.

 pConfig

 Pointer to a reserved configuration structure.

Return Value

SoraRadioStart returns S_OK if the radio hardware is enabled successfully. It returns

E_RADIO_NOT_CONFIGURED if the radio object is not properly initialized and

E_REG_WRITE_FAIL if hardware fails.

Comments

SoraRadioStart enables the RF front-end and sets the gain control parameters.

The SDR driver may change the gain setting later using SoraHwSetTXVGA1 and

SoraHwSetRXVGA1. The SDR driver can get the current gain setting using SORA_RADIO

_GET_RX_GAIN and SORA_RADIO_ GET_TX_GAIN.

Requirements

 IRQL: PASSIVE_LEVEL

 Headers: Include Sora.h

See also

SoraHwSetTXVGA1, SoraHwSetRXVGA1, SoraHwSetCentralFreq.

5) SoraRadioGetRxStream

__inline
PSORA_RADIO_RX_STREAM
SoraRadioGetRxStream (

PSORA_RADIO pRadio
);

 86

Parameters

 pRadio

 Pointer to a radio object.

Return Value

 SoraRadioGetRxStream returns the pointer of RX_STREAM associated with the radio object.

Comments

When a radio object is initialized, an RX_STREAM object is also created and associated to

the radio object. A SDR driver should use the RX_STREAM object to read the radio’s Rx

sample buffer.

Requirements

 IRQL: <= DISPATCH_LEVEL

 Headers: Include Sora.h

See Also

SoraRadioReadRxStream

6) SoraRadioReadRxStream

HRESULT
SoraRadioReadRxStream (
 PSORA_RADIO_RX_STREAM pRxStream,
 FLAG * pbTouched,
 SignalBlock& block
);

Parameters

 pRxStream

 Pointer of the RX_STREAM object.

 pbTouched

 Pointer to a flag that receives the indication of the emptiness of the RX channel.

 block

 Signal block just read.

Return Value

 87

 The return value is S_OK if a signal block is succeeded read. Otherwise, the return value is

E_FETCH_SIGNAL_HW_TIMEOUT if no new signal blocks are available in a timeout period. This

may indicate an error in hardware.

Comments

 This function gets a new signal block from the RX_STREAM object. pbTouched points to a

flag variable that receives the indication whether or not the returned signal block is the last one

in the RX channel. If the flag is set, the RX channel of the radio is empty.

 This function can also be called in user-mode.

Requirements

 Headers: Include soradsp.h

See Also

SoraRadioGetRxStream

7) SoraRadioGetRxStreamPos

PRX_BLOCK
SoraRadioGetRxStreamPos (

PSORA_RADIO_RX_STREAM pRxStream
);

Parameters

 pRxStream

 Pointer of RX_STREAM object.

Return Value

 The current position of the RX_STREAM object.

Comments

 This function returns the current position of the RX_STREAM.

 This function can also be called in user-mode.

Requirements

 Headers: Include _rx_stream.h

See Also

 88

SoraRadioReadRxStream

8) SoraInitSignalCache

HRESULT
SoraInitSignalCache(

OUT PSIGNAL_CACHE pCache,
IN PSORA_RADIO pRadio,
IN ULONG uSize,
IN ULONG uMaxEntryNum

);

Parameters

 pCache

 Pointer to a signal cache object to be initalized.

 pRadio

 Pointer to the radio object that allocates the signal cache.

 uSize

 The size, in bytes, of each entry in the signal cache. The size must be a multiple of

128byte.

 uMaxEntryNum

 The maximum number of entries in the signal cache.

Return Value

 SoraInitSignalCache returns S_OK if succeeded. It returns E_NO_FREE_TX_SLOT if there is

not enough onboard memory associated to the radio object. It returns E_INVALID_SIGNAL_SIZE

if the specified size is not a multiple of 128.

Comments

A signal cache allocates a portion of RCB onboard memory to store pre-computed signals.

These cached signals can be transmitted for multiple times later using SORA_HW_FAST_TX.

Requirements

 IRQL: If the cache object is non-paged, SoraInitSignalCache can be called at IRQL <=

DISPATCH_LEVEL; Otherwise it must be called at PASSIVE_LEVEL.

 Headers: Include sora.h

 89

See Also

 SoraCleanSignalCache, SoraGetSignal, SoraInsertSignal.

9) SoraInsertSignal

HRESULT
SoraInsertSignal(

IN PSIGNAL_CACHE pCache,
IN PCOMPLEX8 pSampleBuffer,
IN PHYSICAL_ADDRESS *pSampleBufferPa,
IN ULONG uSampleSize,
IN CACHE_KEY Key

);

Parameters

 pCache

 Pointer to the signal cache object.

pSampleBuffer

 Pointer to a buffer containing the signal samples to be inserted.

pSampleBufferPa

 Pointer to the physical address structure of the sample buffer.

uSampleSize

 The size, in bytes, of the signal to be inserted. It must be a multiple of 128 bytes.

Key

 An 8-byte key associated to the signal.

Return Value

SoraInsertSignal returns E_SIGNAL_EXISTS if a same key is already in the cache. [Kun: what

happens next? The signal is overwrote or not?] It returns E_NOT_ENOUGH_RESOURCE if

there is no free entries in the cache.

SoraInsertSignal returns E_INVALID_SIGNAL_SIZE if uSampleSize is not a multiple of 128.

Comments

The size of the signal should be less than the buffer size of a cache entry; Otherwise it will

cause a fatal error.

 90

Requirements

IRQL : <= DPC_LEVEL

Headers: sora.h

See Also

 SoraGetSignal, SORA_HW_FAST_TX.

10) SoraGetSignal

PTX_DESC
SORAAPI
SoraGetSignal (

IN PSIGNAL_CACHE pCache,
 IN CACHE_KEY Key
);

Parameters

 pCache

 Pointer to the signal cache object from which to retrieve a signal.

 Key

 The 8-byte key associated to a cache entry.

Return Value

 SoraGetSignal returns a TX descriptor of the stored signal; otherwise, it returns NULL if the

key cannot be found in the cache.

Requirements

 IRQL: <= DISPATCH_LEVEL

 Headers: Include sora.h

See Also

 SoraInsertSignal

11) SoraCleanSignalCache

void
SoraCleanSignalCache (

IN PSIGNAL_CACHE pCache
);

Parameters

 pCache

 Pointer to the signal cache to be cleaned.

 91

Return Value

 None.

Comments

The SDR application should call SoraCleanSignalCache to free the RCB onboard memory.

12) SoraHwSetSampleClock

VOID
SoraHwSetSampleClock (

PSORA_RADIO pRadio,
ULONG Hz

);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 Hz

 The desired sampling rate, in unit of Hz.

Return Value

 None.

Comments

 The sampling clock depends on the implementation of the RF front-end board. This function

only provides a hint to the hardware and can be silently ignored by the hardware component.

13) SoraHwSetCentralFreq

VOID
SoraHwSetCentralFreq (

PSORA_RADIO pRadio,
 ULONG kHzCoarse,
 LONG HzFine
);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 kHzCoarse

 The coarse part (KHz) of the desired central frequency.

 92

 HzFine

 The fine part (Hz) of the desired central frequency.

Return Value

 None.

Comments

 SoraHwSetCentralFreq sets the central frequency of the RF front-end. The desired central

frequency is split into the coarse part (kHz) and the fine part (Hz), and

Central freq = kHzCoarse * 1000 + HzFine.

14) SoraHwSetFreqCompensation

VOID
SoraHwSetFreqCompensation (

PSORA_RADIO pRadio,
 LONG lFreq
);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 lFreq

 The frequency, in Hz, to be compensated.

Return Value

 None

Comments

 SoraHwSetFreqCompensation sets the central frequency compensation. The true frequency

that the RF front-end works on is the sum of the frequency sets by SoraHwSetCentralFreq and

the compensation value specified by SoraHwSetFreqCompensation.

 SoraHwSetFreqCompensation provides a convenient way to synchronize the central

frequency between the sender and the receiver.

15) SoraHwSetTXVGA1

VOID

 93

SoraHwSetTXVGA1 (
PSORA_RADIO pRadio,
ULONG uGain

);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 uGain

 The value, in unit of 1/256 dB, to be set to transmission Variable Gain Amplifier (VGA) of

the RF front-end.

Return Value

 None

Comments

 SoraHwSetTXVGA1 sets the transmission variable gain amplifier of the RF front-end. The

gain control is specified in unit of 1/256 dB. However, the true precision of VGA depends on the

implementation of the RF front-end.

16) SoraHwSetRXPA

VOID
SoraHwSetRXPA (

PSORA_RADIO pRadio,
ULONG uGain

);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 uGain

 The gain value sent to the RF front-end to configure the receiving Low Noise Amplifier

(LNA).

Return Value

 None

Comments

 94

 SoraHwSetRXPA writes a value to the virtual control register of the RF front-end to provide

a hint to configure LNA on the reception path. The value depends on the implementation of the

RF front-end board. For USRP XCVR2450 board, there can be three effective configurations: 0 (or

0x1000) means 0dB, 0x2000 means 16dB, and 0x3000 means 32dB.

SoraHwSetRXVGA1

VOID
SoraHwSetRXVGA1(

PSORA_RADIO pRadio,
ULONG uGain

);

Parameters

 pRadio

 Pointer to the radio object to be configured.

 uGain

 The value, in unit of 1/256 dB, to be set to the reception Variable Gain Amplifier (VGA)

of the RF front-end.

Return Value

 None

Comments

 SoraHwSetRXVGA1 sets the reception variable gain amplifier of the RF front-end. The gain

control is specified in unit of 1/256 dB. However, the true precision of VGA depends on the

implementation of the RF front-end.

17) SORA_HW_TX_TRANSFER

HRESULT
SORA_HW_TX_TRANSFER (

IN PSORA_RADIO pRadio,
IN PPACKET_BASE pPacket

);

Parameters

 pRadio

 Pointer to the radio object that the modulated signal of a frame is transferred to.

 pPacket

 Pointer to the packet base object.

 95

Return Value

 SORA_HW_TX_TRANSFER returns S_OK on success.

Comments

 SORA_HW_TX_TRANSFER downloads the modulated signals of a frame from the shared TX

sample buffer to the memory location on RCB as indicated in the packet base object.

18) SORA_HW _TX

HRESULT
SORA_HW _TX (

PSORA_RADIO pRadio,
PPACKET_BASE pPacket

);

Parameters

 pRadio

 Pointer to the radio object to send the signal.

 pPacket

 Pointer to the packet base object.

Return Value

 SORA_HW _TX returns S_OK on success.

Comments

 SORA_HW _TX indicates the hardware to send out the signal at the memory location on the

RCB as indicated in the packet base object. The function will be blocked until the signal has been

transmitted out. The signal should be previously transferred onto the RCB memory using

SORA_HW_TX_TRANSFER.

19) SORA_HW_FAST_TX

HRESULT
SORA_HW_FAST_TX (

PSORA_RADIO pRadio,
 PTX_DESC pTxDesc
);

Parameters

 pRadio

 Pointer to the radio object to send the signal.

 96

 pTxDesc

 Pointer to the TX descriptor.

Return Value

 SORA_HW_FAST_TX returns S_OK on success.

Comments

 SORA_HW_FAST_TX indicates the hardware to send out the signal at the memory location

on the RCB as indicated in the Tx Descriptor. A Tx Descriptor is normally obtained after querying

an entry of a signal cache.

20) SORA_HW_ENABLE_RX

VOID
SORA_HW_ENABLE_RX (

PSORA_RADIO pRadio
);

Parameters

 pRadio

 Pointer to the radio object whose RX channel is to be enabled.

Return Value

 None.

Comments

 SORA_HW_ENABLE_RX enables the RX channel of a radio object. Once the RX channel is

enabled, the hardware starts to fill the RX sample buffer via DMA operations.

21) SORA_HW_STOP_RX

VOID
SORA_HW_STOP_RX (

PSORA_RADIO pRadio
);

Parameters

 pRadio

 Pointer to the radio object whose RX channel is to be disabled.

Return Value

 None.

 97

Comments

 SORA_HW_STOP_RX disables the RX channel of a radio object. Once the RX channel is

disabled, the DMA operations are stopped.

22) SoraPacketGetTxSampleBuffer

VOID
SORAAPI
SoraPacketGetTxSampleBuffer(
 IN PPACKET_BASE pPacket,
 OUT PTXSAMPLE *ppBuf,

OUT PULONG pBufSize
);

Parameters

 pPacket

 Pointer to the packet base object.

 ppBuf

 Pointer to a sample buffer pointer.

 pBufSize

 Pointer to an unsigned variable that receives the sample buffer size.

Return Value

 None.

Comments

 SoraPacketGetTxSampleBuffer obtains and locks the shared TX sample buffer from the

radio that is associated to the packet object. After calling this function, the SDR driver can fill the

TX sample buffer with the modulated signal samples.

23) SoraPacketSetSignalLength

VOID
SORAAPI
SoraPacketSetSignalLength (
 IN OUT PPACKET_BASE pPacket,

 IN ULONG uLen
);

Parameters

 pPacket

 Pointer to the packet base object.

 uLen

 The length, in bytes, of the modulated signal.

 98

Return Value

 None.

Comments

 SoraPacketSetSignalLength specifies the actual bytes that have been occupied by the

modulated signal of a data frame. The SDR driver should call this function right after it stores the

modulated waveform in the TX sample buffer.

24) SoraPacketSetTXDone

__inline
void
SoraPacketSetTXDone (

IN OUT PPACKET_BASE pPacket
);

Parameters

 pPacket

 Pointer to the packet base object.

Return Value

 None.

Comments

 SoraPacketSetTXDone sets the status of a packet base object to PACKET_TX_DONE. The

function also frees the RCB memory that the signal has previously been transferred.

25) SoraThreadAlloc

HANDLE
SoraThreadAlloc ();

Parameters

 None.

Return Value

 SoraThreadAlloc returns NULL if an error occurred; otherwise it returns the handle of a Sora

thread.

Comments

 99

 SoraThreadAlloc allocates a Sora exclusive thread object. A Sora exclusive thread cannot be

preempted by any other thread and should be only used for real-time tasks on a multi-core

system. After allocation, the SDR application should call SoraThreadStart to start an exclusive

thread.

Requirements

 IRQL: <= DISPATCH_LEVEL

 Headers: Include thread_if.h

See Also

SoraThreadFree

26) SoraThreadFree

VOID
SoraThreadFree (

IN HANDLE hThread
);

Parameters

 hThread

 Handle to the Sora thread object.

Return Value

None.

Comments

 SoraThreadFree release the Sora thread object that is previously allocated by

SoraThreadAlloc.

Requirements

 IRQL: PASSIVE_LEVEL

 Headers: Include thread_if.h

See Also

SoraThreadAlloc

27) SoraThreadStart

BOOLEAN
SoraThreadStart (

 100

 IN HANDLE hThread,
 IN PSORA_UTHREAD_PROC pUserRoutine,

IN PVOID pParameter
);

Parameters

 hThread

 Handle to the Sora thread object.

 pUserRoutine

 Address of a routine that the Sora thread calls periodically.

 pParameter

 Parameter provided to the user routine.

Return Value

SoraThreadStart returns TRUE if success; otherwise it returns FALSE.

Comments

 SoraThreadStart starts a Sora exclusive thread that will call the user specified routine

periodically. The user routine should have the follow prototype

BOOLEAN (*PSORA_UTHREAD_PROC) (PVOID pParameter) ;

 The user routine should not contain long processing loops. Large processing tasks should be

divided into several small pieces and the user routine should return when one piece of work has

finished. If the user routine returns a value of TRUE, it will be immediately called again to

continue the rest processing work. A return value of FALSE indicates the thread should be

stopped. Alternatively, other thread can call SoraThreadStop to terminate this Sora thread.

 Caution: Never call SoraThreadStop to terminate a Sora thread from its user routine. It will

cause a dead-lock.

Requirements

 IRQL: PASSIVE_LEVEL

 101

 Headers: Include thread_if.h

See Also

SoraThreadStop

28) SoraThreadStop

VOID
SoraThreadStop(

IN HANDLE hThread
);

Parameters

 hThread

 Handle of the Sora thread object.

Return Value

 None.

Comments

 SoraThreadStop stops the running Sora thread.

Caution: Never call SoraThreadStop to terminate a Sora thread from its user routine. It will

cause a dead-lock.

Requirements

 IRQL: PASSIVE_LEVEL

 Headers: Include thread_if.h

See Also

SoraThreadStart

11.2 UMX API

29) SoraUInitUserExtension

 102

BOOLEAN
SoraUInitUserExtension (

const char * szDevName
);

Parameters

 szDevName

 Pointer to the name of device supporting UMX API.

Return Value

 SoraUInitUserExtension returns true if the initialization succeeds; otherwise, it returns false.

Comments

 SoraUInitUserExtension initializes the user-mode extension. The device name should be

“\\.\HWTest”.

30) SoraUCleanUserExtension

VOID
SoraUCleanUserExtension ();

Parameters

 None.

Return Value

 None.

Comments

 SoraUCleanUserExtension cleans the resources allocated when initialing the user-mode

extension.

31) SoraURadioStart

HRESULT
SoraRadioStart (
 IN ULONG uRadioID
);

Parameters

 uRadioID

 The ID referring to the radio object.

 103

Return Value

SoraURadioStart returns S_OK if the radio hardware is enabled successfully.

Comments

SoraURadioStart enables the RF front-end and initializes the gain control parameters.

32) SoraURadioSetSampleRate

HRESULT
SoraURadioSetSampleRate(

IN ULONG uRadioID,
IN ULONG MHz

);

Parameters

 uRadioID

 The ID referring to the radio object.

 MHz

 The desired sampling rate, in unit of MHz.

Return Value

 SoraURadioSetSampleRate returns S_OK if the sample rate is successfully set.

Comments

 The sampling clock depends on the implementation of the RF front-end board. This function

only provides a hint to the hardware and can be silently ignored by the hardware component.

33) SoraURadioSetCentralFreq

HRESULT
SoraURadioSetCentralFreq (

ULONG uRadioID,
 ULONG KHz
);

Parameters

 uRadioID

 The ID referring to the radio object.

 KHz

 The KHz of the desired central frequency.

Return Value

 104

 SoraURadioSetCentralFreq returns S_OK if the central frequency is successfully set.

Comments

 SoraURadioSetCentralFreq sets the central frequency of the RF front-end.

34) SoraURadioSetFreqOffset

HRESULT
SoraURadioSetFreqOffset(

ULONG uRadioID,
LONG lFreq

);

Parameters

 uRadioID

 The ID referring to the radio object.

 lFreq

 The frequency offset, in Hz, to be set.

Return Value

 SoraURadioSetFreqOffset returns S_OK if the frequency offset is successfully set.

Comments

 SoraURadioSetFreqOffset sets the frequency offset. The true frequency that the RF front-

end works on is the sum of the frequency sets by SoraURadioSetCentralFreq and the offset

value specified by SoraURadioSetFreqOffset.

 SoraURadioSetFreqOffset provides a convenient way to synchronize the central frequency

between the sender and the receiver.

35) SoraURadioSetTxGain

HRESULT
SoraURadioSetTxGain (

ULONG uRadioID,
ULONG uGain

);

Parameters

 uRadioID

 The ID referring to the radio object.

 105

 uGain

 The value, in unit of 1/256 dB, to be set to transmission Variable Gain Amplifier (VGA) of

the RF front-end.

Return Value

 SoraURadioSetTxGain returns S_OK if the Tx Gain is successfully set.

Comments

 SoraURadioSetTxGain sets the transmission variable gain amplifier of the RF front-end. The

gain control is specified in unit of 1/256 dB. However, the true precision of VGA depends on the

implementation of the RF front-end.

36) SoraURadioSetRxPA

HRESULT
SoraURadioSetRxPA (

ULONG uRadioID,
ULONG RxPa

);

Parameters

 uRadioID

 The ID referring to the radio object.

 RxPa

 The gain value sent to the RF front-end to configure the receiving Low Noise Amplifier

(LNA).

Return Value

 SoraURadioSetRxPA returns S_OK if the Rx PA is successfully set.

Comments

 SoraURadioSetRxPA writes a value to the virtual control register of the RF front-end to

provide a hint to configure LNA on the reception path. The value depends on the

implementation of the RF front-end board. For USRP XCVR2450 board, there can be three

 106

effective configurations: 0 (or 0x1000) means 0dB, 0x2000 means 16dB, and 0x3000 means

32dB.

37) SoraURadioSetRxGain

HRESULT
SoraURadioSetRxGain (

ULONG uRadioID,
ULONG uGain

);

Parameters

 uRadioID

 The ID referring to the radio object.

 uGain

 The value, in unit of 1/256 dB, to be set to the reception Variable Gain Amplifier (VGA)

of the RF front-end.

Return Value

 SoraURadioSetRxGain returns S_OK if the Rx Gain is successfully set.

Comments

 SoraURadioSetRxGain sets the reception variable gain amplifier of the RF front-end. The

gain control is specified in unit of 1/256 dB. However, the true precision of VGA depends on

the implementation of the RF front-end.

38) SoraURadioMapTxSampleBuf

HRESULT
SoraURadioMapTxSampleBuf (
 IN ULONG uRadioID,
 OUT PVOID *ppBuf,
 OUT PULONG puSize
);

Parameters

 uRadioID

 The ID referring to the radio object.

 ppBuf

 Address of a pointer variable that receives the pointer to the mapped TX sample buffer

of the radio.

 107

 puSize

 Address of an unsigned long variable that receives the size of the mapped TX sample

buffer.

Return Value

 SoraURadioMapTxSampleBuf returns S_OK if success.

Comments

 SoraURadioMapTxSampleBuf maps the TX sample buffer of the radio object into the user-

mode space. The radio object is specified by RadioID. The function needs to be called only once

during the initialization phase of a SDR application. The SDR application then can directly output

digital samples to the TX sample buffer via this mapped address.

39) SoraURadioTransfer

HRESULT
SoraURadioTransfer (
 IN ULONG uRadioID,
 IN ULONG uSignalLen,
 OUT PULONG pTxID
);

Parameters

 uRadioID

 The ID referring to the radio object.

 uSignalLen

 The signal length stored in Tx sample buffer.

 pTxID

 Address of an ULONG variable that receives the TxID of transferred signal.

Return Value

 SoraURadioTransfer returns S_OK if success.

Comments

 SoraURadioTransfer allocates a block of RCB memory and transfers the modulated signal in

the TX sample buffer to that memory block. The returned TxID can be later used in

SoraURadioTx to transfer the signal or used in SoraURadioTxFree to remove the signal from

RCB memory.

 108

40) SoraURadioTx

HRESULT
SoraURadioTx (

IN ULONG uRadioID,
 IN ULONG TxID
);

Parameters

 uRadioID

 The ID referring to the radio object.

 TxID

 TX ID of a signal to be transmitted.

Return Value

 SoraURadioTx returns S_OK if success.

Comments

 SoraURadioTx instructs the hardware to send out the signal indicated by the TX ID. The

signal should have been transferred to the RCB memory using SoraURadioTransfer.

41) SoraURadioTxFree

HRESULT
SoraURadioTxFree (

IN ULONG uRadioID,
 IN ULONG TxID
);

Parameters

 uRadioID

 The ID referring to the radio object.

 TxID

 TX ID of a signal to be freed.

Return Value

 SoraURadioTxFree returns S_OK if success.

Comments

 SoraURadioTxFree frees the memory block on RCB that holds the signal indicated by the

TxID. After SoraURadioTxFree, the TX ID is no longer valid.

 109

42) SoraURadioUnmapTxSampleBuf

HRESULT
SoraURadioUnmapTxSampleBuf (

IN ULONG uRadioID,
IN PVOID pMappedBuf

);

Parameters

 uRadioID

 The ID referring to the radio object.

 pMappedBuf

 Pointer to the mapped TX sample buffer.

Return Value

 SoraURadioUnmapTxSampleBuf returns S_OK if success.

Comments

 SoraURadioUnmapTxSampleBuf releases the mapped TX sample buffer. The user-mode

address, as pointed by pMappedBuf, is no longer valid. pMappedBuf should contain a valid

address that is returned by SoraURadioMapTxSampleBuf.

43) SoraURadioMapRxSampleBuf

HRESULT
SoraURadioMapRxSampleBuf (

ULONG uRadioID,
 OUT PVOID *ppBuf,
 OUT PULONG puSize
);

Parameters

 uRadioID

 The ID referring to the radio object.

 ppBuf

Address of a pointer variable that receives the pointer to the mapped RX sample buffer

of the radio.

 puSize

 Address of an unsigned long variable that receives the size of the mapped RX sample

buffer.

 110

Return Value

 SoraURadioMapRxSampleBuf returns S_OK if success.

Comments

 SoraURadioMapRxSampleBuf maps the RX sample buffer of the radio object into the user-

mode space. The radio object is specified by uRadioID. SoraURadioMapRxSampleBuf needs to

be called only once during the initialization phase of a SDR application. The SDR application then

can directly read digital samples from the RX sample buffer via this mapped address.

44) SoraURadioUnmapRxSampleBuf

HRESULT
SoraURadioUnmapRxSampleBuf (

ULONG uRadioID,
 OUT PVOID pMappedBuf,
);

Parameters

 uRadioID

 The ID referring to the radio object.

 pMappedBuf

 Pointer to the mapped RX sample buffer.

Return Value

 SoraURadioUnmapRxSampleBuf returns S_OK if success.

Comments

 SoraURadioUnmapRxSampleBuf releases the mapped RX sample buffer. The user-mode

address, as pointed by pMappedBuf, is no longer valid. pMappedBuf should contain a valid

address that is returned by SoraURadioMapRxSampleBuf.

45) SoraURadioAllocRxStream

HRESULT
SORAAPI
SoraURadioAllocRxStream (

OUT PSORA_RADIO_RX_STREAM pRxStream,
 IN ULONG uRadioID,
 IN PUCHAR pMappedRxBuf,
 IN ULONG uSize
);

Parameters

 111

 pRxStream

 Pointer to a RX_STREAM object.

uRadioID

 The ID referring to the radio object.

 pMappedRxBuf

Pointer to the mapped RX sample buffer.

 uSize

 Size, in bytes, of the mapped RX sample buffer.

Return Value

 SoraURadioAllocRxStream returns S_OK if success. It returns E_RADIO_NOT_CONFIGURED

if the radio object is not properly initialized. It returns E_FAIL if the radio object cannot allocate

a new RX_STREAM object.

Comments

 SoraURadioAllocRxStream retrieves a RX_STREAM object from the mapped RX sample

buffer of the radio object. A SDR application should use SoraRadioReadRxStream with the

RX_STREAM object to read received digital samples, instead of directly accessing the RX sample

buffer of a radio. pMappedRxBuf should contain a valid address that is returned by

SoraURadioMapRxSampleBuf.

46) SoraRadioReadRxStream

HRESULT
SoraRadioReadRxStream (
 PSORA_RADIO_RX_STREAM pRxStream,
 FLAG * pbTouched,
 SignalBlock& block
);

Parameters

 pRxStream

 Pointer of the RX_STREAM object.

 pbTouched

 Pointer to a flag that receives the indication of the emptiness of the RX channel.

 block

 Signal block just read.

 112

Return Value

 The return value is S_OK if a signal block is succeeded read. Otherwise, the return value is

E_FETCH_SIGNAL_HW_TIMEOUT if no new signal blocks are available in a timeout period. This

may indicate an error in hardware.

Comments

 This function gets a new signal block from the RX_STREAM object. pbTouched points to a

flag variable that receives the indication whether or not the returned signal block is the last one

in the RX channel. If the flag is set, the RX channel of the radio is empty.

 This function can also be called in kernal-mode.

Requirements

 Headers: Include soradsp.h

47) SoraRadioGetRxStreamPos

PRX_BLOCK
SoraRadioGetRxStreamPos (

PSORA_RADIO_RX_STREAM pRxStream
);

Parameters

 pRxStream

 Pointer of RX_STREAM object.

Return Value

 The current position of the RX_STREAM object.

Comments

 This function returns the current position of the RX_STREAM.

 This function can also be called in user-mode.

Requirements

 Headers: Include _rx_stream.h

See Also

SoraRadioReadRxStream

 113

48) SoraURadioReleaseRxStream

VOID
SORAAPI
SoraURadioReleaseRxStream (

IN PSORA_RADIO_RX_STREAM pRxStream,
 IN ULONG uRadioID,
);

Parameters

 pRxStream

 Pointer to a RX_STREAM object.

uRadioID

 The ID referring to the radio object.

Return Value

 None.

Comments

 SoraURadioReleaseRxStream releases the RX_STREAM object that allocated from

SoraURadioAllocRxStream. Once SoraURadioReleaseRxStream is called, the RX_STREAM is not

valid anymore.

49) SoraUAcquireTxBufLock

HRESULT
SoraUAcquireTxBufLock (

ULONG uRadioID
);

Parameters

 uRadioID

 ID of the radio object whose TX buffer is to be locked.

Return Value

 SoraUAcquireTxBufLock returns S_OK is success.

Comments

 SoraUAcquireTxBufLock acquires the shared TX buffer lock of the radio object. After

acquiring the lock, the application has exclusive access to the TX sample buffer of the radio. A

SDR application should release the lock after it has transferred the modulated signal to the RCB

memory, so that other SDR applications can use the TX buffer to output and transfer their

signals.

 114

50) SoraUReleaseTxBufLock.

VOID
SoraUReleaseTxBufLock (

ULONG uRadioID
);

Parameters

 uRadioID

 ID of the radio object whose TX buffer lock is to be released.

Return Value

 None.

Comments

SoraUReleaseTxBufLock releases the shared TX buffer lock of the radio object. The SDR

application should previously obtain the TX buffer lock by SoraUAcquireTxBufLock.

51) SoraUWriteRadioRegister

HRESULT
SoraUWriteRadioRegister (
 IN ULONG uRadioID,
 IN ULONG uAddr,

IN ULONG uValue
);

Parameters

 uRadioID

 ID of the radio object to be configured.

 uAddr

 Address of the register on the RF front-end board.

 uValue

 Value to be written to the radio register.

Return Value

 SoraUWriteRadioRegister returns S_OK if success.

Comments

 SoraUWriteRadioRegister writes to a value to a virtual register on the RF front-end board.

The definition of the register and the value depends on the RF front-end implementation. This

function allows the SDR application to access the extended registers of a RF front-end board.

 115

52) SoraUReadRadioRegister

HRESULT
SoraUReadRadioRegister (
 IN ULONG uRadioID,
 IN ULONG uAddr,

IN ULONG * puVal
);

Parameters

 uRadioID

 ID of the radio object to be configured.

 uAddr

 Address of the register on the RF front-end board.

 uValue

 Address of an unsigned long variable that receives the register value.

Return Value

 SoraUReadRadioRegister returns S_OK if success.

Comments

 SoraUReadRadioRegister reads the value in a virtual register on the RF front-end board. The

definition of the register and the value depends on the RF front-end implementation. This

function allows the SDR application to access the extended registers of a RF front-end board.

53) SoraUIndicateRxPacket

HRESULT
SoraUIndicateRxPacket (
 IN UCHAR* pPktBuf,

IN ULONG uPktLength
);

Parameters

 pPktBuf

 Pointer to the buffer containing a data packet.

 uPktLength

 Size of the data packet, in bytes.

Return Value

 116

 SoraUIndicateRxPacket returns S_OK if success.

Comments

SoraUIndicateRxPacket indicates a demodulated packet to the HwTest driver, which then

indicates the packet to the upper layers, i.e. TCP/IP, for further processing.

SoraUIndicateRxPacket enables the seamless integration of the SDR application with Windows

network stack.

54) SoraUThreadAlloc

HANDLE
SoraUThreadAlloc ();

Parameters

 None

Return Value

SoraUThreadAlloc returns NULL if an error occurred; otherwise it returns the handle of a

Sora thread.

Comments

 SoraUThreadAlloc allocates a Sora exclusive thread object. A Sora exclusive thread cannot

be preempted by any other thread and should be only used for real-time tasks on a multi-core

system. After allocation, the SDR application should call SoraUThreadStart to start an exclusive

thread.

55) SoraUThreadFree

VOID
SoraUThreadFree (

IN HANDLE hThread
);

Parameters

 hThread

 Handle to the Sora thread object.

Return Value

 117

None.

Comments

 SoraUThreadFree release the Sora thread object that is previously allocated by

SoraUThreadAlloc.

56) SoraUThreadStart

BOOLEAN
SoraUThreadStart (
 IN HANDLE hThread,
 IN PSORA_UTHREAD_PROC pUserRoutine,

IN PVOID pParameter
);

Parameters

 hThread

 Handle to the Sora thread object.

 pUserRoutine

 Address of a routine that the Sora thread calls periodically.

 pParameter

 Parameter provided to the user routine.

Return Value

SoraUThreadStart returns TRUE if success; otherwise it returns FALSE.

Comments

 SoraUThreadStart starts a Sora exclusive thread that will call the user specified routine

periodically. The user routine should have the follow prototype

BOOLEAN (*PSORA_UTHREAD_PROC) (PVOID pParameter) ;

 The user routine should not contain long processing loops. Large processing tasks should be

divided into several small pieces and the user routine should return when one piece of work has

finished. If the user routine returns a value of TRUE, it will be immediately called again to

continue the rest processing work. A return value of FALSE indicates the thread should be

stopped. Alternatively, other thread can call SoraUThreadStop to terminate this Sora thread.

 Caution: Never call SoraUThreadStop to terminate a Sora thread from its user routine. It will

cause a dead-lock.

 118

57) SoraUThreadStop

VOID
SoraUThreadStop(

IN HANDLE hThread
);

Parameters

 hThread

 Handle of the Sora thread object.

Return Value

 None.

Comments

 SoraUThreadStop stops the running Sora thread.

Caution: Never call SoraUThreadStop to terminate a Sora thread from its user routine. It will

cause a dead-lock.

58) SoraUGetTxPacket

HRESULT
SoraUGetTxPacket(

OUT HANDLE * phPacket,
 OUT VOID ** ppAddr,
 OUT UINT * puLength,
 IN DWORD dwTimeout
);

Parameters

 phPacket

 Address of a pointer variable that receives the TX data packet handle.

 ppAddr

 Address of a pointer variable that receives the start address of a TX data packet.

 puLength

 Address of an unsigned integer that receives the length, in bytes, of the TX data packet.

 dwTimeout

 The timeout interval, in milliseconds, or INFINITE.

Return Value

SoraUGetTxPacket returns S_OK if a TX data packet is successfully obtained.

 It returns ERROR_CANCELLED if SoraUEnableGetTxPacket is not called or

 119

SoraUDisableGetTxPacket is called to disable the SDR application to obtain a data packet from

hwtest driver. SoraUGetTxPacket returns ERROR_INVALID_HANDLE if the UMX is not initialized.

SoraUGetTxPacket returns ERROR_TIMEOUT if the timeout interval has elapsed without

getting a data packet.

Comments

 SoraUGetTxPacket allows the SDR application to retrieve an Ethernet packet from the

HWTest driver, which has received these data packets from upper layers, e.g. TCP/IP, in the

Windows network stack. The SDR application can convert the packet format, modulate signal,

and finally transmit the signal through RCB and RF front-end boards.

59) SoraUCompleteTxPacket

HRESULT
SoraUCompleteTxPacket (
 IN HANDLE hPacket,

IN HRESULT hResult
);

Parameters

 hPacket

 Handle to a data packet obtained using SoraUGetTxPacket.

 hResult

 The resulting status of the packet.

Return Value

 SoraUCompleteTxPacket returns S_OK if success.

Comments

 SoraUCompleteTxPacket indicates the hwtest driver (then all upper layers in the network

stack) the completion of the data packet transmission. hResult is set to S_OK if the packet has

been successfully handled. Otherwise, a S_FAIL should be set. The SDR application should

eventually call SoraUCompleteTxPacket to release the resource associated to the data packet

along the network stack.

60) SoraUEnableGetTxPacket

HRESULT
SoraUEnableGetTxPacket ();

 120

Parameters

 None

Return Value

 SoraUEnableGetTxPacket returns S_OK if success.

Comments

 SoraUEnableGetTxPacket should be called before calling SoraUGetTxPacket.

61) SoraUDisableGetTxPacket

HRESULT
SoraUDisableGetTxPacket ();

Parameters

 None

Return Value

 SoraUDisableGetTxPacket returns S_OK if the function succeeds.

Comments

 SoraUDisableGetTxPacket releases all blocking calls to SoraUGetTxPacket and disables its

function. Subsequent calls to SoraUGetTxPacket will return ERROR_CANCELLED.

