
Trajectory Simplification Method for Location-Based Social

Networking Services
Yukun Chen1, Kai Jiang3, Yu Zheng2, Chunping Li1, Nenghai Yu3

1
School of Software, Tsinghua University, Beijing 100084, China

2
Microsoft Research Asia, 4F, Sigma Building, NO. 49 Zhichun Road, Haidian District, Beijing 100190, China

3
MOE-MS Key Lab of MCC, University of Science and Technology of China, Hefei 230027, China.

1
chenyukun03@hotmail.com,

3
jkustc@gmail.com,

2
yuzheng@microsoft.com,

1
cli@tsinghua.edu.cn,

3
ynhustc@gmail.com

ABSTRACT

The increasing availabilities of GPS-enabled devices have given
rise to the location-based social networking services (LBSN), in
which users can record their travel experiences with GPS
trajectories and share these trajectories among each other on Web

communities. Usually, GPS-enabled devices record far denser
points than necessary in the scenarios of GPS-trajectory-sharing.
Meanwhile, these redundant points will decrease the performance
of LBSN systems and even cause the Web browser crashed.
Existing line simplification algorithms only focus on maintaining
the shape information of a GPS trajectory while ignoring the
corresponding semantic meanings a trajectory implies. In the
LBSN, people want to obtain reference knowledge from other
users’ travel routes and try to follow a specific travel route that

interests them. Therefore, the places where a user stayed, took
photos, or changed moving direction greatly, etc, would be more
significant than other points in presenting semantic meanings of a
trajectory. In this paper, we propose a trajectory simplification
algorithm (TS), which considers both the shape skeleton and the
semantic meanings of a GPS trajectory. The heading change
degree of a GPS point and the distance between this point and its
adjacent neighbors are used to weight the importance of the point.

We evaluated our approach using a new metric called normalized
perpendicular distance. As a result, our method outperforms the
DP (Douglas-Peuker) algorithm, which is regarded as the best one
for line simplification so far.

Categories and Subject Descriptors
G.1.2 [Approximation]: Special function approximations – line
simplification.

General Terms

Algorithms, Measurement, Experimentation, Performance.

Keywords

Trajectory simplification, GPS trajectory, Location-based social
networking service.

1. INTRODUCTION
Location-acquisition technologies, such as GPS and GSM
network, enable users to obtain their locations and record travel
experiences with some trajectories. Social networks based on
user-generated GPS data [1][2][3][4][12][14]. have been surging
on the Web and showing great potential to change people’s lives.
In such applications, users first record their trajectory using GPS-
enabled devices, then upload, visualize, browse and share those

trajectories in an Internet community. From other’s trajectories,

people are more likely to find the travel routes that interest them
and acquire reference knowledge facilitating their travel.

Usually, GPS-enabled devices record far more data than necessary.
For instance, if a GPS device is configured to record a GPS point
every 2 seconds, a one-day hiking route could be comprised of
10,000 points. Such dense representation is not necessary for
trajectory visualization and sharing. Moreover, these redundant
GPS points will decrease the performance of the LBSN systems in

the following aspects. First, this will waste a large amount of
storage. Second, these redundant trajectories will cause a heavy
load for network transfer. As most trajectory sharing applications
are based on Internet, the more GPS points a trajectory contains
the longer uploading/downloading time a user need to spend.
Third, this dense representation will bring a heavy burden for web
browser for rendering trajectories. Sometimes, Web browsers
would be out of memory and hence get crashed. To ensure the
usability, Google Map and Bing Map only allow a user to show

limited points per track.

Line simplification methods [5][7][8], such as DP algorithm [5],
which are widely used in computer aided design (CAD) area, can
be employed to simplify a GPS trajectory. However, those
algorithms focus only on maintaining the shape of a trajectory
while overlooking the semantic meaning of the trajectory.

For example, as shown in Figure 1, a trajectory consists of two
parts: a long driving segment on the highway and a short winding

walking segment in an interesting travel spot. For the sake of
performance, we can only maintain limited number of points
when displaying this trajectory on a web map. According to DP
algorithm’s metrics called perpendicular distance, more GPS
points will be maintained in the driving segment while few points
would be left for the walk segment (refer to Figure 2). As the
distance between consecutive points from a driving segment
would be larger than that of walking segments, losing a driving

point is more likely to cause a larger perpendicular distance;
hence losing more information of the skeleton. The simplified
result is acceptable in CAD area.

However, people intending to follow the trajectory do not only
need the structure information of the whole trajectory but also
care about the walk segment containing rich semantic meanings,
e.g., the places where the user stayed, took photos or watching
something attractive, etc. If this trajectory is simplified by DP

algorithm (refer to Figure 2), people could know little about how
the trajectory-creator traveled on the island (see the original track
shown in Figure 1 a)) as well as his/her travel route along the lake
(see Figure 1 b)). Without these details, people will miss lots of
interesting attractions on the trip and can obtain little reference

http://www.lostinactionscript.com/blog/index.php/2007/07/11/douglas-peuker-line-generalization/

knowledge from the creator’s travel experiences. On the contrary,
people still can clearly understand the creator’s driving direction
even if the simplified driving segment is not perfectly aligned
with the road networks (refer to Figure 3 for the trajectory
simplified by our method). In short, a relatively big deviation like

100 meters on a driving segment would not reduce the semantic
meanings a trajectory implies, while a small deviation from the
walk segment would loss the significant information about a trip
(e.g., sometimes 20 meters derivation will bring people to two
different routes when walking).

Figure 1: A GPS trajectory containing a walking segment and a driving segment.

Figure 2: The GPS trajectory after being simplified by the DP algorithm

Figure 3: The GPS trajectory after being simplified by the TS algorithm.

In this paper, we propose a GPS trajectory simplification (TS)
algorithm for Location-Based Social Networking Services. The
TS aims to simplify a trajectory with a large number of points to
limited ones and maintain the information of both skeleton and
semantics of a trajectory. The heading change degree of a GPS
point and the distance between this point and its most adjacent

neighbors (called neighbor distance) are used to weight the
importance of the point. At the same time, a novel measurement,
referred to as normalized perpendicular distance, is proposed to

evaluate the effectiveness of line simplification in the scenarios of
GPS-trajectory-sharing.

This weighting strategy is motivated by the following two
observations. First, typically when people are attracted by
something, take photos or stay somewhere for a while, they are
more likely to change their moving directions (called heading

change in this paper) than walking. Meanwhile, a relatively big
turn in a driving segment would also be important in maintaining
the key directions of a driving way. In other words, the bigger the

c) overallb) zoomed in

walking segment

a) further zoomed in

walking segment

d) zoomed in

driving segment

D
riv

in
g
 S

eg
m

en
t

Walking

Segment

Driving Segment

B) zoomed in

walking segment
c) overalla) further zoomed in

walking segment

d) zoomed in

driving segment

a) further zoomed in

walking segment
c) overallB) zoomed in

walking segment

d) zoomed in

driving segment

heading change degree is the more important semantic meanings
this point could carry and the more skeleton information this point
could maintain. Second, points crowdedly distributed in a short
distance are redundant to represent the skeleton and semantic
meanings of a trajectory. Consequently, the point with a relatively

big neighbor distance is assigned with a big weight.

The TS algorithm is comprised of four steps: segmentation, point
distribution, point weighting and point selection. At first, we
partition a GPS trajectory into walking and non-walking segments
using a method we proposed in paper [12][14]. Then, the
headcounts of points will be assigned to each segment in terms of
the product of the average heading change and the distance of
each segment. In each segment, the points with a relatively large

production of heading change and neighbor distance will be
assigned a big weight. Finally, the top points with large weights
are remained to represent the simplified trajectory. The
contributions of this paper lie in two aspects:

 We devise a trajectory Simplification method (TS)
maintaining both the skeleton and semantic meanings of a
trajectory for location-based social networking services.

 We propose a normalized perpendicular distance to measure

the effectiveness of line simplification algorithms in the
scenario of GPS-trajectory-sharing.

 We evaluate our method with large-scale GPS trajectories
generated by people traveling in the real world. As a result,
our algorithm outperforms the DP algorithm with a 59%
improvement.

The remainder of this paper is organized as follows. First some
related work about line simplification is reported and compared
with our approach in Section 2. After that we propose our method
(TS) for line simplification in Section 3. Next, using a normalized
perpendicular distance, we evaluated our algorithm and compared

it with the DP algorithm in Section 4. At last in Section 5, we
conclude the paper and point out the future work.

2. RELATED WORK
Traditional line simplification algorithms can be categorized into
two classes: 1) Local process method; 2) Global process method.

Local process methods: Local process methods simplify
trajectory by checking only neighboring points. A simple fixed
nth method [12] deletes all but every nth point along the line

where n is a fixed integer based on the desired degree of
simplification. Tobler [8] proposed a method to filter points using
a pre-set distance threshold. If the current point is within the pre-
set distance threshold from previous neighboring point, it’s kept,
otherwise removed. Lang (1969) [7] described another algorithm
searching beyond the immediate neighbors and was reported by
Douglas and Peuker (1973) ‘as producing an acceptable result’.
The objective of the procedure was to delete points if they were

found to lie within a tolerance distance of a straight line segment
being tested to represent a line. From one representative point it
constructs straight lines to subsequent points until one point
between the representative point and the sub-point is further away
from the line linking the two than a pre-set tolerance value. As
soon as this condition is satisfied, the point before the sub-point
becomes a new representative point and the procedure is repeated.
This method gives acceptable results in the case of smooth curves

but yields bad results in the case of sharp angles. Another
interesting idea is to map all the points on to some screen
coordinates, many points falling into one screen solution can be

eliminated. W. R. Tobler described this method in 1966 [8].
Locally processing is very fast in execute time, however it’s very
difficult to find the optimized result.

Our approach adopts the local process idea when weighting each
point inside a segment. It considers some neighbor points around
the current point and sequentially processes each point. However,
unlike just using a single feature [7][8], we define two new

features to identify the importance of a point. They are combined
to maintain both the semantics and skeleton of the trajectory.

Global process methods: global process methods consider the

line as a whole while processing. The DP algorithm [5] developed
by Douglas and Peuker, in 1973, is the only global process
algorithm so far. As shown in Figure 4, at the beginning a
tolerance distance (td) is per-defined. The first point 𝑎 is selected

as the anchor point and the last point 𝑏 is selected as the float

point. The maximum perpendicular distance, say 𝑓𝑐(labeled in the

curve of Figure 4), from the digitised points to the line 𝑎𝑏 is

compared with td. If 𝑓𝑐 > 𝑡𝑑, then 𝑐 becomes the new float point.

Then, the maximum perpendicular distance from points to 𝑎𝑐, say

𝑒𝑑 , is compared with td. If 𝑒𝑑 > 𝑡𝑑, then d becomes the new

floating point, c is saved in the first position on a stack, or else d
is selected as the new anchor point and all points between a and d
are discarded. In this fashion the program processes the entire line,
backing up onto the stack as necessary, until all intermediary
points are within the corridor, or there are no intermediary points.

Figure 4 Example of the DP algorithm

The last float point now becomes the anchor and the first co-

ordinate pair is taken from the stack to become the new float point.
The process described in the previous paragraph is now repeated.
This recursive method continues until the last co-ordinate pair is
taken from the stack. A stack may be considered as a list that is
accessed from only one end. Items are taken from a stack in
reverse to the order in which they are placed on it.

The DP algorithm is widely used in cartography related software
like AUTOCAD. It produces the best results in terms of both
vector displacement and area displacement [10]. "Many
cartographers consider it to be the most accurate simplification
algorithm available, while others think that it is too slow and

costly in terms of computer processing time" [11]. Anyway, it’s
the most famous line simplification algorithm till now.

Our method differs from the DP in two aspects. First, TS

combines the strategy of local process with global process. In TS,
a trajectory is first partitioned into several segments, which will
be weighted in a global view. Then, points from one segment will
be ranked locally in terms of the feature we defined in Section 3.
Second, TS considers both the skeleton information and semantic
meanings of a trajectory when performing simplification.
Therefore, this algorithm is more proper beyond the DP methods
for location-based social networking services, where people

intend to obtain reference knowledge from and follow a user’s
travel route. Overall, TS outperforms DP algorithms with a better
efficiency.

a f

e
c

b
Perpendicular distance

from point c to line ab

3. PRELIMINARY
In this section, we elaborate our TS algorithm used in trajectory

simplification. First we clarify some terms used in this paper.
Afterwards, the problem statement is presented. At last we give an
overview of our approach for understanding.

3.1 Definitions
Definition 1. GPS log and GPS trajectory: As shown in Figure 5,

a GPS log P is a sequence of GPS points. 𝑃 = 𝑝1 ,𝑝2 ,…𝑝𝑚 , each

GPS point p contains latitude, longitude and timestamp. On a two
dimensional plane, we can sequentially connect these GPS points
into a GPS trajectory.

Definition 2. Segment: A segment represents a part of trajectory
where a user travels on foot or by other transportation modes like
driving. We name the former kind of segment Walk segment, and
call the rest non-Walk segment.

Figure 5: GPS logs, GPS trajectory and segment

Definition 3. Heading Direction. Heading direction denotes the

direction of a moving object at a specific point location using
north direction as a basis, where 0°≤ < 360°.

Definition 4. Neighbor Heading Change: Neighbor heading
change 𝜃 of a point 𝑝𝑖 is the difference between its heading

direction 𝑝𝑖 . and that of its nearest previous point 𝑝𝑖−1 , i.e.,

𝜃 = 𝑝𝑖 . − 𝑝𝑖−1 ., where −180°< 𝜃 < 180°.

Definition 5. Accumulated Heading Change: The accumulated
heading change 𝛽 of the ith point (𝑝𝑖) of a trajectory is defined as:

 𝑝𝑖 . 𝛽 = 𝑝𝑘 . 𝜃𝑖+𝜏
𝑘=𝑖−𝜏 , (1)

where 𝑝𝑘 .𝜃 is the neighbor heading change of 𝑝𝑘 , and 𝜏 is a pre-

set integer threshold denoting half of number of neighbor points.

Definition 6. Heading change: The heading change 𝛾 of a point 𝑝

is the sum of the absolute value of the neighbor heading change
and that of the accumulated heading change,

 𝑝. 𝛾 = 𝑝. 𝜃 + 𝑝. 𝛽 . (2)

Definition 7. Neighbor Distance: The neighbor distance 𝑑 of a

point 𝑝𝑖 is the sum of Euclid distance between 𝑝 and its two

nearest neighbor points.

 𝑝𝑖 . 𝑑 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑖−1 ,𝑝𝑖 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖 ,𝑝𝑖+1), (3)

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑖−1 ,𝑝𝑖 is a function used to calculate the

Euclid distance between two points.

Example 1. As shown in Figure 6 a), a GPS trajectory is

comprised of five points (𝑝1 ,𝑝2 ,𝑝3 ,𝑝4 ,𝑝5). 𝑝2 . and 𝑝3 .
respectively represent the heading direction of 𝑝2 and 𝑝3 , and

𝑝3 .𝜃 = 𝑝3 . − 𝑝2 . is the neighbor heading change of 𝑝3, where

−180°< 𝑝3 .𝜃 < 180°. 𝑝2 .𝑑 = 𝑑1 + 𝑑2 is the distance change of

𝑝2. As sharp turning points in a trajectory may have a very big

neighbor heading, 𝑝3could be distinguished from others.

As demonstrated in Figure 6 b). The neighbor heading changes of
point 𝑝1 , 𝑝2 , 𝑝3 , 𝑝4, 𝑝5 are 𝑝1 . 𝜃, 𝑝2 .𝜃, 𝑝3 .𝜃, 𝑝4 .𝜃, 𝑝5 .𝜃

respectively. If we set 𝜏 as 2, the accumulated heading change of

𝑝3 is 𝑝3 .𝛽 = |𝑝1 .𝜃 + 𝑝2 .𝜃 + 𝑝3 .𝜃 + 𝑝4 .𝜃 + 𝑝5 .𝜃|.

Figure 6: An example of definitions

3.2 Problem Statement
Given a trajectory 𝑇𝑟𝑎𝑗 of n points, our approach aims to select

the most representative m points, where 𝑚 < 𝑛, from 𝑇𝑟𝑎𝑗 to

formulate a new trajectory 𝑇𝑟𝑎𝑗′, which could differ from 𝑇𝑟𝑎𝑗 as

small as possible in both skeleton information and semantic
meanings. We call 𝑟 = 𝑚/𝑛, simplification rate (0 < 𝑟 < 1).

Example 2. As shown in Figure 7, three simplified results based
on different r are displayed below raw trajectory in a. As shown in
Figure 5 b), c) and d), m equals to 40, 20 and 5 respectively.

Figure 7: Trajectory simplified by different rate

The bigger r is, the more detail the result will loss. r should be
decided before simplification according to needs.

3.3 The Algorithm Overview
As shown in Figure 8, the architecture of algorithm is comprised
of the following four parts: Segmentation, Segment Ranking,
Point Weighting and Point Selection. First, Segmentation in line 1
detects all the walk and non-walk segments using algorithm
proposed in previous work [12][14], which is quite accurate even
in bad traffic situation and variable weather. Second,
DistributePoints in line 2 assigns each segment with different

headcounts of points in terms of the product of the average
heading change and the distance of each segment. The distance of
a segment is used to maintain the skeleton while the average
heading change can be utilized to maintain the semantics meaning.
Third by WeightPoints in line 3, the points with a relatively large
production of heading change and neighbor distance will be
assigned a big weight. By this means the contribution to the
maintenance of skeleton and semantic meaning can be balanced.

Finally, by SelectPoints in line 4, the top points with large weights
are remained to represent the simplified trajectory.

 Latitude, longitude, Time

p1: Lat1, long1, T1

p2: Lat2, long2, T2

 ………...

pm: Latm, longm, Tm

p1

pm

Car

p2 p3 pm-1

Walk
Non-Walk Segment Walk Segment

p2.h

p3.h
p2

p3.Θ
p1

p4 p5

d1

d2

a)

p3

p2

p3.Θ
p1

p4 p5

b)

p3

p2.Θ

p4.Θ

a) 80 raw points

b) r = 0.5, 40 points left

c) r = 0.25, 20 points left

d) r = 0.0625, 5 points left

Algorithm TS(Traj, m)

Input: An original Trajectory Traj and the number of points m of the

simplified trajectory.

Output: A simplified trajectory Traj’ with m points.

1. Traj’=∅;

2. Seg[] = Segmentation(Traj); //Partition Traj into segments

3. DistributePoints(Seg[], m); //rank segments and assign headcount

4. Foreach segment s in Seg[]

5. WeightPoints(s); //give each point a weight

6. s’= SelectPoints(s); //select points to compose a new segment

7. Traj’ = Traj ∪ 𝑠’; //integrate these segments into a new trajectory

8. Return Traj’;

Figure 8: The flowchart of the TS Algorithm

4. TRAJECTORY SIMPLIFICATION

4.1 Segmentation
Using the change point-based segmentation method proposed in
paper [12][14], we partition the trajectory by walk segments and
non-walk segments. This approach is derived from the following
commonsense of real world. 1) Typically, people must stop and

then go when changing their transportation modes. 2) Walk
should be a transition between different transportation modes. In
other words, the start point and end point of a Walk Segment could
be a change point in very high probability. As demonstrated in
Figure 9, we briefly demonstrate the four steps of the
segmentation algorithm. For more information please refer to
paper [12][14].

Step 1: Using a loose upper bound of velocity (Vt) and that of
acceleration (at) to distinguish all possible Walk Points from non-
Walk Points.
Step 2: If the length of a segment composed by consecutive Walk

Points or non-Walk Points is less than a threshold, merge this one
into its backward segment.
Step 3: If the length of a segment exceeds a certain threshold, the
segment is regarded as a Certain Segment. Otherwise it is deemed
as an Uncertain Segment. If the number of consecutive Uncertain
Segment exceeds a certain threshold, these Uncertain Segments
will be merged into one non-Walk Segment.

Figure 9: An example of segmentation

The totally cost lies in step 1, which is O(n).

4.2 Points Distribution
This step tries to balance the overall skeleton and semantic
meaning of a trajectory by combining segment’s average heading
change and its distance. Usually walking segments have large
average heading change while driving segments are longer.

Therefore walking segment contains more semantic meanings

while driving segment contributes more to skeleton. So both
heading change and distance are considered to weight a segment.

After previous segmentation step, the trajectory is partitioned into
some walk or non-walk segments. Based on that, we weight each
segment by its distance and average heading change, which is the

mean value of all the absolute values of neighbor heading changes

in the segment. Suppose a trajectory 𝑇𝑟𝑎𝑗 = (𝑆1𝑆2 …𝑆𝑘 …𝑆𝑞), 𝑆

is a segment of Traj. 𝑆 contains Traj’s points from 𝑝𝑖 to 𝑝𝑗 ,

𝑆 = (𝑝𝑖𝑝𝑖+1 …𝑝𝑗−1𝑝𝑗). 𝑑 is the total distance of S and 𝛼 is the

average heading change of S:

𝑆. 𝑑 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑘 ,𝑝𝑘−1)𝑗
𝑘=𝑖+1 (4)

𝑆. 𝛼 = (|𝑝𝑘 .
𝑗
𝑘=𝑖 𝜃|) / (𝑗 − 𝑖 + 1) (5)

where 𝑝𝑘 .𝜃 is the neighbor heading change based on definition 4.

The bigger 𝑆. 𝑑 is the more skeleton information this segment

could maintain, and the bigger 𝑆. 𝛼 is the more semantic meanings

this segment could carry and the more skeleton information this
point could maintain, both will strengthen the weight of current
segment. We use the product of 𝑆. 𝑑 and 𝑆. 𝛼 to weight a segment:

 𝑆. 𝑤 = 𝑆. 𝑑 ∗ 𝑆. 𝛼, (6)

where 𝑆. 𝑤 is the weight of segment 𝑆. In order to assign point

headcounts conveniently, we normalize 𝑆. 𝑤 by

 𝑆. 𝑤 = 𝑆. 𝑤 / (𝑆𝑘 .𝑤𝑞
𝑘=1), (7)

where 𝑆𝑘 is one of the segment of Traj who has totally 𝑞 segments.

After weights of all segments are normalized, each segment is
assigned with the proper point headcounts by its normalized
weight:

 𝑆. 𝑐 = 𝑚 ∗ 𝑆. 𝑤, (8)

where 𝑆. 𝑐 is the points headcounts of 𝑆 and m is the target

number of points in the simplified trajectory. We assign points
headcounts in this way because by combining 𝑆. 𝑑 and 𝑆. 𝛼, we

can maintain the overall skeleton. Meantime the case is avoided
that some straight but long segment with many redundant points is

given too many headcounts.

As shown in Figure 10, Line 3 and 4 calculate 𝑆. 𝑑 and S. 𝛼 based

on (4) and (5). The cost of DistributePoints lies in line 3 and line 4,
where all points in segment are checked to get the distance and
average heading change. Therefore the cost of this step is O(n).

Algorithm DistributePoints(Seg[], m)

Input: Segments in a trajectory and the number of points m of the

simplified trajectory.

Output: No direct output, but distribute points headcount to segments

1. totalWeight = 0;

2. Foreach 𝑆 in Seg[]

3. 𝑆.𝑑 = GetDistance 𝑆 ; //distance of segment

4. 𝑆. 𝛼 = GetHeadChange (𝑆) ; //average heading change

5. 𝑆. 𝑤 = 𝑆. 𝑑 ∗ 𝑆.𝛼; //weight segment

6. totalWeight = 𝑆[𝑖]. 𝑤𝑞
𝑖=1 ;

7. Foreach 𝑆 in Seg[]

8. 𝑆. 𝑤 = 𝑆. 𝑤 / totalWeight ; //normalize weight

9. 𝑆. 𝑐 = 𝑚 ∗ 𝑆. 𝑤; //assign headcount

Figure 10: The procedure of points distribution

WalkBus

Certain Segment

Denotes a non-walk Point: P.V>Vt or P.a>at

Denotes a possible walk point: P.V<Vt and P.a<at

(b)

(c)

Backward Forward

Car

(a)

Certain Segment3 Uncertain Segments

Car

4.3 Point Weighting
In this sub-section, we aim to give all points inside each segment

a weight, for later step to select the best points in each segment.
Point is weighted by two observations:

 Typically, when people are attracted by something, take

photos or stay somewhere for a while, they are more likely to
change their moving directions than normal walking.
Meanwhile, a relatively big turn in a driving segment would
also be important in maintaining the key directions of a
driving way. In other words, the bigger the heading change
degree is the more important semantic meanings this point
could carry and the more skeleton information this point

could maintain.

 Many points will gather at the places where people stay. For
the sake of maintaining the skeleton, those points are less

important than points having relative large distance with
adjacent points. In short, the bigger the neighbor distance is
the more skeleton information this point could maintain.

Based on the two observations, we give each point a weight
indicating how important it is. Suppose point 𝑝 with heading

change 𝑝. 𝛾 and neighbor distance 𝑝. 𝑑, we formulate its weight:

𝑝. 𝑤 = 𝑝. 𝑑 ∗ 𝑝. 𝛾 (9)

𝑝. 𝑑 and 𝑝. 𝛾 for all points can be calculated by scanning from p1

to pn once, so the cost of point weighting is O(n).

4.4 Point Selection
Based on Equation (8), the headcounts of all the segments add up

to m (𝑆𝑖 . 𝑐
𝑞
𝑖=1 = 𝑚). In order to select 𝐾 points from Traj, we

come down to select smaller pieces of points from each segment
according to associated 𝑆. 𝑐. After point ranking step, we can

rank each point in a segment by 𝑝. 𝑤 inferred by equation (9), then

we select 𝑆. 𝑐 points from segment 𝑆 and add them to a points

queue. Finally, all the points collected from different segments
add up to m, thus we get the most important m points according to
our TS algorithm. A formal description of this operation is
demonstrated in Figure 11. In line 4, SelectTopK is a general
algorithm which selects top k objects from n objects (𝑘 < 𝑛) and

merges them to a segment. It executes in complexity 𝑂(𝑛𝑙𝑜𝑔𝑘)

using minimal/maximal heap, thus the complexity of SelectPoints
is 𝑂(𝑛𝑙𝑜𝑔𝑚).

Algorithm SelectPoints(S)

Input: a segment who is assigned with a headcount

Output: a simplified segment 𝑆′ whose points number equals to 𝑆. 𝑐 .

1. S′= ∅

1. 𝐻𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡 = 𝑆. 𝑐; //point headcount of segment

2. 𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑆. 𝑝𝑜𝑖𝑛𝑡𝑠; //all points belong to segment

3. 𝑆′= SelectTopK(𝑃𝑜𝑖𝑛𝑡𝑠 , 𝐻𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡)); //select top points

4. Return 𝑆′ ;

Figure 11: The procedure of selecting points

Since previous steps including Segmentation, Segment Ranking
and Point weighting all have complexity O(n), the last step Point
Selection cost 𝑂(𝑛𝑙𝑜𝑔𝑚) , so the time complexity of TS is

𝑂(𝑛𝑙𝑜𝑔𝑚).

Example 3. Consider a trajectory Traj demonstrated in Figure 12
a). After segmentation, Traj is partition into 2 segments: a
walking segment S1 and a driving segment S2. Average heading

changes and distances of S1 and S2 are calculated and normalized:

𝑆1 . 𝑤 = 0.4, 𝑆2 .𝑤 = 0.6. After each point is weighted, the

normalized weights vector of points in 𝑆1 and 𝑆2 are {1, 0.33,

0.21, 0.13, 0.45, 0.15, 0.78, 0.345, 0.32, 0.65, 0.7, 0.5} and {0.55,
0.33, 0.65, 0.76, 0.7, 0.15, 0.1, 0.65, 0.32, 1}. At last, given
headcounts m, m points can be selected by selected 40% of m
points from 𝑆1 and 60% of m points from 𝑆2 . For instance, if m =

10, then we choose the top 4 points from 𝑆1 and top 6 points from

𝑆2, they are {𝑝1 ,𝑝7 ,𝑝11 ,𝑝10} and {𝑝22 ,𝑝16 ,𝑝17 ,𝑝15 ,𝑝20 ,𝑝13}. The

simplified trajectory is shown in Figure 12 b).

Figure 12: An example of TS algorithm

5. EXPERIMENTS
In this Section, we first present the experimental settings. Second,
we introduce the evaluation approaches. Third, major results are
reported followed by some discussions.

5.1 Settings
GPS devices: Figure 13 shows the GPS devices we chose to
collect data. They are comprised of stand-alone GPS receivers
(Magellan Explorist 210 and 300, G-Rays 2) and GPS phones.
Users set these devices with different configurations, such as
recording a GPS point every 5 seconds or every 10 meters.

GPS Data: We select 335 typical travel routes generated by 62
users in the past 2 years. Each trajectory contains at least one walk
segment and one non-walk segment like driving, and the portion
of walk segments exceeds 50 percents of the whole time span of
the trajectory. Typically, people drive a relatively long way before

reaching a real travel spot, e.g., mountains and lakes are usually
located outside cities. Also, people prefer to spend more time in
places of interest rather than driving on the way. For instance,
users are more likely to spend 1 hour on the way while spending 5
or more hours on hiking in a mountain. Consequently, the distance
of driving segment is usually larger than that people traveling
(walking in most case) in a place of interest while the time spent
for walking might be longer than driving time in a trip.

The total distance of these trajectories has exceeded 21,000
kilometers, and the distance of each trajectory is greater than 5 km.
On average, each trajectory has 2100 points, a 63-kilometer
distance and 4- hour time span.

Figure 13 GPS devices used in the experiments

Parameter Selection

 𝛕 of definition 5: Figure 14 shows how the average perpendicular

deviation of each point in the original trajectory to the simplified

S1 S2

P1

P2

P3

P4

P5

P7

P6

P8

P9
P10

P11

P12

P13 P14

P15

P16

P17P19
P18P20

P21

P22

S1 S2

P1

P7

P10

P11 P13

P15

P16

P17P20

P22
a) original trajectory b) simplified trajectory

trajectory changes over τ . The three curves are results with

different simplification rate. All three curves show that the
average deviation is minimized when τ is set to 3. In other words,

when τ is set to 3, the accumulated heading change can get the

most out of the semantics meaning and skeleton information of
the trajectory.

Figure 14 Selecting threshold 𝛕 for 𝜷

5.2 Evaluation Approaches

5.2.1 Evaluation criteria
Our proposed algorithms are evaluated both in terms of
effectiveness of simplification result and efficiency of
simplification execution.

Since one of the most important purposes of a trajectory is
showing the reference knowledge to others, a relatively big
deviation like 100 meters on a driving segment would not reduce

the semantic meanings a trajectory implies, while a small
deviation from the walk segment would loss the significant
information about a trip

Based on this observation, in order to evaluate the average
deviation of simplified trajectory, first we calculate the
perpendicular distance from each raw point to simplified
trajectory as deviation; second we normalize each deviation in
walk segment and non-walk segment; finally we calculate the root
mean square value of all the perpendicular distance. The result
represents the average deviation for each point. Based on this, we
propose two metrics to evaluate the effectiveness of our approach.

Average normalized perpendicular: we add up all the normalized
perpendicular distance for all the points of all trajectories and
calculate their root mean square value. The smaller the average
deviation is, the better the algorithms is.

Correct Rate: we compare the simplified result for a single
trajectory performed by DP and TS, and define another criterion

named ‘Correct Rate’. For either one of DP or TS, suppose it is
TS. If TS outperforms DP by n1 trajectories, but the left n2

trajectories have bigger average deviation than DP, then:

 Correct Rate of TS =
𝑛1

𝑛1+ 𝑛2
 (10)

While correct rate of DP is

Correct Rate of DP =
𝑛2

𝑛1+ 𝑛2
 (11)

5.2.2 Baseline
Since DP algorithm is wildly used for line simplification problem,
and it’s regarded as the most effective simplification algorithm till
now, we take it as baseline.

5.3 Results

5.3.1 Effectiveness
Figure 15 shows the average normalized perpendicular deviation
of TS and DP with different simplification rate. We can see that
TS outperforms DP at any simplification rate.

Figure 15 Average normalized perpendicular deviation of TS
and DP

Figure 16 shows the correct rate for TS and DP with different
simplification rate. When simplification rate is 0.05, TS has
correct rate of 0.55 and correct rate of TS increases with the
increase of simplification rate. So at any simplification rate, TS
outperforms DP.

Figure 16 Correct Rate of TS and DP

Suppose the simplification 𝑟 rate is normal distributed,

𝑟~𝑁(0.475, 0.0673) , where mean value of 𝑟 is 0.475 and

variance of 𝑟 is 0.0673. Based on this, the expected average

normalized deviation of TS is calculated to be 0.078 and the
expected average deviation of DP is 0.19. It means on average TS
has only 41% deviation compared to DP. Similarly, based on
normal distribution, we can draw that on average the correct rate
of TS is 0.91 while that of DP is 0.09, which means TS is about
10 times better than DP for this criterion.

5.3.2 Efficiency
Since sometimes simplification is performed on line, speed is very
important. DP adopts a divide and conquer method to scan each
point in the trajectory. Suppose we need to maintain the most
important m points. The average complexity of DP is 𝑂(𝑛 ∗
𝑙𝑜𝑔𝑛 ∗ 𝑙𝑜𝑔𝑚), and in worst case it degenerates to 𝑂(𝑛2 ∗ 𝑙𝑜𝑔𝑚).

On the other hand, as analyzed in 4.4, both in average case and
worst case, the complexity of TS is 𝑂(𝑛 ∗ 𝑙𝑜𝑔𝑚). So in theory
TS is faster than the DP.

As shown in Figure 17, TS outperforms DP in time cost. Based on
normal distribution, on average TS is 4.5 times faster than DP.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8

D
e
v

ia
ti

o
n

τ

Average deviation per point over τ

r = 0.1

r = 0.4

r=0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0
.0

5
0

.1
0

.1
5

0
.2

0
.2

5
0

.3
0

.3
5

0
.4

0
.4

5
0

.5
0

.5
5

0
.6

0
.6

5
0

.7
0

.7
5

0
.8

0
.8

5
0

.9

N
o

r
m

a
li

z
ed

 D
e
v
ia

ti
o
n

Simplification Rate

Average Normalized Perpendicular Deviation

Deviation of TS

Deviation of DP

0

0.2

0.4

0.6

0.8

1

1.2

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

C
o

r
r
e
c
t

R
a
te

Simplification Rate

Correct Rate for TS and DP

Correct rate of TS

Correct rate of DP

Figure 17 Time cost of TS and DP

5.4 Discussions
Experimental results show that TS outperforms DP both in
effectiveness and efficiency. Comparing simplified results by DP
and TS in Figure 2 and Figure 3, TS has worse performance in

driving segment, while better in walking segment. According to
Figure 15 and 16, we know that the better performance part
outperforms the worse part. The reason why walking segment has
better performance lies in two aspects: 1) segmentation weighting
step considers the average heading change of segment, on which
feature walking segment is more significant. 2) point weighting
step also considers heading change, generally walking point will
be weighted bigger on this feature since people tend to change

heading directions while walking. Further, this method is robust to
some dense noise point cluster, because according to Equation (1),
the accumulated heading of a point in random generated noise
cluster will be very small, hence won’t be weight big.

Actually, in the process of segment weighting and point weighting,
we are trying to balance the importance of overall skeleton and
semantic meaning of a trajectory. By applying segment’s distance
and point’s neighbor distance, the skeleton of trajectory is
maintained. By applying segment’s average neighbor heading
change and point’s heading change, the semantic meaning of the
trajectory is maintained.

Our approach is proposed for trajectories that have at least 50%
duration walking and all are longer than 5km, other cases may not
outperform DP if the trajectory’s walking part does not take up a
proper duration proportion.

6. CONCLUSION
In this paper, we proposed a trajectory simplification algorithm,
called TS, for location-based social networking services. This
algorithm aims to maintain both the shape skeleton and semantic

meanings of a trajectory when reducing redundant points from the
trajectory. At the same time, the TS combine the strategies of
local and global processing during line simplification. Therefore,
with a better efficiency than the DP algorithm, TS is more
effective in simplifying trajectories in LBSN systems where
people expect to share and follow others travel routes. Two
features consisting of the heading change and the neighbor
distance are used to weight the importance of a point. We evaluate

our TS algorithm using 335 trajectories collected by 62 users over
2 years and a new metric called normalized perpendicular distance.
As a result, our method outperforms baseline with a 10-times
Correct Rate beyond baseline. Meanwhile, according the mean

normalized perpendicular distance, our method only has a 41%
deviation of the baseline with a 4.5-times faster efficiency.

In the future, we intend to extend our work to better balance the
skeleton and semantic meaning of a GPS trajectory. So far, when
the point headcounts are extremely small, the skeleton
information of trajectories processed by our approach could be
worse than the results of the DP. More factors should be taken
into account to determine the weights of segments.

7. REFERENCES
[1] Bikely: http://www.bikely.com/

[2] GPS Track route exchange forum:
http://www.gpsxchange.com/

[3] GPS sharing: http://gpssharing.com/.

[4] Zheng, Y. et al. GoLife2.0: A Location-Based Social
Networking Service. In proceedings of International
Conference on Mobile Data Management 2009, IEEE Press:
211-212

[5] Douglas, D. and T. Peuker, 1973, Algorithms for the
reduction of the number of points required to represent a
digitised line or its caricature, The Canadian Cartographer,
Vol 10, pp. 112-122.

[6] Zheng, Y., Zhang, L., Xie X., Ma, W. Y. Mining interesting
locations and travel sequences from GPS trajectories for
mobile users. In Proceeding of WWW2009, (Madrid, Spain.
April 2009), ACM Press: 791-800.

[7] T. Lang, "Rules for Robot Draughtsmen", Geographical
Magazine, Vol. XLII, No. 1, Oct. 1969, pp. 50-51.

[8] W. R. Tobler, Numerical Map Generalization, Michigan
Inter-University Community of Mathematical Geographers,
Discussion Paper No. 8, Department of Geography,
University of Michigan, January 1966.

[9] Taylor, G. (2005) Line simplification algorithms, Retrieved
15 April 2005
http://www.comp.glam.ac.uk/pages/staff/getaylor/papers/lcw
in.pdf

[10] McMaster, R.B., 1983, A mathematical evaluation of
simplification algorithms, Proceedings, Sixth International

Conference on Automated Cartography AutoCarto 6, pp.
267-276.

[11] Jenks, G.F., 1989, Geographic logic in line generalisation,
Cartographica, Vol. 26, No. 1, pp. 27-42.

[12] Zheng, Y. et al. Understanding mobility based on GPS data.
In Proc. Ubicomp’08, (Seoul Korea, Sept. 2008), ACM Press:
312-321.

[13] Experimental Cartographic Unit, Royal College of Art:

Automatic Cartography and Planning,London, Architectural
Press, 1971.

[14] Zheng, Y., Liu, L., Wang, L. Xie, X. Learning transportation

modes from raw GPS data for geographic applications on the
Web. In Proceedings of WWW 2008, (Beijing China, April
2008), ACM Press: 247-256.

0

0.5

1

1.5

2

2.5

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

S
e
c
o

n
s(

s)

Simplification Rate

Time cost of TS and DP

Time of TS

Time of DP

http://www.bikely.com/
http://www.gpsxchange.com/
http://gpssharing.com/
http://www.comp.glam.ac.uk/pages/staff/getaylor/papers/lcwin.pdf
http://www.comp.glam.ac.uk/pages/staff/getaylor/papers/lcwin.pdf

