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Abstract

This paper is concerned with the consistency analysis twidéis ranking meth-
ods. Among various ranking methods, the listwise methogs hampetitive per-
formances on benchmark datasets and are regarded as omestéti-of-the-art
approaches. Most listwise ranking methods manage to amgimginking on the
whole list (permutation) of objects, however, in practiapplications such as in-
formation retrieval, correct ranking at the tbgositions is much more important.
This paper aims to analyze whether existing listwise ramknethods are statisti-
cally consistent in the top-setting. For this purpose, we define a topanking
framework, where the true loss (and thus the risks) are dkéinghe basis of top-
k subgroup of permutations. This framework can include thenpéation-level
ranking framework proposed in previous work as a speciat.c&ased on the
new framework, we derive sufficient conditions for a listevimnking method to
be consistent with the toptrue loss, and show an effective way of modifying the
surrogate loss functions in existing methods to satisfgeheonditions. Experi-
mental results show that after the modification, the metlsadsvork significantly
better than their original versions, indicating the comess of our theoretical
analysis.

1 Introduction

Ranking is the central problem in many applications inalgdinformation retrieval (IR). In recent
years, machine learning technologies have been sucdgsgiiplied to ranking, and many learning
to rank methods have been proposed, including the poinfdgg9] [6], pairwise [8] [7] [2], and
listwise methods [13] [3] [15]. Empirical results on bendndatasets have demonstrated that the
listwise ranking methods have very competitive rankindgrenances [10].

To explain the high ranking performances of the listwiseknag methods, a theoretical framework

was proposed in [15]. In the framework, existing listwisekiag methods are interpreted as making
use of different surrogate loss functions of the permutakiwel 0-1 loss. Theoretical analysis shows
that these surrogate loss functions are all statisticalhsistent in the sense that the minimization of
the conditional expectation of them will lead to obtainihg Bayes ranker, i.e., the optimal ranked
list of the objects.

Here we point out that there is a gap between the analysisirafid many real ranking problems,

where the correct ranking of the entire permutation is netled. For example, in IR, users usually
care much more about the top ranking results and thus onhgdatanking at the top positions is

important. In this new situation, it is no longer clear wheetbxisting listwise ranking methods are
still statistically consistent. The motivation of this wds to perform formal study on the issue.

For this purpose, we propose a new ranking framework, in kwttie “true loss” is defined on the
top-k subgroup of permutations instead of on the entire pernmrtaffhe new true loss only mea-
sures errors occurring at the tégpositions of a ranked list, therefore we refer to it as thekdpie



loss (Note that whe#k equals the length of the ranked list, the toprue loss will become exactly
the permutation-level 0-1 loss). We prove a new theorem hviees sufficient conditions for a
surrogate loss function to be consistent with the tapue loss. We also investigate the change of
the conditions with respect to differeht Our analysis shows that, @decreases, to guarantee the
consistency of a surrogate loss function, the requiremehe probability space becomes weaker
while the requirement on the surrogate loss function iisetfomes stronger. As a result, a surro-
gate loss function that is consistent with the permutakéwe! 0-1 loss might not be consistent with
the top# true loss any more. Therefore, the surrogate loss functivesisting listwise ranking
methods, which have been proved to be consistent with threyiation-level 0-1 loss, are not theo-
retically guaranteed to have good performances in the:tegiting. Modifications to these surrogate
loss functions are needed to further make them consistehttiaé top% true loss. We show how
to make such modifications, and empirically verify that soutdifications can lead to significant
performance improvement. This validates the correctnesaraheoretical analysis.

The rest of the paper is organized as follows. Section 2we/ibe permutation-level ranking frame-
work proposed in [15]. Section 3 presents our proposedctogmking framework. The theoretical

analysis with the proposed framework and its applicatiomawlifying existing loss functions are

given in Section 4. Experimental results are reported irti@e&, and conclusions are made in the
last section.

2 Permutation-level ranking framework

We review the permutation-level ranking framework progbse[15].

Let X be the input space whose elements are groups of objects smked Y be the output space
whose elements are permutations of objects, Brgt be an unknown but fixed joint probability
distribution of X andY. Leth : X — Y be a ranking function, anél be its function space (i.e.,
h € H). Letx € X andy € Y, and lety(i) be the index of the object that is ranked at positiam
y. The task of ranking is to learn a function that can minimfze éxpected risR (%), defined as,

RO = [ i), )P, 1)
wherel(h(x), y) is the true loss such that
e ={ & 7Y @

The above true loss indicates that if the permutation of tieelipted results is exactly the same as
the permutation in the ground truth, then the loss is zeroergtise the loss is one. For ease of
reference, we call it permutation-level 0-1 loss. The optiranking function which can minimize
the expected true risR(h*) = inf R(h) is referred to as the permutation-level Bayes ranker.

W (x) = arg max P(y[x). @)

In practice, for efficiency consideration, the ranking flimie is usually defined a%(x) =
sor(g(x1),...,9(x,)), whereg(-) denotes the scoring function, and gortdenotes the sorting
function. Since the risks are non-continuous and non-eiffgable with respect to the scoring
function g, a continuous and differentiable surrogate loss functigg(x), y) is usually used as
an approximation of the true loss. In this way, the expedsdhecomes

Ré(g) = /X  (a(x).1)aPlx.0). ()

whereg(x) = (g(z1), ..., g9(zy,)) is a vector-valued function induced by

It has been shown in [15] that many existing listwise rankimethods can fall into the above frame-
work, with different surrogate loss functions used. Andtiarmore, their surrogate loss functions
are statistically consistent under certain conditiondwitspect to the permutation-level 0-1 loss.
However, as shown in the next section, the permutation-Gdoss cannot well describe the rank-
ing problem in many real applications.



3 Top-k ranking framework

We first describe the real ranking problem, and then propossaranking framework.

3.1 Top-+* ranking problem

In real ranking applications like IR, people pay more aftento the top-ranked objects. Therefore
correct ranking on the top positions is critically impottaffor example, modern web search engines
only return topl, 000 results and 0 results in each page. According to a user stu@g% of search
engine users only click on the results within the first pages] 90% of users click on the results
within the first three pages. It means that two ranked listtoaiments will likely provide the same
experience to the users (and thus suffer the same losskyifthve the same ranking results for
the top positions. This, however, cannot be reflected in #renptation-level 0-1 loss in Eq.(2).
This characteristic of ranking problems has also been exglm earlier studies in different settings
[4, 5, 14], we refer to it as top-ranking problem.

3.2 Top+* true loss

To better describe the tap+anking problem, we propose defining the true loss basedetotik
positions in a ranked list, referred to as the foprue loss.

0, if g(i) =y(i) Vie{l,...,k},whereg = h(x),

1, otherwise .

Le(h(x), ) = { (5)

The actual value of parameteis determined by application. Whérequals the length of the entire
ranked list, the topk true loss will become the permutation-level 0-1 loss. Is tieigard, the top-
true loss is more general than the permutation-level 04. los

With Eq.(5), the expected risk becomes
Ru) = [ 1(h0.5)aPx.0), ©)
XxXY

The optimal ranking function of Eq. (6) (i.e., the tépBayes ranker) is given by the following
proposition.

Proposition 1. The optimal ranking function of Eq. (6) is any permutatiorthe top4 subgroup
having the highest probabilityi.e.,

hy(x) € argmaxc, (j, js....inec, P (Gr(i1, J2s oy Ji) %), (7)

whereGy(j1,j2, .-, Jk) = {y € Y|y(t) = ji, ¥t = 1,2,... k} denotes a tog: subgroup in which
all the permutations have the same tbpue loss;G), denotes the collection of all topsubgroups..

Proof. The expected risk of a ranking functidrnx) is:

Rih) = [ 3" (. »)Plyix)dP(x) (®)
X yey
- - 3 P(ylx))dP(x).
X yelyeY |y(t)=h(t),vt=1,2,... k}
Thenhj(x) € argmaxcg, (j, j,.....jnyecy P (Gr(d1, J2, - Ji)|x) minimizes (8) for every. O

With the above setting, we will analyze the consistency efghrrogate loss functions in existing
ranking methods with the toptrue loss in the next section.

liProspect Search Engine User Behavior Study, April 2006, http://wwesjzect.com/
2Note that the probability of a top-subgroup is defined as the sum of the probabilities of the permutations
in the subgroup (cf., Definitiond and7 in [3]).



4 Theoretical analysis

In this section, we first give the sufficient conditions of sistency for the tog ranking problem.
Second, we show how these conditions change with respéctiast, we discuss whether surrogate
loss functions in existing methods are consistent, and bawake them consistent if not.

4.1 Statistical consistency

We investigate what kinds of surrogate loss functigiig(x),y) are statistically consistent with
the top% true loss. For this purpose, we study whether the rankingtiom that minimizes the
conditional expectation of the surrogate loss functionndefias follows coincides with the tdp-
Bayes ranker as defined in Eq.(7).

Q(P(ylx),g(x)) = > P(ylx)(g(x),y). 9)

yey

According to [1], the above condition is the weakest one joliag theoretical guarantee that opti-
mizing a surrogate loss function will lead to obtaining a miathieving the Bayes risk (the expected
true risk of the topk Bayes ranker in our case), when the training sample sizeoappes infinity .

For ease of explanation, we denal¥P(y|x),g(x)) asQ(p,g), g(x) asg and P(y|x) asp,.
HenceQ(p, g) is the pointwise loss aof atx with respect to the conditional probability distribution
py- The key idea is to decompose the optimal sorting ofto parrwrse relationship between scores
of objects. For this purpose, we dendl;ej as a permutation set in which each permutation ranks

objecti before objectj, i.e.,Y;; £ {y € Y : y~1(i) < y~1(4)}, and introduce the following
definitions.

Definition 2. We defineAs, as a topk subgroup probability space, i.eAq, 2 {p € RICl .

DG (rojzsesin)€Gr PCr 1 dzsin) = L PG (rod,ein) = OF-

Definition 3. A top+ subgroup probability spaca, is order preserving with respect to objects
iandj, if Yy € Y;; and Gx(y(1),y(2),...,y(k)) # Gk(UZ}y(l), o, 1 yY(2), .., 07 }y(k)), we
havepea, (y(1),y(2),....y(k)) > PGy (o7 ty(1),07 1 y(2),0r Ly(R)): Hereo, y denotes the permutation
in which the positions of objectsand j are exchanged while those of the other objects remain the
same as iny.

Definition 4. A surrogate loss function is top+ subgroup order sensitive on a $etc R", if ¢
is a non-negative differentiable function and the follogvthree conditions hold fov objectsi and
i () é(g,y) = ¢(0’{}g707}y)' (QAssumey; < g;, Yy € Y . If Gr(y(1),y(2), ... y(k)) #
Gk(a;jly(l), ”y(2), . ”y( ), theng(g, y) > qS(g,aifjly) and for at least oney, the strict
inequality holds; Otherwise¢(g,y) = qb(g,a;jly). (3) Assumey; = g;. Jy € Y;; with

_ L} Ulj £ ,1
Gr(y(1),y(2), s y(k)) # G071 y(1), 07 y(2), sy (), we have X ET?) - 96(Ew),

The order preserving property of a topt subgroup probability space (see Definition 3) indicates
that if the top# subgroup probability on a permutatigne Y; ; is larger than that on permutation
Ufjly, then the relation holds for any other permutatioin Y; ; if its associated tof-subgroup is
different from that otr; ; 14/, Theorder sensitiveproperty of a surrogate loss function (see Definition
4) indicates that (i)(g, y) should exhibit the natural symmetry in the sense that if toeigd truth
and the predicted scores are simultaneously exchangedegitect to objectsandy, the surrogate
loss does not change; (ii) when a permutation is transfotmatother permutation by exchanging
the positions of two objects, if the two permutations do relbhg to the same top-subgroup, the
loss on the permutation that ranks the two objects in theedsang order of their scores will be
no greater than the loss on its counterpart. (iii) Theretexspermutation, for which the speed of
change in loss with respect to the score of an object will rexfaster if exchanging its position
with another object with the same score that is ranked afteA itop-k subgroup order sensitive
surrogate loss function has several nice properties asrshelow.

Proposition 5. Let ¢(g,y) be a topk subgroup order sensitive loss functionVy,vVr €
Gr(y(1),y(2),...,y(k)), we havep(g, m) = ¢(g, ).




Proof. 1) We start with the case of transposition where: o; 'y, i.e.,7 is the permutation in which
the positions of objeotand objectj are exchanged while thdse of the other objects remain the sam
as iny. If g; = g;, it is obvious thai(g, 7) = ¢(g,y). If g; # g;, without loss of generality, we
assumey—!(i) < y~!(j) andg; < g;. Since¢(g,y) is a topk order sensitive loss function and
m € Gir(y(1),y(2),...,y(k)), we havep(g, m) = ¢(g, y). Thus, a transposition cannot change the
value of (g, y).

In the case ofr # o;jly, sincer € Gi(y(1),y(2),...,y(k)), there exists a permutatior! such

thatm = o~ 'y ando~! can be represented as a product of finite transpositionsritile top#
subgroup. Since a transposition cannot change the valiégof)), 7 = o1y implies ¢(g, ) =

b(g,y).
O

Proposition 6. Let¢(g, y) be a topk subgroup order sensitive surrogate loss functi\jmbjectsi
andj with g; = g;, Yy € Yy, if Gr(y(1),y(2), ... y(k)) # Grlo; jy(1),0, }y(2), ..., 0, }y(k)),

9¢(g,0; 1 v) S 96(g.w) 06(8,9,;Y) _ 9d(g.y)
9g; =  0g: 9gi dg;

then . Otherwise,

Proof. Vg with g; = g;, Vy € Y, ;, it is easy to see(g,y) = qb(g,aifjly). Now, consider a small
change ofy; in g. Denote the new score vectorgs

In the case ofG,(y(1),y(2),...,y(k)) # Gk(a;jly(l), Uy(2), " ”y( )), if € > 0, then
d(8e,y) < o(ge,0,y)i If € < 0, theng(ge,y) > ¢(gc,0;,y). Under both conditions,

_ ooty —o(g,o; L 9o (g0} .
¢(geay)6 ¢(8:y) < b(8e,0; y)E ¢(8:9,,;¥) . Whene approaCheS zero, we ha (gad-h] ) > 5¢({§g‘ay) .
9gi gi

In the case ot (y(1), y(2), .-, y(k)) = Gi(o; jy(1),0; }y(2), .., 0; jy(k)), according to Propo-

-1
sition 4,¢(g.,y) = b(g, 0, )- Thus,%(gg:j’f Y 20y, 0

Proposition 5 shows that all permutations in the samektgpbgroup share the same losg, y)
and thus share the same partial difference with respecttedbre of a given object. Proposition 6
indicates that the partial difference éfg, y) also has a similar property t(g, y) (see the second
condition in Definition 4).

Before giving the main theorem, we give the following theoravhich specifies the score relation
between two objects for the minimizer @f(p, g).

Theorem 7. Let ¢(g,y) be a topk subgroup order sensitive loss functiov and j, if the top%
subgroup probability space is order preserving with rese¢hem, ang is a vector which minimizes
the point-wise surrogate l0sg(p, g) in Eq.(9), thery; > g;.

Proof. Without loss of generality, we assume-= 1, j = 2, g = g2, g5 = g1, andg;, = gi(k > 2).

First, first proveg; > go by contradiction. Assumeg; < g», we have

Qp.g) —QP.8) = D (0,1, 28 Y) = Y (1, — 1) (S(8.y) — d(g. 07 3y)-
yeY YEYT 2

The first equation uses the fagt = o, 2g, and the second equation uses the ichal 2y =Y.
After some algebra, by using Proposition 5, we have,

Q(p,g') - Q(p,g) = > (P, (o7 1) — Par))(9(8:y) — o(8, o13Y)),
Gr(y) E{Gr:Gr (1) #Cr (07 3y) }yEY1 2
whereGy(y) denotes the subgroup thabelongs to.

Sinceg; < g2, we havep(g,y) > ¢(g,af§y) Meanwhile,p, (orky) < PG(y) due to the order

preserving of the top)ysubgroup probability space. Thus each component in the saomi-positive
and at least one of them is negative, which me@iip, g’) < Q(p,g). This is a contradiction to
the optimality ofg. Therefore, we must havg > go.



Second, we provg; # g, also by contradiction. Assumg = g¢». By setting the derivative of
Q(p, g) with respect tay; andg, to zero and compare thénwe have,

) =0.

Z (p —p )(8¢(gay) B aqS(g,ai%y)

D EW agl agl

After some algebra, we obtain,

o —1
3 (orin _ka(G;éy))(aaﬁ(g,y) 3 ¢(g,al,2y)) o

0 0
Gr(y)E{Gr:Gr(¥)#Gx (01 3y) }YEY 2 & &

b(8,07.3Y)

According to Proposition 6, we ha a(ggl’y) < BT. Meanwhile ¢, ,-1,) < Pa,(y) dueto

the order preserving of the topsubgroup probability space. Thus, the above equation ¢druhd
since every component in the sum is non-positive and at teasbf them is negative according to
Definition 4. ]

Based on Theorem 7, we give the main theorem (Theorem 8),hwgiates the conditions for a
surrogate loss function to be consistent with the kdpde loss.

Theorem 8. Let ¢ be a topk subgroup order sensitive loss function &nc R™ . For Vn ob-
jects, if its topk subgroup probability space is order preserving with reggec: — 1 object pairs
{UGiy Jir1) Yoo ) @and {(Grs;»drsi : 0 < s; < i)}, then the loss(g, y) is consistent with the

top-k true loss as defined in Eq.(5).

Proof. We first prove that the tog- subgroup with the maximum conditional probability is
Gk(j1,72, -+ ,Jk)- We then show the ranked list derived by sorting the minimafethe point-
wise surrogate loss @(p, g) belongs taGy (51, jo, - - - , jx), Which implies the consistency.

Yy with G (y(1),y(2),- -+ ,y(k)) # Gk(j1, 42, - ,Jx), we start from the first position af, i.e.,

1= 1. If y(1) = 45,1 > k + 1, then we can use finite times of transposition of object pairs
{Ukassrdrri : 0 < s < i)}"=F to achievey(1) = ji. If y(1) = j;, 1 < k + 1, then we can
usel — 1 times of transposition of object pairs {itj;, ji+1)}_, to achievey(1) = j;. If y(1) =

41, then a similar process can be done for 2. At last, we terminate the transposition process
ati = k and obtain a permutation whose associateditgogroup isGx (j1,j2, -, jr). Note
that the probability of the associated tdpsubgroup continuously increases throughout the whole
process due to the order preserving property. This impliesvith G (y(1),y(2),--- ,y(k)) #

Gk(jlaj?? T 7jk:)1 Gk(y(l)?y(2)a U 7y(k)) < Gk(jtha T 7jk:)-
According to Theorem 7, since the tépsubgroup probability space is order preserving with retspec

ton — 1 object pairs{ (ji, ji11) Y-, and{(jrrs;» jrri 1 0 < 5; < i) }7=) andé is a topk subgroup

order sensitive loss function, the minimizer of pointwisgregate loss should havg, > g;, ..
i=1,---,kandg;, . > gj.,.,i=2,,n—kand0 <s; <i. Thisindicates that the ranked
list derived by sorting the minimizeg of Q(p, g) belongs taG (41,42, - » jk)- O

4.2 Consistency with respect ta:

In this subsection, we discuss the consistency conditiatisrespect to various values.

First, we have the following proposition for the tépsubgroup probability space.

Proposition 9. If the top+ subgroup probability space is order preserving with reggembjectsi
andj, then the top# — 1) subgroup probability space is order preserving with regpge¢ and ;.

Proof. Vy € Y; j with Gr_1(y(1), y(2), ...,y(k—1)) # Gr_1(0; jy(1), 0, yY(2), ..., 0; y(k—1)).
It is easy to see € {y(1),y(2),---,y(k — 1)}. They falls into one of two cases, i.ej, €

3By trivial modification, one can handle the case wherr g» is infinite (cf. [16]).




Forj € {y(1),y(2),---,y(k — 1)}, denote indexes of objects that are not ranked within the top

k — 1 positions ofy as(j1, j2, - ** , jn—k+1), We have
PGt (y(1)eey(k=1) ~ PGy (07 (1), (k1)) (10)
n—k+1

= Z (ka(y(l),---yy(k—l),ji) _ka(o;_}y(l),...701._7].1y(k71),ji))

i=1
Since the tope subgroup probability space is order preserving with respec objects
i and j, every component in the sum is positive and thus, . (y1)y@),...y(k-1) >
PGy i(o] jy(1) .0 Jy(2),o u(k=1))"

For j ¢ {y(1),y(2),---,y(k — 1)}, we can prove pg, ,(y1)y@),. .yk-1) >
PGy 1 (o7 g (1)o7 2y(@),nnoy Ly (h—1)) using the similar method. The only difference is that, in the

sum,whéntheto;ﬁ:subgroup ik (y(1), ..., y(k=1), ) for Gr_1 (y(1), y(2), S y(k— 1)) the cor-
responding togs subgroup iG (y(1), ...,y(k — 1), ) for Gk,l(a;jly(l), 0 '9(2), ..., o Yy (k —
1)). O

To better understand the theorem, we give an example heppoSe there are three obje¢ts 2, 3}

to be ranked. If the top-subgroup probability space is order preserving with resfeobjectsl

and2, then we haveng,(1,2) > PG,y (2,1) Paz(1.3) > PGs(2.,3) andpGQ(gJ) > Pay(3,2)- Onthe
other hand, for tog, we havepcl(l) > pa,(2)- Note thatpg, (1) = pa,1,2) + Pa.(1,3) and
PG1(2) = PGa(2,1) T PG (2,3) . Thus, it is easy to verify that Proposition 9 holds for thase while
the opposite does not.

Second, we obtain the following proposition for the surtedass functiony.

Proposition 10. If the surrogate loss function is top+ subgroup order sensitive on a getC R",
then itis also top-(k+1) subgroup order sensitive on the saet.

Proof. It is easy to see that only the second property in Definitionegds to be proved
for the property of top-(k+1) subgroup order sensitive? object palrz and j with ¢g; <

95 Yy € Yijo I Goa(y(1),9(2), - u(k + 1)) # Gryalo;jy(1),0, jy(2), .., ”y(k+
1)), then we have eitheGy(y(1),y(2),...,y(k)) # Gk(aifj-ly(l), ”y(2), y ”y(kz)) or
Gr(y(1),y(2),....,y(k)) = Gk(az_jly(l), ”y(2), . ”y(k:)). Since¢ is top+ subgroup order
sensitive, 101G (y(1), y(2), ..., y(k)) # Gilo; }y(1),0; }y(2), .. o7 Ly (k)), we haves(g, y)
(b(g,oi_,jly) and for at least on@, the strict inequality holds. Fo&(y(1),y(2),...,y(k))
Gr(o; jy(1),0, /y(2),....0; y(k)), ¢(g,y) = é(g, 0; ] y) according to Proposition 5. Combining
both cases, we havig,y) > qb(g,a;jly) and for at least ong, the strict inequality holds.

If Grpa(y(1),5(2), - ,y(k+1))=Gk+1(ffﬁy(1)’ Uy(2)7 .0, jy(k+1)),itis easy to see that
Gr(y(1),y(2), ., y(k)) = Gi(o; }y(1), 0, y(2), ..., 0, jy(k)). Thus,é(g,y) = é(g,0,,y). O

v

Again, we provide an example here. Consider the same séttitige previous example. Assume
g1 < go. If ¢ is top-l subgroup order sensitive, then we haw, (1,2,3)) > ¢(g, (2,1,3)),
o(g.(1,3,2)) > é(g, (2.3,1)), andé(g, (3,1,2)) = é(g,(3,2,1)). Considering Proposition 5,
the two inequalities become strict. On the other hand,iff top2 subgroup order sensitive, the fol-
lowing inequalities hold with at least one of them becomitigs ¢(g, (1,2,3)) > ¢(g, (2,1, 3)),
9(g,(1,3,2)) > ¢(g,(2,3,1)), and¢(g, (3,1,2)) > ¢(g,(3,2,1)). Therefore topt subgroup
order sensitive is a special case of tbpubgroup order sensitive.

From the above propositions, we have the following conolsi

e For the consistency with the tdptrue loss, wherk becomes smaller, the requirement on
the probability space becomes weaker but the requiremettteoaurrogate loss function
becomes stronger. Since we never know the real propertyeofuthknown) probability
space, it is more likely the requirement on the probabilggice for the consistency with
the top# true loss can be satisfied than that for the t¢p> k) true loss. Specifically, itis
the riskiest to assume the requirements for the permutéigei 0-1 loss to hold.



o If we fix the true loss to be tog-and the probability space to be tépsubgroup order
preserving, then the surrogate loss function should be at tapi (I < k) subgroup order
sensitive in order to meet the consistency conditions.nbtguaranteed that a tdig¢ > k)
subgroup order sensitive surrogate loss function can bgistent with the topk true loss.
Specifically, a top-1 subgroup order sensitive surrogags fanction may be consistent
with any top# true loss, but a permutation-level order sensitive sutelgss function will
be inconsistent with any toptrue loss, ifk is smaller than the length of the ranked list.

To ease the understanding of the above discussions, leeusnsexample shown in the following
proposition. It basically says that given a probability apéhat is topt subgroup order preserving,
a top-3 subgroup order sensitive surrogate loss functionmoébe consistent with the top-1 true
loss.

Proposition 11. Suppose there are three objects to be rankeid.a top3 subgroup order sensitive
loss function and the strict inequaliy(g, (3,1,2)) < ¢(g, (3,2,1)) holds wherg; > g». The
probabilities of permutations arg 23 = p1, p1s2 = 0, pa13 = p2, p231 = 0, p312 = 0, ps21 = p2
respectively, wherg; > p,. Theng is not consistent with respect to the toprue loss.

Proof. Since the sum of probabilities equals to one and> p,, we getps = 1/2(1 — py), and
1/3 < p1 < 1. Considerg = [g1, g2, g3] With g1 > g2. We shall prove that with somg valuesg
cannot be the optimal solution. Lgt = [g1, g5, g5] andg} = g2, g5 = g1, g5 = g3. Itis easy to see

g =015(8)

Q(pa g) = p123¢(g7 (17 2a 3)) + p213¢(ga (27 17 3)) + p321¢(gv (35 27 1))

Q(pv g/) = p123¢(g/7 (17 27 3)) + p213¢(gl7 (21 1a 3)) +p321¢(g/a (37 27 1))
= p123¢(g7 (2’ 1; 3)) +p213¢(g> (]—7 27 3)) + p321¢(g7 (37 ]-7 2))

Since¢(g, y) is top-3 subgroup order sensitive apd < ¢1, ¢(g, (1,2,3)) < ¢(g,(2,1,3)) and
o(g,(3,1,2)) < é(g, (3,2,1)).

After some algebra, the terfd(p, g’) < Q(p, g) is equivalent to

¢(ga (27173)) —¢(g7(1,2,3)) 1—p1
oe. (3.2.1)) — olg. (3.1,2)) ~ 3p; 1 (11)

The right-hand side of formula (11) is a decreasing functibp;. Sincel/3 < p; < 1, 311)_11111 €
[0, +00). Note thatvg, the left-hand side of formula (11) is non negative and bednd herefore,
we can makey;, approachl/3 enough so that the inequality (11) holds. This indicates ghaith

g1 > go is not optimal with some; values, which implie® is not consistent. O

The above discussions imply that although the surrogatefloxctions in existing listwise ranking
methods are consistent with the permutation-level 0-1 (osder a rigid condition), they may not
be consistent with the toptrue loss any more (under a milder condition). Thereforis,iecessary
to modify these surrogate loss functions. We will make dis@ns on this in the next subsection.

4.3 Consistent surrogate loss functions

In [15], the surrogate loss functions in ListNet, RankCesiand ListMLE have been proved to be
permutation-level order sensitive. According to the déston in the previous subsection, however,
they may not be top- subgroup order sensitive any more, and therefore not densiwith the
top-k true loss. Even for the consistency with the permutatiametl®-1 loss, in order to guarantee
these surrogate loss functions to be consistent, the mqaint on the probability space may be too
strong in some real scenarios. To tackle the challengedisgrable to modify these surrogate loss
functions to make them topsubgroup order sensitive. Actually this is doable, and thdifications

to the aforementioned surrogate loss functions are givéollass.



4.3.1 Likelihood loss
The likelihood loss is the loss function used in ListMLE [1&hich is defined as below,

exp(g(zy ()
1= €XP(9(Ty(1)))

¢(g(x),y) = —log P(y|x;g),  where P(y|x;g) H [ (12)

We propose replacing the permutation probability with the# subgroup probability (which is also
defined with the Luce model [11]) in the above definition:

exp(g :vy( )
1 exp(g(Ty(1)))

P(ylx;g) H [ (13)

It can be proved that the modified likelihood loss functiotojs* subgroup order sensitive, as given
in the following proposition.

Proposition 12. The modified likelihood loss function of Eq.(13) is toptibgroup order sensitive.
Proof. It is easy to verify that the first and third properties of Diiom 3 hold for the modified
likelihood loss function.

For simplicity, we omitx in the modified likelihood loss function and prove the secpraperty of
Definition 3.

ForV object pairi andj with g; < g;, Vy € Y; ;, we have:

o(g,y) — ¢(g,0,;y) = logP(o; ylg) —log P(ylg).

If Gr(y(1),y(2),....y(k)) # Gr(o; }y(1),0; y(2),....,0; 'y(k)), similar to Theorem 3 and The-
orem 8in [3], itis easy to show (o, y|g) > log P(ylg). Thus,é(g, y) > ¢(g, 0, v).

If Ge(y(1),9(2),....y(k)) = Gi(o;jy(1),0 ”y(Q)a o, jy(k)), it is easy to verify that
P(o; }ylg) = log P(y|g), and hence(g, y) = 6(g, 0; ). O

4.3.2 Cosine loss

The cosine loss is the loss function used in RankCosine Yll#th is defined as follows,

1 by (x)"g(x)

o(g(x),y) = 51 — L=

(8009 = 31 T, Galle o)

where the score vector of the ground truth is produced by gpimggfunction,(-) : R? — R,
which retains the order in a permutation, i, (1)) > -+ > ¥y (Tym))-

) (14)

We propose changing the mapping function as follows. Lettlapping function retain the order
for the topk positions in a permutation and map all the remaining passtio a small value (which
is smaller than the score of any object ranked at thekt@wsitions), i.e.., (zy1)) > - >

Yy (Tyy) > Yy(Typg1)) = - = Yy(Ty(n)) = €. It can be proved that after the modification, the
cosine loss becomes tdpsubgroup order sensitive.

Proposition 13. The modified cosine loss function of Eq.(14) is kogubgroup order sensitive.

Proof. Similar to the proof of Proposition 12, we only prove the setproperty of Definition 3 and

omit x in the modified cosine loss function for simplicity.

ForV object pairi and;j with g; < g;, Vy € Y; ;, we have:

1( wtf{,}yg _ wgg )

2 [0y 1y el oyl

(P, 1) = Yuy 1) (95— 95)
2[l9y el

o(g,y) — d(g,0,, )




The second equality is based on the fiact -1 || = |4y |-

If Gp(y(1),y(2),....,y(k)) # Gk(o;jly(l), o—,.jjly(z), ...,U;jly(k)), according to the property of the
mapping function, since~1(i) < y~1(j), wyyfl(j) < wyyfl(i). Using the conditiory; < g, itis

easy to show (g, y) > ¢(g, 0, y).

If Gr(y(1),y(2), .., y(k)) = Gilo; jy(1), 07 jy(2), .. 07 jy(k)), sinceypy, _, =, ,  =e¢
and hence)(g,y) = ¢(g70{,j1y)- =

4.3.3 Cross entropy loss
The cross entropy loss is the loss function used in ListNed@&ined as follows,

P(g(x),y) = D(P(r|x;¢y)||P(7|x; 8)), (15)

where is a mapping function which definition is similar to that infik&€osine, andP(r|x;v,)
andP(r|x; g) are Luce model based permutation probabilities.

We propose using a similar mapping function to that in theiffexticosine loss for the modification
of the cross entropy lo$s It can be proved that such a modification can make itiaaibgroup
order sensitive.

Proposition 14. The modified cross entropy loss function of Eq.(15) isktgotbgroup order sensi-
tive.

Proof. Similar to the proof of Proposition 12, we only prove the setproperty of Definition 3 and
omit x in the modified cross entropy loss function for simplicity.

V object pair; andj with g; < g;, Vy € Y; ;, we have:

o(g,y) —o(g 0. )y) = Z(P(Wlwgg;y)*P(Wlwy))logp(ﬂlg)

TeY

> (Poimlty) — P(xlvy))(log P(r|g) — log P(o; ; w|g)).
T€Yi,;

The fact of symmetry, i.eP(7|1,) = P(a;jlwh/zgf;y), is used in the second equation.

If Gr(y(1),y(2), ... y(k)) # Grlo;  y(1),0, [ y(2), ..., 0; }y(k)), according to the property of the
mapping function, sincg='(i) < y~1(j), wyyfl(]_) < z/;yyfl(i). Hence, according to Theorem 3 in
[3], for w € Vi ; P(o; |¢y) < P(wlyy,). Similarly, sinceg; < g;,log P(|g) < log P(0; ; 7|g).
Thus every components in the sum is positive, which medgsy) > ¢(g, U;’jly).

1 Gi(y(1), 5(2)s o y(F)) = Gi(o7 (1), 07 y(2), o 0 Ly(R)), SiNCRY, =y . =
and hencdD(a;jlﬂwy) = P(m|y,). Thisimpliesé(g,y) = ¢(g, o{jy). O

5 Experimental results

In order to validate the theoretical analysis in this work,a@nducted some empirical study. Specif-
ically, we used OHSUMED, TD2003, and TD2004 in the LETOR Wtenark dataset [10] for the
experiments. As evaluation measure, we adopted Normab#smbunted Cumulative Gain (N) at
positions 1, 3, and 10, and Precision (P) at positions 1,883 It is obvious that these measures
are topk related and are suitable to evaluate the ranking perforenforcop+ ranking problems.

“Note that in [3], a topk cross entropy loss was also proposed, by using thé:topee model. However,
it can be validated that the so-defined topross entropy loss is still permutation-level order sensitive, but not
top-k subgroup order sensitive. In other words, the modification to the mgirction is still needed to make
it top-k subgroup order sensitive, and thus consistent with the:twpe loss.

°0n datasets with only two ratings such as TD2003 and TD2004, N@1 eq@ls P
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We chose ListMLE as an example to perform the experimentialyssince the likelihood loss has
nice properties such as convexity, soundness and lineapuwational complexity [15]. We refer
to the new method we obtained by applying the modificationatioeed in Section 4.3 as tap-
ListMLE. We tried different values ok (i.e., k=1, 3, 10, and the exact length of the ranked list).
Obviously the last case corresponds to the original likelthloss in ListMLE.

Since the training data in LETOR is given in the form of mugtel ratings, we adopted the methods
proposed in [15] to produce the ground truth ranked list @ekperiments. We then used stochastic
gradient descent as the algorithm for optimization. As &rking model, we chose linear Neural
Network, since the same model has been widely used in otheer[&013, 15].

The experimental results are summarized in Tables 1-3.

Table 1: Ranking accuracies on OHSUMED
Methods N@1 | N@3 | N@10| P@1 | P@3 | P@10
ListMLE 0.548| 0.473| 0.446 | 0.642| 0.582| 0.495
Top-1 ListMLE | 0.529| 0.482| 0.447 | 0.652| 0.595| 0.499
Top-3 ListMLE | 0.535| 0.484 | 0.445 | 0.671| 0.608 | 0.504
Top-10 ListMLE | 0.558| 0.473| 0.444 | 0.672| 0.601| 0.509

Table 2: Ranking accuracies on TD2003
Methods N/P@1| N@3 | N@10 | P@3| P@10
ListMLE 0.24 | 0.253| 0.261 | 0.22 | 0.146
Top-1 ListMLE 0.4 0.329| 0.314 | 0.3 | 0.176
Top-3 ListMLE 0.44 | 0.382] 0.343 | 0.34 | 0.204
Top-10 ListMLE 0.5 0.410| 0.378 | 0.38 | 0.22

Table 3: Ranking accuracies on TD2004
Methods N/P@1l| N@3 | N@10| P@3 | P@10
ListMLE 0.4 0.351| 0.356 | 0.284| 0.188
Top-1 ListMLE 0.52 [ 0.469] 0.451 | 0.413] 0.248
Top-3 ListMLE | 0.506 | 0.456| 0.458 | 0.417| 0.261
Top-10 ListMLE | 0.52 | 0.469| 0.472 | 0.413| 0.269

From the tables, we can see that with the modifications thdngraccuracies of ListMLE can be
significantly boosted, in terms of all measures, on both T&¥#nd TD2004. This clearly validates
our theoretical analysis. On OHSUMED, all the loss fundi@achieve comparable performances.
The possible explanation is that the probability space ir6OMED is well formed such that it is
order preserving for many differektvalues.

Next, we take Top-10 ListMLE as an example to make compangtimsome other baseline meth-
ods such as Ranking SVM [8], RankBoost [7], ListNet [3], ar@hRCosine [13]. The results are
listed in Tables 4-6. We can see from the tables, Top-10 Li&Mchieves the best performance
among all the methods on the TD2003 and TD2004 datasetss t&fralmost all the measures. On
the OHSUMED dataset, it also performs fairly well as comgarethe other methods. Especially
for N@1 and P@1, it significantly outperforms all the otheitmoels on all the datasets.

From the above experimental results, we can come to the usional that for real ranking applica-
tions like IR (where topk evaluation measures are widely used), it is better to usethk true loss
than the permutation-level 0-1 loss, and is better to usentbeified surrogate loss functions than
the original surrogate loss functions.

6 Conclusion

In this paper we have proposed a new ranking framework, wtgchbetter describe real ranking
applications like information retrieval. In the new franmW;, the true loss is defined on the tép-
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Table 4: Ranking accuracies on OHSUMED
Methods N@1 | N@3 | N@10| P@1 | P@3 | P@10
RankBoost 0.497| 0.472| 0.435 | 0.604| 0.586| 0.495
Ranking SVM | 0.495| 0.464| 0.441 | 0.633| 0.592| 0.507
ListNet 0.523| 0.477| 0.448 | 0.642| 0.602| 0.509
RankCosine | 0.523| 0.475| 0.437 | 0.642| 0.589| 0.493
Top-10 ListMLE | 0.558 | 0.473| 0.444 | 0.672| 0.601| 0.509

Table 5: Ranking accuracies on TD2003
Methods N/P@1| N@3 | N@10 | P@3| P@10
RankBoost 0.26 | 0.270| 0.285 | 0.24 | 0.178
Ranking SVM 0.42 | 0.378] 0.341 | 0.34 | 0.206
ListNet 0.46 | 0.408| 0.374 | 0.36 | 0.222
RankCosine 0.36 | 0.346| 0.322 | 0.3 | 0.182
Top-10 ListMLE 0.5 0.410| 0.378 | 0.38 | 0.22

subgroup of permutations. We have formulated sufficienttams for a surrogate loss function
to be statistically consistent with the téptrue loss. We have also discussed how to modify the
loss functions in existing listwise ranking methods to mékem consistent with the top-true
loss. Our experiments have shown that with the proposedfioatibns, ListMLE can significantly
outperform its original version, and also many other ragkirethods.

As for future work, we plan to investigate the following issu (1) we will empirically study
the modified ListNet and RankCosine, to see whether thefopaances can also be significantly
boosted in the toj-setting. (2) We will study the consistency of the pointwisel gpairwise loss
functions with the topk true loss.
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