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Abstract

This paper is concerned with the consistency analysis on listwise ranking meth-
ods. Among various ranking methods, the listwise methods have competitive per-
formances on benchmark datasets and are regarded as one of the state-of-the-art
approaches. Most listwise ranking methods manage to optimize ranking on the
whole list (permutation) of objects, however, in practicalapplications such as in-
formation retrieval, correct ranking at the topk positions is much more important.
This paper aims to analyze whether existing listwise ranking methods are statisti-
cally consistent in the top-k setting. For this purpose, we define a top-k ranking
framework, where the true loss (and thus the risks) are defined on the basis of top-
k subgroup of permutations. This framework can include the permutation-level
ranking framework proposed in previous work as a special case. Based on the
new framework, we derive sufficient conditions for a listwise ranking method to
be consistent with the top-k true loss, and show an effective way of modifying the
surrogate loss functions in existing methods to satisfy these conditions. Experi-
mental results show that after the modification, the methodscan work significantly
better than their original versions, indicating the correctness of our theoretical
analysis.

1 Introduction

Ranking is the central problem in many applications including information retrieval (IR). In recent
years, machine learning technologies have been successfully applied to ranking, and many learning
to rank methods have been proposed, including the pointwise[12] [9] [6], pairwise [8] [7] [2], and
listwise methods [13] [3] [15]. Empirical results on benchmark datasets have demonstrated that the
listwise ranking methods have very competitive ranking performances [10].

To explain the high ranking performances of the listwise ranking methods, a theoretical framework
was proposed in [15]. In the framework, existing listwise ranking methods are interpreted as making
use of different surrogate loss functions of the permutation-level 0-1 loss. Theoretical analysis shows
that these surrogate loss functions are all statistically consistent in the sense that the minimization of
the conditional expectation of them will lead to obtaining the Bayes ranker, i.e., the optimal ranked
list of the objects.

Here we point out that there is a gap between the analysis in [15] and many real ranking problems,
where the correct ranking of the entire permutation is not needed. For example, in IR, users usually
care much more about the top ranking results and thus only correct ranking at the top positions is
important. In this new situation, it is no longer clear whether existing listwise ranking methods are
still statistically consistent. The motivation of this work is to perform formal study on the issue.

For this purpose, we propose a new ranking framework, in which the “true loss” is defined on the
top-k subgroup of permutations instead of on the entire permutation. The new true loss only mea-
sures errors occurring at the topk positions of a ranked list, therefore we refer to it as the top-k true
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loss (Note that whenk equals the length of the ranked list, the top-k true loss will become exactly
the permutation-level 0-1 loss). We prove a new theorem which gives sufficient conditions for a
surrogate loss function to be consistent with the top-k true loss. We also investigate the change of
the conditions with respect to differentk. Our analysis shows that, ask decreases, to guarantee the
consistency of a surrogate loss function, the requirement on the probability space becomes weaker
while the requirement on the surrogate loss function itselfbecomes stronger. As a result, a surro-
gate loss function that is consistent with the permutation-level 0-1 loss might not be consistent with
the top-k true loss any more. Therefore, the surrogate loss functionsin existing listwise ranking
methods, which have been proved to be consistent with the permutation-level 0-1 loss, are not theo-
retically guaranteed to have good performances in the top-k setting. Modifications to these surrogate
loss functions are needed to further make them consistent with the top-k true loss. We show how
to make such modifications, and empirically verify that suchmodifications can lead to significant
performance improvement. This validates the correctness of our theoretical analysis.

The rest of the paper is organized as follows. Section 2 reviews the permutation-level ranking frame-
work proposed in [15]. Section 3 presents our proposed top-k ranking framework. The theoretical
analysis with the proposed framework and its application tomodifying existing loss functions are
given in Section 4. Experimental results are reported in Section 5, and conclusions are made in the
last section.

2 Permutation-level ranking framework

We review the permutation-level ranking framework proposed in [15].

LetX be the input space whose elements are groups of objects to be ranked,Y be the output space
whose elements are permutations of objects, andPXY be an unknown but fixed joint probability
distribution ofX andY . Let h : X → Y be a ranking function, andH be its function space (i.e.,
h ∈ H). Let x ∈ X andy ∈ Y , and lety(i) be the index of the object that is ranked at positioni in
y. The task of ranking is to learn a function that can minimize the expected riskR(h), defined as,

R(h) =

∫

X×Y

l(h(x), y)dP (x, y), (1)

wherel(h(x), y) is the true loss such that

l(h(x), y) =

{

1, if h(x) 6= y
0, if h(x) = y.

(2)

The above true loss indicates that if the permutation of the predicted results is exactly the same as
the permutation in the ground truth, then the loss is zero; otherwise the loss is one. For ease of
reference, we call it permutation-level 0-1 loss. The optimal ranking function which can minimize
the expected true riskR(h∗) = inf R(h) is referred to as the permutation-level Bayes ranker.

h∗(x) = arg max
y∈Y

P (y|x). (3)

In practice, for efficiency consideration, the ranking function is usually defined ash(x) =
sort(g(x1), . . . , g(xn)), whereg(·) denotes the scoring function, and sort(·) denotes the sorting
function. Since the risks are non-continuous and non-differentiable with respect to the scoring
function g, a continuous and differentiable surrogate loss functionφ(g(x), y) is usually used as
an approximation of the true loss. In this way, the expected risk becomes

Rφ(g) =

∫

X×Y

φ(g(x), y)dP (x, y), (4)

whereg(x) = (g(x1), . . . , g(xn)) is a vector-valued function induced byg.

It has been shown in [15] that many existing listwise rankingmethods can fall into the above frame-
work, with different surrogate loss functions used. And furthermore, their surrogate loss functions
are statistically consistent under certain conditions with respect to the permutation-level 0-1 loss.
However, as shown in the next section, the permutation-level 0-1 loss cannot well describe the rank-
ing problem in many real applications.
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3 Top-k ranking framework

We first describe the real ranking problem, and then propose anew ranking framework.

3.1 Top-k ranking problem

In real ranking applications like IR, people pay more attention to the top-ranked objects. Therefore
correct ranking on the top positions is critically important. For example, modern web search engines
only return top1, 000 results and10 results in each page. According to a user study1, 62% of search
engine users only click on the results within the first pages,and 90% of users click on the results
within the first three pages. It means that two ranked lists ofdocuments will likely provide the same
experience to the users (and thus suffer the same loss), if they have the same ranking results for
the top positions. This, however, cannot be reflected in the permutation-level 0-1 loss in Eq.(2).
This characteristic of ranking problems has also been explored in earlier studies in different settings
[4, 5, 14], we refer to it as top-k ranking problem.

3.2 Top-k true loss

To better describe the top-k ranking problem, we propose defining the true loss based on the topk
positions in a ranked list, referred to as the top-k true loss.

lk(h(x), y) =

{

0, if ŷ(i) = y(i) ∀i ∈ {1, . . . , k},whereŷ = h(x),
1, otherwise .

(5)

The actual value of parameterk is determined by application. Whenk equals the length of the entire
ranked list, the top-k true loss will become the permutation-level 0-1 loss. In this regard, the top-k
true loss is more general than the permutation-level 0-1 loss.

With Eq.(5), the expected risk becomes

Rk(h) =

∫

X×Y

lk(h(x), y)dP (x, y). (6)

The optimal ranking function of Eq. (6) (i.e., the top-k Bayes ranker) is given by the following
proposition.

Proposition 1. The optimal ranking function of Eq. (6) is any permutation inthe top-k subgroup
having the highest probability2, i.e.,

h∗k(x) ∈ arg maxGk(j1,j2,...,jk)∈Gk
P (Gk(j1, j2, ..., jk)|x), (7)

whereGk(j1, j2, ..., jk) = {y ∈ Y |y(t) = jt,∀t = 1, 2, . . . k} denotes a top-k subgroup in which
all the permutations have the same top-k true loss;Gk denotes the collection of all top-k subgroups..

Proof. The expected risk of a ranking functionh(x) is:

Rk(h) =

∫

X

∑

y∈Y

lk(h(x), y)P (y|x)dP (x) (8)

=

∫

X

[1 −
∑

y∈{y∈Y |y(t)=h(t),∀t=1,2,... k}

P (y|x)]dP (x).

Thenh∗k(x) ∈ arg maxGk(j1,j2,...,jk)∈Gk
P (Gk(j1, j2, ..., jk)|x) minimizes (8) for everyx.

With the above setting, we will analyze the consistency of the surrogate loss functions in existing
ranking methods with the top-k true loss in the next section.

1iProspect Search Engine User Behavior Study, April 2006, http://www.iprospect.com/
2Note that the probability of a top-k subgroup is defined as the sum of the probabilities of the permutations

in the subgroup (cf., Definitions6 and7 in [3]).
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4 Theoretical analysis

In this section, we first give the sufficient conditions of consistency for the top-k ranking problem.
Second, we show how these conditions change with respect tok. Last, we discuss whether surrogate
loss functions in existing methods are consistent, and how to make them consistent if not.

4.1 Statistical consistency

We investigate what kinds of surrogate loss functionsφ(g(x), y) are statistically consistent with
the top-k true loss. For this purpose, we study whether the ranking function that minimizes the
conditional expectation of the surrogate loss function defined as follows coincides with the top-k
Bayes ranker as defined in Eq.(7).

Q(P (y|x),g(x)) =
∑

y∈Y

P (y|x)φ(g(x), y). (9)

According to [1], the above condition is the weakest one providing theoretical guarantee that opti-
mizing a surrogate loss function will lead to obtaining a model achieving the Bayes risk (the expected
true risk of the top-k Bayes ranker in our case), when the training sample size approaches infinity .

For ease of explanation, we denoteQ(P (y|x),g(x)) asQ(p,g), g(x) as g andP (y|x) as py.
Hence,Q(p,g) is the pointwise loss ofg atx with respect to the conditional probability distribution
py. The key idea is to decompose the optimal sorting ofg into pairwise relationship between scores
of objects. For this purpose, we denoteYi,j as a permutation set in which each permutation ranks
object i before objectj, i.e., Yi,j , {y ∈ Y : y−1(i) < y−1(j)}, and introduce the following
definitions.

Definition 2. We defineΛGk
as a top-k subgroup probability space, i.e.,ΛGk

, {p ∈ R|Gk| :
∑

Gk(j1,j2,...,jk)∈Gk
pGk(j1,j2,...,jk) = 1, pGk(j1,j2,...,jk) ≥ 0}.

Definition 3. A top-k subgroup probability spaceΛGk
is order preserving with respect to objects

i and j, if ∀y ∈ Yi,j and Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), we

havepGk(y(1),y(2),...,y(k)) > pGk(σ−1
i,j

y(1),σ−1
i,j

y(2),...,σ−1
i,j

y(k)). Hereσ−1
i,j y denotes the permutation

in which the positions of objectsi andj are exchanged while those of the other objects remain the
same as iny.

Definition 4. A surrogate loss functionφ is top-k subgroup order sensitive on a setΩ ⊂ Rn, if φ
is a non-negative differentiable function and the following three conditions hold for∀ objectsi and
j: (1) φ(g, y) = φ(σ−1

i,j g, σ−1
i,j y); (2)Assumegi < gj , ∀y ∈ Yi,j . If Gk(y(1), y(2), ..., y(k)) 6=

Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), thenφ(g, y) ≥ φ(g, σ−1

i,j y) and for at least oney, the strict

inequality holds; Otherwise,φ(g, y) = φ(g, σ−1
i,j y). (3) Assumegi = gj . ∃y ∈ Yi,j with

Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), we have

∂φ(g,σ
−1
i,j

y)

∂gi
> ∂φ(g,y)

∂gi
.

The order preserving property of a top-k subgroup probability space (see Definition 3) indicates
that if the top-k subgroup probability on a permutationy ∈ Yi,j is larger than that on permutation
σ−1

i,j y, then the relation holds for any other permutationy′ in Yi,j if its associated top-k subgroup is
different from that ofσ−1

i,j y
′. Theorder sensitiveproperty of a surrogate loss function (see Definition

4) indicates that (i)φ(g, y) should exhibit the natural symmetry in the sense that if the ground truth
and the predicted scores are simultaneously exchanged withrespect to objectsi andj, the surrogate
loss does not change; (ii) when a permutation is transformedto another permutation by exchanging
the positions of two objects, if the two permutations do not belong to the same top-k subgroup, the
loss on the permutation that ranks the two objects in the decreasing order of their scores will be
no greater than the loss on its counterpart. (iii) There exists a permutation, for which the speed of
change in loss with respect to the score of an object will become faster if exchanging its position
with another object with the same score that is ranked after it. A top-k subgroup order sensitive
surrogate loss function has several nice properties as shown below.

Proposition 5. Let φ(g, y) be a top-k subgroup order sensitive loss function.∀y,∀π ∈
Gk(y(1), y(2), . . . , y(k)), we haveφ(g, π) = φ(g, y).
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Proof. 1) We start with the case of transposition whereπ = σ−1
i,j y, i.e.,π is the permutation in which

the positions of objecti and objectj are exchanged while those of the other objects remain the same
as iny. If gi = gj , it is obvious thatφ(g, π) = φ(g, y). If gi 6= gj , without loss of generality, we
assumey−1(i) < y−1(j) andgi < gj . Sinceφ(g, y) is a top-k order sensitive loss function and
π ∈ Gk(y(1), y(2), . . . , y(k)), we haveφ(g, π) = φ(g, y). Thus, a transposition cannot change the
value ofφ(g, y).

In the case ofπ 6= σ−1
i,j y, sinceπ ∈ Gk(y(1), y(2), . . . , y(k)), there exists a permutationσ−1 such

thatπ = σ−1y andσ−1 can be represented as a product of finite transpositions within the top-k
subgroup. Since a transposition cannot change the value ofφ(g, y), π = σ−1y impliesφ(g, π) =
φ(g, y).

Proposition 6. Letφ(g, y) be a top-k subgroup order sensitive surrogate loss function.∀ objectsi
andj with gi = gj , ∀y ∈ Yi,j , if Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1

i,j y(1), σ−1
i,j y(2), ..., σ−1

i,j y(k)),

then
∂φ(g,σ

−1
i,j

y)

∂gi
≥ ∂φ(g,y)

∂gi
. Otherwise,

∂φ(g,σ
−1
i,j

y)

∂gi
= ∂φ(g,y)

∂gi
.

Proof. ∀g with gi = gj , ∀y ∈ Yi,j , it is easy to seeφ(g, y) = φ(g, σ−1
i,j y). Now, consider a small

change ofgi in g. Denote the new score vector asgε.

In the case ofGk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), if ε > 0, then

φ(gε, y) ≤ φ(gε, σ
−1
i,j y); If ε < 0, then φ(gε, y) ≥ φ(gε, σ

−1
i,j y). Under both conditions,

φ(gε,y)−φ(g,y)
ε

≤
φ(gε,σ

−1
i,j

y)−φ(g,σ
−1
i,j

y)

ε
. Whenε approaches zero, we have

∂φ(g,σ
−1
i,j

y)

∂gi
≥ ∂φ(g,y)

∂gi
.

In the case ofGk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), according to Propo-

sition 4,φ(gε, y) = φ(gε, σ
−1
i,j y). Thus,

∂φ(g,σ
−1
i,j

y)

∂gi
= ∂φ(g,y)

∂gi
.

Proposition 5 shows that all permutations in the same top-k subgroup share the same lossφ(g, y)
and thus share the same partial difference with respect to the score of a given object. Proposition 6
indicates that the partial difference ofφ(g, y) also has a similar property toφ(g, y) (see the second
condition in Definition 4).

Before giving the main theorem, we give the following theorem, which specifies the score relation
between two objects for the minimizer ofQ(p,g).

Theorem 7. Let φ(g, y) be a top-k subgroup order sensitive loss function.∀i and j, if the top-k
subgroup probability space is order preserving with resectto them, andg is a vector which minimizes
the point-wise surrogate lossQ(p,g) in Eq.(9), thengi > gj .

Proof. Without loss of generality, we assumei = 1, j = 2, g′1 = g2, g′2 = g1, andg′k = gk(k > 2).

First, first proveg1 ≥ g2 by contradiction. Assumeg1 < g2, we have

Q(p,g′) −Q(p,g) =
∑

y∈Y

(pσ
−1
1,2y − py)φ(g, y) =

∑

y∈Y1,2

(pσ
−1
1,2y − py)(φ(g, y) − φ(g, σ−1

1,2y)).

The first equation uses the factg
′ = σ−1

1,2g, and the second equation uses the factσ−1
1,2σ

−1
1,2y = y.

After some algebra, by using Proposition 5, we have,

Q(p,g′) −Q(p,g) =
∑

Gk(y)∈{Gk:Gk(y) 6=Gk(σ−1
1,2y)}:y∈Y1,2

(pGk(σ−1
1,2y) − pGk(y))(φ(g, y) − φ(g, σ−1

1,2y)),

whereGk(y) denotes the subgroup thaty belongs to.

Sinceg1 < g2, we haveφ(g, y) ≥ φ(g, σ−1
1,2y). Meanwhile,pGk(σ−1

1,2y) < pGk(y) due to the order

preserving of the top-k subgroup probability space. Thus each component in the sum is non-positive
and at least one of them is negative, which meansQ(p,g′) < Q(p,g). This is a contradiction to
the optimality ofg. Therefore, we must haveg1 ≥ g2.
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Second, we proveg1 6= g2 also by contradiction. Assumeg1 = g2. By setting the derivative of
Q(p,g) with respect tog1 andg2 to zero and compare them3, we have,

∑

y∈Y1,2

(py − pσ
−1
1,2y)(

∂φ(g, y)

∂g1
−
∂φ(g, σ−1

1,2y)

∂g1
) = 0.

After some algebra, we obtain,

∑

Gk(y)∈{Gk:Gk(y) 6=Gk(σ−1
1,2y)}:y∈Y1,2

(pGk(y) − pGk(σ−1
1,2y))(

∂φ(g, y)

∂g1
−
∂φ(g, σ−1

1,2y)

∂g1
) = 0.

According to Proposition 6, we have∂φ(g,y)
∂g1

≤
∂φ(g,σ

−1
1,2y)

∂g1
. Meanwhile,pGk(σ−1

1,2y) < pGk(y) due to

the order preserving of the top-k subgroup probability space. Thus, the above equation cannot hold
since every component in the sum is non-positive and at leastone of them is negative according to
Definition 4.

Based on Theorem 7, we give the main theorem (Theorem 8), which states the conditions for a
surrogate loss function to be consistent with the top-k true loss.

Theorem 8. Let φ be a top-k subgroup order sensitive loss function onΩ ⊂ Rn . For ∀n ob-
jects, if its top-k subgroup probability space is order preserving with respect to n − 1 object pairs
{(ji, ji+1)}

k
i=1 and{(jk+si

, jk+i : 0 ≤ si < i)}n−k
i=2 , then the lossφ(g, y) is consistent with the

top-k true loss as defined in Eq.(5).

Proof. We first prove that the top-k subgroup with the maximum conditional probability is
Gk(j1, j2, · · · , jk). We then show the ranked list derived by sorting the minimizer of the point-
wise surrogate loss ofQ(p,g) belongs toGk(j1, j2, · · · , jk), which implies the consistency.

∀y with Gk(y(1), y(2), · · · , y(k)) 6= Gk(j1, j2, · · · , jk), we start from the first position ofy, i.e.,
i = 1. If y(1) = jl, l > k + 1, then we can use finite times of transposition of object pairsin
{(jk+si

, jk+i : 0 ≤ si < i)}n−k
i=2 to achievey(1) = jk. If y(1) = jl, l ≤ k + 1, then we can

usel − 1 times of transposition of object pairs in{(ji, ji+1)}
k
i=1 to achievey(1) = j1. If y(1) =

j1, then a similar process can be done fori = 2. At last, we terminate the transposition process
at i = k and obtain a permutation whose associated top-k subgroup isGk(j1, j2, · · · , jk). Note
that the probability of the associated top-k subgroup continuously increases throughout the whole
process due to the order preserving property. This implies∀y with Gk(y(1), y(2), · · · , y(k)) 6=
Gk(j1, j2, · · · , jk),Gk(y(1), y(2), · · · , y(k)) < Gk(j1, j2, · · · , jk).

According to Theorem 7, since the top-k subgroup probability space is order preserving with respect
ton− 1 object pairs{(ji, ji+1)}

k
i=1 and{(jk+si

, jk+i : 0 ≤ si < i)}n−k
i=2 andφ is a top-k subgroup

order sensitive loss function, the minimizer of pointwise surrogate loss should havegji
> gji+1

,
i = 1, · · · , k andgjk+si

> gjk+i
, i = 2, · · · , n − k and0 ≤ si < i. This indicates that the ranked

list derived by sorting the minimizerg of Q(p,g) belongs toGk(j1, j2, · · · , jk).

4.2 Consistency with respect tok

In this subsection, we discuss the consistency conditions with respect to variousk values.

First, we have the following proposition for the top-k subgroup probability space.

Proposition 9. If the top-k subgroup probability space is order preserving with respect to objectsi
andj, then the top-(k − 1) subgroup probability space is order preserving with respect to i andj.

Proof. ∀y ∈ Yi,j withGk−1(y(1), y(2), ..., y(k−1)) 6= Gk−1(σ
−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k−1)).

It is easy to seei ∈ {y(1), y(2), · · · , y(k − 1)}. The y falls into one of two cases, i.e.,j ∈
{y(1), y(2), · · · , y(k − 1)} or j 6∈ {y(1), y(2), · · · , y(k − 1)}.

3By trivial modification, one can handle the case wheng1 or g2 is infinite (cf. [16]).
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For j ∈ {y(1), y(2), · · · , y(k − 1)}, denote indexes of objects that are not ranked within the top
k − 1 positions ofy as(j1, j2, · · · , jn−k+1), we have

pGk−1(y(1),...,y(k−1)) − pGk−1(σ
−1
i,j

y(1),...,σ−1
i,j

y(k−1)) (10)

=

n−k+1
∑

i=1

(pGk(y(1),...,y(k−1),ji) − pGk(σ−1
i,j

y(1),...,σ−1
i,j

y(k−1),ji)
)

Since the top-k subgroup probability space is order preserving with respect to objects
i and j, every component in the sum is positive and thuspGk−1(y(1),y(2),...,y(k−1)) >
pGk−1(σ

−1
i,j

y(1),σ−1
i,j

y(2),...,σ−1
i,j

y(k−1)).

For j 6∈ {y(1), y(2), · · · , y(k − 1)}, we can prove pGk−1(y(1),y(2),...,y(k−1)) >
pGk−1(σ

−1
i,j

y(1),σ−1
i,j

y(2),...,σ−1
i,j

y(k−1)) using the similar method. The only difference is that, in the

sum, when the top-k subgroup isGk(y(1), ..., y(k−1), j) forGk−1(y(1), y(2), ..., y(k−1)), the cor-
responding top-k subgroup isGk(y(1), ..., y(k − 1), i) for Gk−1(σ

−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k −

1)).

To better understand the theorem, we give an example here. Suppose there are three objects{1, 2, 3}
to be ranked. If the top-2 subgroup probability space is order preserving with respect to objects1
and2, then we havepG2(1,2) > pG2(2,1), pG2(1,3) > pG2(2,3) andpG2(3,1) > pG2(3,2). On the
other hand, for top-1, we havepG1(1) > pG1(2). Note thatpG1(1) = pG2(1,2) + pG2(1,3) and
pG1(2) = pG2(2,1) + pG2(2,3). Thus, it is easy to verify that Proposition 9 holds for this case while
the opposite does not.

Second, we obtain the following proposition for the surrogate loss functionφ.

Proposition 10. If the surrogate loss functionφ is top-k subgroup order sensitive on a setΩ ⊂ Rn,
then it is also top-(k+1) subgroup order sensitive on the same set.

Proof. It is easy to see that only the second property in Definition 3 needs to be proved
for the property of top-(k+1) subgroup order sensitive.∀ object pair i and j with gi <
gj , ∀y ∈ Yi,j . If Gk+1(y(1), y(2), ..., y(k + 1)) 6= Gk+1(σ

−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k +

1)), then we have eitherGk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)) or

Gk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)). Sinceφ is top-k subgroup order

sensitive, forGk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), we haveφ(g, y) ≥

φ(g, σ−1
i,j y) and for at least oney, the strict inequality holds. ForGk(y(1), y(2), ..., y(k)) =

Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), φ(g, y) = φ(g, σ−1

i,j y) according to Proposition 5. Combining
both cases, we haveφ(g, y) ≥ φ(g, σ−1

i,j y) and for at least oney, the strict inequality holds.

If Gk+1(y(1), y(2), ..., y(k+1)) = Gk+1(σ
−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k+1)), it is easy to see that

Gk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)). Thus,φ(g, y) = φ(g, σ−1

i,j y).

Again, we provide an example here. Consider the same settingin the previous example. Assume
g1 < g2. If φ is top-1 subgroup order sensitive, then we haveφ(g, (1, 2, 3)) ≥ φ(g, (2, 1, 3)),
φ(g, (1, 3, 2)) ≥ φ(g, (2, 3, 1)), andφ(g, (3, 1, 2)) = φ(g, (3, 2, 1)). Considering Proposition 5,
the two inequalities become strict. On the other hand, ifφ is top-2 subgroup order sensitive, the fol-
lowing inequalities hold with at least one of them becoming strict: φ(g, (1, 2, 3)) ≥ φ(g, (2, 1, 3)),
φ(g, (1, 3, 2)) ≥ φ(g, (2, 3, 1)), andφ(g, (3, 1, 2)) ≥ φ(g, (3, 2, 1)). Therefore top-1 subgroup
order sensitive is a special case of top-2 subgroup order sensitive.

From the above propositions, we have the following conclusions.

• For the consistency with the top-k true loss, whenk becomes smaller, the requirement on
the probability space becomes weaker but the requirement onthe surrogate loss function
becomes stronger. Since we never know the real property of the (unknown) probability
space, it is more likely the requirement on the probability space for the consistency with
the top-k true loss can be satisfied than that for the top-l (l > k) true loss. Specifically, it is
the riskiest to assume the requirements for the permutation-level 0-1 loss to hold.
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• If we fix the true loss to be top-k and the probability space to be top-k subgroup order
preserving, then the surrogate loss function should be at most top-l (l ≤ k) subgroup order
sensitive in order to meet the consistency conditions. It isnot guaranteed that a top-l (l > k)
subgroup order sensitive surrogate loss function can be consistent with the top-k true loss.
Specifically, a top-1 subgroup order sensitive surrogate loss function may be consistent
with any top-k true loss, but a permutation-level order sensitive surrogate loss function will
be inconsistent with any top-k true loss, ifk is smaller than the length of the ranked list.

To ease the understanding of the above discussions, let us see an example shown in the following
proposition. It basically says that given a probability space that is top-1 subgroup order preserving,
a top-3 subgroup order sensitive surrogate loss function may not be consistent with the top-1 true
loss.

Proposition 11. Suppose there are three objects to be ranked.φ is a top-3 subgroup order sensitive
loss function and the strict inequalityφ(g, (3, 1, 2)) < φ(g, (3, 2, 1)) holds wheng1 > g2. The
probabilities of permutations arep123 = p1, p132 = 0, p213 = p2, p231 = 0, p312 = 0, p321 = p2

respectively, wherep1 > p2. Thenφ is not consistent with respect to the top-1 true loss.

Proof. Since the sum of probabilities equals to one andp1 > p2, we getp2 = 1/2(1 − p1), and
1/3 < p1 ≤ 1. Considerg = [g1, g2, g3] with g1 > g2. We shall prove that with somep1 valuesg
cannot be the optimal solution. Letg

′ = [g′1, g
′
2, g

′
3] andg′1 = g2, g

′
2 = g1, g

′
3 = g3. It is easy to see

g
′ = σ−1

1,2(g)

Q(p,g) = p123φ(g, (1, 2, 3)) + p213φ(g, (2, 1, 3)) + p321φ(g, (3, 2, 1))

Q(p,g′) = p123φ(g′, (1, 2, 3)) + p213φ(g′, (2, 1, 3)) + p321φ(g′, (3, 2, 1))

= p123φ(g, (2, 1, 3)) + p213φ(g, (1, 2, 3)) + p321φ(g, (3, 1, 2))

Sinceφ(g, y) is top-3 subgroup order sensitive andg2 < g1, φ(g, (1, 2, 3)) ≤ φ(g, (2, 1, 3)) and
φ(g, (3, 1, 2)) < φ(g, (3, 2, 1)).

After some algebra, the termQ(p,g′) < Q(p,g) is equivalent to

φ(g, (2, 1, 3)) − φ(g, (1, 2, 3))

φ(g, (3, 2, 1)) − φ(g, (3, 1, 2))
<

1 − p1

3p1 − 1
(11)

The right-hand side of formula (11) is a decreasing functionof p1. Since1/3 < p1 ≤ 1, 1−p1

3p1−1 ∈

[0,+∞). Note that∀g, the left-hand side of formula (11) is non negative and bounded. Therefore,
we can makep1 approach1/3 enough so that the inequality (11) holds. This indicates that g with
g1 > g2 is not optimal with somep1 values, which impliesφ is not consistent.

The above discussions imply that although the surrogate loss functions in existing listwise ranking
methods are consistent with the permutation-level 0-1 loss(under a rigid condition), they may not
be consistent with the top-k true loss any more (under a milder condition). Therefore, itis necessary
to modify these surrogate loss functions. We will make discussions on this in the next subsection.

4.3 Consistent surrogate loss functions

In [15], the surrogate loss functions in ListNet, RankCosine, and ListMLE have been proved to be
permutation-level order sensitive. According to the discussion in the previous subsection, however,
they may not be top-k subgroup order sensitive any more, and therefore not consistent with the
top-k true loss. Even for the consistency with the permutation-level 0-1 loss, in order to guarantee
these surrogate loss functions to be consistent, the requirement on the probability space may be too
strong in some real scenarios. To tackle the challenge, it isdesirable to modify these surrogate loss
functions to make them top-k subgroup order sensitive. Actually this is doable, and the modifications
to the aforementioned surrogate loss functions are given asfollows.
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4.3.1 Likelihood loss

The likelihood loss is the loss function used in ListMLE [15], which is defined as below,

φ(g(x), y) = − logP (y|x;g), where P (y|x;g) =
n

∏

i=1

exp(g(xy(i)))
∑n

t=i exp(g(xy(t)))
. (12)

We propose replacing the permutation probability with the top-k subgroup probability (which is also
defined with the Luce model [11]) in the above definition:

P (y|x;g) =

k
∏

i=1

exp(g(xy(i)))
∑n

t=i exp(g(xy(t)))
. (13)

It can be proved that the modified likelihood loss function istop-k subgroup order sensitive, as given
in the following proposition.

Proposition 12. The modified likelihood loss function of Eq.(13) is top-k subgroup order sensitive.

Proof. It is easy to verify that the first and third properties of Definition 3 hold for the modified
likelihood loss function.

For simplicity, we omitx in the modified likelihood loss function and prove the secondproperty of
Definition 3.

For∀ object pairi andj with gi < gj , ∀y ∈ Yi,j , we have:

φ(g, y) − φ(g, σ−1
i,j y) = logP (σ−1

i,j y|g) − logP (y|g).

If Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), similar to Theorem 3 and The-

orem 8 in [3], it is easy to showP (σ−1
i,j y|g) > logP (y|g). Thus,φ(g, y) > φ(g, σ−1

i,j y).

If Gk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), it is easy to verify that

P (σ−1
i,j y|g) = logP (y|g), and henceφ(g, y) = φ(g, σ−1

i,j y).

4.3.2 Cosine loss

The cosine loss is the loss function used in RankCosine [13],which is defined as follows,

φ(g(x), y) =
1

2
(1 −

ψy(x)T
g(x)

‖ψy(x)‖‖g(x)‖
), (14)

where the score vector of the ground truth is produced by a mapping functionψy(·) : Rd → R,
which retains the order in a permutation, i.e.,ψy(xy(1)) > · · · > ψy(xy(n)).

We propose changing the mapping function as follows. Let themapping function retain the order
for the topk positions in a permutation and map all the remaining positions to a small value (which
is smaller than the score of any object ranked at the top-k positions), i.e.,ψy(xy(1)) > · · · >
ψy(xy(k)) > ψy(xy(k+1)) = · · · = ψy(xy(n)) = ε. It can be proved that after the modification, the
cosine loss becomes top-k subgroup order sensitive.

Proposition 13. The modified cosine loss function of Eq.(14) is top-k subgroup order sensitive.

Proof. Similar to the proof of Proposition 12, we only prove the second property of Definition 3 and
omit x in the modified cosine loss function for simplicity.

For∀ object pairi andj with gi < gj , ∀y ∈ Yi,j , we have:

φ(g, y) − φ(g, σ−1
i,j y) =

1

2
(

ψT

σ
−1
i,j

y
g

‖ψσ
−1
i,j

y‖‖g‖
−

ψT
y g

‖ψy‖‖g‖
)

=
(ψy

y−1(j)
− ψy

y−1(i)
)(gi − gj)

2‖ψy‖‖g‖

9



The second equality is based on the fact‖ψσ
−1
i,j

y‖ = ‖ψy‖.

If Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), according to the property of the

mapping function, sincey−1(i) < y−1(j), ψy
y−1(j)

< ψy
y−1(i)

. Using the conditiongi < gj , it is

easy to showφ(g, y) > φ(g, σ−1
i,j y).

If Gk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), sinceψy

y−1(j)
= ψy

y−1(i)
= ε,

and henceφ(g, y) = φ(g, σ−1
i,j y).

4.3.3 Cross entropy loss

The cross entropy loss is the loss function used in ListNet [3], defined as follows,

φ(g(x), y) = D(P (π|x;ψy)||P (π|x;g)), (15)

whereψ is a mapping function which definition is similar to that in RankCosine, andP (π|x;ψy)
andP (π|x;g) are Luce model based permutation probabilities.

We propose using a similar mapping function to that in the modified cosine loss for the modification
of the cross entropy loss4. It can be proved that such a modification can make it top-k subgroup
order sensitive.

Proposition 14. The modified cross entropy loss function of Eq.(15) is top-k subgroup order sensi-
tive.

Proof. Similar to the proof of Proposition 12, we only prove the second property of Definition 3 and
omit x in the modified cross entropy loss function for simplicity.

∀ object pairi andj with gi < gj , ∀y ∈ Yi,j , we have:

φ(g, y) − φ(g, σ−1
i,j y) =

∑

π∈Y

(P (π|ψσ
−1
i,j

y) − P (π|ψy)) logP (π|g)

=
∑

π∈Yi,j

(P (σ−1
i,j π|ψy) − P (π|ψy))(logP (π|g) − logP (σ−1

i,j π|g)).

The fact of symmetry, i.e.,P (π|ψy) = P (σ−1
i,j π|ψσ

−1
i,j

y), is used in the second equation.

If Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), according to the property of the

mapping function, sincey−1(i) < y−1(j), ψy
y−1(j)

< ψy
y−1(i)

. Hence, according to Theorem 3 in

[3], for π ∈ Yi,j P (σ−1
i,j π|ψy) < P (π|ψy). Similarly, sincegi < gj , logP (π|g) < logP (σ−1

i,j π|g).
Thus every components in the sum is positive, which meansφ(g, y) > φ(g, σ−1

i,j y).

If Gk(y(1), y(2), ..., y(k)) = Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), sinceψy

y−1(j)
= ψy

y−1(i)
= ε,

and henceP (σ−1
i,j π|ψy) = P (π|ψy). This impliesφ(g, y) = φ(g, σ−1

i,j y).

5 Experimental results

In order to validate the theoretical analysis in this work, we conducted some empirical study. Specif-
ically, we used OHSUMED, TD2003, and TD2004 in the LETOR benchmark dataset [10] for the
experiments. As evaluation measure, we adopted NormalizedDiscounted Cumulative Gain (N) at
positions 1, 3, and 10, and Precision (P) at positions 1, 3, and 10.5 It is obvious that these measures
are top-k related and are suitable to evaluate the ranking performance for top-k ranking problems.

4Note that in [3], a top-k cross entropy loss was also proposed, by using the top-k Luce model. However,
it can be validated that the so-defined top-k cross entropy loss is still permutation-level order sensitive, but not
top-k subgroup order sensitive. In other words, the modification to the mapping function is still needed to make
it top-k subgroup order sensitive, and thus consistent with the top-k true loss.

5On datasets with only two ratings such as TD2003 and TD2004, N@1 equals P@1.
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We chose ListMLE as an example to perform the experimental study since the likelihood loss has
nice properties such as convexity, soundness and linear computational complexity [15]. We refer
to the new method we obtained by applying the modifications mentioned in Section 4.3 as top-k
ListMLE. We tried different values ofk (i.e., k=1, 3, 10, and the exact length of the ranked list).
Obviously the last case corresponds to the original likelihood loss in ListMLE.

Since the training data in LETOR is given in the form of multi-level ratings, we adopted the methods
proposed in [15] to produce the ground truth ranked list in the experiments. We then used stochastic
gradient descent as the algorithm for optimization. As for ranking model, we chose linear Neural
Network, since the same model has been widely used in other work [3, 13, 15].

The experimental results are summarized in Tables 1-3.

Table 1: Ranking accuracies on OHSUMED
Methods N@1 N@3 N@10 P@1 P@3 P@10
ListMLE 0.548 0.473 0.446 0.642 0.582 0.495

Top-1 ListMLE 0.529 0.482 0.447 0.652 0.595 0.499
Top-3 ListMLE 0.535 0.484 0.445 0.671 0.608 0.504
Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509

Table 2: Ranking accuracies on TD2003
Methods N/P@1 N@3 N@10 P@3 P@10
ListMLE 0.24 0.253 0.261 0.22 0.146

Top-1 ListMLE 0.4 0.329 0.314 0.3 0.176
Top-3 ListMLE 0.44 0.382 0.343 0.34 0.204
Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22

Table 3: Ranking accuracies on TD2004
Methods N/P@1 N@3 N@10 P@3 P@10
ListMLE 0.4 0.351 0.356 0.284 0.188

Top-1 ListMLE 0.52 0.469 0.451 0.413 0.248
Top-3 ListMLE 0.506 0.456 0.458 0.417 0.261
Top-10 ListMLE 0.52 0.469 0.472 0.413 0.269

From the tables, we can see that with the modifications the ranking accuracies of ListMLE can be
significantly boosted, in terms of all measures, on both TD2003 and TD2004. This clearly validates
our theoretical analysis. On OHSUMED, all the loss functions achieve comparable performances.
The possible explanation is that the probability space in OHSUMED is well formed such that it is
order preserving for many differentk values.

Next, we take Top-10 ListMLE as an example to make comparisonwith some other baseline meth-
ods such as Ranking SVM [8], RankBoost [7], ListNet [3], and RankCosine [13]. The results are
listed in Tables 4-6. We can see from the tables, Top-10 ListMLE achieves the best performance
among all the methods on the TD2003 and TD2004 datasets in terms of almost all the measures. On
the OHSUMED dataset, it also performs fairly well as compared to the other methods. Especially
for N@1 and P@1, it significantly outperforms all the other methods on all the datasets.

From the above experimental results, we can come to the conclusion that for real ranking applica-
tions like IR (where top-k evaluation measures are widely used), it is better to use thetop-k true loss
than the permutation-level 0-1 loss, and is better to use themodified surrogate loss functions than
the original surrogate loss functions.

6 Conclusion

In this paper we have proposed a new ranking framework, whichcan better describe real ranking
applications like information retrieval. In the new framework, the true loss is defined on the top-k
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Table 4: Ranking accuracies on OHSUMED
Methods N@1 N@3 N@10 P@1 P@3 P@10

RankBoost 0.497 0.472 0.435 0.604 0.586 0.495
Ranking SVM 0.495 0.464 0.441 0.633 0.592 0.507

ListNet 0.523 0.477 0.448 0.642 0.602 0.509
RankCosine 0.523 0.475 0.437 0.642 0.589 0.493

Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509

Table 5: Ranking accuracies on TD2003
Methods N/P@1 N@3 N@10 P@3 P@10

RankBoost 0.26 0.270 0.285 0.24 0.178
Ranking SVM 0.42 0.378 0.341 0.34 0.206

ListNet 0.46 0.408 0.374 0.36 0.222
RankCosine 0.36 0.346 0.322 0.3 0.182

Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22

subgroup of permutations. We have formulated sufficient conditions for a surrogate loss function
to be statistically consistent with the top-k true loss. We have also discussed how to modify the
loss functions in existing listwise ranking methods to makethem consistent with the top-k true
loss. Our experiments have shown that with the proposed modifications, ListMLE can significantly
outperform its original version, and also many other ranking methods.

As for future work, we plan to investigate the following issues. (1) we will empirically study
the modified ListNet and RankCosine, to see whether their performances can also be significantly
boosted in the top-k setting. (2) We will study the consistency of the pointwise and pairwise loss
functions with the top-k true loss.
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