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ABSTRACT 

The increasing availabilities of GPS-enabled devices have given 
rise to the location-based social networking services (LBSN), in 
which users can record their travel experiences with GPS 
trajectories and share these trajectories among each other on Web 

communities. Usually, GPS-enabled devices record far denser 
points than necessary in the scenarios of GPS-trajectory-sharing. 
Meanwhile, these redundant points will decrease the performance 
of LBSN systems and even cause the Web browser crashed. 
Existing line simplification algorithms only focus on maintaining 
the shape information of a GPS trajectory while ignoring the 
corresponding semantic meanings a trajectory implies. In the 
LBSN, people want to obtain reference knowledge from other 
users’ travel routes and try to follow a specific travel route that 

interests them. Therefore, the places where a user stayed, took 
photos, or changed moving direction greatly, etc, would be more 
significant than other points in presenting semantic meanings of a 
trajectory. In this paper, we propose a trajectory simplification 
algorithm (TS), which considers both the shape skeleton and the 
semantic meanings of a GPS trajectory. The heading change 
degree of a GPS point and the distance between this point and its 
adjacent neighbors are used to weight the importance of the point. 

We evaluated our approach using a new metric called normalized 
perpendicular distance. As a result, our method outperforms the 
DP (Douglas-Peuker) algorithm, which is regarded as the best one 
for line simplification so far. 

Categories and Subject Descriptors 
G.1.2 [Approximation]: Special function approximations – line 
simplification.  

General Terms 

Algorithms, Measurement, Experimentation, Performance. 

Keywords 

Trajectory simplification, GPS trajectory, Location-based social 
networking service. 

1. INTRODUCTION 
Location-acquisition technologies, such as GPS and GSM 
network, enable users to obtain their locations and record travel 
experiences with some trajectories. Social networks based on 
user-generated GPS data [1][2][3][4][12][14]. have been surging 
on the Web and showing great potential to change people’s lives. 
In such applications, users first record their trajectory using GPS-
enabled devices, then upload, visualize, browse and share those 

trajectories in an Internet community. From other’s trajectories, 

people are more likely to find the travel routes that interest them 
and acquire reference knowledge facilitating their travel. 

Usually, GPS-enabled devices record far more data than necessary. 
For instance, if a GPS device is configured to record a GPS point 
every 2 seconds, a one-day hiking route could be comprised of 
10,000 points. Such dense representation is not necessary for 
trajectory visualization and sharing. Moreover, these redundant 
GPS points will decrease the performance of the LBSN systems in 

the following aspects. First, this will waste a large amount of 
storage. Second, these redundant trajectories will cause a heavy 
load for network transfer. As most trajectory sharing applications 
are based on Internet, the more GPS points a trajectory contains 
the longer uploading/downloading time a user need to spend. 
Third, this dense representation will bring a heavy burden for web 
browser for rendering trajectories. Sometimes, Web browsers 
would be out of memory and hence get crashed. To ensure the 
usability, Google Map and Bing Map only allow a user to show 

limited points per track. 

Line simplification methods [5][7][8], such as DP algorithm [5], 
which are widely used in computer aided design (CAD) area, can 
be employed to simplify a GPS trajectory. However, those 
algorithms focus only on maintaining the shape of a trajectory 
while overlooking the semantic meaning of the trajectory.  

For example, as shown in Figure 1, a trajectory consists of two 
parts: a long driving segment on the highway and a short winding 

walking segment in an interesting travel spot. For the sake of 
performance, we can only maintain limited number of points 
when displaying this trajectory on a web map. According to DP 
algorithm’s metrics called perpendicular distance, more GPS 
points will be maintained in the driving segment while few points 
would be left for the walk segment (refer to Figure 2). As the 
distance between consecutive points from a driving segment 
would be larger than that of walking segments, losing a driving 

point is more likely to cause a larger perpendicular distance; 
hence losing more information of the skeleton. The simplified 
result is acceptable in CAD area. 

However, people intending to follow the trajectory do not only 
need the structure information of the whole trajectory but also 
care about the walk segment containing rich semantic meanings, 
e.g., the places where the user stayed, took photos or watching 
something attractive, etc. If this trajectory is simplified by DP 

algorithm (refer to Figure 2), people could know little about how 
the trajectory-creator traveled on the island (see the original track 
shown in Figure 1 a)) as well as his/her travel route along the lake 
(see Figure 1 b)). Without these details, people will miss lots of 
interesting attractions on the trip and can obtain little reference 

http://www.lostinactionscript.com/blog/index.php/2007/07/11/douglas-peuker-line-generalization/


knowledge from the creator’s travel experiences. On the contrary, 
people still can clearly understand the creator’s driving direction 
even if the simplified driving segment is not perfectly aligned 
with the road networks (refer to Figure 3 for the trajectory 
simplified by our method). In short, a relatively big deviation like 

100 meters on a driving segment would not reduce the semantic 
meanings a trajectory implies, while a small deviation from the 
walk segment would loss the significant information about a trip 
(e.g., sometimes 20 meters derivation will bring people to two 
different routes when walking). 

 

Figure 1: A GPS trajectory containing a walking segment and a driving segment. 

 

Figure 2: The GPS trajectory after being simplified by the DP algorithm  

 

Figure 3: The GPS trajectory after being simplified by the TS algorithm. 

In this paper, we propose a GPS trajectory simplification (TS) 
algorithm for Location-Based Social Networking Services. The 
TS aims to simplify a trajectory with a large number of points to 
limited ones and maintain the information of both skeleton and 
semantics of a trajectory. The heading change degree of a GPS 
point and the distance between this point and its most adjacent 

neighbors (called neighbor distance) are used to weight the 
importance of the point. At the same time, a novel measurement, 
referred to as normalized perpendicular distance, is proposed to 

evaluate the effectiveness of line simplification in the scenarios of 
GPS-trajectory-sharing. 

This weighting strategy is motivated by the following two 
observations. First, typically when people are attracted by 
something, take photos or stay somewhere for a while, they are 
more likely to change their moving directions (called heading 

change in this paper) than walking. Meanwhile, a relatively big 
turn in a driving segment would also be important in maintaining 
the key directions of a driving way. In other words, the bigger the 
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heading change degree is the more important semantic meanings 
this point could carry and the more skeleton information this point 
could maintain. Second, points crowdedly distributed in a short 
distance are redundant to represent the skeleton and semantic 
meanings of a trajectory. Consequently, the point with a relatively 

big neighbor distance is assigned with a big weight. 

The TS algorithm is comprised of four steps: segmentation, point 
distribution, point weighting and point selection. At first, we 
partition a GPS trajectory into walking and non-walking segments 
using a method we proposed in paper [12][14]. Then, the 
headcounts of points will be assigned to each segment in terms of 
the product of the average heading change and the distance of 
each segment. In each segment, the points with a relatively large 

production of heading change and neighbor distance will be 
assigned a big weight. Finally, the top points with large weights 
are remained to represent the simplified trajectory. The 
contributions of this paper lie in two aspects: 

 We devise a trajectory Simplification method (TS) 
maintaining both the skeleton and semantic meanings of a 
trajectory for location-based social networking services.  

 We propose a normalized perpendicular distance to measure 

the effectiveness of line simplification algorithms in the 
scenario of GPS-trajectory-sharing.  

 We evaluate our method with large-scale GPS trajectories 
generated by people traveling in the real world. As a result, 
our algorithm outperforms the DP algorithm with a 59% 
improvement.  

The remainder of this paper is organized as follows. First some 
related work about line simplification is reported and compared 
with our approach in Section 2. After that we propose our method 
(TS) for line simplification in Section 3. Next, using a normalized 
perpendicular distance, we evaluated our algorithm and compared 

it with the DP algorithm in Section 4. At last in Section 5, we 
conclude the paper and point out the future work. 

2. RELATED WORK 
Traditional line simplification algorithms can be categorized into 
two classes: 1) Local process method; 2) Global process method.   

Local process methods: Local process methods simplify 
trajectory by checking only neighboring points. A simple fixed 
nth method [12] deletes all but every nth point along the line 

where n is a fixed integer based on the desired degree of 
simplification. Tobler [8] proposed a method to filter points using 
a pre-set distance threshold. If the current point is within the pre-
set distance threshold from previous neighboring point, it’s kept, 
otherwise removed. Lang (1969) [7] described another algorithm 
searching beyond the immediate neighbors and was reported by 
Douglas and Peuker (1973) ‘as producing an acceptable result’. 
The objective of the procedure was to delete points if they were 

found to lie within a tolerance distance of a straight line segment 
being tested to represent a line. From one representative point it 
constructs straight lines to subsequent points until one point 
between the representative point and the sub-point is further away 
from the line linking the two than a pre-set tolerance value. As 
soon as this condition is satisfied, the point before the sub-point 
becomes a new representative point and the procedure is repeated. 
This method gives acceptable results in the case of smooth curves 

but yields bad results in the case of sharp angles. Another 
interesting idea is to map all the points on to some screen 
coordinates, many points falling into one screen solution can be 

eliminated. W. R. Tobler described this method in 1966 [8]. 
Locally processing is very fast in execute time, however it’s very 
difficult to find the optimized result. 

Our approach adopts the local process idea when weighting each 
point inside a segment. It considers some neighbor points around 
the current point and sequentially processes each point. However, 
unlike just using a single feature [7][8], we define two new 

features to identify the importance of a point. They are combined 
to maintain both the semantics and skeleton of the trajectory.  

Global process methods: global process methods consider the 

line as a whole while processing. The DP algorithm [5] developed 
by Douglas and Peuker, in 1973, is the only global process 
algorithm so far. As shown in Figure 4, at the beginning a 
tolerance distance (td) is per-defined. The first point 𝑎 is selected 

as the anchor point and the last point 𝑏 is selected as the float 

point. The maximum perpendicular distance, say 𝑓𝑐(labeled in the 

curve of Figure 4), from the digitised points to the line 𝑎𝑏  is 

compared with td. If 𝑓𝑐 > 𝑡𝑑, then 𝑐 becomes the new float point. 

Then, the maximum perpendicular distance from points to 𝑎𝑐, say 

𝑒𝑑 , is compared with td. If 𝑒𝑑 > 𝑡𝑑, then d becomes the new 

floating point, c is saved in the first position on a stack, or else d 
is selected as the new anchor point and all points between a and d 
are discarded. In this fashion the program processes the entire line, 
backing up onto the stack as necessary, until all intermediary 
points are within the corridor, or there are no intermediary points. 

 

Figure 4 Example of the DP algorithm 

The last float point now becomes the anchor and the first co-

ordinate pair is taken from the stack to become the new float point. 
The process described in the previous paragraph is now repeated. 
This recursive method continues until the last co-ordinate pair is 
taken from the stack. A stack may be considered as a list that is 
accessed from only one end. Items are taken from a stack in 
reverse to the order in which they are placed on it. 

The DP algorithm is widely used in cartography related software 
like AUTOCAD. It produces the best results in terms of both 
vector displacement and area displacement [10]. "Many 
cartographers consider it to be the most accurate simplification 
algorithm available, while others think that it is too slow and 

costly in terms of computer processing time" [11]. Anyway, it’s 
the most famous line simplification algorithm till now. 

Our method differs from the DP in two aspects. First, TS 

combines the strategy of local process with global process. In TS, 
a trajectory is first partitioned into several segments, which will 
be weighted in a global view. Then, points from one segment will 
be ranked locally in terms of the feature we defined in Section 3. 
Second, TS considers both the skeleton information and semantic 
meanings of a trajectory when performing simplification. 
Therefore, this algorithm is more proper beyond the DP methods 
for location-based social networking services, where people 

intend to obtain reference knowledge from and follow a user’s 
travel route. Overall, TS outperforms DP algorithms with a better 
efficiency. 
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3. PRELIMINARY 
In this section, we elaborate our TS algorithm used in trajectory 

simplification. First we clarify some terms used in this paper. 
Afterwards, the problem statement is presented. At last we give an 
overview of our approach for understanding. 

3.1 Definitions 
Definition 1. GPS log and GPS trajectory: As shown in Figure 5, 

a GPS log P is a sequence of GPS points. 𝑃 =  𝑝1 ,𝑝2 ,…𝑝𝑚 , each 

GPS point p contains latitude, longitude and timestamp. On a two 
dimensional plane, we can sequentially connect these GPS points 
into a GPS trajectory.  

Definition 2. Segment: A segment represents a part of trajectory 
where a user travels on foot or by other transportation modes like 
driving. We name the former kind of segment Walk segment, and 
call the rest non-Walk segment. 

 

Figure 5: GPS logs, GPS trajectory and segment 

Definition 3. Heading Direction. Heading direction  denotes the 

direction of a moving object at a specific point location using 
north direction as a basis, where 0°≤  < 360°. 

Definition 4. Neighbor Heading Change: Neighbor heading 
change 𝜃  of a point 𝑝𝑖  is the difference between its heading 

direction 𝑝𝑖 .  and that of its nearest previous point 𝑝𝑖−1 , i.e., 

𝜃 = 𝑝𝑖 .  − 𝑝𝑖−1 ., where −180°< 𝜃 < 180°. 

Definition 5. Accumulated Heading Change: The accumulated 
heading change 𝛽 of the ith point (𝑝𝑖) of a trajectory is defined as: 

                                 𝑝𝑖 . 𝛽 =   𝑝𝑘 . 𝜃𝑖+𝜏
𝑘=𝑖−𝜏 ,                             (1) 

where 𝑝𝑘 .𝜃 is the neighbor heading change of 𝑝𝑘 , and 𝜏 is a pre-

set integer threshold denoting half of number of neighbor points. 

Definition 6. Heading change: The heading change 𝛾 of a point 𝑝 

is the sum of the absolute value of the neighbor heading change 
and that of the accumulated heading change,     

                                𝑝. 𝛾 =  𝑝. 𝜃 +   𝑝. 𝛽 .                            (2) 

Definition 7. Neighbor Distance: The neighbor distance 𝑑 of a 

point 𝑝𝑖  is the sum of Euclid distance between 𝑝  and its two 

nearest neighbor points.  

           𝑝𝑖 . 𝑑 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑖−1 ,𝑝𝑖 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑖 ,𝑝𝑖+1),    (3) 

where 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑖−1 ,𝑝𝑖  is a function used to calculate the 

Euclid distance between two points. 

Example 1. As shown in Figure 6 a), a GPS trajectory is 

comprised of five points ( 𝑝1 ,𝑝2 ,𝑝3 ,𝑝4 ,𝑝5 ). 𝑝2 .  and 𝑝3 . 
respectively represent the heading direction of 𝑝2  and 𝑝3 , and 

𝑝3 .𝜃 = 𝑝3 . − 𝑝2 . is the neighbor heading change of 𝑝3, where 

−180°< 𝑝3 .𝜃 < 180°. 𝑝2 .𝑑 = 𝑑1 + 𝑑2 is the distance change of 

𝑝2. As sharp turning points in a trajectory may have a very big 

neighbor heading, 𝑝3could be distinguished from others.  

As demonstrated in Figure 6 b). The neighbor heading changes of 
point 𝑝1 ,  𝑝2 , 𝑝3 , 𝑝4,  𝑝5 are 𝑝1 . 𝜃,  𝑝2 .𝜃, 𝑝3 .𝜃, 𝑝4 .𝜃,  𝑝5 .𝜃 

respectively. If we set 𝜏 as 2, the accumulated heading change of 

𝑝3 is 𝑝3 .𝛽 = |𝑝1 .𝜃 +  𝑝2 .𝜃 + 𝑝3 .𝜃 + 𝑝4 .𝜃 +  𝑝5 .𝜃|. 

 

Figure 6: An example of definitions 

3.2 Problem Statement 
Given a trajectory 𝑇𝑟𝑎𝑗 of n points, our approach aims to select 

the most representative m points, where 𝑚 <  𝑛, from 𝑇𝑟𝑎𝑗 to 

formulate a new trajectory 𝑇𝑟𝑎𝑗′, which could differ from 𝑇𝑟𝑎𝑗 as 

small as possible in both skeleton information and semantic 
meanings. We call 𝑟 =  𝑚/𝑛, simplification rate (0 < 𝑟 < 1).  

Example 2. As shown in Figure 7, three simplified results based 
on different r are displayed below raw trajectory in a. As shown in 
Figure 5 b), c) and d), m equals to 40, 20 and 5 respectively. 

 

Figure 7: Trajectory simplified by different rate 

The bigger r is, the more detail the result will loss. r should be 
decided before simplification according to needs. 

3.3 The Algorithm Overview 
As shown in Figure 8, the architecture of algorithm is comprised 
of the following four parts: Segmentation, Segment Ranking, 
Point Weighting and Point Selection. First, Segmentation in line 1 
detects all the walk and non-walk segments using algorithm 
proposed in previous work [12][14], which is quite accurate even 
in bad traffic situation and variable weather. Second, 
DistributePoints in line 2 assigns each segment with different 

headcounts of points in terms of the product of the average 
heading change and the distance of each segment. The distance of 
a segment is used to maintain the skeleton while the average 
heading change can be utilized to maintain the semantics meaning. 
Third by WeightPoints in line 3, the points with a relatively large 
production of heading change and neighbor distance will be 
assigned a big weight. By this means the contribution to the 
maintenance of skeleton and semantic meaning can be balanced. 

Finally, by SelectPoints in line 4, the top points with large weights 
are remained to represent the simplified trajectory. 
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Algorithm TS(Traj, m) 

Input: An original Trajectory Traj and the number of points m of the 

simplified trajectory. 

Output: A simplified trajectory Traj’ with m points. 

1. Traj’=∅; 

2. Seg[] = Segmentation(Traj);     //Partition Traj into segments       

3. DistributePoints(Seg[], m);       //rank segments and assign headcount 

4. Foreach segment s in Seg[]  

5.       WeightPoints(s);                //give each point a weight 

6.        s’= SelectPoints(s);          //select points to compose a new segment 

7.       Traj’ = Traj ∪ 𝑠’;    //integrate these segments into a new trajectory 

8. Return Traj’; 

Figure 8: The flowchart of the TS Algorithm 

4. TRAJECTORY SIMPLIFICATION 

4.1 Segmentation 
Using the change point-based segmentation method proposed in 
paper [12][14], we partition the trajectory by walk segments and 
non-walk segments. This approach is derived from the following 
commonsense of real world. 1) Typically, people must stop and 

then go when changing their transportation modes. 2) Walk 
should be a transition between different transportation modes. In 
other words, the start point and end point of a Walk Segment could 
be a change point in very high probability. As demonstrated in 
Figure 9, we briefly demonstrate the four steps of the 
segmentation algorithm. For more information please refer to 
paper [12][14].  

Step 1: Using a loose upper bound of velocity (Vt) and that of 
acceleration (at) to distinguish all possible Walk Points from non-
Walk Points.  
Step 2:  If the length of a segment composed by consecutive Walk 

Points or non-Walk Points is less than a threshold, merge this one 
into its backward segment. 
Step 3: If the length of a segment exceeds a certain threshold, the 
segment is regarded as a Certain Segment. Otherwise it is deemed 
as an Uncertain Segment. If the number of consecutive Uncertain 
Segment exceeds a certain threshold, these Uncertain Segments 
will be merged into one non-Walk Segment.  

 

Figure 9: An example of segmentation 

The totally cost lies in step 1, which is O(n). 

4.2 Points Distribution 
This step tries to balance the overall skeleton and semantic 
meaning of a trajectory by combining segment’s average heading 
change and its distance. Usually walking segments have large 
average heading change while driving segments are longer. 

Therefore walking segment contains more semantic meanings 

while driving segment contributes more to skeleton. So both 
heading change and distance are considered to weight a segment. 

After previous segmentation step, the trajectory is partitioned into 
some walk or non-walk segments. Based on that, we weight each 
segment by its distance and average heading change, which is the 

mean value of all the absolute values of neighbor heading changes 

in the segment. Suppose a trajectory 𝑇𝑟𝑎𝑗 =  (𝑆1𝑆2 …𝑆𝑘 …𝑆𝑞), 𝑆 

is a segment of Traj. 𝑆  contains Traj’s points from 𝑝𝑖  to 𝑝𝑗 , 

𝑆 =  (𝑝𝑖𝑝𝑖+1 …𝑝𝑗−1𝑝𝑗 ).  𝑑 is the total distance of S and 𝛼 is the 

average heading change of S: 

𝑆. 𝑑 =   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑘 ,𝑝𝑘−1)𝑗
𝑘=𝑖+1  (4) 

𝑆. 𝛼 = ( |𝑝𝑘 .
𝑗
𝑘=𝑖 𝜃|)  /  (𝑗 − 𝑖 + 1) (5) 

where 𝑝𝑘 .𝜃 is the neighbor heading change based on definition 4. 

The bigger 𝑆. 𝑑 is the more skeleton information this segment 

could maintain, and the bigger 𝑆. 𝛼 is the more semantic meanings 

this segment could carry and the more skeleton information this 
point could maintain, both will strengthen the weight of current 
segment. We use the product of 𝑆. 𝑑 and 𝑆. 𝛼 to weight a segment: 

                  𝑆. 𝑤 = 𝑆. 𝑑 ∗  𝑆. 𝛼,                 (6) 

where 𝑆. 𝑤 is the weight of segment 𝑆. In order to assign point 

headcounts conveniently, we normalize 𝑆. 𝑤 by 

                                𝑆. 𝑤 = 𝑆. 𝑤 / ( 𝑆𝑘 .𝑤𝑞
𝑘=1 ),            (7) 

where 𝑆𝑘  is one of the segment of Traj who has totally 𝑞 segments. 

After weights of all segments are normalized, each segment is 
assigned with the proper point headcounts by its normalized 
weight: 

                  𝑆. 𝑐 = 𝑚 ∗ 𝑆. 𝑤,                     (8) 

where 𝑆. 𝑐  is the points headcounts of 𝑆  and m is the target 

number of points in the simplified trajectory. We assign points 
headcounts in this way because by combining 𝑆. 𝑑 and 𝑆. 𝛼, we 

can maintain the overall skeleton. Meantime the case is avoided 
that some straight but long segment with many redundant points is 

given too many headcounts. 

As shown in Figure 10, Line 3 and 4 calculate 𝑆. 𝑑 and S. 𝛼 based 

on (4) and (5). The cost of DistributePoints lies in line 3 and line 4, 
where all points in segment are checked to get the distance and 
average heading change. Therefore the cost of this step is O(n). 

Algorithm DistributePoints(Seg[], m) 

Input: Segments in a trajectory and the number of points m of the 

simplified trajectory. 

Output: No direct output, but distribute points headcount to segments  

1. totalWeight = 0; 

2. Foreach 𝑆 in Seg[] 

3.       𝑆.𝑑 = GetDistance 𝑆 ;                        //distance of segment 

4.       𝑆. 𝛼 = GetHeadChange (𝑆)   ;             //average heading change 

5.       𝑆. 𝑤 = 𝑆. 𝑑 ∗ 𝑆.𝛼;                                 //weight segment 

6. totalWeight =  𝑆[𝑖]. 𝑤𝑞
𝑖=1 ;   

7. Foreach 𝑆 in Seg[] 

8.        𝑆. 𝑤 =  𝑆. 𝑤 / totalWeight ;                //normalize weight 

9.        𝑆. 𝑐 = 𝑚 ∗ 𝑆. 𝑤;                                 //assign headcount 

Figure 10: The procedure of points distribution 
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4.3 Point Weighting 
In this sub-section, we aim to give all points inside each segment 

a weight, for later step to select the best points in each segment. 
Point is weighted by two observations: 

 Typically, when people are attracted by something, take 

photos or stay somewhere for a while, they are more likely to 
change their moving directions than normal walking. 
Meanwhile, a relatively big turn in a driving segment would 
also be important in maintaining the key directions of a 
driving way. In other words, the bigger the heading change 
degree is the more important semantic meanings this point 
could carry and the more skeleton information this point 

could maintain.  

 Many points will gather at the places where people stay. For 
the sake of maintaining the skeleton, those points are less 

important than points having relative large distance with 
adjacent points. In short, the bigger the neighbor distance is 
the more skeleton information this point could maintain.  

Based on the two observations, we give each point a weight 
indicating how important it is. Suppose point 𝑝  with heading 

change 𝑝. 𝛾 and neighbor distance 𝑝. 𝑑, we formulate its weight: 

𝑝. 𝑤 = 𝑝. 𝑑 ∗ 𝑝. 𝛾  (9) 

𝑝. 𝑑 and 𝑝. 𝛾 for all points can be calculated by scanning from p1 

to pn once, so the cost of point weighting is O(n). 

4.4 Point Selection 
Based on Equation (8), the headcounts of all the segments add up 

to m ( 𝑆𝑖 . 𝑐
𝑞
𝑖=1 = 𝑚). In order to select 𝐾 points from Traj, we 

come down to select smaller pieces of points from each segment 
according to associated 𝑆. 𝑐. After point ranking step, we can 

rank each point in a segment by 𝑝. 𝑤 inferred by equation (9), then 

we select 𝑆. 𝑐 points from segment 𝑆 and add them to a points 

queue. Finally, all the points collected from different segments 
add up to m, thus we get the most important m points according to 
our TS algorithm. A formal description of this operation is 
demonstrated in Figure 11. In line 4, SelectTopK is a general 
algorithm which selects top k objects from n objects (𝑘 < 𝑛) and 

merges them to a segment. It executes in complexity 𝑂(𝑛𝑙𝑜𝑔𝑘) 

using minimal/maximal heap, thus the complexity of SelectPoints 
is 𝑂(𝑛𝑙𝑜𝑔𝑚). 

Algorithm SelectPoints(S) 

Input: a segment who is assigned with a headcount 

Output: a simplified segment 𝑆′  whose points number equals to 𝑆. 𝑐 . 

1. S′= ∅   

1. 𝐻𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡  = 𝑆. 𝑐;                //point headcount of segment 

2. 𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑆. 𝑝𝑜𝑖𝑛𝑡𝑠;                 //all points belong to segment 

3. 𝑆′= SelectTopK(𝑃𝑜𝑖𝑛𝑡𝑠 , 𝐻𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡 )); //select top points 

4. Return 𝑆′ ; 

Figure 11: The procedure of selecting points 

Since previous steps including Segmentation, Segment Ranking  
and Point weighting all have complexity O(n), the last step Point 
Selection cost 𝑂(𝑛𝑙𝑜𝑔𝑚) , so the time complexity of TS is 

𝑂(𝑛𝑙𝑜𝑔𝑚). 

Example 3. Consider a trajectory Traj demonstrated in Figure 12 
a). After segmentation, Traj is partition into 2 segments: a 
walking segment S1 and a driving segment S2. Average heading 

changes and distances of S1 and S2 are calculated and normalized: 

𝑆1 . 𝑤  = 0.4, 𝑆2 .𝑤  = 0.6. After each point is weighted, the 

normalized weights vector of points in 𝑆1  and  𝑆2  are {1, 0.33, 

0.21, 0.13, 0.45, 0.15, 0.78, 0.345, 0.32, 0.65, 0.7, 0.5} and {0.55, 
0.33, 0.65, 0.76, 0.7, 0.15, 0.1, 0.65, 0.32, 1}. At last, given 
headcounts m, m points can be selected by selected 40% of m 
points from 𝑆1  and 60% of m points from 𝑆2 . For instance, if m = 

10, then we choose the top 4 points from 𝑆1  and top 6 points from 

𝑆2, they are {𝑝1 ,𝑝7 ,𝑝11 ,𝑝10} and {𝑝22 ,𝑝16 ,𝑝17 ,𝑝15 ,𝑝20 ,𝑝13}. The 

simplified trajectory is shown in Figure 12 b). 

Figure 12: An example of TS algorithm 

5. EXPERIMENTS 
In this Section, we first present the experimental settings. Second, 
we introduce the evaluation approaches. Third, major results are 
reported followed by some discussions. 

5.1 Settings 
GPS devices: Figure 13 shows the GPS devices we chose to 
collect data. They are comprised of stand-alone GPS receivers 
(Magellan Explorist 210 and 300, G-Rays 2) and GPS phones. 
Users set these devices with different configurations, such as 
recording a GPS point every 5 seconds or every 10 meters. 

GPS Data: We select 335  typical travel routes generated by 62 
users in the past 2 years. Each trajectory contains at least one walk 
segment and one non-walk segment like driving, and the portion 
of walk segments exceeds 50 percents of the whole time span of 
the trajectory. Typically, people drive a relatively long way before 

reaching a real travel spot, e.g., mountains and lakes are usually 
located outside cities. Also, people prefer to spend more time in 
places of interest rather than driving on the way. For instance, 
users are more likely to spend 1 hour on the way while spending 5 
or more hours on hiking in a mountain. Consequently, the distance 
of driving segment is usually larger than that people traveling 
(walking in most case) in a place of interest while the time spent 
for walking might be longer than driving time in a trip. 

The total distance of these trajectories has exceeded 21,000 
kilometers, and the distance of each trajectory is greater than 5 km. 
On average, each trajectory has 2100 points, a 63-kilometer 
distance and 4- hour time span.  

 

Figure 13 GPS devices used in the experiments 

Parameter Selection 

 𝛕 of definition 5: Figure 14 shows how the average perpendicular 

deviation of each point in the original trajectory to the simplified 
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trajectory changes over τ . The three curves are results with 

different simplification rate. All three curves show that the 
average deviation is minimized when τ is set to 3. In other words, 

when τ  is set to 3, the accumulated heading change can get the 

most out of the semantics meaning and skeleton information of 
the trajectory. 

 

Figure 14 Selecting threshold 𝛕 for 𝜷 

5.2 Evaluation Approaches 

5.2.1 Evaluation criteria  
Our proposed algorithms are evaluated both in terms of 
effectiveness of simplification result and efficiency of 
simplification execution. 

Since one of the most important purposes of a trajectory is 
showing the reference knowledge to others, a relatively big 
deviation like 100 meters on a driving segment would not reduce 

the semantic meanings a trajectory implies, while a small 
deviation from the walk segment would loss the significant 
information about a trip 

Based on this observation, in order to evaluate the average 
deviation of simplified trajectory, first we calculate the 
perpendicular distance from each raw point to simplified 
trajectory as deviation; second we normalize each deviation in 
walk segment and non-walk segment; finally we calculate the root 
mean square value of all the perpendicular distance. The result 
represents the average deviation for each point. Based on this, we 
propose two metrics to evaluate the effectiveness of our approach. 

Average normalized perpendicular: we add up all the normalized 
perpendicular distance for all the points of all trajectories and 
calculate their root mean square value. The smaller the average 
deviation is, the better the algorithms is. 

Correct Rate: we compare the simplified result for a single 
trajectory performed by DP and TS, and define another criterion 

named ‘Correct Rate’. For either one of DP or TS, suppose it is 
TS. If TS outperforms DP by n1 trajectories, but the left n2 

trajectories have bigger average deviation than DP, then: 

 Correct Rate of TS =
𝑛1

𝑛1+ 𝑛2
       (10) 

While correct rate of DP is 

Correct Rate of DP =
𝑛2

𝑛1+ 𝑛2
        (11) 

5.2.2 Baseline 
Since DP algorithm is wildly used for line simplification problem, 
and it’s regarded as the most effective simplification algorithm till 
now, we take it as baseline. 

5.3 Results 

5.3.1 Effectiveness 
Figure 15 shows the average normalized perpendicular deviation 
of TS and DP with different simplification rate. We can see that 
TS outperforms DP at any simplification rate. 

 

Figure 15 Average normalized perpendicular deviation of TS 
and DP 

Figure 16 shows the correct rate for TS and DP with different 
simplification rate. When simplification rate is 0.05, TS has 
correct rate of 0.55 and correct rate of TS increases with the 
increase of simplification rate. So at any simplification rate, TS 
outperforms DP. 

 

Figure 16 Correct Rate of TS and DP 

Suppose the simplification 𝑟  rate is normal distributed, 

𝑟~𝑁(0.475, 0.0673) , where mean value of 𝑟  is 0.475 and 

variance of 𝑟  is 0.0673.  Based on this, the expected average 

normalized deviation of TS is calculated to be 0.078 and the 
expected average deviation of DP is 0.19. It means on average TS 
has only 41% deviation compared to DP. Similarly, based on 
normal distribution, we can draw that on average the correct rate 
of TS is 0.91 while that of DP is 0.09, which means TS is about 
10 times better than DP for this criterion.  

5.3.2 Efficiency 
Since sometimes simplification is performed on line, speed is very 
important. DP adopts a divide and conquer method to scan each 
point in the trajectory. Suppose we need to maintain the most 
important m points. The average complexity of DP is 𝑂(𝑛 ∗
𝑙𝑜𝑔𝑛 ∗ 𝑙𝑜𝑔𝑚), and in worst case it degenerates to 𝑂(𝑛2 ∗ 𝑙𝑜𝑔𝑚). 

On the other hand, as analyzed in 4.4, both in average case and 
worst case, the complexity of TS is  𝑂(𝑛 ∗ 𝑙𝑜𝑔𝑚). So in theory 
TS is faster than the DP.  

As shown in Figure 17, TS outperforms DP in time cost. Based on 
normal distribution, on average TS is 4.5 times faster than DP. 
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Figure 17 Time cost of TS and DP 

5.4 Discussions 
Experimental results show that TS outperforms DP both in 
effectiveness and efficiency. Comparing simplified results by DP 
and TS in Figure 2 and Figure 3, TS has worse performance in 

driving segment, while better in walking segment. According to 
Figure 15 and 16, we know that the better performance part 
outperforms the worse part. The reason why walking segment has 
better performance lies in two aspects: 1) segmentation weighting 
step considers the average heading change of segment, on which 
feature walking segment is more significant. 2) point weighting 
step also considers heading change, generally walking point will 
be weighted bigger on this feature since people tend to change 

heading directions while walking. Further, this method is robust to 
some dense noise point cluster, because according to Equation (1), 
the accumulated heading of a point in random generated noise 
cluster will be very small, hence won’t be weight big. 

Actually, in the process of segment weighting and point weighting, 
we are trying to balance the importance of overall skeleton and 
semantic meaning of a trajectory. By applying segment’s distance 
and point’s neighbor distance, the skeleton of trajectory is 
maintained. By applying segment’s average neighbor heading 
change and point’s heading change, the semantic meaning of the 
trajectory is maintained.  

Our approach is proposed for trajectories that have at least 50% 
duration walking and all are longer than 5km, other cases may not 
outperform DP if the trajectory’s walking part does not take up a 
proper duration proportion.  

6. CONCLUSION 
In this paper, we proposed a trajectory simplification algorithm, 
called TS, for location-based social networking services. This 
algorithm aims to maintain both the shape skeleton and semantic 

meanings of a trajectory when reducing redundant points from the 
trajectory. At the same time, the TS combine the strategies of 
local and global processing during line simplification. Therefore, 
with a better efficiency than the DP algorithm, TS is more 
effective in simplifying trajectories in LBSN systems where 
people expect to share and follow others travel routes. Two 
features consisting of the heading change and the neighbor 
distance are used to weight the importance of a point. We evaluate 

our TS algorithm using 335 trajectories collected by 62 users over 
2 years and a new metric called normalized perpendicular distance. 
As a result, our method outperforms baseline with a 10-times 
Correct Rate beyond baseline. Meanwhile, according the mean 

normalized perpendicular distance, our method only has a 41% 
deviation of the baseline with a 4.5-times faster efficiency. 

In the future, we intend to extend our work to better balance the 
skeleton and semantic meaning of a GPS trajectory. So far, when 
the point headcounts are extremely small, the skeleton 
information of trajectories processed by our approach could be 
worse than the results of the DP. More factors should be taken 
into account to determine the weights of segments. 
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