U-Prove Range Proof Extension

Microsoft Research

Author: Mira Belenkiy

June 2014

© 2014 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Summary

This document extends the U-Prove Cryptographic Specification [UPCS] by specifying set membership proofs. This allows proving that a committed value is less than, less than or equal to, greater than, or greater than or equal to another (committed) value.
Contents
Summary .. 1
1 Introduction .. 3
 1.1 Notation .. 3
 1.2 Feature overview ... 5
2 Protocol specification .. 5
 2.1 Common Protocols .. 6
 2.2 Presentation .. 8
 2.3 Verification .. 15
3 Security Considerations .. 18
References ... 18

List of Figures
Figure 1: EQProofParams .. 7
Figure 2: RangeProve ... 8
Figure 3: ComputeC ... 9
Figure 4: GetBitProofs ... 10
Figure 5: GenerateBitDecomposition ... 11
Figure 6: DefaultBitDecomposition ... 11
Figure 7: ComputeD .. 12
Figure 8: ComputeX .. 12
Figure 9: ComputeE .. 13
Figure 10: MainProof ... 14
Figure 11: EqualityOfDL .. 15

Change history

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision 1</td>
<td>Initial draft</td>
</tr>
</tbody>
</table>
1 Introduction

This document extends the U-Prove Cryptographic Specification [UPCS] by specifying range proofs. The Prover will prove to the Verifier that a committed value is less than, less than or equal to, greater than, or greater than or equal to another (committed) value.

The Prover knows a secret value a, and will prove to the Verifier an inequality relation between a and another value b that may or may not be known to the Verifier. The Prover and Verifier have as common input a pair of generators $g, h \in G_q$. The Prover will create one of the following proofs:

$$\pi_\square = PK\{\alpha, \beta, \gamma, \delta | C_A = g^\alpha h^\gamma \cap C_B = g^\beta h^\delta \cap \alpha \square \beta\}$$

or

$$\pi_\square = PK\{\alpha, \gamma | C_A = g^\alpha h^\gamma \cap \alpha \square b\}$$

where $\square \in \{<, \leq, >, \geq\}$. The Prover knows assignments for $(\alpha, \beta, \gamma, \delta)$.

The proof relies on comparing the bit decompositions of a and b. The Prover computes Pedersen commitments to the bit decompositions and then proves they are formed correctly. Then, the Prover compares each i bit prefix of a and b; the results of the comparisons are stored in helper commitments D_i. The Prover creates an Equality Proof to show that the D_i are computed correctly. The committed value in D_{n-1} is equal to $\{-1,0,1\}$ depending on the relationship between a and b. The Prover adds an auxiliary proof showing that the committed value in D_{n-1} is equal to the appropriate value given \square.

The U-Prove Cryptographic Specification [UPCS] allows the Prover, during the token presentation protocol, to create a Pedersen Commitment and show that the committed value is the equal to a particular token attribute. The Prover MAY use this Pedersen Commitment as either C_A or C_B. The Issuance and Token Presentation protocols are unaffected by this extension. The Prover may choose to create a range proof after these two protocols complete.

The committed values in C_A and C_B MUST NOT be hashed. If any of these values are U-Prove token attributes, the attributes also MUST NOT be hashed.

The Range Proof protocol makes use of the following U-Prove Extensions: Set Membership Proof Extension [EXSM], Bit Decomposition Extension [EXBD], and Equality Proof Extension [EXEQ].

1.1 Notation

In addition to the notation defined in [UPCS], the following notation is used throughout the document. The range proof consists of many sub-protocols; local variables are omitted from this list unless they consistently appear with the same meaning/value.

- a Value to be compared to b, known only to Prover.
- b Value to be compared to a, MAY be known to Verifier.
- C_A Pedersen Commitment to a. Only Prover knows opening.
- C_B Pedersen Commitment to b, or null if Verifier knows b.
- $bIsKnown$ True if Verifier knows b.
\(O, \text{proofType} \) A value in the set\{<, \leq, >, \geq\} indicating the relationship between \(a \) and \(b \) that needs to be proven.

\(\min \) Minimum possible value for \(a \) and \(b \).

\(\max \) Maximum possible value for \(a \) and \(b \).

\(\mathcal{M} \) An equality map, as defined in U-Prove Equality Proof Extension [EXEQ]. Range proofs require multiple different equality maps; this document uses local variable \(\mathcal{M} \) to refer to a map.

\(\tilde{A}_i \) The value of a DL Equation, as defined in U-Prove Equality Proof Extension [EXEQ]. Range proofs create multiple different equality proofs; this document uses local variable \(\tilde{A}_i \) to refer to the DL Equation values.

\(\bar{g}_{i,j} \) The bases of a DL Equation, as defined in U-Prove Equality Proof Extension [EXEQ]. Range proofs create multiple different equality proofs; this document uses local variable \(\bar{g}_{i,j} \) to refer to the DL Equation bases.

\(\tilde{x}_{i,j} \) The witnesses (exponents) for a DL Equation, as defined in U-Prove Equality Proof Extension [EXEQ]. Range proofs create multiple different equality proofs; this document uses local variable \(\tilde{x}_{i,j} \) to refer to the DL Equation witnesses.

\(\bar{a} = (a_0, r_0), (a_1, r_1), ..., (a_{n-1}, r_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{A} \). The \(a_i \) contain the bit decomposition of \(a - \min \), while the \(r_i \) are the second exponent.

\(\bar{b} = (b_0, s_0), (b_1, s_1), ..., (b_{n-1}, s_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{B} \). The \(b_i \) contain the bit decomposition of \(b - \min \), while the \(s_i \) are the second exponent. If the Verifier knows \(b \), then \(s_i = 0 \).

\(\tilde{c} = (c_0, y_0), (c_1, y_1), ..., (c_{n-1}, y_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{C} \). The \(c_i \) contain the difference between \(\bar{a} \) and \(\bar{b} \): \(c_i = a_i - b_i \), while the \(y_i \) are the second exponent.

\(\bar{d} = (d_1, t_1), ..., (d_{n-1}, t_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{D} \). Each \(d_i \) stores the inequality relationship between the \(i \) least significant bits of \(a \) and \(b \), represented as a value in \([-1, 0, 1]\). The \(t_i \) are the second exponent.

\(\bar{e} = (e_1, v_1), ..., (e_{n-1}, v_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{E} \). Each \(e_i \) is actually equal to \(d_{i-1} \), while the \(v_i \) are the second exponent.

\(\bar{x} = (c_1, m_1), ..., (c_{n-1}, m_{n-1}) \) The opening information for Pedersen Commitments \(\tilde{X} \). Each \(c_i \) is actually equal to the \(c_i \) in \(\tilde{C} \), while the \(m_i \) are the second exponent.

\(\tilde{A} = A_0, A_1, ..., A_{n-1} \) Pedersen Commitments to \(\bar{a} \).

\(\tilde{B} = B_0, B_1, ..., B_{n-1} \) Pedersen Commitments to \(\bar{b} \).

\(\tilde{C} = C_0, C_1, ..., C_{n-1} \) Pedersen Commitments to \(\bar{c} \).

\(\tilde{D} = D_1, ..., D_{n-1} \) Pedersen Commitment to \(\bar{d} \).

\(\tilde{E} = E_1, ..., E_{n-1} \) Pedersen Commitment to \(\bar{e} \).

\(\tilde{X} = X_1, ..., X_{n-1} \) Pedersen Commitment to \(\bar{x} \).

\(\pi_A \) Proof that \(\tilde{A} \) is a valid commitment to the bit decomposition of \(a - \min \).

\(\pi_B \) Proof that \(\tilde{B} \) is a valid commitment to the bit decomposition of \(b - \min \). Null if the Verifier knows \(b \).
\(\pi_c \) Main equality proof showing that \(D \) and \(X \) are formed correctly.

\(\pi_d \) Auxiliary proof showing that \(D_n-1 \) contains the correct value; either and equality proof or a set membership proof.

\(a \leftarrow A \) Choose a uniformly at random from set \(A \).

The key words “MUST”, “MUST NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC 2119].

1.2 Feature overview

The Prover knows the opening of a Pedersen Commitments \(C_A = g^a h^r \) and \(C_B = g^b h^s \) (optionally, \(b \) may be public knowledge). The Prover needs to show that the relationship \(a \odot b \) holds, where \(\odot \in \{<,\leq,\geq\} \) is also known to the Verifier. For efficiency, the Prover and Verifier both know that \(a \) and \(b \) fall inside the range \([min, max]\). The Prover will create a special-honest verifier zero-knowledge proof of knowledge that the Prover knows a tuple of values \((a, r, b, s)\) such that:

1. \(C_A = g^a h^r \).
2. \(C_B = g^b h^s \).
3. The relationship \(a \odot b \) holds, where \(\odot \in \{<,\leq,\geq\} \).

The range proof consists of the following components:

1. Pedersen commitments \(A_0, A_1, ..., A_{n-1} \) to the bit decomposition of \(a - min \), as well as a Bit Decomposition Proof [EXBD] showing the \(A_i \) are constructed correctly.
2. (Optional) Pedersen commitments \(B_0, B_1, ..., B_{n-1} \) to the bit decomposition of \(b - min \), as well as a Bit Decomposition Proof [EXBD] showing the \(B_i \) are constructed correctly.
3. Pedersen commitments \(X_0, ..., X_{n-1} \) to \(c_i = (a_i - b_i)^2 \). These are helper values.
4. Pedersen commitments \(D_1, ..., D_{n-1} \) to \(d_i \in \{-1,0,1\} \), which represents the inequality relationship between the \(i \) least significant bits of \(a \) and \(b \). We compute it as follows:

\[
d_i = \begin{cases}
 a_i - b_i & i = 0 \\
 d_{i-1} - d_{i-1}(a_i - b_i)^2 + (a_i - b_i) & i > 0
\end{cases}
\]

5. An Equality Proof [EXEQ] showing the \(X_i \) and \(D_i \) are formed correctly.
6. An auxiliary proof showing that \(D_{n-1} \) is a commitment to the appropriate value in \([-1,0,1]\) given the type of inequality relationship the Prover is trying to prove.

2 Protocol specification

As the range proof can be performed independently of the U-Prove token presentation protocols, the common parameters consist simply of the group \(G_q \), two generators \(g \) and \(h \), and a cryptographic function \(\mathcal{H} \). The commitments \(C_A \) and \(C_B \) MAY be generated by the Prover.

The remaining parameters may be chosen by either the Prover or Verifier: The values \(min \) and \(max \) indicate the maximum span for secret values \(a \) and \(b \). The variable \(blsKnown \) indicates whether the Verifier knows \(b \). The \(proofType \) indicates the inequality relationship between \(a \) and \(b \) that the Prover wishes to demonstrate.
2.1 Common Protocols
The main body of the range proof is an Equality Proof defined in the U-Prove Equality Proof Extension [EXEQ] EQProofParams() returns the common parameters for the main proof. It generates an equality map \mathcal{M} and sets up the DL equations $\tilde{A}_i = \prod_{j=0}^{n_i-1} \tilde{g}_{i,j}$ where the \tilde{A}_i and $\tilde{g}_{i,j}$ are public values returned by this protocol, while the $\alpha_{i,j}$ are secret values known only to the Prover.
\(\text{EQProofParams}(\) \)

Input

Parameters: \(\text{desc}(G_q), \text{UID}_\mathcal{K}, g, h \)
Commitment to \(a/b: \bar{C} = C_0, C_1, \ldots, C_{n-1} \)
Commitment to \(d: \bar{D} = D_1, \ldots, D_{n-1} \)
Commitment to \((a/b)^2: \bar{X} = X_1, \ldots, X_{n-1} \)
Commitment to \(e: \bar{E} = E_1, \ldots, E_{n-1} \)

Computation

\[
\begin{align*}
\mathcal{M} & := \emptyset \\
eq & := 0
\end{align*}
\]

\(\text{// } D_i = g^{\delta_i} \cdot h^{\tau_i} \)

For \(i := 0 \) to \(n - 1 \)

\[
\begin{align*}
\mathcal{M}.\text{Add}(\text{"delta"}, i, (\eq, 0)) \\
\bar{A}_\eq & := D_i \\
\bar{g}_{\eq, 0} & := g \\
\bar{g}_{\eq, 1} & := h \\
\eq & := \eq + 1
\end{align*}
\]

End

\(\text{// } A_i/B_i = g^{\chi_i} \cdot h^{\zeta_i} \)

For \(i := 1 \) to \(n - 1 \)

\[
\begin{align*}
\mathcal{M}.\text{Add}(\text{"chi"}, i, (\eq, 0)) \\
\bar{A}_\eq & := C_i \\
\bar{g}_{\eq, 0} & := g \\
\bar{g}_{\eq, 1} & := h \\
\eq & := \eq + 1
\end{align*}
\]

End

\(\text{// } X_i = (A_i/B_i)^{\chi_i} \cdot h^{\mu_i} \)

For \(i := 1 \) to \(n - 1 \)

\[
\begin{align*}
\mathcal{M}.\text{Add}(\text{"chi"}, i, (\eq, 0)) \\
\bar{A}_\eq & := X_i \\
\bar{g}_{\eq, 0} & := C_i \\
1 & := h \\
\eq & := \eq + 1
\end{align*}
\]

End

\(\text{// } E_i = (X_i^{-1})^{\delta_{i-1}} \cdot h^{v_i} \)

For \(i := 0 \) to \(n - 1 \)

\[
\begin{align*}
\mathcal{M}.\text{Add}(\text{"delta"}, i - 1, (\eq, 0)) \\
\bar{A}_\eq & := E_i \\
\bar{g}_{\eq, 0} & := X_i^{-1} \\
\bar{g}_{\eq, 1} & := h \\
\eq & := \eq + 1
\end{align*}
\]

End

Output

Return \(\mathcal{M}, \bar{A}, \bar{g} \)

Figure 1: EQProofParams.
2.2 Presentation

The Prover calls RangeProve to generate a range proof. We break up the range proof presentation protocol into various sub-protocols for ease of exposition. The range proof also requires calling protocols from Bit Decomposition Proof [EXBD], Set Membership Proof [EXSM], and Equality Proof [EXEQ].

<table>
<thead>
<tr>
<th>RangeProve()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Parameters: desc(G_q), UID$_H$, $g, h, min, max, blsKnown, b, proofType</td>
</tr>
<tr>
<td>Commitment to a: C_a</td>
</tr>
<tr>
<td>Opening information to C_a: a, r</td>
</tr>
<tr>
<td>Commitment to b: C_b</td>
</tr>
<tr>
<td>Opening information to C_b: b, s</td>
</tr>
<tr>
<td>Computation</td>
</tr>
<tr>
<td>$\vec{A}, \vec{a}, \pi_A, \vec{B}, \vec{b}, \pi_B$</td>
</tr>
<tr>
<td>$\vec{c}, \vec{\bar{c}} := \text{ComputeC}(\vec{A}, \vec{a}, \vec{B}, \vec{b})$</td>
</tr>
<tr>
<td>$\vec{D}, \vec{d} := \text{ComputeD}(\text{desc}(G_q), g, h, \vec{c}, \vec{\bar{c}})$</td>
</tr>
<tr>
<td>$\vec{X}, \vec{x} := \text{ComputeX}($desc$(G_q), g, h, \vec{c}, \vec{\bar{c}})$</td>
</tr>
<tr>
<td>$\vec{E}, \vec{\bar{e}} := \text{ComputeE}($desc$(G_q), g, h, \vec{c}, \vec{\bar{c}}, \vec{D}, \vec{a}, \vec{X}, \vec{x})$</td>
</tr>
<tr>
<td>$\vec{M}, \vec{\bar{A}, \bar{g}} := \text{EQProofParams}($desc$(G_q), g, h, \vec{c}, \vec{\bar{c}}, \vec{D}, \vec{X}, \vec{E})$</td>
</tr>
<tr>
<td>$\pi_c := \text{MainProof}($desc$(G_q), UID$_H, g, h, n, \vec{M}, \vec{\bar{A}, \bar{g}, \vec{c}, \vec{\bar{c}}, \vec{d}, \vec{x}, \vec{\bar{e}}})$</td>
</tr>
<tr>
<td>If proofType is > then</td>
</tr>
<tr>
<td>$\pi_D := \text{EqualityOfDL}($desc$(G_q), UID$H, g, h, 1, D{n-1}, (d_{n-1}, t_{n-1}))$</td>
</tr>
<tr>
<td>Else if proofType is < then</td>
</tr>
<tr>
<td>$\pi_D := \text{EqualityOfDL}($desc$(G_q), UID$H, g, h, -1, D{n-1}, (d_{n-1}, t_{n-1}))$</td>
</tr>
<tr>
<td>Else if proofType is ≥ then</td>
</tr>
<tr>
<td>$\pi_D := \text{SetMembershipProve}($desc$(G_q), UID$H, g, h, {0, 1}, D{n-1}, (d_{n-1}, t_{n-1}))$</td>
</tr>
<tr>
<td>Else</td>
</tr>
<tr>
<td>$\pi_D := \text{SetMembershipProve}($desc$(G_q), UID$H, g, h, {0, 1}, D{n-1}, (d_{n-1}, t_{n-1}))$</td>
</tr>
<tr>
<td>End</td>
</tr>
<tr>
<td>If blsKnown then</td>
</tr>
<tr>
<td>$\vec{\bar{B}} := \emptyset$</td>
</tr>
<tr>
<td>End</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Return $\vec{A}, \vec{B}, \vec{D}, \vec{X}, \pi_A, \pi_B, \pi_C, \pi_D$</td>
</tr>
</tbody>
</table>

Figure 2: RangeProve

The range proof requires dividing the bit decomposition of A by the bit decomposition of B to get an array of Pedersen commitments \vec{C} and their openings \vec{c}. This step is performed in the function ComputeC().
ComputeC()

Input
Parameters: desc(G_q)
Commitment to a: $\vec{A} = A_0, A_1, ..., A_{n-1}$
Opening information to A_i: $\vec{a} = (a_0, r_0), (a_1, r_1), ..., (a_{n-1}, r_{n-1})$
Commitment to b: $\vec{B} = B_0, B_1, ..., B_{n-1}$
Opening information to B_i: $\vec{b} = (b_0, s_0), (b_1, s_1), ..., (b_{n-1}, s_{n-1})$

Computation
For $i = 0$ to $n - 1$
$c_i := a_i - b_i$
$y_i := r_i - s_i$
$C_i := A_i / B_i$

End
$\vec{c} := c_0, c_1, ..., c_{n-1}$
$\vec{y} := (c_0, y_0), (c_1, y_1), ..., (c, y_{n-1})$

Output
Return \vec{c}, \vec{y}

Figure 3: ComputeC

The range proof performs bit decompositions of a and b with the help of protocols from U-Prove Bit Decomposition Extension [EXBD]. For efficiency, it normalizes the range from $[\min, \max]$ to $[0, \max - \min]$. This step is important since the length of the range proof depends on the length of the bit decomposition. If the value of b is known to the Verifier, the Prover will generate default Pedersen Commitments to the bit decomposition of b and omit the bit decomposition proof.
The following two protocols generate a bit decomposition of an integer \(x \) and return Pedersen Commitments and their openings to this decomposition. \(\text{GenerateBitDecomposition}() \) generates random Pedersen Commitments, while \(\text{DefaultBitDecomposition}() \) sets the second exponent to 0.
GenerateBitDecomposition()

Input
- Parameters: desc(G_q), g, h, n
- Commitment to x: C
- Opening information to C: x, y

Computation
- $x_0, x_1, ..., x_{n-1}$ ← bit decomposition of x
- $y_0, y_1, ..., y_{n-1}$ ← \mathbb{Z}_q^*
- For $i := 0$ to $n - 1$
 - $C_i := g^{x_i} h^{y_i}$
- $\vec{C} := C_0, C_1, ..., C_{n-1}$
- $\vec{x} := (x_0, y_0), (x_1, y_1), ..., (x_{n-1}, y_{n-1})$

Output
- Return \vec{C}, \vec{x}

DefaultBitDecomposition()

Input
- Parameters: desc(G_q), g, h, n
- Integer: x

Computation
- $x_0, x_1, ..., x_{n-1}$ ← bit decomposition of x
- $y_0, y_1, ..., y_{n-1} := 0, 0, ..., 0$
- For $i := 0$ to $n - 1$
 - $C_i := g^{x_i}$
- $\vec{C} := C_0, C_1, ..., C_{n-1}$
- $\vec{x} := (x_0, y_0), (x_1, y_1), ..., (x_{n-1}, y_{n-1})$

Output
- Return \vec{C}, \vec{x}

The range proof compares A to B bit by bit. It does so by computing Pedersen commitments $D_1, ..., D_{n-1}$ to $d_i \in \{-1, 0, 1\}$, which represents the inequality relationship between the i least significant bits of a and b. We compute the d_i as follows:

$$d_i = \begin{cases} a_i - b_i & i = 0 \\ (d_{i-1} - d_{i-1} (a_i - b_i)^2 + (a_i - b_i) & i > 0 \end{cases}$$

The function ComputeD() takes as input $c_i = a_i - b_i$, which is substituted into the above formula.
ComputeD ()

Input
Parameters: \(\text{desc}(G_q), g, h \)
Commitment to \(a/b \): \(\vec{C} = C_0, C_1, \ldots, C_{n-1} \)
Opening information to \(C_i \): \(\vec{c} = (c_0, y_0), (c_1, y_1), \ldots, (c_{n-1}, y_{n-1}) \)

Computation
\[
d_0 := c_0 \\
\text{For } i := 1 \text{ to } n - 1 \\
\quad d_i := d_{i-1} - d_{i-1}c_i^2 + c_i \\
\quad t_i \leftarrow \mathbb{Z}_q^* \\
\quad D_i := g^{d_i}h^{t_i} \\
\text{End} \\
\vec{D} := D_1, \ldots, D_{n-1} \\
\vec{d} := (d_1, t_1), \ldots, (d_{n-1}, t_{n-1}) \\
\]

Output
Return \(\vec{D}, \vec{d} \)

Figure 7: ComputeD.

Proving that the \(D_i \) are formed correctly requires helper values \(X_i = c_i^e h^{m_i} \).

ComputeX ()

Input
Parameters: \(\text{desc}(G_q), g, h \)
Commitment to \(a/b \): \(\vec{C} = C_0, C_1, \ldots, C_{n-1} \)
Opening information to \(C_i \): \(\vec{c} = (c_0, y_0), (c_1, y_1), \ldots, (c_{n-1}, y_{n-1}) \)

Computation
\[
\text{For } i := 1 \text{ to } n - 1 \\
\quad m_i \leftarrow \mathbb{Z}_q^* \\
\quad X_i := c_i^e h^{m_i} \\
\text{End} \\
\vec{X} := X_1, \ldots, X_{n-1} \\
\vec{x} := (x_1, m_1), \ldots, (x_{n-1}, m_{n-1}) \\
\]

Output
Return \(\vec{X}, \vec{x} \)

Figure 8: ComputeX.
Proving that the D_i are formed correctly also requires helper values $E_i = (X_i^{-1})^{d_i-1}h^{\nu_i} = D_i \cdot (D_{i-1})^{-1} \cdot (C_i)^{-1}$.

ComputeE

Input
- Parameters: $\text{desc}(G_q), g, h$
- Commitment to a/b: $\vec{C} = c_0, c_1, ..., c_{n-1}$
- Opening information to \vec{C}: $\vec{c} = (c_0, y_0), (c_1, y_1), ..., (c_{n-1}, y_{n-1})$
- Commitment to d: $\vec{D} = D_1, ..., D_{n-1}$
- Opening information to \vec{D}: $\vec{d} = (d_1, t_1), ..., (d_{n-1}, t_{n-1})$
- Commitment to $(a/b)^2$: $\vec{X} = x_1, ..., x_{n-1}$
- Opening information to \vec{X}: $\vec{x} = (c_1, m_1), ..., (c_{n-1}, m_{n-1})$

Computation

For $i := 1$ to $n - 1$

\[
\begin{align*}
\nu_i & := t_i - t_{i-1} + y_i + (d_{i-1} \cdot y_i \cdot c_i) + (d_{i-1} \cdot m_i) \\
E_i & := (X_i^{-1})^{d_i-1}h^{\nu_i}
\end{align*}
\]

End

\[
\begin{align*}
\vec{E} & := E_1, ..., E_{n-1} \\
\vec{e} & := (e_1, \nu_1), ..., (e_{n-1}, \nu_{n-1})
\end{align*}
\]

Output

Return \vec{E}, \vec{e}

Figure 9: ComputeE

The main body of the range proof is an Equality Proof [EXEQ] showing that $\vec{D}, \vec{X}, \vec{E}$ are formed correctly.
MainProof()

Input
Parameters: desc(\(G_q\)), UID\(_R\), g, h,
EQ Proof parameters: \(\mathcal{M}, \bar{A}, \bar{\bar{g}}\)
Opening information to \(\bar{C}\): \(\bar{c} = (c_0, y_0), (c_1, y_1), ..., (c_{n-1}, y_{n-1})\)
Opening information to \(\bar{D}\): \(\bar{d} = (d_1, t_1), ..., (d_{n-1}, t_{n-1})\)
Opening information to \(\bar{X}\): \(\bar{x} = (c_1, m_1), ..., (c_{n-1}, m_{n-1})\)
Opening information to \(\bar{E}\): \(\bar{e} = (e_1, \nu_1), ..., (e_{n-1}, \nu_{n-1})\)

Computation
\(\bar{x} := \emptyset\)
\(eq := 0\)

// \(D_i = g^{\delta_i} \cdot h^{t_i}\)
For \(i := 0\) to \(n-1\)
\(\bar{x}_{eq,0} := d_i\)
\(\bar{x}_{eq,1} := t_i\)
\(eq := eq + 1\)
End

// \(A_i / B_i = g^{\chi_i} \cdot h^{\zeta_i}\)
For \(i := 1\) to \(n-1\)
\(\bar{x}_{eq,0} := c_i\)
\(\bar{x}_{eq,1} := y_i\)
\(eq := eq + 1\)
End

// \(X_i = (A_i / B_i)^{\chi_i} \cdot h^{\mu_i}\)
For \(i := 1\) to \(n-1\)
\(\bar{x}_{eq,0} := c_i\)
\(\bar{x}_{eq,1} := m_i\)
\(eq := eq + 1\)
End

// \(E_i = (X_i^{-1})^{\delta_{i-1}} \cdot h^{\nu_i}\)
For \(i := 0\) to \(n-1\)
\(\bar{x}_{eq,0} := e_i\)
\(\bar{x}_{eq,1} := \nu_i\)
\(eq := eq + 1\)
End

\(\pi_C := \text{EqualityProve}(desc(G_q), UID_R, \bar{A}, \bar{\bar{g}}, \mathcal{M}, \bar{x})\)

Output
Return \(\pi_C\)

Figure 10: MainProof.

EqualityOfDL is a small helper proof that shows that \(D = g^{\delta} \cdot h^t\) is a Pedersen Commitment to some integer \(x\) known to the Verifier. The protocol generates an Equality Proof [EXEQ].
EqualityOfDL

Input
Parameters: desc(G_q), UID_H, g, h, x
Commitment to d: D
Opening information to D: (d, t)

Computation
M := ∅
\bar{A}_0 = D \cdot g^{-x}
\bar{g}_{0,0} := h
\bar{x}_{0,0} := t
\pi := EqualityProve(desc(G_q), UID_H, \bar{A}, \bar{g}, M, \bar{x})

Output
Return \pi

Figure 11: EqualityOfDL.

2.3 Verification
The Verifier receives the common parameters, as well as commitments to a and b and the proof. The Verifier returns true if the verification passes, false otherwise. Verification requires checking the bit decomposition proofs \pi_A and \pi_B, the main equality proof \pi_C, and the auxiliary proof \pi_D that depends on the proof type.
The Verifier uses the function `ComputeClosedC()` to compute $C_i = A_i/B_i$, which are needed to verify π_c.
ComputeClosedC()

Input
Parameters: desc(Gq)
Commitment to a: \(\vec{A} = A_0, A_1, ..., A_{n-1} \)
Commitment to b: \(\vec{B} = B_0, B_1, ..., B_{n-1} \)

Computation
For \(i := 0 \) to \(n - 1 \)
\[C_i := A_i / B_i \]
End
\[\vec{C} := C_0, C_1, ..., C_{n-1} \]

Output
Return \(\vec{C} \)

The Verifier calls function ComputeClosedE() to compute \(E_i = D_i \cdot (D_{i-1})^{-1} \cdot C_i^{-1} \), which are needed to verify \(\pi_C \).

ComputeClosedE()

Input
Parameters: desc(Gq)
Commitment to d: \(\vec{D} = D_1, ..., D_{n-1} \)
Commitment to b: \(\vec{C} = C_0, C_1, ..., C_{n-1} \)

Computation
\[D_0 := C_0 \]
For \(i := 1 \) to \(n - 1 \)
\[E_i := D_i \cdot (D_{i-1})^{-1} \cdot C_i^{-1} \]
End
\[\vec{E} := E_0, E_1, ..., E_{n-1} \]

Output
Return \(\vec{E} \)

The Verifier calls EqualityOfDLVerify to check that \(D \) is a Pedersen Commitment to \(x \).
EqualityOfDLVerify()

Input
Parameters: desc(G_q), UID_H, g, h, x
Commitment to d: D
Proof: π

Computation
M ≔ ∅
\(\tilde{A}_0 \) ≔ D \cdot g^{-x}
\(\tilde{g}_{0,0} \) ≔ h
pass ≔ EqualityVerify(desc(G_q), UID_H, \(\tilde{A}, \tilde{g}, M, π \))

Output
Return pass

3 Security Considerations
The range proof invokes protocols from U-Prove Equality Proof Extension [EXEQ], U-Prove Bit Decomposition Extension [EXBD], and U-Prove Set Membership Proof Extension [EXSM]. Its security relies on their security. The following restriction apply:

- The Prover and the Verifier MUST NOT know the relative discrete logarithm \(\log g h \) of the generators \(g \) and \(h \). This is not an issue if the generators are chosen from the list of U-Prove recommended parameters.

References