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ABSTRACT
Mobile crowdsourcing is a powerful tool for collecting data
of various types. The primary bottleneck in such systems is
the high burden placed on the user who must manually collect
sensor data or respond in-situ to simple queries (e.g., experi-
ence sampling studies). In this work, we present Compressive
CrowdSensing (CCS) – a framework that enables compressive
sensing techniques to be applied to mobile crowdsourcing sce-
narios. CCS enables each user to provide significantly reduced
amounts of manually collected data, while still maintaining ac-
ceptable levels of overall accuracy for the target crowd-based
system. Naı̈ve applications of compressive sensing do not
work well for common types of crowdsourcing data (e.g., user
survey responses) because the necessary correlations that are
exploited by a sparsifying base are hidden and non-trivial to
identify. CCS comprises a series of novel techniques that en-
able such challenges to be overcome. We evaluate CCS with
four representative large-scale datasets and find that it is able
to outperform standard uses of compressive sensing, as well
as conventional approaches to lowering the quantity of user
data needed by crowd systems.

INTRODUCTION
Mobile crowdsourcing is a promising way to collect large-
scale data about ourselves and the urban areas we live in [29,
19, 11, 10, 13, 14, 21, 24]. Target data for such systems is
highly variable and can be broken into two primary types:
(1) sensor data from the environment (e.g., noise [30], air
pollution [43]) and, (2) user-provided information (such as a
survey response) which is necessary when sensors struggle to
capture the target phenomenon. Examples of this second type
includes information related to people – for instance, their
wellbeing or mental state [22, 6, 25] – and complex questions
about the environment: Is there graffiti along this street? Do
you see any empty parking spaces? Have you found rats in
your building?

One of the key bottlenecks in crowd systems is the high burden
on users, if they decide to participate. Users are required to
perform time-consuming data collection steps regularly (even
multiple times per day [25, 26]) while they participate. This
can act as a barrier which prevents larger numbers of users
to opt-in and join the system. It also causes users to stop
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participating over time [15]. As a result, participation is often
closely tied to financial incentives [40, 32]. Thus reducing
the need for user contributions can also decrease the cost of
running the system. For all of these reasons, approaches that
allow mobile crowdsourcing systems to operate with fewer
user contributions are acutely needed.

In this paper we examine the suitability for Compressive Sens-
ing [12, 17] (CS) to help address this critical issue. The
application of CS in other domains (e.g. vision) has led to
significant advances by lowering the amount of data that must
be sampled to capture (through reconstruction) complex phe-
nomena. However, to the best of our knowledge, this is the
first time CS has been applied to mobile crowdsourcing – espe-
cially, when capturing responses to questions directed at users
(e.g., experience sampling applications) are considered.

Already known approaches for lowering the required amount
of manually collected data include general-purpose statisti-
cal methods, such as sub-sampling and interpolation [23];
along with domain-specific techniques from population sur-
veying [31] and geospatial analysis [16] (e.g., Kriging in-
terpolation [35], James-Stein estimators [34]) that leverage
temporal patterns, user demographics and geographic charac-
teristics. However, crucially all of these methods presuppose,
and then leverage, certain relationships within the collected
data. In contrast, CS has the ability to utilize inherent structure
that may not be obvious and may not correspond to more “nat-
ural” ways of considering the data (e.g., spatial relationships).
Consequently, it is possible for CS to identify and exploit a su-
perset of potentially stronger, and otherwise ignored, structure
towards reconstructing the underlying phenomena.

The core technical challenge of applying CS to manually col-
lected crowd data exists because it was never designed for
data of this type. Conventional CS is designed to deal with
1-D vectors, and other data types that can be easily vectorized.
But crowdsourcing datasets, which are investigated in this
paper, usually have multiple columns each of which can be
considered a separate dimension. The multi-dimensional na-
ture of such data allows them to be vectorized in many ways,
this makes it non-trivial to apply CS directly. This forces
novel processing steps to be introduced to the conventional CS
pipeline that: mine the inherent data correlation in the original
data which may be arbitrary and complex; preserve the impor-
tant ones in the structural conversion; provide sufficient data
for base training; and handle missing data.

Toward addressing these challenges, we propose Compressive
CrowdSensing (CCS) – a framework designed to enable mobile
crowdsourced data collection with fewer user contributions
by leveraging compressive sensing. Central to CCS is our
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Figure 1: Illustrative Compressive Sensing Scenario

Data Structure Conversion technique that is able to search
a variety of representations of the data in an effort to find
one that is then suitable for learning a custom sparsifying
base. Our technique is able to mine typical forms of latent
inner structure needed by CS – if they exist – for example,
temporal and spatial relationships. But more importantly, it is
also able to find bases that unexpectedly provide the necessary
correlation. For example, a specific CS base for estimating
the employee number of small businesses in a city based on
crowdsourced user data by exploiting correlations between
location and industry type. CCS is then able to reconstruct the
target data completely via CS-based recovery algorithms. We
are the first to propose a novel and practical mechanism that
applies CS theory to reduce the quantity of user contributions
necessary for mobile crowdsourcing – especially in the context
of multi-dimensional survey data.

The contribution of this work includes:

• We demonstrate the feasibility of applying CS to new types
of data that are often collected via users participating in a
mobile crowdsourcing system. Prior to our study, it was
not known that CS would be applicable for important data
domains like large-scale question-based user surveys regard-
ing urban situations.

• We propose CCS, a CS-based framework for efficient data
collection via crowdsourcing. To allow this framework to
operate we develop novel CS-related techniques – in partic-
ular, these enable the use of data that do not have obvious
representations with a sparse structure, a fundamental re-
quirement for CS.

• We evaluate CCS by applying it to multiple real-world
datasets representative of the data collected within cities by
crowd systems. Our findings show CCS is able to maintain
far better ratios of user contributed data to overall system
accuracy than state-of-the-art baselines.

COMPRESSIVE SENSING PRIMER
Compressive Sensing (CS), which is an efficient technique
of sampling data with an underlying sparse structure, is a
breakthrough that first appeared in the signal processing field

and quickly spread to many application domains (e.g., med-
ical imaging [28]) and computer science communities (e.g.,
sensor networks [27, 42]). In particular, for data that can
be sparsely represented, it shows the possibility to sample
at a rate much lower than the Nyquist sampling rate, and to
then still accurately reconstruct signals via a linear projection
in a specific subspace. A concrete example of this are city-
wide traffic speeds that have been demonstrated to have sparse
structure [44]; as a result, a dense grid of traffic speeds can
be reconstructed from a relatively small vector that roughly
approximates the traffic speeds taken at key road network in-
tersections. Because of the ubiquity of inner structured data
(e.g. noise [30], soil moisture [38] and traffic [44]), CS is a
promising technique to reduce the sampling rate in a variety
of data collection scenarios.

Sparse Structure. The sparse structure of a dataset is the
key to applying CS theory. Figure 1 illustrates this concept
with a simple example. In Figure 1(a) an artificial signal is
shown that was generated with sparse structure, specifically
the signal is composed of a number of correlated signals of
varying offsets. This is similar to phenomena like temperature
and rainfall that are influenced by the past weather at differ-
ent timescales (i.e., the weather of the prior hour, prior day,
prior month all influence the current temperature and rainfall).
Figure 1(b) shows the signal projected into a discrete cosine
transform (DCT) base [8] – a linear vector commonly used
in CS to represent signals. We can see the signal is sparsely
represented by this base because only a few DCT coefficients
are necessary to capture the signal. Importantly, because of
this fact the seemingly complex signal seen in Figure 1(a) can
be reconstructed faithfully (Figure 1(d)) with only 25 values.

To more formally understand sparse structure, let y ∈ Rn

be a signal of interest. Let y be decomposed under a certain
base Ψ, i.e. y = Ψx where x is the coefficient vector. x
is called k-sparse if it has only k non-zero entries, and y is
called compressible when k is small. In other words, in some
dimension (transformed by Ψ etc.), y can be represented as
a sparse signal with a few non-zero entries. As an example,
the signal in Figure 1 is 5-sparse. Similarly, temperature and
depth data in oceans have been shown to be 40-sparse [27]
(using a Fourier base and resulting in a 98% accuracy level).

Random Sampling. In practice, random sampling is one of
the most popular CS sampling methods because it is easy to
implement. Figure 1(c) shows the artificial signal being ran-
domly sampled through time. Under this method a randomly
selected m samples out of the n ground-truth entries is used to
capture a signal y, where m� n. Typically, if m ≥ k log n,
the signal reconstruction is guaranteed by CS theory for a
k-sparse signal vector y. In the context of the signal shown
in Figure 1(a), this means with the 25 random readings CS
guarantees a signal normally described with 100 readings can
be reconstructed.

Mathematically, this sampling method is equivalent to ran-
domly picking several rows from Ψx. CS theory shows the
sampled signal (z) is:

z = Φy = ΦΨx (1)



with Φ a linear encoder and so is a m × n random partial
identity matrix. As the sampling is under our control, the
values of Φ are always known.

Data Reconstruction. Figure 1(d) compares the reconstruc-
tion of the initial artificial signal (Figure 1(a)) using CS (seen
in red) and standard linear interpolation (seen in black). Even
though both approaches use 25 samples each, clearly recon-
struction using CS is much more accurate.

More formally, CS reconstruction begins with a sampled sig-
nal z and a target original signal y to reproduce. Because
y = Ψx, finding x – which is a vector with no-more-than
k non-zero entries – is equivalent to finding y. Typically,
l1-norm minimization is used to find x due to its polynomial
complexity. This is equivalent to finding an xwith the smallest
`1-norm; i.e.,

argmin
x∈Rn

‖x̂‖l1 , subject to ΦΨx̂ = z. (2)

Many naturally occurring phenomena are suitable for CS even
thought they do not perfectly fit the requirements – they are
termed approximately compressible. In such cases, the phe-
nomena may have a few large non-zero entries but also addi-
tional small – but not completely zero – entries. In practical
settings, these issues are ignored and the reconstructed signal
is an approximation of the original.

Base Learning. The base Ψ plays a critical role in transform-
ing the signal of interest y to a sparse signal x where y = Ψx
(a process called sparsifying). In some cases, a standard base,
such as a Fourier base, can be used. In others (including this
work) a good base needs to be trained using historical data.

Consider historical data Y = {y1,y2, · · · ,yN} (yi is col-
umn vector representing a signal of interest, just like y). Base
learning seeks to find a base Ψ that minimizes the total error
between the given historical data and its sparse representation:

argmin
Ψ,xi

∑
‖yi −Ψxi‖l2 . (3)

As an example, in Figure 1 as already mentioned the DCT
base was employed. However, if another base was used signif-
icantly worse results may have resulted. For instance, while
under DCT the signal is 5-sparse but under a wavelet base it
becomes 10-sparse, and would require twice as many samples
to maintain the same reconstruction accuracy as the DCT base.

Stages of CS. We describe the steps taken when applying
CS within an illustrative scenario of performing a survey that
collects 1-D data. Under this scenario, we survey the severity
of a rat infestation and count rat sightings in different areas of
a city within a particular period of time.
1. We use a set of historical data {y1,y2, · · · ,yN} which

contains past rat sighting counts of the targeting areas to
train a base Ψ according to Eq. (3). Ψ captures the sparse
structure within the rat infestation phenomenon.

2. Instead of conducting a complete survey of all city locations,
we select a small random sample of areas in which a survey
of rat sighting is carried out. Thus we obtain a small set of
samples z of the data of interest.

3. Finally we use z to recover the data of interest y based on
Eq. (2) and using the trained base Ψ.
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Figure 2: Data Structure Conversion

COMPRESSIVE CROWDSENSING
Mobile crowdsensing leverages participating users to collect
various forms of data from the real world using a mobile de-
vice. At times, users collect data like noise pollution or air
quality through sensors embedded in the device. At other
times, this data is manually entered by the user such as, rank-
ing a restaurant they visited, personal demographic data, or
reporting a sighting of a rat infestation. Typically, the data
collected across many participating users is then aggregated
to give a global view of a phenomenon – such as, a “heatmap”
of the city-wide spatial intensity of noise or rat sightings.

The objective of the CCS framework is to enable mobile
crowdsensing systems to gather information on a variety of
large-scale phenomena but do so with fewer data samples con-
tributed by users. CCS is also designed to be easily adapted
so that it can work as part of a wide range of crowd systems.
In the remainder of this section, and the one that follows, we
describe the design and operation of the CCS framework.

We begin this description by first introducing a running ex-
ample representative of the types of crowd applications we
target. Consider a mobile crowd system aimed at surveying
how many businesses within different industries fit into the
business statistics category of being “non-employers” – in
other words, they do not have any paid staff besides the busi-
ness owners. Typically this data is collected only annually by a
large manual survey [3]. If this could be performed by a crowd
system it could be done potentially much more frequently and
at a lower cost. To perform this task a crowd system would
leverage participating users to complete a brief set of questions.
As an example, the survey that performs this task aggregates
survey responses into a table as shown in Figure 2.

In any data collection performed with CCS a particular subset
of survey columns is focused upon for reconstruction using
CS. This is called target data, which in this case is the number
of businesses. The final goal is to accurately recover the
target data while collecting fewer total data samples from
users participating in the system.

Challenges to Applying CS
A core motivation for our work is that, in many crowdsourcing
applications, the collected data has underlying structure and
relationships. For example, it is intuitive that nonemployment
numbers are related to business types and years. Therefore, a



natural question is whether CS techniques can reduce the data
sampling rate while maintaining high reconstruction accuracy.

The key challenge is that it is not clear how to apply CS to this
type of crowd collected data. CS is originally designed to deal
with 1-D vectors, and data types that can be easily vectorized.
For example, images and physical signals like temperature in
a 2-D space (such as temperature represented spatially). How-
ever, crowd survey responses, which is studied in this paper,
usually has multiple columns, and each column is effectively
a dimension. A large variety of potential vectorizations exist
due to the multi-column nature of survey data. This makes it
non-trivial to apply CS directly, and thus the critical step is to
generate a suitable and efficient data structure that CS can use.

Such processing is challenging because we have to: extract
the inherent correlation in the original data which may be
arbitrary and complex; select and preserve the key correlations
during structural conversion; and finally provide sufficient
data for base training while also handling missing data issues.
Addressing these challenges, and thereby enabling CS to be
applied to multi-dimensional crowd-collected survey data are
core contributions of CCS. To the best of our knowledge, CCS
is the first mechanism for applying CS theory to reduce the
sampling burden to users for this type of crowd survey data.

CCS Framework
Instead of directly reducing the signal dimension, we start by
observing the correlations between the columns in the survey
as seen in historical data previously collected. The correlation
between the columns and the target data is the key for the data
structure conversion needed to apply CS. In particular, CCS
begins by converting multi-column historical survey data, e.g.,
as shown in Figure 2. In the matrix form, we have a sampling
dimension and a training dimension. The sampling dimension
is the vectorized signal dimension of the original signal (y),
and the training dimension is the horizontal dimension of Y.

The intuition for this data structure conversion is as follows.
The matrix form of the historical data is the format needed
in the base training step of CS (i.e., Y), as discussed earlier.
Therefore, this matrix form allows us to train a suitable base
(detailed later), critical for later reconstruction of the target
data (i.e., y). This data structure instructs us how to sample
future data as the sampling dimension is the vector signal di-
mension that we desire. For example, next year, when we want
to collect the non-employer data and determine the number of
non-employer businesses in every industry field. Instead of
conducting a full survey of all industry fields, we only need
to randomly survey of a small fraction of all industries from
users, with the remaining industries reconstructed via CCS.

Ideally the sampling dimension should be highly correlated to
the target data. In contrast, the training dimension should be
uncorrelated to the target data. This motivates the design of
the dimension selection algorithm, presented in detail in the
next section. In the non-employer example shown in Figure 2,
the sampling dimension is the business type (e.g., real estate);
and training dimension is the combination of year and county.

After selecting the dimensions, we next re-organize the multi-
column data. This is illustrated in Figure 2 that shows this

transformation of multi-column survey data into matrix form.
The matrix form, generated from the historical data, is then
used to train a CS base that extracts the correlation we need
(details discussed in the next section).

Note, when data types from columns are categorical we quan-
tize such values using the classical vector quantization ap-
proach [20]. This generates a code-book that maps categorical
values into real values after which other operations may occur.

Overall, CCS is comprised of the following high-level phases.

Stage 1. Data Structure Conversion. This is the critical step
of CCS, which enables us to apply CS techniques to multi-
dimensional crowd responses. Specifically, we start with a set
of historical survey data as shown in Figure 2 and convert it
into a matrix form. We note that a good conversion is critical
to the success of CCS. As shown in the evaluation section,
reconstruction accuracy is highly sensitive to the data conver-
sion. This step is conducted off-line, prior to data collection
from crowd users.

Stage 2. Base Training. Given the converted matrix form, as
shown in Figure 2, we use an existing base learning algorithm
to train a set of potential bases off-line. Note, because of the
complex structure typically existing in survey data the most
common used bases, such as a Fourier base, do not work well.
Therefore, this step is also critical.

Stage 3. Sampling. The selection of the sampling dimen-
sion has a secondary role in that it guides how sampling is
conducted within participating users. For instance, within the
example of the non-employer survey, the sampling dimension
determines that random sampling is applied on a industry type
basis during reconstruction. Sampling is always an on-line
procedure.

Stage 4. Reconstruction. After collecting the sample dataset,
we can use a CS reconstruction algorithm to recover the signal
of interests; for instance, the number of non-employer busi-
nesses in every industry field in our running example. This
step is done once data has been collected from users.

Like other applications of CS, manual framework tuning by op-
erators of the crowd system is necessary. This is especially true
for a number of key parameters used within our framework.
Our approach to setting these values is purely experimental,
and performed by using historical data. Later in our evalua-
tion, we demonstrate this method is able to yield more than
adequate results compared to state-of-the-art baselines.

ALGORITHM DESIGN
We now detail the algorithmic foundations of CCS.

Data Structure Conversion
This first stage – the Data Structure Conversion algorithm –
is the most critical (and novel) process in the design of CCS.
It is responsible for data selection and representation within
CCS and applied against raw data collected by crowds.

As discussed earlier, data correlation plays a key role in the
data structure conversion. In some cases, there is obvious spa-
tial and temporal correlation that CS can exploit. For example,



Algorithm 1 Data Structure Conversion
INPUT : User contributed data, presented as columns and rows – with one
column selected as the target
OUTPUT: Matrix of data with columns assigned into sampling and train-
ing columns
STEP 1: Calculate correlation matrix C = {c(i, j)}, where c(i, j) is the
correlation of column i and column j.
STEP 2: Select column i that is most correlated with column target, i.e.
|c(i, target)| is maximized. If all the dimension selected, go to step 5.
STEP 3:
- If |c(i, target)| ≥ ctar , where ctar is a threshold, put column i into
the sampling group.
- Else put column i into training group. Go to step 2.
STEP 4: Find column j such that |c(i, j)| ≥ ccan, where ccan is another
threshold. Put all such column j into the sampling group. Go to step 2.
STEP 5: Aggregate data into corresponding matrix cells spanned by
columns within sampling and training groups.

one can expect rat sighting reports in a city to have spatial cor-
relations (an example closely examined later in the evaluation).
In other cases, data correlation can be much more complex
and may not be obvious at the first sight. For example, in
the non-employer data, the correlations between the field of
industry and the total of non-employer category businesses is
much more obscure. Therefore, CCS must carefully explore
all potential relationships in order to successfully apply CS.

While exploring the inner structure of crowd gathered survey
data, columns should be classified into two groups – sam-
pling and training – based on their correlation with the target
data (a single column to be reconstructed from samples). The
sampling group columns are expected to present the inherent
correlation with the target column, thus naturally, the sampling
group should capture the hidden correlation in a clear math-
ematical form. On the other hand, the training group should
be only loosely correlated to the target column because the
correlation between the target column and the ones in training
group is ignored during base learning. Each of these intuitions
underpin the design of this stage.

Algorithm 1 formally details the Data Structure Conversion
process, which we now describe. STEP 1 computes the corre-
lation between each candidate column and the target column.
Different correlation methods, such as linear correlation and
mutual information can be applied depending on the actual
data type in the columns. We apply linear correlation during
experiments reported in the evaluation due to its simplicity and
practicality. In STEP 2, 3, columns with higher correlation to
the sampling group and columns with lower correlation are
assigned to the training group. In particular, ctar is a corre-
lation threshold, above which column i and column target
are considered to be sufficiently correlated for column i to be
added to the sampling group. The thresholds ctar and ccan are
selected based on their performance against historical data.

STEP 4 is designed to address a practical issue – reducing the
number of missing values in the final data matrix produced
by the algorithm. This step ensures the columns with high
correlation to column i are moved to sampling dimension as
well, so that the columns in the training group are relatively
independent of the columns in sampling group. In some cases,
when the number of missing data in this way cannot be low-
ered in this way, this step seeks to concentrate empty cells (i.e.,

missing values) in the same range of rows and columns. This
allows this region of the matrix to be then removed without
also removing too many cells containing actual data. In addi-
tion, the values of the thresholds are also adjusted (manually,
if found to be necessary) to ensure sufficient amounts of data
are in both the sampling and training dimensions so that a
good base can be learned.

STEP 5 is the data mixture procedure that applies to the
groups of columns in the sampling and training groups. Con-
sider a group of columns C = {C1, C2, · · · , Cn}. Each col-
umn Ci is consisted of |Ci| distinct elements. The mixed
dimension D = {C1×C2× · · · ×Cn}, where × is the Carte-
sian product. For example in the non-employer survey case,
the field of industry is used to form the sampling groups be-
cause of its high correlation with the target while the other two
columns are used to form training dimension. Later during
the evaluation, assuming actual non-employer survey data,
the individual data contribution of users is aggregated into a
matrix consisting of 3140 (counties) × 5 (years) resulting in
15700 column vectors of the length of 475 (industries).

Finally, although all columns are flagged in the initial con-
verted dataset as either “sampling” or “training”, the algorithm
does not have to use the full combination of these columns to
mix the dimensions. In other words, at times only a subset of
columns will be used to mix the sampling (training) dimension.
For example, suppose the number of surveys in 2011 is very
small, then potentially 2011 can ignored.

Base Training
Given the matrix form obtained from the historical data, one
can find a proper base that sparsifies the target data. Base
training is a stage that mathematically uncovers the inherent
correlation in the data structure. In other words, it sparsifies the
signals of interests on a best effort basis. Not surprisingly, the
standard bases – such as the fourier or DCT base (as illustrated
in Figure 3) – that are widely utilized in the applications
dealing with natural signals (such as temperature, humidity)
are poor choices for the statistical data of surveys that describe
activities of society and individuals. Thus CCS conducts a
base learning process to identify a suitable base.

K-SVD algorithm. To perform base training CCS adopts a
classic algorithm commonly used for this task – K-SVD [7].
In theory, one can find an optimal base by solving the opti-
mization problem formulated in Eq. (3) – i.e., under which the
historical data have the best sparse representations. However,
this problem is computationally hard due to its non-convexity.

In practice, K-SVD operates as follows. First, provided a
set of historical data Y = {y1,y2, · · · ,yN} (yi is column
vector representing a contributed user data sample), K-SVD
finds a base Ψ that:
1. Represents each yi = Ψxi, where the sparsity of xi is con-

strained to a given sparsity level k (i.e., no more than k
non-zero entries).

2. Minimizes the total error between the given historical data
and its sparse representation:

argmin
Ψ,xi

∑
‖yi −Ψxi‖l2 , s.t.‖xi‖l0 ≤ k.



Note that the difference with the above and Eq. (3), is that
Ψ,xi are optimized jointly. In contrast here, in K-SVD, they
are optimized iteratively and so more computationally feasible.
The reader is referred to [7] for more details on K-SVD.

Empirically, the size of historical data needed by the base
training is relatively large. It usually requires the training
dimension to be multiple times of the size of the sampling
dimension, which is a constraint that we need to consider in
Algorithm 1 by choosing the appropriate parameters.

Multiple Base Training. Typically, we do not know the best
value of k a priori and thus CCS needs to train multiple bases
– each for a different value of k – for the following reasons.
Under K-SVD, k is fixed and given as an input, and the result-
ing base only guarantees the best k-term representation for the
given k. On the other hand, given a sampling rate m, we typi-
cally choose k such that m = k log n (and its corresponding
base) as a guideline for good recovery accuracy1. However
in practice, because sampling rates may change, the optimal
value of k also changes, and so does the corresponding base.

Therefore, CCS performs multiple base-training processes. In
each process, a different target sparsity value (k) is set and
the corresponding base is trained. Then in the reconstruction
stage, the optimal base is used depending on the target sparsity.

For many crowd scenarios historical data is available from
legacy approaches to the same type of data collection (e.g.,
census data, phone surveys). If such data is not available,
we can also use the traditional methods (that sample all data
points) for the first few rounds of system operation, which
incurs the same cost, and then transition to the CCS framework
for later sampling. Note that CCS applies to more stationary
situations, where the learned CS base applies for a period
of time. When underlying data correlations are gradually
changing, CCS may need to be repeated periodically. CCS is
not expected to perform well under conditions where data is
likely to undergo sudden structural change.

Sampling
Collecting data from crowd users can begin once Data Struc-
ture Conversion has been completed. Sampling itself can occur
in two ways – both of which are in keeping with CS theory.

Passively. Users provide data (e.g., respond to questions or
collect data) when they wish. Contributed data is grouped
based on the columns within the sampling and training groups.
However, when CCS performs reconstruction sampling group
values are randomly selected and the target data provided
by these individuals within the selected sample groups are
used during reconstruction. For example, in the non-employer
data, when the sampling dimension is field of industry and
the target is number of business, CCS randomly choose some
industries as samples and counts the number of business in
these industries. Only data from users who have information
about these industries are used during reconstruction.

Pro-actively. CCS selects randomly within the range of sam-
pling dimension values for users from which to solicit data.

1 to be more accurate, if the signal is k-sparse, the sampling rate of m = k logn can
guarantee a lossless recovery under certain technical constraints

Random selection within values of the sampling dimension,
just as above, occurs (e.g., a certain industry). However, be-
cause collection is pro-active; users who have opt-ed into the
crowd system with those characteristics are then directly asked
to provide data, such as answers to questions or to manually
collect sensor data themselves. If such characteristics about
the user are not known then all users can be asked.

The choice of which sampling method is selected depends on
the deployment specifics and the user and incentives model
adopted. However, the requirements of CCS are simple to
meet and only require random selection to be employed.

Reconstruction
After collecting data from contributing users within sampled
groups, reconstruction of the target begins by arranging a
matrix representation according to the training and sampling
groups of columns (decided by Data Structure Conversion).
This matrix can be projected into the trained base to recover a
sparse representation of the target. Then the missing target val-
ues (that are not sampled) can be recovered by just multiplying
the base with the recovered sparse representation.

Under CCS, the precise stages of this process are performed
by an existing CS recovery algorithm – Orthogonal Matching
Pursuit (OMP) [36]. CCS uses OMP instead of standard l1-
norm minimization due to its high efficiency in comparison
(OMP – O(kmn) vs. l1 – O(n3)). The desired sparsity of the
target data, k, is set to the largest value based on how many
samples (i.e., user contributions of data) are provided.

EVALUATION
In this section, we evaluate CCS under a series of mobile
crowdsensing scenarios using diverse large-scale datasets.

Methodology
We consider a diverse group of real life datasets, namely rat
infestations, noise-complaints, non-employer statistics, and
housing attribute reports. These datasets have a variety of
dimensions (ranging from 2 to 43). Such diverse datasets
allows us to evaluate the general applicability of CCS.

We perform the same random sampling (pro-active version)
in these experiments as described in the prior section. Exper-
imentally, this means we select from the underlying dataset
based on randomly selected values of the sampling group of
columns (e.g., selecting samples that belong to a randomly
selected set of industries in the Non-Employer dataset).

Evaluation Metric. In CCS, the data we would like to re-
construct is in the format of a vector. For example, in the
non-employer survey, it is the vector of the number of non-
employer businesses in each field of industry. In all evalua-
tions, we use accuracy ratio as the measurement of recovery
accuracy, which counts the percentage of accurate entries in
the reconstructed vector signal. Specifically, let ŝ be the recov-
ery of a data entry s. We consider it accurate if |ŝ−s|/|s| < τ ,
and inaccurate otherwise. In other words, the accuracy ratio is
defined as:

Acc =
# of accurate entries

total # of entries
.
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(b) Noise Complaints Heat-map
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(c) Non-Employer Statistics

Figure 3: Comparison of base generated by CCS and a conventional Fourier base

The value of τ can be set based on the application scenarios,
typically in the range of 0.1-0.5.

Comparison Baselines. Four baselines are compared to
CCS. All baselines reconstruct the original signal (i.e., target
data) via a set of random samples, just like CCS.

Conventional CS. This approach relies upon the exact same
CS stages as CCS, however only a standard Fourier base is
used.

Linear Interpolation. A method of curve fitting using linear
polynomials.

Spline Interpolation. Aagin curve fitting is performed but this
time using piecewise cubic splines.

Kriging Interpolation. A well-known method for geographi-
cal interpolation that is popular in the GIS community [35]. It
performs well when spatial correlation is high. In our evalu-
ation, this method is used only in datasets with clear spatial
components.

Sampling Only. This acts as a lower bound for performance,
here no reconstruction occurs after sampling. In other words,
x% of sampling results in x% of accurate entries.

Base Training Comparison
As detailed in earlier sections, being able to sparsify a crowd
collected dataset is a key requirement in being able to apply
CS. In particular, CS performs well when the target signal (i.e.,
a column within a survey) can be represented using only a
small number of large coefficients under a certain base. While
standard bases, such as Fourier and DCT bases, are widely
used, they do not perform well in the multi-column crowd-
sourcing datasets in general; primarily this because of the
inherent complex structure in such datasets. For example, it
is hard to even conceptualize what “frequency” means with
respect to rat sightings or reports about house attributes.

In this first experiment, we compare the base that CCS is able
to train compared to a standard Fourier base. This experiment
quantifies the improvement in being able to sparsify three of
our datasets using CCS. Figure 3(a)∼ 3(c) show the first three
datasets represented under the standard Fourier base and under

the base trained by CCS. Detailed descriptions of each dataset
tested are described in the subsections that follow.

The following comparison shows the empirical necessity of
our base training. The top row of figures in Figure 3 clearly
show that under the standard Fourier base, a large number of
“heavyweight” base coefficients are widely scattered, which
indicates none of the datasets can be sparsely represented
using the Fourier base. Similar results are observed using
other standard bases. In contrast, the row of figures in the
bottom show the effectiveness of CCS in revealing inherent
sparse structure within our datasets. From the figures we can
see, for all datasets, the numbers of “heavyweight” coefficients
are much smaller, i.e. sparse, under the trained base.

This difference between the two bases can be quantified by
the spread of signal across multiple coefficients. For example,
under the rat sightings dataset across 20 coefficients 90% of
the signal is spread under CCS – very focused. In comparison,
the same dataset under a Fourier base spreads across 37 coeffi-
cients to achieve the same 90% output of the signal. We also
note that in the rat sighting example, the number of relatively
large coefficients is higher than the other cases. This indicates
the rat sighting example is hard to sparsify, and not as suited
to CCS as other datasets. This does affect CCS performance
in a subtle manner, as discussed later.

Rat Infestation Reports
Under our first crowdsensing scenario, the objective is to track
the regions where rats are seen in a city. Participants in a crowd
system, for example, manually indicate the rat sightings using
a mobile app. We assume time and location are automatically
recorded by the device.

The objective of CCS in this setting is to accurately estimate
the city-wide distribution of a rat infestation (i.e., the reported
rat sightings across quantized city regions) while participants
provide as few data samples (i.e., manual rat sightings) as pos-
sible. To evaluate this scenario, we use a dataset collected by
the city of New York [5]. It contains 40,000 actual reported rat
sightings over a four year span (January 1st, 2010 – March 12,
2014). This dataset simply contains two columns of informa-
tion: {sighting date, sighting location}. For this experiment,
we divide Manhattan, Bronx, Brooklyn, and Queens into 100



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sampling Rate

A
cc

ur
ac

y 
R

at
io

 

 

CCS
CS
Linear interp.
Spline interp.
Kriging
Sampling only
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(b) Noise Complaints
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(c) Non-Employer Statistics:
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(e) Housing Attribute Survey

Figure 4: Accuracy of target Reconstruction
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Figure 5: Sensitivity of Accuracy Threshold (τ )

equally sized square regions (approximately 1× 1.4 sq. miles
each). The total monthly reported rat observations within each
region is then used as the ground truth of the target value. We
use the first two years of the dataset as historical data for base
training, and the remaining 15 months for evaluation. CCS
selects {sighting location} as the sampling dimension and
{sighting date} as the training dimension.

As shown in Figure 4(a), CCS achieves a higher level of accu-
racy compared to all of the other baselines (τ = 0.3). From the
figure, we observe that CCS achieves 60% of accuracy using
only 20% of samples. In other words, under CCS 60% of all
monthly reports for each location (1500 estimates) are within
the margin for error (τ value) using just 20% of original set of
rat sightings (i.e., a sampling rate of 0.2). Furthermore, CCS
is able to outperform the second best performing baselines,
linear and Kriging, by as much as 70%.

CCS is able to perform better than others because it selects the
most important coefficients in the reconstruction for a given
sampling rate. As the sampling rate increases, so does the
number of coefficients selected (recall that given m samples,
we can pick k = m/ log n coefficients for recovery), and thus
better accuracy results.

As noted in Figure 3(a), the coefficients under the trained base
for rat sightings are not so sparse as in the other datasets. As a
result, energy is more equally spread among the coefficients.
Thus when the sampling rate grows, the accuracy grows more
linearly. In the other datasets, as we will see, we will observe
a much bigger jump in the beginning as the more important
(larger) coefficients are picked up.

We note that in the rat dataset, the spatial correlation is not
consistent and only exists in certain directions. We believe
that this is the reason why Kriging does not perform as well as
in cases with more uniform and reliable spatial and temporal
correlations (such as earthquake data). This is similar in the
next noise heat-map example.

Figure 5(a) compares the accuracy results under different val-
ues of τ , where 50% of samples are used (i.e. sampling rate
is 0.5) . One important and interesting observation here is
that as the error margin increases (i.e., τ increases), the per-
formance improvement of CCS is much larger than that of
all other schemes. For example, as τ increases from 0.1 to
0.5, the accuracy of CCS increases from 0.59 to 0.84, while
the second best (Kriging) increases from 0.56 to 0.75. This
indicates that CCS produces reconstructions that are much
closer to the actual values compared to others, and thus the
faster improvement. This observation holds for all cases that
we evaluated.

Noise Complaints Heat-map
Now we study a common crowdsensing application – moni-
toring excessive noise within a city (e.g., [30]). Similar to the
prior scenario, participants of a crowd system would manu-
ally tag a situation whenever they encounter excessive noise
using their mobile devices; or alternatively participants could
contribute with microphone samples that are then processed
to extract the audio volume. Again, time and location of the
data collection can be gathered automatically. The objective is
to construct a heat-map of the spatial distribution of city noise
with few manually generated reports from participants.



Experiments use the NYC noise complaints dataset [2] that
records all noise complaints in NYC from January 1, 2010 to
March 14, 2014. More than 240,000 complaints are captured.
Each record contains two simple columns: {reporting date,
reporting location}. Similar to the case in the rat sighting
scenario, the dataset provides ground-truth for the evaluation;
the city is divided into 100 regions that each receives monthly
estimates of the number of noise complaints (i.e., CCS target).
Data from 2010 to 2012 is treated as historical data to bootstrap
CCS, with the remaining 15 months used for evaluation.

Figure 4(b) presents similar findings to that of the rat sighting
scenario (τ = 0.3). Again, we find CCS is better able to
more accurately reconstruct monthly noise complaints for 100
spatial regions while assuming just a fraction (from 10% to
90%) of actual reports are collected . However in contrast to
the rat sighting scenario, CCS experiences a rapid increase
in accuracy as user participation initially increases; and a
much slower increase later on. As discussed earlier, this is
because the noise map data shows a highly sparse structure
in the trained base (i.e., a small number of large coefficients
and a large number of smaller coefficients.) Therefore, as
the sampling rate increases, the large coefficients are picked
up first and thus the speedy improvement. Later on, as only
smaller coefficients are left, the accuracy improvement slows.

Last, in Figure 7, we see a clear decrease in the total error as
the value of k (the number of coefficients used in recovery)
increases. It shows that the sensing data could be represented
more accurately with more coefficients and their correspond-
ing bases. Similar results can be observed in the other scenar-
ios reported in this section, and thus omitted here.

Non-Employer Statistics
We next examine a crowdsensing goal of collecting informa-
tion about the number of non-employer businesses in the U.S.
(again, these businesses are those without paid employees).
The target for this scenario is to count the number of “non-
employer” businesses within a randomly selected 100 industry
groups. As always, here the underlying goal of CCS is to
estimate the actual value for all industries with as few user
data contributions as possible (i.e., a low sampling rate).

To study this scenario, we use a U.S. based nation-wide dataset
containing one million records from 3140 counties and 475
different industries [3]. We select 70% of records randomly
to act as historical data (i.e., training data) in this experiment.
The remainder of records act as a validation/test dataset. A
single record consists of {census year, location (county), field
of industry, the number of businesses} (see Figure 2 as an
example). CCS selects {census year} and {field of industry} in
the sampling dimension and {location} in training dimension.

To provide additional insights into the impact of a column
being in either the sampling or training dimension , we repeat
the same experiment but manually shift census year to the
training dimension. Results of the two experiments are shown
in Figure 4(c) and 4(d), respectively. In the first scenario,
CCS significantly performs others. However in the second
scenario, the performance of CCS degrades much although
still outperforms other baselines. The reason is that the target
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Figure 7: Total error decreases as k increases.

data of the number of businesses exhibits high temporal cor-
relation, i.e. the column of year is highly correlated with the
target column as shown in Figure 6, thus making it necessary
to include year in the sampling dimension. This experiment
highlights the importance of appropriately selecting sampling
and training dimensions; as well as good CCS performance.

Figures 5(c) and 5(d) show these two scenarios under different
values of τ with a fixed sampling rate of 50%. We do note
that as the sampling dimension changes, the absolute values
of other baselines change as well effectively because we are
trying to recover different signals. For all schemes, the results
are better with census year in the sampling dimension, with
CCS always being the best performing approach.

Housing Attribute Survey
In our final scenario, we consider studying housing attributes
of privately-owned homes. Users within this crowd system
would manually contribute via their mobile device information
about either their own home or a home they were familiar with.
Typically this information is only collected during mass survey
events like the U.S. Census or other smaller scale manual
surveys. Instead, with a mobile crowd application, much more
timely or focused (i.e., targeting a particular population) data
collection can be performed.

We evaluate this scenario using data [1] from a multi-year
carefully conducted survey of 300,000 homes in the U.S, per-
formed between 1999 and 2008. This survey provides 43
different attributes (e.g., completion date, parking facility, sale
price interval, # of bedrooms, # of bathrooms, and the size) for
each home. Again, we use the dataset as the ground truth and,
just as in the prior dataset, 70% of data is randomly selected
to act as training data.

In this scenario, we use average price-per-square-foot (PSQ)
for each home as the objective to estimate across the whole
population (i.e., the target data), as PSQ is an important metric
in the housing market. Under CCS, the following become
sampling dimensions {sale price interval, primary space heat-
ing fuel, primary space heating system}; and {number of



bedrooms, porch status, construction method} as training di-
mensions2. Different from all other scenarios we studied in
this paper, the number of columns is high in the housing data.
To avoid a large number of empty data cells, the remaining
attributes are not used in either sampling or training groups.

Figure 4(e) again shows CCS is able to more accurately esti-
mate PSQ than all other alternatives (τ = 0.4). At the same
time, Figure 5(e) shows that CCS generates reconstructions
that are more in the vincinity of the true values, as before
(sampling rate is 50%).

DISCUSSION
We discuss the generalizability of CCS and its limitations.

Generalization. Although our experimental results are based
only on a few specific crowd-related datasets and scenarios,
we expect CCS will also exhibit similar performance across a
wider range of alternatives due to the diversity in our datasets.
However, anticipating which crowd-based scenarios are likely
to contain the necessary correlations for CCS to excel is dif-
ficult. Within broader CS research, how to predict dataset
performance is not known. As a result, testing the applica-
bility of CCS must be done experimentally. Our evaluation
shows CCS is effective in crowd scenarios where the collected
data contains temporal, spatial and demographic related at-
tributes; we believe even if such information is not the core
target of the crowd system it is beneficial to collect meta-data
of this type for CCS, as it is the foundation for many potential
correlations.

Limitations. CCS, at this time, has some clear limitations.
First, as shown in the rat sighting example, when the data
structure has no strongly sparse representation, the results are
not as good (although still better than all tested baselines).
Clearly, because CS depends on the correlation between the
target column with other columns, if the original data shows
no such correlation, CS would not apply. Second, because we
are combining different columns into sampling and training
dimensions, the overall vector space may be very large, and so
results in missing values in the converted matrix format. We
have taken preliminary steps to address such issues (such as
Step 5 in Algorithm 1), further research is needed to better
address such issues. Finally, CCS requires historical data
of target phenomenon to be available from which a CS base
can be trained. Similarly, while being used CCS assumes the
structure and relationships within the data and phenomenon
are unchanged from what is observed in this historical data.
We anticipate on-line base training to be possible under CS
but have yet to test this approach.

RELATED WORK
We survey the most salient related work from crowdsensing
and compressive sensing, and also highlight CCS novelty.

Mobile CrowdSensing. Due to the rise in prominence of
smartphones equipped with sensors, large-scale crowdsensing
systems have become much more feasible to deploy. Today
a variety of both commercial and research prototype systems

2 The complete definitions of each column can be found in [1]

target a variety of application domains and monitor, for ex-
ample: traffic conditions [44], place categories [13], noise
pollution [30], WiFi conditions [4]. An important category
of crowd systems also attempt to gather information about
large populations, for example: happiness [6]. In this work,
we have investigated the applicability of a CS framework for
both sensor data and survey data forms of crowdsensing.

In an effort to lower the sensitivity of these systems to the
number of participants and their level of engagement (i.e.,
interest level) a variety of approaches have been explored. In-
centive mechanisms (e.g., [32, 40]) are powerful way towards
increasing the amount and quality of data collected. Similarly,
techniques for guiding users towards certain user behavior
useful to the crowd system is highly needed (e.g., [33]).

Compressive Sensing. Since shifting into mainstream con-
sciousness [12, 17], a steady stream compressive sensing appli-
cations have continued to arrive. Within the domain of sensing,
a strong body of work has explored the use of compressive
sensing in static sensor networks (e.g.,[27] [38]). Recently,
mobile CS sensor applications are emerging – for example,
human activity sensing using accelerometer data [9, 41]. More
closely related to CCS, traffic monitoring using compressive
sensing has been explored in studies such as [42] [44] [39].
However, such domain and data specific solutions ignore the
important need to collect user generated survey data as well
as sensor data.

A core aspect of CCS is its ability to process multiple dimenion
data, and understand how to find CS-friendly data representa-
tions. However, CCS is not the first to perform this form of
processing. Exist work offers several ways to convert high-
dimensional signals to 1-D [18, 37]. Among these, [18] is the
most related one to our work. By introducing the concept of
the Kronecker product, [18] makes it possible to reduce the
signal dimension to one. But this product requires that the
target signal has sparse expressions on every dimension, which
is does not hold for the survey data we examine here. In fact,
we find this is true of only a few dimensions of the survey data
we examine. Applying [18] to our application domain will
require each dimension be closely inspected so to determine
which have this property.

CONCLUSION
In this paper we presented CCS, a compressive sensing frame-
work for mobile crowdsensing that recovers large-scale urban
information from user contributed data. The main contri-
butions of CCS are two-fold – first, it demonstrates novel
crowd-based applications of compressive sensing that lower
the amount of data required and thus reduces overall user bur-
den; and second, it develops key new techniques that allow CS
to be generically applied to many scenarios.

We evaluate CCS under various representative datasets each
of which are useful for managing a city and urban popula-
tion. Our evaluation shows that CCS outperforms often used
existing baseline techniques in all tested scenarios. These
results are promising and – given the diversity of the data –
suggest our approach may generalize to many other forms of
urban-focused mobile crowdsensing.
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