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Abstract— “Big Data” in map-reduce (M-R) clusters is often
fundamentally temporal in nature, as are many analytics tasks
over such data. For instance, display advertising uses Behavioral
Targeting (BT) to select ads for users based on prior searches,
page views, etc. Previous work on BT has focused on techniques
that scale well for offline data using M-R. However, this approach
has limitations for BT-style applications that deal with temporal
data: (1) many queries are temporal and not easily expressible
in M-R, and moreover, the set-oriented nature of M-R front-
ends such as SCOPE is not suitable for temporal processing; (2)
as commercial systems mature, they may need to also directly
analyze and react to real-time data feeds since a high turnaround
time can result in missed opportunities, but it is difficult for
current solutions to naturally also operate over real-time streams.

Our contributions are twofold. First, we propose a novel
framework called TiMR (pronounced timer), that combines a
time-oriented data processing system with a M-R framework.
Users perform analytics using temporal queries — these queries
are succinct, scale-out-agnostic, and easy to write. They scale well
on large-scale offline data using TiMR, and can work unmodified
over real-time streams. We also propose new cost-based query
fragmentation and temporal partitioning schemes for improving
efficiency with TiMR. Second, we show the feasibility of this
approach for BT, with new temporal algorithms that exploit new
targeting opportunities. Experiments using real advertising data
show that TiMR is efficient and incurs orders-of-magnitude lower
development effort. Our BT solution is easy and succinct, and
performs up to several times better than current schemes in terms
of memory, learning time, and click-through-rate/coverage.

I. Introduction

The monitor-manage-mine (M3) loop is characteristic of

data management in modern commercial applications. We

monitor and archive incoming data, that is used to manage

daily business actions. We mine the collected “big data” to

derive knowledge that feeds back into the monitor or manage

phases.

For example, consider the problem of display advertising,

where ads need to be shown to users as they browse the

Web. Behavioral Targeting (BT) [34] is a recent technology,

where the system selects the most relevant ads to display

to users based on their prior behavior such as searches and

webpages visited. The system monitors users and builds a

behavior profile for each user, that consists of their historical

behavior. For example, the profile may consist of a count for

each page visited or keyword searched in a time-frame. The

ad click (and non-click) activity of users, along with their

corresponding behavior profiles, are collected and used during

the mining phase to build models. The models are used during

the operational (manage) phase to score users in real time, i.e.,

Time:long UserId:string AdId:string
(a) Impression Logs

Time:long UserId:string AdId:string
(b) Click Logs

Time:long UserId:string Keyword:string
(c) Search and Page View Logs

Fig. 1. Schemas for BT data.

predict the relevance of each ad for a current user who needs

to be delivered an ad. A common measure of relevance for BT

is click-through-rate (CTR) — the fraction of ad impressions

that result in a click [34, 7]. Many companies including Yahoo!

SmartAds, Microsoft adCenter, and DoubleClick use BT as a

core component of their advertising platform.

Advertisement systems collect and store data related to

billions of users and hundreds of thousands of ads. For

effective BT, multiple mining steps are performed on the data:

• Bot Elimination: We need to detect and eliminate bots,

which are automated surfers and ad clickers, to eliminate

spurious data before further analysis, for more accurate

BT.

• Data Reduction: The behavior profiles are sparse and of

extremely high dimensionality, with millions of possible

keywords and URLs. We need to get rid of useless

information in a manner that retains and amplifies the

most important signals for subsequent operations. Some

common data reduction schemes used for BT include (1)

mapping keywords to a smaller set of concepts by feature

extraction [12], and (2) retaining only the most popular

attributes by feature selection [7].

• Model Building and Scoring: We need to build accurate

models from the behavior profiles, based on historical

information about ad effectiveness. For example, Yan et

al. [34] propose grouping similar users using clustering,

while Chen et al. [7] propose fitting a Poisson distribution

as a model for the number of clicks and impressions.

Challenges and Contributions

In order to scale BT, the historical data is stored in a

distributed file system such as HDFS [16], GFS [14], or

Cosmos [6]. Systems usually analyze this data using map-

reduce (M-R) [10, 16, 20, 35] on a cluster. M-R allows the

same computation to be executed in parallel on different data

partitions.



The input data for BT consists of terabytes of logs. We show

a relevant subset of columns in these BT logs, in Figure 1.

Impression (or click) logs identify the timestamp when a user

is shown (or clicks on) an ad, while the search and page view

logs indicate when a user performs a search or visits a URL

(denoted by Keyword). A crucial observation is that this data is

fundamentally temporal (i.e., related closely to time). Further,

it turns out that many common analytics queries (including BT

steps) are also fundamentally temporal, requiring the ability to

perform time-ordered sequential processing over the data.

1) Scalability with Easy Specification

As warm-up, consider a very simple BT-style analytics

query:

Example 1 (RunningClickCount). A data analyst wishes to

report how the number of clicks (or average CTR) for each ad

in a 6-hour window, varied over a 30-day dataset. This query

may be used to determine periodic trends or data correlations.

This query is temporal in nature. Front-end languages such

as Pig [13], SCOPE [6], and DryadLinq [35] are frequently

used to make it easier to perform analytics. However, we will

see in Section III that queries such as the above involve non-

trivial temporal sequence computations that are fundamentally

difficult to capture using traditional database-style set-oriented

languages (in fact, we will see that the SCOPE query for

RunningClickCount is intractable). We could instead write

our own customized map-reduce code from scratch, but such

customized algorithms are more complex, harder to debug,

and not easily reusable (windowed aggregation in Microsoft

StreamInsight uses more than 3000 lines of code).

A more complex example is BT, where the analytics is

fundamentally temporal, e.g., whenever a user clicks or rejects

an ad, we need access to the last several hours of their behavior

data as of that time instant. This is useful for detecting subtle

behavior correlations for BT, as the example below indicates.

Example 2 (Keyword Trends). A new television series (iCarly)

targeted towards the teen demographic is aired, resulting in

a spike in searches for that show. Interestingly, we found

(see Section V) that searches for the show were strongly

correlated with clicks on a deodorant ad. Other keywords pos-

itively correlated with this ad included “celebrity”, “exam”,

“chat”, “music”, etc. In contrast, keywords such as “jobless”,

“credit”, and “construction” were negatively correlated with

clicks on the same ad.

The temporal-analytics-temporal-data characteristic is not

unique to BT, but is true for many other large-scale applica-

tions such as network log querying [24], collaborative filtering

over community logs [9], call-center analysis, financial risk

analysis, and fraud detection. Given the inherent complexity of

temporal analytics on big data, we need a mechanism whereby

analysts can directly express time-based computations easily

and succinctly, while allowing scalable processing on a cluster.

This can enable quick building, debugging, backtesting, and

deployment of new algorithms for such applications.

2) Real-Time-Readiness — Closing the M3 Loop

As commercial systems mature, they may wish to close the

M3 loop, operating directly on real-time data feeds instead of

performing offline computations. For example, RunningClick-

Count could operate over click feeds and produce an online

tracker. In case of BT, the inability to operate directly on real-

time data can result in missed opportunities—in Example 2,

we would like to immediately detect a correlation between

searches for “iCarly” and clicks on deodorant ads, and start

delivering deodorant ads to such users.

Current BT schemes [7, 19, 34] suggest loading data into

a distributed file system, followed by several map-reduce

stages, each performing customized and often non-incremental

computations on offline data. Such solutions cannot easily be

converted or re-used for live data, since they are not written

using an explicit temporal or incremental specification.

Another alternative is to write continuous queries deployed

over a data stream management system (DSMS) [3]. This

works well for real-time data, but a DSMS cannot perform

massive-scale map-reduce-style offline data processing that

is dominant in commercial systems today. Implementing a

distributed DSMS infrastructure to process offline data at

such scales is difficult, with issues such as (1) locality-based

data partitioning; (2) efficient re-partitioning; (3) network-

level transfer protocols; (4) system administration; and (5) the

unsuitability and high overhead of low-latency process-pairs-

based failure recovery schemes [4] used by real-time DSMSs.

Map-reduce excels at solving these problems for offline data.

If new applications are designed specially for real-time, we

incur the cost of maintaining two disparate systems as we

migrate to real-time. Further, we cannot first debug, backtest,

or deploy the same solutions over large-scale offline data using

current map-reduce clusters, before switching to real-time.

First Contribution: We propose (§ III) a novel framework

called TiMR (pronounced timer), to process temporal queries

over large volumes of offline data. TiMR combines an un-

modified single-node DSMS with an unmodified map-reduce

distributed computing platform. Users perform analytics using

a temporal language (e.g., LINQ [30] or StreamSQL). The

queries run efficiently on large-scale offline temporal data

in a map-reduce cluster, and are naturally real-time-ready.

TiMR leverages the temporal algebra underlying the DSMS for

repeatable behavior across runs. Interestingly, recent proposals

to pipeline M-R [8, 23] can allow TiMR to also operate over

live streams (§ VII). TiMR also incorporates several features

for high performance, such as temporal partitioning (§ III-B)

and cost-based query fragmentation (§ VI).

3) New Temporal Algorithms and Queries for BT

Given a framework to scalably process temporal queries,

a natural question is: are temporal queries a good choice for

complex big data applications such as BT? Further, since exist-

ing BT proposals are intimately tied to the map-reduce offline

computation model, there is a need to rethink BT algorithms

for every BT stage described earlier, so that they can leverage

the inherent temporal nature of such computations.



Fig. 2. Events, CQ plans, lifetimes. Fig. 3. Windowed count CQ plan.
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Second Contribution: We propose (§ IV) a new end-to-end

BT solution, with scalable temporal queries for each BT phase.

Of particular interest is a novel temporal algorithm for data

reduction that uses statistical hypothesis testing for detecting

and exploiting trends such as those depicted in Example 2.

While our BT solution is innovative in and of itself, it

demonstrates the feasibility and generality of using temporal

queries for a complex application that operates over large-scale

temporal data. Our BT solution, replacing a complex custom

offline-specific ad infrastructure, uses only 20 temporal queries

(in LINQ) and delivers much better targeting results.

We evaluate (§ V) TiMR as well as our BT solution, using

real data from our ad platform. We show that TiMR is highly

scalable and efficient, and incurs orders-of-magnitude lower

development cost. Further, our temporal queries for BT reduce

memory requirements and learning time by up to an order-of-

magnitude. They deliver better CTR (by up to several factors)

and coverage than current schemes, even before taking the

future potential of quicker targeting into account.

We use Microsoft StreamInsight [2] and Dryad [20] as

running examples of DSMS and map-reduce, but the concepts

are applicable to other DSMS and map-reduce products.

II. Background and Alternative Solutions

A. Data Stream Management Systems

A DSMS [1, 3, 17] enables applications to execute long-

running continuous queries (CQs) over data streams in real

time. DSMSs are used for efficient real-time processing in ap-

plications such as fraud detection, monitoring RFID readings

from sensors, and algorithmic stock trading. While DSMSs

target real-time data, they usually [5, 17, 22, 31] incorporate

a data model, with a temporal algebra and query semantics

based on early work on temporal databases [21].

A.1) Streams and Events

A stream is a potentially unbounded sequence e1, e2, . . . of

events. An event is a notification from outside (e.g., sensor)

that consists of a payload and a control parameter that

provides event metadata. Two common [5, 29, 31] control

parameters for events are: (1) an application-specified event

generation time or timestamp LE, and (2) a time window

[LE,RE) that indicates the period over which the event in-

fluences output. For “instantaneous” events with no lifetime,

called point events, RE is set to LE+δ where δ is the smallest

possible time-unit. A stream can be viewed as a changing

“temporal relation”. Figure 2 (right) shows 4 events e1, . . . , e4,

corresponding to 4 power meter readings. The corresponding

temporal relation depicting events with lifetimes is also shown.

A.2) Queries and Operators

Users write CQs using languages such as StreamSQL

(StreamBase and Oracle CEP) or LINQ (StreamInsight). The

query is converted into a CQ plan, that consists of a tree of

temporal operators, each of which performs some transfor-

mation on its input streams (leaves) and produces an output

stream (root). Semantics of operators are usually defined in

terms of their effect on the temporal relation corresponding

to input and output streams, and are independent of when

tuples are actually processed (system time). We summarize

the relevant operators below; more details on operators and

related issues such as time progress and state cleanup can be

found in [5, 17, 22, 31].

Filter/Project Filter is a stateless operator. It selects events

that satisfy certain specified conditions. For instance, the query

plan in Figure 2 detects non-zero power readings (the output

events and relation are also shown). Project is a stateless

operator that modifies the output schema (e.g., add/remove

columns or perform stateless data transformations).

Windowing and Aggregation Windowing is performed us-

ing the AlterLifetime operator, which adjusts event LE and RE;

this controls the time range over which an event contributes

to query computation. For window size w, we simply set

RE = LE + w. This ensures that at any time t, the set of

“active” events, i.e., events whose lifetimes contain t, includes

all events with timestamp in the interval (t − w, t].

An aggregation operator (Count, Sum, Min, etc.) computes

and reports an aggregate result each time the active event set

changes (i.e., every snapshot). Continuing the Filter example,

suppose we wish to report the number of non-zero readings

in the last 3 seconds. The CQ plan and events are shown in

Figure 3. We use AlterLifetime to set RE = LE + 3 (we show

this as a Window operator with w = 3 for clarity), followed

by a Count operator. The CQ reports precisely the count over

the last 3 secs, reported whenever the count changes.

GroupApply, Union, Multicast The GroupApply operator

allows us to specify a grouping key, and a query sub-plan to

be “applied” to each group. Assume there are multiple meters,

and we wish to perform the same windowing count for each

meter (group by ID). The CQ of Figure 4 (left) can be used to

perform this computation. A related operator, Union, simply

merges two streams together, while a Multicast operator is

used to send one input stream to two downstream operators.



TemporalJoin and AntiSemiJoin The TemporalJoin oper-

ator allows correlation between two streams. It outputs the

relational join (with a matching condition) between its left and

right input events. The output lifetime is the intersection of the

joining event lifetimes. Join is stateful and usually implements

a symmetric hash join algorithm; the active events for each

input are stored in a separate internal join synopsis. For ex-

ample, the CQ in Figure 4 (right) computes time periods when

the meter reading increased by more than 100 mW, compared

to 5 secs back. A common application of TemporalJoin is

when the left input consists of point events — in this case,

TemporalJoin effectively filters out events on the left input that

do not intersect any previous matching event lifetime in the

right input synopsis. A related operator, AntiSemiJoin, is used

to eliminate point events from the left input that do intersect

some matching event in the right synopsis.

User-Defined Operators DSMSs also support incremental

user-defined operators (UDOs), where the user provides code

to perform computations over the (windowed) input stream.

B. The Map-Reduce (M-R) Paradigm

Many systems have embraced the map-reduce paradigm

of distributed storage and processing on large clusters of

shared-nothing machines over a high-bandwidth interconnect,

for analyzing massive offline datasets. Example proposals

include MapReduce/SawZall [10], Dryad/DryadLinq [20, 35],

and Hadoop [16], where each query specifies computations

on data stored in a distributed file system such as HDFS [16],

GFS [14], Cosmos [6], etc. Briefly, execution in these sys-

tems consists of one or more stages, where each stage has

two phases. The map phase defines the partitioning key (or

function) to indicate how the data should be partitioned in the

cluster, e.g., based on UserId. The reduce phase then performs

the same computation (aggregation) on each data partition in

parallel. The computation is specified by the user, via a reducer

method that accepts all rows belonging the same partition, and

returns result rows after performing the computation.

Under the basic model, users specify the partitioning key

and the reducer method. Recently, several higher-level script-

ing languages such as SCOPE and Pig have emerged — they

offer easier relational- and procedural-style constructs that are

compiled down to multiple stages of the basic M-R model.

C. Strawman Solutions

Refer to Example 1 (RunningClickCount), which uses ad-

vertising data having the schemas depicted in Figure 1. As

discussed in Section I, there are two current solutions:

• We can express it using SCOPE, Pig, DryadLinq, etc.

For instance, the following SCOPE queries (note that the

syntax is similar to SQL) together produce the desired

output.
OUT1 = SELECT a.Time, a.AdId, b.Time as prevTime

FROM ClickLog AS a INNER JOIN ClickLog AS b

WHERE a.AdId=b.AdId AND b.Time > a.Time - 6

hours;

OUT2 = SELECT Time, AdId, COUNT(prevTime)

FROM OUT1 GROUP BY Time, AdId;

Unfortunately, this query is intractable because we are

performing a self equi-join of rows with the same AdId,

which is prohibitively expensive. The fundamental prob-

lem is that the relational-style model is unsuitable for

sequence-based processing, and trying to force its usage

can result in inefficient (and sometimes intractable) M-R

plans.

• A more practical alternative is to map (partition) the

dataset and write our own reducers that maintain the

necessary in-memory data structures to process the query.

In case of RunningClickCount, we partition by AdId,

and write a reducer that processes all entries in Time

sequence. The reducer maintains all clicks and their

timestamps in the 6-hour window in a linked list. When a

new row is processed, we look up the list, delete expired

rows, and output the refreshed count. This solution has

several disadvantages: (1) it can be inefficient if not

implemented carefully, (2) it is non-trivial to code, debug,

and maintain; (3) it cannot handle deletions or disordered

data without complex data structures (e.g., red-black

trees), and hence requires pre-sorting of data, and (4)

it is not easily reusable for other temporal queries. For

comparison, the efficient implementation of aggregation

and temporal join in StreamInsight consists of more than

3000 lines of high-level code each.

Further, neither of these solutions can be reused easily to

directly operate over streaming data feeds.

III. The TiMR Framework

TiMR is a framework that transparently combines a map-

reduce (M-R) system with a temporal DSMS. Users express

time-oriented analytics using a temporal (DSMS) query lan-

guage such as StreamSQL or LINQ. Streaming queries are

declarative and easy to write/debug, real-time-ready, and often

several orders of magnitude smaller than equivalent custom

code for time-oriented applications. TiMR allows the temporal

queries to transparently scale on offline temporal data in a

cluster by leveraging existing M-R infrastructure.

Broadly speaking, TiMR’s architecture of compiling higher

level queries into M-R stages is similar to that of Pig/SCOPE.

However, TiMR specializes in time-oriented queries and data,

with several new features such as: (1) the use of an unmodified

DSMS as part of compilation, parallelization, and execution;

and (2) the exploitation of new temporal parallelization op-

portunities unique to our setting. In addition, we leverage the

temporal algebra underlying the DSMS in order to guarantee

repeatability across runs in TiMR within M-R (when handling

failures), as well as over live data.

A. TiMR Architecture

At a high level, TiMR divides the temporal CQ plan (derived

from a high-level temporal query) into partitionable subplans.

Each subplan is executed as a stage in unmodified M-R, with

the unmodified single-node DSMS embedded within reducers,

to process rows as events. Execution on TiMR provides the

benefit of leveraging the efficient DSMS sequence processing
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engine, and avoids the need for customized and often complex

implementations for large-scale temporal analytics.

TiMR operates in multiple steps (see Figure 5):

1) Parse Query Users write temporal queries in the DSMS

language, and submit them to TiMR. This step uses the DSMS

query translation component to convert the query from a high-

level language into a CQ plan. The CQ plan ensures logical

query correctness, but does not consider parallel execution.

In our running example (RunningClickCount), the query can

be written in LINQ as follows (the code for StreamSQL is

similar). The corresponding CQ plan is shown in Figure 6.

var clickCount = from e in inputStream

where e.StreamId == 1 // filter on some column

group e by e.AdId into grp // group-by, then window

from w in grp.SlidingWindow(TimeSpan.FromHours(6))

select new Output { ClickCount = w.Count(), .. };

2) Annotate Plan The next step adds data-parallel execution

semantics to the CQ plan. A partition of a stream is defined as

the subset of events that reside on a single machine. A stream

S i is said to be partitioned on a set of columns X, called

the partitioning key, if it satisfies the condition ∀e1, e2 ∈ S i :

e1[X] = e2[X] =⇒ P(e1) = P(e2), where P(e) denotes the

partition (or machine) assigned to event e and e[X] denotes

the corresponding subset of column values in event e.

Parallel semantics are added to the CQ plan by inserting

logical exchange operators into the plan. An exchange opera-

tor EX logically indicates a repartitioning of the stream to key

X. We can annotate a CQ plan by allowing the query writer to

provide explicit annotations in the form of hints, along with

query specification. Alternatively, we can build an optimizer

to choose the “best” annotated plan for a given CQ. This is a

non-trivial problem, as the following example illustrates.

Example 3. Consider a CQ plan with two operators, O1

followed by O2. Assume O1 has key {UserId,Keyword}, while

O2 has key {UserId}. A naive annotation would partition by

{UserId,Keyword} before O1 and repartition by {UserId}

before O2. However, based on statistics such as repartitioning

cost, we may instead partition just once by {UserId}, since

this partitioning implies a partitioning by {UserId,Keyword}.

We encountered this scenario in BT and found the latter choice

to be 2.27× faster for a real dataset (Sections IV and V).

Individual operator semantics and functional dependencies

in the data govern the space of valid annotated plans. For

example, a GroupApply with key X can be partitioned by X

or any subset of X. The details of parallelization opportunities

presented by operators, and how we can leverage database

query optimization [15, 36] to find a low-cost annotated CQ

plan, are covered in Section VI. In Section III-B, we cover

a new form of temporal parallelism, that exploits bounded

windows to partition data using the time attribute.

Figure 7 shows an annotated CQ plan for RunningClick-

Count. This simple plan contains one exchange operator that

partitions the stream by {AdId}; this plan is valid since

RunningClickCount performs GroupApply with key AdId.

3) Make Fragments This step converts the annotated plan

into a series of computation stages as follows. Starting from

the root, it performs a top-down traversal of the tree and

stops when it encounters an exchange operator along all paths.

The query subplan encountered during the traversal is called

a query fragment, and the fragment is parallelizable by the

partitioning set of the encountered exchange operators1; this

set is referred to as the partitioning key of the fragment.

The traversal process is repeated, generating further {fragment,

key} pairs until we reach the leaves of the CQ plan. In our

running example, we create a single fragment consisting of

the original RunningClickCount CQ plan, with AdId as key.

A more complex annotated plan outline is shown in Figure 8,

along with the query fragments.

4) Convert to M-R The final step converts the set of

{fragment, key} pairs into a corresponding set of M-R stages,

as follows. Assume that each fragment has one input and one

output stream (this assumption is relaxed in Section III-C).

For each fragment, TiMR creates a M-R stage that partitions

(maps) its input dataset by the partitioning key. M-R invokes a

stand-alone reducer method P for each partition in parallel. P

is constructed by TiMR using the query fragment. P reads rows

of data from the partition (via M-R), and converts each row

1These partitioning sets are guaranteed to be identical, since multi-input
operator such as TemporalJoin have identically partitioned input streams.



into an event using a predefined Time column2. Specifically,

it sets event lifetime to [Time,Time+ δ) (point event) and the

payload to the remaining columns. P then passes these events

to the original unmodified DSMS via a generated method P′.

P′ is an embedded method that can execute the original CQ

fragment using a DSMS server instance created and embedded

in-process. The DSMS performs highly efficient in-memory

event processing within P′ and returns query result events to

P, which converts the events back into rows that are finally

passed back to M-R as the reducer output.

In our running example, TiMR sets the partitioning key to

AdId, and generates a stand-alone reducer P that reads all

rows (for a particular AdId), converts them into events, and

processes the events with the above CQ, using the embedded

DSMS. Result events are converted back into rows by TiMR

and returned to M-R as reducer output.

B. Temporal Partitioning

Many CQs (e.g., RunningClickCount for a single ad) may

not be partitionable by any data column. However, if the CQ

uses a window of width w, we can partition computation based

on time as follows. We divide the time axis into overlapping

spans S 0, S 1, . . ., such that the overlap between successive

spans is w. Each span is responsible for output during a time

interval of width s, called the span width. Let t denote a

constant reference timestamp. Span S i receives events with

timestamp in the interval [t+ s · i−w, t+ s · i+ s), and produces

output for the interval [t + s · i, t + s · i + s). Note that some

events at the boundary between spans may belong to multiple

partitions.

The overlap between spans S i−1 and S i ensures that the span

S i can produce correct output at time t + s · i; this is possible

only if a window w of events is available at that time, i.e., S i

receives events with timestamps from t + s · i −w onwards. In

case of multiple input streams in a fragment, the span overlap

is the maximum w across the streams. A greater span width s

(relative to w) can limit redundant computation at the overlap

regions, at the expense of fewer data partitions. Temporal

partitioning can be very useful in practice, since it allows

scaling out queries that may not be otherwise partitionable

using any payload key. In Section V, we will see that a sliding

window aggregate query without any partitioning key, gets a

speedup of 18× using temporal partitioning.

C. Discussion

Note that we do not modify either M-R or the DSMS in

order to implement TiMR. TiMR works independently and

provides the plumbing necessary to interface these systems

for large-scale temporal analytics. From M-R’s perspective,

the method P is just another reducer, while the DSMS is

unaware that it is being fed data from the file system via M-

R. This feature makes TiMR particularly attractive for use in

2The first column in source, intermediate, and output data files is con-
strained to be Time (i.e., the timestamp of activity occurrence), in order
for TiMR to transparently derive and maintain temporal information. The
extension to interval events is straightforward.

conjunction with commercial DSMS and map-reduce products.

We discuss some important aspects of TiMR below.

1) Online vs. Offline The use of a real-time DSMS for

offline data is possible because of the well-defined temporal

algebra upon which the DSMS is founded. The DSMS only

uses application time [31] for computations, i.e., timestamps

are a part of the schema, and the underlying temporal algebra

ensures that query results are independent of when tuples

physically get processed (i.e., whether it runs on offline or real-

time data). This aspect also allows TiMR to work well with

M-R’s failure handling strategy of restarting failed reducers—

the newly generated output is guaranteed to be identical when

we re-process the same input partition.

It is important to note that TiMR enables temporal queries on

large-scale offline data, and does not itself attempt to produce

low-latency real-time results for real-time streams (as an aside,

TiMR can benefit from pipelined M-R; cf. Section VII). The

queries of course are ready for real-time execution on a DSMS.

Conversely, real-time DSMS queries can easily be back-tested

and fine-tuned on large-scale offline datasets using TiMR.

2) Push vs. Pull One complication is that the map-reduce

model expects results to be synchronously returned back from

the reducer, whereas a DSMS pushes data asynchronously

whenever new result rows get generated. TiMR handles this

inconsistency as follows: DSMS output is written to an in-

memory blocking queue, from which P reads events syn-

chronously and returns rows to M-R. Thus, M-R blocks

waiting for new tuples from the reducer if it tries to read a

result tuple before it is produced by the DSMS.

3) Partitioning M-R invokes the reducer method P for each

partition; thus, we instantiate a new DSMS instance (within P)

for every AdId in RunningClickCount, which can be expen-

sive. We solve this problem by setting the partitioning key to

hash(AdId) instead of AdId, where hash returns a hash bucket

in the range [1...#machines]. Since the CQ itself performs a

GroupApply on AdId, output correctness is preserved.

4) Multiple Inputs and Outputs While the vanilla M-R

model has one logical input and output, current implementa-

tions [6, 25] allow a job to process and produce multiple files.

In this case, fragments with multiple inputs and/or outputs (see

Figure 8) can be directly converted into M-R stages.

We can support the vanilla M-R model by performing an

automated transformation for CQ fragments and intermediate

data. Briefly, we union the k inputs into a common schema

with an extra column C to identify the original source, before

feeding the reducer. Within the CQ, we add a multicast

with one input and k outputs, where each output selects a

particular source (by filtering on column C) and performs

Project to get back the original schema for that stream. A

similar transformation is done in case a fragment produces

multiple outputs.

In case of BT, we can avoid the above transformation step

for input data as follows. The BT streams of Figure 1 are

instead directly collected and stored using the unified schema

of Figure 9. Here, we use StreamId to disambiguate between



Time:long StreamId:int UserId:string KwAdId:string

Fig. 9. Unified schema for BT data.

the various sources. Specifically, StreamId values of 0, 1, and

2 refer to ad impression, ad click, and keyword (searches and

pageviews) data respectively. Based on StreamId, the column

KwAdId refers to either a keyword or an AdId. BT queries

are written to target the new schema, and thus operate on a

single input data source.

We implemented TiMR with StreamInsight and SCOPE/Dryad

to run queries over large-scale advertising data, and found it to

be scalable and easy-to-use. We now switch gears, and focus

on a real-world validation of TiMR’s value by proposing new

temporal-aware BT techniques and showing how TiMR can

implement these techniques efficiently and with minimal effort.

IV. BT Algorithms with TiMR

Recall that BT uses information collected about users’

online behavior (such as Web searches and pages visited) in

order to select which ad should be displayed to that user. The

usual goal of BT is to improve CTR by showing the most

relevant ad to each user based on an analysis of historical

behavior.

A. Overview

We refer to observed user behavior indicators such as search

keywords, URLs visited, etc. as features. For simplicity, we

will use the terms feature and keyword interchangeably in this

paper. We next formally define the concept of user behavior

profile (UBP) [7, 34] which basically represents user behavior

in the Bag of Words model [28], where each word is a feature.

Definition 1 (Ideal UBP). The ideal user behavior profile for

each user Ui at time t and over a historical time window pa-

rameter of τ (time units), is a real-valued array Ū t
i
= 〈U t

i,1
, . . .〉

with one dimension for each feature (such as search keyword

or URL). The value U t
i, j

represents the weight assigned to

dimension j for user Ui, as computed using their behavior

over the time interval [t − τ, t).

A common value assigned to U t
i, j

is simply the number of

times that user Ui searched for term j (or visited the webpage,

if j is a URL) in the time interval [t−τ, t). Common variations

include giving greater importance to more recent activities [7]

by using a weighting factor as part of the weight computation.

For each ad, we collect prior ad impression/click information

associated with user behavior profiles D that consists of n

observations (corresponding to n impressions of this ad), D =

{(x̄1, y1), . . . , (x̄n, yn)}, where x̄k is the behavior profile of the

user at the time when she is displayed with this ad, and yk

indicates whether she clicked (yk = 1) this ad or not (yk = 0).

The core insight behind our BT approach is that ad click

likelihood depends only on the UBP at the time of the

ad presentation. Based on this insight, our ideal goal is to

accurately estimate (for each ad) the expected CTR given a

UBP Ū t′

i
at any future time t′.

Fig. 10. BT architecture.
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Fig. 11. Bot elimination.

Practical Restrictions In most commercial platforms, the

ideal UBPs are prohibitively large, with billion of users and

millions of keywords/URLs. Thus, we need effective feature

selection techniques to make subsequent CTR estimation

tractable and accurate. In case of parameter τ, commercial

systems consider relatively long-term user behavior (e.g.,

weeks) while other prefer short-term behavior (less than a

day). Prior work [34] over real data has shown that short-

term BT can significantly outperform long-term BT. Based on

this finding, we use τ = 6 hours is this work.

Note that it is not feasible to build an estimator for every ad.

We need to group ads into ad classes and build one estimator

for each class. One solution is to group ads manually (e.g.,

“electronics”, “games”). A better alternative is to derive data-

driven ad classes, by grouping ads based on the similarity of

users who click (or reject) the ad. We do not focus on these

choices, but use the term ad to generally refer to ad classes.

B. System Architecture for BT

We now present temporal algorithms for end-to-end BT,

starting with data having the schema in Figure 9. We show

CQ plans broken into separate steps for readability.

Figure 10 shows our BT architecture. We first get rid

of bots, and then generate per-impression UBPs, which are

associated with labels (indicating impression being clicked

or not) to compose training data for feature selection. The

reduced training data (with selected features) are fed to a

model builder, which produces a model to predict expected

CTR for each ad, i.e., the likelihood for the ad to be clicked.

The models are used to score incoming UBPs in real-time,

predict CTR for each ad, and hence choose the ad with the

maximum expected benefit (including CTR and other factors)

to be delivered. To ease presentation, we describe the steps of

generating training data, feature selection, and model building

and scoring for a given ad in the following sections.

B.1) Bot Elimination

We first get rid of users that have “unusual” behavior

characteristics. We define a bot as a user who either clicks

on more than T1 ads, or searches for more than T2 keywords

within a time window τ. In a one week dataset, we found

that 0.5% of users are classified as bots using a threshold of

100, but these users contribute to 13% of overall clicks and



searches. Thus, it is important to detect and eliminate bots

quickly, as we receive user activity information; otherwise, the

actual correlation between user behavior and ad click activities

will be diluted by the spurious behavior of bots.

Implementation The BotElim CQ shown in Figure 11 gets

rid of bots. We first create a hopping window (implemented

using the AlterLifetime operator from Section II-A) with hop

size h = 15 mins and window size w = 6 hours, over the

original composite source S 1. This updates the bot list every

15 mins using data from a 6 hour window. The GroupApply

(with grouping key UserId) applies the following sub-query

to each UserId sub-stream. From the input stream for that

user, we extract the click and keyword data separately (by

filtering on StreamId), perform the count operation on each

stream, filter out counter events with value less than the

appropriate threshold (T1 or T2), and use Union to get one

stream S 2 that retains only bot users’ data. We finally perform

an AntiSemiJoin (on UserId) of the original point event stream

S 1 with S 2 to output non-bot users’ data. Note that UserId

serves as the partitioning key for BotElim.

B.2) Generating Training Data

This component (GenTrainData) is used by feature selec-

tion, model building, and scoring. The goal is to generate

training data of positive and negative examples in the form

〈x̄ = UBP, y = click or not〉. Positive examples include the

ad impressions being clicked (i.e., y = 1); negative examples

include the ad impressions not being clicked (i.e., y = 0); and

UBP is the user behavior profile defined at the time of the ad

impression.

We first detect non-clicks (ad impressions that do not result

in a click) by eliminating impressions that are followed by

a click (by the same user) within a short time d (clicks are

directly available as input). We also generate per-user UBPs

based on user searches and pageviews. Finally, whenever there

is an click/non-click activity for a user, a training example is

generated by joining the activity with that user’s UBP.

Implementation Refer to Figure 12. We first get rid of

impressions that resulted in a click, by performing an Anti-

SemiJoin of impression point events with click data whose

LE is moved d = 5 minutes into the past. We call the

resulting composite stream of clicks and non-clicks S 1.
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TemporalJoin (UserId) 

GroupApply 

(UserId, Keyword) 

Count 

Filter 
StreamId=2 

AntiSemiJoin 
(UserId, AdId) 

Filter 
StreamId=0 

Lifetime 
LE=OldLE-5 

Filter 
StreamId=1 

Union 

Fig. 12. GenTrainData

We extract the keyword

stream from the input us-

ing a filter on StreamId, and

then perform a GroupAp-

ply by {UserId, Keyword}:

for each substream, we per-

form windowing (w =

τ) followed by Count, to

produce a stream S 2 of

{UserId, Keyword, Count},

where Count is the num-

ber of times Keyword was

used by UserId in the last 6

hours. Note that this is exactly the UBPs (in sparse represen-

tation) refreshed each time there is user activity. Finally, we

perform a TemporalJoin (on UserId) between S 1 and S 2 to

output, for each click and non-click, the associated UBP in

sparse format.

GenTrainData scales well using UserId as partitioning key.

Note that we could instead have partitioned by {UserId,

Keyword} for generating UBPs, but this is not useful since

(1) there is already a large number of users for effective

parallelization, and (2) we anyway need to partition by UserId

alone for the subsequent TemporalJoin. This optimization

scenario was depicted in Example 3, and is evaluated later.

B.3) Feature Selection

In the training data of 〈x̄ = UBP, y = click or not〉, the

ideal UBPs have very large dimensionality; in our experiments

we have over 50M distinct keywords as original dimensions.

It is impractical and meaningless to perform data analysis

in such high-dimensional space, since most of these features

are not useful to predict CTR of an ad, and it unnecessarily

requires too much training data for model learning. We thus

need to do feature selection for both computational feasibility

and accuracy of model learning and scoring.

Several scalable techniques have been proposed for feature

selection in BT. For example, we can retain the most popular

keywords [7]. However, this may retain some common search

keywords (e.g., “facebook”, “craigslist”, etc.) that may not be

good predictors for ad click or non-click. Another alternative

is to map keywords into a smaller domain of categories in a

concept hierarchy such as ODP [27] (e.g., electronics, fitness,

etc.). However, this technique cannot adapt to new keywords

and user interest variations. Further, the manual update of the

concept hierarchy introduces delays and inaccuracies.

We propose keyword elimination based on statistical hy-

pothesis testing [11]. The basic intuition is that we want to

retain any keyword that we can establish with confidence to

be positively (or negatively) correlated with ad clicks, based

on the relative frequency of clicks with that keyword in the

UBP (compared to clicks without that keyword).

We first get rid of keywords without sufficient support

to make the hypothesis testing sound; we define support as

the number of times that a keyword appears in the UBPs

associated with ad clicks (not ad impressions without click).

Next, we use the unpooled two-proportion z-test [11] to derive

a score for each keyword, that is representative of the relevance

of that keyword to the ad. Highly positive (or negative) scores

indicate a positive (or negative) correlation to ad clicks. We can

then place a threshold on the absolute score to retain only those

keywords that are relevant to the ad in a positive or negative

manner. Let CK and IK denote the number of clicks and

impressions respectively, for a particular ad and with keyword

K in the user’s UBP at the time of impression occurrence.

Further, let CK̄ and IK̄ denote total clicks and impressions

respectively for the ad, without keyword K. We have the CTR

(probability of clicking) with keyword pK = CK/IK and the

CTR without keyword pK̄ = CK̄/IK̄ . The intuition is for a



given keyword, if there is no significant difference between

the two CTRs with and without the keyword in UBFs at ad

impressions, it means this keyword is not relevant to the ad.

Formally, the null hypothesis for the statistical testing is {

H0: keyword K is independent of clicks on the ad }. We can

compute the z-score for this hypothesis as:

z =
pK−pK̄

√

pK (1−pK )

IK
+

pK̄ (1−pK̄ )

IK̄

given that we have at least 5 independent observations of clicks

and impressions with and without keyword K. The z-score

follows the N(0, 1) Gaussian distribution if H0 holds. Hence,

at 95% confidence level, if |z| > 1.96, we will reject hypothesis

H0, and thus retain keyword K. An appropriate threshold for

|z| enables effective data-driven keyword elimination.

Implementation As shown in Figure 13, we first compute

the total number of non-clicks and clicks using GroupApply

(by AdId) followed by Count with h covering the time interval

over which we perform keyword elimination. This sub-query

(called TotalCount) is partitioned by AdId. Next, we process

the output of GenTrainData to compute the number of non-

clicks and clicks with each keyword K. In this sub-query

(called PerKWCount), the partitioning key is {AdId, Keyword}.
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Fig. 13. Feature selection.

These two streams

are joined to produce

a stream with one tu-

ple for each {AdId,

Keyword} pair, that

contains all the in-

formation to compute

the z-test. We com-

pute the z-score us-

ing a UDO (cf. Sec-

tion II-A), and a filter

eliminates keywords

whose z-scores fall

below a specified threshold. This sub-query, called CalcScore,

uses {AdId, Keyword} as partitioning key. Finally, we perform

a TemporalJoin (not shown) of the original training data with

the reduced keyword stream to produce the reduced training

data.

B.4) Model Generation and Scoring

We have described how to use feature selection to generate

reduced training data of the form 〈x̄ = UBP, y = click or not〉

for each ad impressions. We use the training data to learn a

logistic regression (LR) model as y = f (x̄) = 1

1+e−(w0+w̄T x̄)
, where

w̄ is called the weight vector and f is the logistic function [11].

For a user with UBPi, the model can predict the probability

f (UBPi) that this user will click the ad if it is shown to her.

Note that the predicted value f (UBPi) is between 0 and 1,

measuring the probability of click. We choose LR because of

its simplicity, good performance, and fast convergence.

One challenge with model learning is that the input data is

highly skewed with mostly negative examples, as the CTR is

typically lower than 1%. Hence, we create a balanced dataset

by sampling the negative examples. This implies that the LR

prediction y is no longer the expected CTR, whereas we need

CTR to compare predictions across ads. We can estimate

the CTR for a given prediction y as follows: we compute

predictions for a separate validation dataset, choose the k

nearest validation examples with predictions closest to y, and

estimate CTR as the fraction of positive examples in this set.

When we have the opportunity to serve a user with an ad,

the user’s UBP is scored to get a list of ads ranked by CTR.

The ad delivery engine uses this list to choose an ad placement.

Implementation Model generation is partitionable by AdId.

Our input (for each ad) is a stream of 〈UBP, outcome〉

examples. We use a UDO (cf. Section II-A) with window,

to perform in-memory LR on this data. The hop size deter-

mines the frequency of performing LR, while window size

determines the amount of training data used for learning. The

output model weights are lodged in the right synopsis of a

TemporalJoin operator (for scoring), so we can generate a

prediction whenever a new UBP is fed on its left input.

Our BT algorithms are fully incremental, using stream

operators. We can plug-in an incremental LR algorithm, but

given the speed of LR convergence (due to effective data

reduction), we find periodic recomputation of the LR model,

using a UDO over a hopping window, to work well for BT.

V. Evaluation

A. Setup and Implementation

We use a dataset consisting of one week’s worth of logs

(several terabytes) collected from our ad platform. The logs

consist of clicks, impressions, and keyword searches, and have

the composite schema shown in Figure 9. We split the dataset

into training data and test data equally. We consider the 10

most popular ad classes in our experiments. Note that real-

time event feeds would also naturally follow the same schema.

There are around 250M unique users and 50M keywords in

the log. Our experimental cluster consists of around 150 dual

core 2GHz machines with 8 GB RAM, and uses Cosmos [6]

as the distributed file system.

We implemented the TiMR framework (see Section III) to

work with StreamInsight and SCOPE/Dryad. We then used

TiMR for BT, by implementing the solutions proposed in

Section IV. In order to compare against TiMR, we also

implemented our BT solution using hand-written C# reducers.

B. Evaluating TiMR

Implementation Cost We use lines (semicolons) of code

as a proxy for development effort. Figure 14(left) shows that

end-to-end BT using TiMR uses 20 easy-to-write temporal

queries in LINQ, compared to 360 lines with custom reducers.

The custom solution was more difficult to debug and optimize

(several weeks of effort), makes multiple passes over the data,

and cannot be used directly with real-time event feeds.

Performance Our first reducer implementations were too

slow due to subtle data structure inefficiencies. We carefully

optimized the reducer and found the runtime to be around

3.73 hours for end-to-end BT over the log. In comparison,
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Fig. 16. Time-partitioning.

Highly Positive Highly Negative

Keyword Score Keyword Score

celebrity 11.0 verizon −1.3

icarly 6.7 construct −1.4

tattoo 8.0 service −1.5

games 6.5 ford −1.6

chat 6.5 hotels −1.8

videos 6.4 jobless −1.9

hannah 5.4 pilot −3.1

exam 5.1 credit −3.6

music 3.3 craigslist −4.4

Fig. 17. Keywords, deodorant ad.

Highly Positive Highly Negative

Keyword Score Keyword Score

dell 28.6 pregnant −2.9

laptops 22.8 stars −4.0

computers 22.8 wang −4.2

Juris 21.5 vera −4.2

toshiba 12.7 dancing −4.2

vostro 12.6 myspace −8.0

hp 9.1 facebook −8.6

Fig. 18. Keywords, laptop ad.

Highly Positive Highly Negative

Keyword Score Keyword Score

blackberry 27.5 recipes −1.35

curve 19.8 times −1.54

enable 17.1 national −1.58

tmobile 15.8 hotels −1.69

phones 15.4 people −1.79

wireless 15.3 baseball −1.85

att 13.7 porn −2.33

verizon 12.9 myspace −2.81

Fig. 19. Keywords, cellphone ad. Fig. 20. Dimensionality reduction.

TiMR took 4.07 hours (see Figure 14(right)). TiMR pays a

low performance overhead (< 10%), while using more general

and re-usable operators compared to hand-optimized reducers.

Note that this is a small price to pay for the benefits outlined in

Section I. Figure 14 also shows that TiMR takes only around

4 hours to process one week of logs. Thus, when we use the

same temporal queries in a real-time setting, a similarly scaled-

out DSMS (or MapReduce Online [8]) should easily handle

our queries. Figure 15 shows per-machine DSMS event rates

for each of the various BT sub-queries defined in Section IV-

B. Since all the queries are partitionable, performance scaled

well with the number of machines.

Fragment Optimization We ran two alternate annotated CQ

plans for GenTrainData (cf. Section IV-B). The first plan

naively partitions UBP generation by {UserId, Keyword}, and

the rest of the plan by {UserId}. The second plan (one that

would be chosen by an optimizer) generates a single fragment

partitioned by {UserId}. The latter plan takes 1.35 hours,

against 3.06 hours for the first plan — a 2.27× speedup.

Temporal Partitioning We run a 30-minute sliding window

count query over our dataset. This query is only partitionable

by Time. Figure 16 shows that small span widths perform

badly, mainly due to duplication of work at boundaries (over-

lap). On the other hand, large span widths do not provide

enough parallelism. The optimal span width (∼ 30-60 mins for

this dataset) is around 18× faster than single-node execution.

C. Evaluating Data Reduction

We evaluate the following data reduction techniques:

• KE-z: Keyword elimination with z-score threshold set to

z. We vary z from 0 to 5.12. Note that z = 0 implies that

we retain all keywords with sufficient support (at least

5 clicks exist with that keyword, across the UBPs of all

users).

• F-Ex: This alternative, currently used in production, per-

forms feature extraction using a content categorization

engine to map keywords to one or more predefined

categories (each with a confidence level). The categories

are based on a pre-defined concept hierarchy similar to

ODP [27].

• KE-pop: This feature selection scheme used by Chen et

al. [7] retains the most popular keywords in terms of total

ad clicks or rejects with that keyword in the user history.

Relevance of Retained Keywords We found that on aver-

age, there were around 50 million unique keywords in the

source data; this leads us to the question of whether our

feature selection technique can produce meaningful results.

Figures 17, 18, and 19 show a snapshot of keywords and their

z-scores for the deodorant, laptop, and cellphone ad classes.

In case of the deodorant ad, we notice that the teen demo-

graphic is more interested in the product, based on keywords

such as “celebrity”, “hannah”, “exam”, and “icarly”3. On the

other hand, it appears that people searching for “job” or

“credit” are unlikely to click on a deodorant ad. Interestingly,

users searching for “Vera Wang” or “Dancing with the Stars”

are unlikely to click on laptop ads. We note that correlations

exist in user behavior; these may change rapidly based on cur-

rent trends and are difficult to track using static directory-based

feature extraction. Further, frequency-based feature selection

cannot select the best keywords for BT, as it retains common

words such as “google”, “facebook”, and “msn”, which were

found to be irrelevant to ad clicks.

Dimensionality Reduction Figure 20 shows the number of

keywords remaining with KE-z, for various z-score thresholds.

Note that only retaining keywords with sufficient support (z =

0) immediately reduces the number of keywords for each ad

dramatically. For comparison, we also show the number of

dimensions retained after feature extraction using F-Ex; this

number is always around 2000 due to the static mapping to a

pre-defined concept hierarchy. KE-pop is not shown since the

3Hannah Montana and iCarly are popular TV shows targeted at teenagers.



Examples

Chosen

laptop ad class cellphone ad class

#click #impr CTR

Lift

(%)

#click #impr CTR

Lift

(%)

All 8400 3180K 0 3332 436K 0

≥ 1 pos kw 2076 398K 100 2408 237K 33

≥ 1 neg kw 7376 3019K −8 1491 277K −28

Only pos kws 1024 161K 146 1841 159K 53

Only neg kws 6324 2782K −15 924 199K −39

Fig. 21. Keyword elimination and CTR. Fig. 22. CTR vs. coverage (movies). Fig. 23. CTR vs. coverage (dieting).

keywords remaining can be adjusted arbitrarily by varying the

popularity threshold. We note that our technique can reduce the

number of keywords retained, by up to an order of magnitude,

depending on the threshold chosen.

Impact on CTR We show the effect of keywords with highly

positive and negative scores on CTR. On the test data, we first

compute the overall CTR (i.e., #clicks/#impressions) for an

ad, denoted as V0. We use keyword elimination to generate

keywords with |z| > 1.28 (80% confidence level). We then

create four example sets from the test data, having: (1) UPBs

with at least one positive-score keyword, (2) UBPs with at

least one negative-score keyword, (3) UBPs with only positive

keywords; and (4) UBPs with only negative keywords. On each

set, we compute the new CTR V ′. The impact on CTR is then

measured by CTR lift, defined as V ′ − V0. Figure 21 shows

that we get significant CTR Lift using examples with positive

keywords, while negative examples have a negative lift (lift is

only slightly negative because there are many more negative

examples). Thus, keywords are a good indicator of CTR.

D. Evaluating End-To-End BT

We evaluate the effectiveness of our BT solution as follows.

We build an LR model with the reduced training data, and eval-

uate it on the test data after applying the same feature selection

learned in the training phase. The LR model produces, for each

ad impression in the test data, a value y between 0 and 1 to

predict whether the ad will be clicked. If the model learning

is effective, we expect the impression with high prediction y

to actually result in a click. We thus set a threshold on y and

compute the CTR V ′ on those examples whose predicted value

y is above this threshold; we define coverage as the percentage

of such examples among the test data. In an extreme case, if

the threshold is set to 0, all the examples in test data satisfy

this threshold; thus the computed CTR is the overall CTR V0

(CTR lift = V ′ − V0 is 0), while the coverage is 1. Clearly,

there is a tradeoff between CTR lift and coverage, depending

on the threshold. Hence, we vary the threshold and evaluate

BT using a plot of CTR Lift vs. coverage. The bigger the area

under this plot, the more effective the advertising strategy.

CTR Lift vs. Coverage Figures 22 and 23 show the CTR

Lift (varying coverage) for the “movies” and “dieting” ad

classes. We see that KE-z schemes perform very well, and

result in several times better CTR Lift as compared to F-Ex

and KE-pop, at between 0 to 20% coverage. Interestingly, KE-

pop does not perform as well as KE-z because it does not

Algorithm 1: Top-down Cascades-based optimizer.

OptimizePlan(Plan p,Properties requiredProps) begin1

list validPlans← φ;2

list l ← PhysicalTransform(p.root, requiredProps);3

foreach Transformation t in l do4

Properties newProps← GetChildRequiredProperties(t);5

// Recursively optimize each child of t

Plan childPlan← OptimizePlan(t.child, newProps);6

Properties deliveredProps← GetDeliveredProperties(childPlan);7

if PropertyMatch(newProps, deliveredProps) then8

validPlans.Enqueue(new Plan(t, childPlan));9

return CheapestPlan(validPlans);10

end11

take the correlation of keywords to ad clicks into account.

Note that lower coverage levels are very important, because

there are typically hundreds of ad classes to choose from, and

hence, by selecting ads with higher expected CTR for each

impression opportunity, we can improve the overall CTR sig-

nificantly. Further, we note from Figure 22 that increasing the

|z| threshold has an acceptable impact on maximum coverage.

Memory and Learning Time We compare memory utiliza-

tion in terms of the average number of entries in the sparse

representation for the UBPs, across all examples in the training

data. For the “laptop” ad class, the average user vector size

without data reduction is 3.7 entries per user (for that ad

class), and KE-1.28 drops the size to 0.65. In comparison,

F-Ex results in an average of 8 entries per UBP, since each

keyword potentially maps to 3 categories. LR learning time

for the “diet” ad is around 31, 18, and 5 seconds for F-Ex,

KE-1.28, and KE-2.56 respectively; F-Ex takes longest due to

the larger dimensionality.

VI. Extension: Optimizing CQ Plan Annotation

Recall from Section III that we wish to add exchange

operators to the CQ plan. A stream S i is said to be partitioned

on a set of columns X, called the partitioning key, if it satisfies

the condition ∀e1, e2 ∈ S i : e1[X] = e2[X] =⇒ P(e1) = P(e2),

where P(e) denotes the partition (or machine) assigned to event

e and e[X] denotes the corresponding subset of column values

in event e. A special partitioning key ⊥ denotes a randomly

partitioned stream, while ∅ denotes a non-partitioned stream.

We can adapt a transformation-based top-down optimizer

such as Cascades [15] (used in SQL Server), to annotate

the CQ plan. SCOPE recently used Cascades to incorpo-

rate partitioning in set-oriented queries [36]. During physical

exploration (cf. Algorithm 1, which is based on Cascades),



starting from the output, each operator recursively invokes the

optimizer for each of its child plans (Line 6). The invocation

includes required properties that need to be satisfied by the

chosen child plan. In our setting, properties are defined as set

of partitioning keys that the parent can accept.

During optimization of a subplan with root operator O, we

can transform O (Line 3) as follows. Let X̄ denote the set of

valid partitioning keys that operator O can accept, and that are

compatible with the requirement from the invoking operator

(we will shortly discuss techniques to derive this information).

There are two alternatives: (1) for each partitioning key X

in X̄, we add an exchange operator with key X below O

and recursively optimize O’s child plan with no property

requirements; (2) we do not add an exchange operator, but

instead recursively optimize the child plan with partitioning

requirement X̄. During optimization, we take care not to

consider plans whose delivered properties are incompatible

with the requirements of the invoking operator (Line 8). The

end result of the optimization process is an annotated CQ plan.

Deriving Required Properties for CQ Operators Partition-

ing on set X or {Time} implies a partitioning on ⊥ as well as

any set Y ⊃ X. We can thus identify, for each operator, the

partitioning requirements on its input:

• Consider a GroupApply sub-plan that groups by key

X, or a TemporalJoin or AntiSemiJoin with an equal-

ity condition on attributes X. These operators require

their input streams to be partitioned by any set of keys

P s.t. ∅ ⊆ P ⊆ X.

• Multi-input operators require both incoming streams to

have the same partitioning set.

• Stateless operators such as Select, Project, and AlterLife-

time can be partitioned by any subset of columns, as well

as by ⊥ (i.e., they impose no specific requirements).

• Any operator with a windowed input stream can be

partitioned by Time (see Section III-C).

We can also use functional dependencies and column

equivalences to identify further valid partitioning keys [36].

For example, if (X − {C}) → C, i.e., columns (X − {C})

functionally determine column C, then partitioning X implies

the partitioning X − {C}.

Cost Estimation The optimizer has to estimate the cost of an

annotated subplan. An exchange operator is associated with the

cost of writing tuples to disk, repartitioning over the network,

and reading tuples after repartitioning. The cost of DSMS

operators can be estimated as in prior work [33]; if an operator

executes over a partitioned stream, its cost is reduced, based

on the number of machines and estimated partitions.

VII. RelatedWork

MapReduce Variants M-R has recently gained significant

interest. Proposals such as Pig and SCOPE compile higher-

level code into M-R stages. While we also compile queries

into M-R, we focus on temporal data and queries, with several

unique features: (1) suggesting a temporal language as the user

programming surface; (2) leveraging temporal algebra to guar-

antee identical results on offline and real-time data; (3) using

an unmodified DSMS as part of compilation, parallelization,

and execution; and (4) exploiting automatic optimization and

temporal parallelism opportunities in the queries.

Pig can incrementally push data to external executables [13]

as part of the data processing pipeline. MapReduce Online [8]

(MRO) and SOPA [23] allow efficient data pipelining in M-R

across stages, but require modification to M-R. These propos-

als have a different goal from our work, that of changing M-R

to handle real time data efficiently. We propose a declarative

temporal programming model for large-scale queries, which is

easy to program to and allows cost-based optimization into M-

R stages for offline logs. We can transparently take advantage

of the above proposals, if available in the underlying M-R

platform, to (1) improve execution efficiency and latency for

offline data; and (2) directly support real-time CQ processing

at scale. S4 [26] supports scalable real-time processing with

a M-R-style API, but does not target declarative specification

or reuse of existing DSMS and M-R platforms. Recent ef-

forts [18, 25] make periodic computations over M-R efficient

by reusing prior work; this research is quite different from

our goal of allowing temporal queries over offline data in M-

R, while being real-time-ready. Further, we also propose new

temporal algorithms to improve Web advertising with BT.

BT Many BT techniques for advertising data have been

proposed. Hu et al. [19] use BT schemes to predict users’

gender and age from their browsing behavior. Chen et al. [7]

propose scalable BT techniques for cluster-based scenarios,

while Yan et al. [34] explore the value of BT in improving

CTR. These techniques are geared towards non-incremental

offline data analysis. In contrast, our techniques use easy-to-

specify and real-time-ready temporal queries, and TiMR allows

the execution of such temporal queries over M-R. We propose

incremental feature selection based on statistical testing, to

determine which keywords to retain. In order to strengthen

the signal, feature selection could be preceded by keyword

clustering, using techniques such as Porter Stemming [32].

VIII. Conclusions

The temporal-analytics-temporal-data characteristic is ob-

served for many “big data” applications such as behavioral

targeted Web advertising, network log querying, and collabo-

rative filtering. This paper proposes the use of temporal queries

to write such applications, as such queries are easy to specify

and naturally real-time-ready. We propose a framework called

TiMR that enables temporal queries to scale up to massive

offline datasets on existing M-R infrastructure. We validate

our approach by proposing a new end-to-end solution using

temporal queries for BT, where responsiveness to user interest

variation has high value. Experiments with StreamInsight and

SCOPE/Dryad using real data from our ad platform validate

the scalability and high performance of TiMR and its optimiza-

tions, and the benefit of our BT approach in effective keyword

elimination, lower memory usage and learning time, and up

to several factors better click-through-rate lift.
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