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ABSTRACT
The Internet is large, but it is finite. We examine the
case of several attackers seeking victims in a large pop-
ulation where there is some prior statistic indicating
likely viablility. We show that collisions reduce attacker
gains: the sum of what several attackers can extract is
always less than what a single attacker would extract
alone. The problem gets worse as the density of victims
in the population decreases.

1. INTRODUCTION
The path from security vulnerabilities to money ap-

pears simple. An attacker picks a target from the In-
ternet population, gains access to a resource, monetizes
that access, and then repeats ad infinitum. Scale makes
it appear plausible that this is easy and generates a lot
of money. It is often suggested that this can all be
automated and even tiny success rates can still pro-
duce great sums for criminals. For example, Menn says
of phishing [11] “it didn’t take many for the math to
work. Even if only one person in a hundred was a cus-
tomer, millions would get the bait and several thousand
of them would bite.” Schneier says [17]:

“If you had a great scam to pick someone’s
pocket, but it only worked once every hundred
thousand tries you’d starve before you robbed
anyone. In cyberspace, you can set your com-
puter to look for the one-in-a-hundred-thousand
chance. You’ll probably find a couple dozen a
day. If you enlist other computers, you might
get hundreds.”

This sounds simple, but is perhaps a little too simple. A
constant supply of new victims every day, and a lack of
collisions with others seeking the same victims suggests
that the population is unlimited and the attack never
saturates. The same assumptions underpin multi-level
marketing schemes. We show that this view is unreal-
istic.
Attackers naturally seek the best targets. They pre-

fer to attack where they are most likely to succeed. A

natural model is that attackers judge how likely users
are to be viable based on what they can observe. Ev-
erything they can learn about a potential victim might
be wrapped into a single score, x, and their experience
then allows them to estimate the probability of success,
P{viable | x}. For example, the indicators of viability
might include zip code, address, profession and any-
thing that is known about likely wealth. Naturally, they
would use this prior in deciding which users to attack.
It makes a lot more sense to attack those most likely to
be viable first. This is especially true for expensive at-
tacks, where to be viable, a successfully attacked target
has to pay handsomely.
A single attacker with the field to himself, can attack

in descending order of likely viability: that is proceed
from best to worst. He picks the most obvious targets
and the goes after ones that are progressively less likely.
At some point he can cease if things have decayed to the
point where likely viability is too low for profitability,
or if better opportunities present themselves elsewhere.
However, a single attacker seldom has the field to

himself. Most attack opportunities are very competi-
tive, with many using similar techniques and possessing
similar information. Phishing isn’t the preserve of one
attacker or gang. There are many involved in Nigerian
419-style scams, spam and malware distribution. Tech-
nique propagation guarantees that any new attack or
scam gets to be used by many, not just the originators
[17]. Thus, for most attacks, there are many who seek
to profit from the pool of vulnerable victims.
We show that this radically changes the dynamics of

the problem from the attackers’ perspective. Instead
of attacking each target at most once (as the single at-
tacker would do) there is now the risk of unintentional
duplicated effort. Each attacker faces the risk that oth-
ers (also seeking those most likely to be viable) will have
been there first. This, of course, reduces everyone’s re-
turns.
This is an example of a resource contention problem.

Since attackers are independent, and there is no central
control, the inevitable collisions reduce efficiency. Just
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as Medium Access Control (MAC) protocols, such as
ALOHA, seek to minimize collisions, we examine the
economic best-case from the attackers viewpoint. We
find that the economic value extracted by several in-
dependent actors is always less than the value a single
attacker might extract. This factor difference can be as
low as 2× when viable victims are plentiful, but rises
sharply as density falls.
Press, examines the related question of screening for

terrorists in a large population. There also, the sought
individuals are rare, there also a memory-less sampling
with replacement (which implies collisions) is used. Press
[13] claims an interesting and counter-intuitive result,
which is that selecting individuals to screen based on
P{viable | x} does no better than random (in the limit
of arbitrarily many screenings). Press proposes square-
root sampling to minimize the number of searches per
target found. Press’ solution, however, ignores an eco-
nomic constraint on attackers. When we constrain at-
tackers to a minimum success rate we find that the dif-
ference between the obvious strategy and square-root
sampling is not as great as in the resource-unconstrained
case.

2. SAMPLING WITH REPLACEMENT

2.1 Victim distribution model
We consider a population of N users, which contains

d · N viable targets, where d is density. By viable we
mean that these targets always yield a net profit when
attacked, while non-viable targets yield nothing.
We assume that some users are far more likely to be

viable than others. Viability is not directly observable:
the attacker doesn’t know with certainty that he will
succeed unless he tries the attack. Nonetheless, the
fact that some users are better prospects than others
is observable. We assume that the attacker has a sim-
ple score, x, that he assigns to each user. The larger
the score, the more likely in the attacker’s estimate the
user is to be viable.
More formally, the score, x, is a sufficient statistic

[18]. The attacker might have several observations about
the user, where he lives, his place of work, the accounts
he possesses, etc: all of these be reduced to the single
numeric quantity x. This encapsulates all of the observ-
able information about the viability of user(i). Without
loss of generality we’ll assume that viable users tend
to have higher x values than non-viable ones. This
does not mean that all viable users have higher val-
ues that non-viable ones. For example, we might have
pdf(x | non-viable) = N (0, 1) and pdf(x | viable) =
N (α, 1). Thus, the observable x is normally distributed
with unit variance, but the mean, α, of x over viable
users is higher than over non-viable users. An example
is shown in Figure 1 (a).

Figure 1: (a) Distribution of x for normally dis-
tributed scores. The mean over non-viable users
is zero (left-most curve). Various assumptions
of the separation between viable and non-viable
users are given. Means of α = 1.18, 2.32 and 3.28
are used. These result in the classifiers which
have 90%, 95% and 99% ability to tell randomly
chosen viable users from non-viable [7]. (b) The
distribution of pi = P{viable | xi} for these three
cases.

If viable and non-viable users are drawn from different
distributions, as in Figure 1 (a), then from Baye’s rule:

P{viable | x} =
1

1 +
P{x | non-viable}
P{x | viable}

· 1− d

d

We define pi
△
= P{viable | xi}, where xi is the observed

value of x for user(i). For convenience we’ll assume that
the pi are sorted in descending order, so that for all val-
ues of i we have pi ≥ pi+1. Figure 2 (b) shows pi for the
three different distributions shown in (a). The larger
α the greater the separation between P{x | non-viable}
and P{x | viable} and the more skewed the distribution
pi becomes.

2.2 Single attacker
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If an attacker has the field to himself there is no bet-
ter strategy than to attack users in order of their like-
lihood to be viable. That is, he can observe xi for each
user(i), and then attack in decreasing order of pi. The
most likely victims are attacked first, and the probabil-
ity drops as the population of victims is progressively
exhausted. Thus:

P{viable on attack-k} = pk.

The average number of attacks per viable victim found
is:

µsolo =
N−1∑
i=0

pi · i. (1)

2.3 Several attackers
It is unrealistic to assume that anyone gets to reserve

an opportunity to himself. Now what happens when
there is not a single attacker, but several?
Suppose that we have several attackers. We assume

that once a viable victim is attacked he ceases to be
viable, but this fact is not observable. That is, the fea-
tures that made him an attractive target in the first
place (e.g., address, profession, etc) are unaltered even
though his stealable money is now gone. Thus, xi re-
mains unchanged after a successful attack. For exam-
ple, if pi is large, then user(i) is a tempting target; but,
if another attacker has been there first, user(i) is no
longer viable.
We assume that attackers are independent, so they

have no opportunity to co-ordinate their attacks or agree
who will attack where. We assume that all of the at-
tackers have the same information and abilities. We
are interested in the best case for what attackers as
a group can achieve, thus our results will provide an
upper-bound on their impact. Thus, our goal is not
to find the strategy that gives one attacker advantages
over his peers: any strategy available to one is available
to all. However, even though they compete, the attack-
ers have a common interest in reducing the number of
wasted attacks. We will revisit these assumptions in
Section 4.2.
We address the question of efficiency in the face of re-

source contention. Several resource contention strate-
gies that are common in other domains seem inappli-
cable here. For example, locking strategies and carrier
sensing (techniques used in Medium Access Control) re-
quire protocols agreed-upon in advance, which seems in-
appropriate for attackers who are not co-operating [10].
Collision detection (another common strategy) doesn’t
help if the full cost of a collision (i.e., attack) has to be
incurred before detection is possible. The common tech-
nique that seems appropriate is randomization of access
(such as is used in MAC protocols). We seek a strategy
to minimize collisions so that each attacker indepen-
dently selects targets, without knowing where others

have attacked. Thus, the problem is one of sampling-
with-replacement.
We’ll denote by qi the probability that user(i) is at-

tacked on the i-th attack (by any attacker). (Note: The
problem is not precisely one of sampling with replace-
ment: each attacker knows where he has attacked be-
fore, but not where his peers have. We will assume
that there are enough attackers so that this effect is mi-
nor. It can be shown that is approximately true, even
for five to ten attackers.) The probability that user(i)
is attacked on the k-th attack, has not been attacked
before and is viable is:

qi(1− qi)
k−1pi.

Summing over the whole population then gives the prob-
ability that a viable user is found on the k-th attack:

P{viable on attack-k} =
N−1∑
i=0

qi · (1− qi)
k−1pi. (2)

The average number of attacks per found viable user
is (if we allow the attacks to continue to infinity):

µ =
∞∑
k=0

k ·
N−1∑
i=0

qi · (1− qi)
k−1pi

=
N−1∑
i=0

qi · pi
∞∑
k=0

k · (1− qi)
k−1

=
N−1∑
i=0

pi
qi
. (3)

2.4 Sampling strategies
We now examine several strategies for choosing the qi.

2.4.1 Uniform sampling
In uniform sampling attackers simply choose targets

independently of the probability that the user is viable.
That is qi = 1/N. This certainly reduces the collisions
between attackers, as nobody is concentrating their at-
tention on the best targets, and everyone addresses the
whole population equally. In the case of uniform sam-
pling (with replacement), the average number of attacks
per viable victim found is (from (3)):

µunif. =
N−1∑
i=0

pi
1/N

= N.

2.4.2 Importance sampling
Attacking uniformly at random seems likely to be sub-

optimal. If we have any information about viability, it
seems better to use it. A very obvious alternative ap-
proach is to attack user(i) with probability pi. That is,
qi = pi, attack a user with probability proportional to
the a priori probability that he is viable. Surprisingly,
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α = 1.18 α = 2.32 α = 3.28
µsolo 49,375 15,136 5,133
µunif. 106 106 106

µimport. 106 106 106

µsqrt 261,353 96,985 16,085

Table 1: Improvement of square-root sampling
with respect to importance, or uniform. The
table shows the average number of attacks re-
quired for various strategies. These values are
for a population of N = 106 and viable victim
density of d = 0.01, and the three distributions
shown in Figure 1 (a). Note that the improve-
ment that both a solo attacker, and square-root
sampling realize is a function of concentration:
when α is large, and pi is very skewed, some tar-
gets are very obvious.

as observed originally by Press [13], the average number
of attacks becomes (so long as none of the qi are zero):

µimport. =

N−1∑
i=0

pi
qi

=

N−1∑
i=0

pi
pi

= N. (4)

Thus, the average number of attacks under impor-
tance sampling (with replacement) is exactly the same
as attacking uniformly at random. This might appear
puzzling: is the information pi = P{viable | xi} of no
help? It hardly seems right that ignoring the prior in-
formation about viability can be best.

2.4.3 Square­root sampling
To overcome the failure of importance sampling to do

better than uniform Press [13] suggests choosing the qi’s
to minimize the average number of attacks per victim
found. That is minimize (3) subject to the constraint∑

i qi = 1. This turns out to be:

qj =

√
pj∑N−1

i=0

√
pi
. (5)

We will refer to this choice as square-root sampling.
Using this choice, we find the mean number of attacks
per victim found is:

µsqrt =

N−1∑
i=0

√
pi

2

. (6)

This can be a considerable improvement, as illustrated
in Table 1.

2.5 Convergence to uniform
Figure 2 shows the probability of finding a viable vic-

tim as the number of attacks grows for various strate-
gies. That is, it shows P{viable on attack-k} vs. k for
the different choices of qi. The reciprocal of the prob-
ability would be the expected number of attacks per

viable victim at a certain point. This is graphed for
solo, uniform, importance, and square-root sampling.
Clearly, importance and square-root do very well at
first, but performance degrades. At some point they
do even worse than uniform: as (4) shows, what impor-
tance sampling gains in the early stages it loses later
on, doing no better than uniform sampling in the limit.
Press claims the advantage of square-root sampling

over importance sampling as support for the claim that
relying too heavily on the prior is a mistake. This re-
sults in the same “obvious” targets being attacked over
and over, with great loss of efficiency.
The problem with importance sampling becomes ev-

ident when examining Figure 2. Importance sampling
does much better at first, but once the easy targets have
been found it actually does worse. There are some users
who have very low values pi and yet are viable. Im-
portance sampling, where qi = pi, has great difficulty
finding them. This is similar to the Coupon Collec-
tor’s problem: the first coupons’s may be found quickly,
but sampling-with-replacement becomes more and more
wasteful as we chase the last few coupons.
Square-root sampling, as suggested by Press, improves

things somewhat, but also does worse than uniform
sampling eventually. However, the problem is only man-
ifest when we seek to extract all victims, and use the
average number if attacks as criterion. If we are willing
to halt earlier, we may be able to do a great deal better.

3. ECONOMICALLY MOTIVATED ATTACK­
ERS

A weakness of the approaches above, is that we as-
sumed attacks persist to infinity. This led to the simple
form (3) for attacks per target found; and choosing the
qi to minimize (3) led to square-root sampling. While
this might be appropriate to Press’ goal of seeking ter-
rorists it is clearly not appropriate when we consider
an economically motivated attacker. It makes sense to
persist to infinity only if we are determined to find ev-
ery viable victim and have no resource constraint. It
seems more realistic, however, to assume that attackers
will persist only so long as it is profitable.
Consider the evolution of the probability of finding

a viable victim shown in Figure 2. As the number of
attacks, k, increases each of the solo, importance and
square-root strategies decay in quality. In fact, each
of them eventually does worse than uniform. It seems
very unlikely that any attacker will persist when the
likelihood of finding a victim falls by 4 (importance and
square-root) or 9 (solo) orders of magnitude from what
he began with. If we assume that attackers are eco-
nomically motivated it makes sense that they will have
a threshold minimum probability of success, pmin. For
example, if the average gain divided by the average cost
were 20 then the probability of finding a viable victim
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should be no lower than 1/20 = 0.05 on average. Thus,
it makes little sense to persist with any strategy after
P{viable on attack k} < pmin.
This suggests that choosing the qi to minimize (3),

as square-root sampling does, is sub-optimal. When pi
is low enough that P{viable on attack k} < pmin there
may be some viable users, but on average attackers will
lose more than they gain in pursuing them. It makes
more sense to exclude these from consideration and op-
timize only over the portion of the population that at
least has a chance of being profitable.
Thus, we assume that once the probability of success

drops below pmin attacks stop. In the case of the solo
attacker this means:

µ
′

solo =

imax∑
i=0

pi · i,

where imax is the largest i such that pi ≥ pmin.
Equally, we define kmax as the largest k such that

P{viable on attack-k} ≥ pmin. Then the average num-
ber of attacks per viable user found becomes:

µ
′

=

kmax∑
k=0

k ·
N−1∑
i=0

qi · (1− qi)
k−1pi

=
N−1∑
i=0

qi · pi
kmax∑
k=0

k · (1− qi)
k−1

=
N−1∑
i=0

pi
qi

· (1− (1− qi)
kmax). (7)

We now examine how the various strategies do un-
der this measure of success. We define inefficiency as
µ

′
/µ

′

solo, the ratio of average number of attacks per vi-
able victim found to the average for the solo attacker.
We graph this for importance and square-root sampling
in Figure 3 as a function of density for the least skewed
(i.e., α = 1.18) distribution (the other distributions
show a similar trend). Clearly, when victims are very
plentiful the inefficiency is low: competing attackers
harvest victims at an efficiency that is only a factor of
2-3 worse than the solo attacker does. However, things
get rapidly worse: at a victim density of d = 10−4 both
importance and square-root strategies are doing about
a factor of 100 worse.
In Figure 4 we show the cumulative fraction of vic-

tims found (i.e., number found divided by total) as the
number of attacks increases. Again N = 105 is used in
a Monte Carlo simulation in which the least skewed dis-
tribution from Figure 1 (a) was used. Figure 4 (a) uses
a density of d = 10−2, (b) uses d = 10−3 and (c) uses
d = 10−4. Observe that the competing attackers (im-
portance (blue) and square-root (red)) always do worse
than the solo attacker (black): they always find fewer
victims per attack. For example, Figure 4 (a) shows
that at d = 10−2 to find 40% of victims competing at-

Figure 2: Probability of finding a viable vic-
tim (i.e., equation (2)) as number of attacks,
k, increases. The least skewed of the distribu-
tions from Figure 1 (a) is used (i.e., α = 1.18).
Four strategies are shown: solo (black), impor-
tance (blue), square-root (red) and uniform-at-
random (green) sampling. This involves N = 105

users and d = 10−3. Observe that all of the strate-
gies eventually become worse than random.

tackers using square-root sampling need > 10× more
attacks per success than the solo attacker. The penalty
with respect to the solo attacker gets worse as the den-
sity of victims decreases: Figure 4 (c) shows a widening
margin between the strategies.
Figure 4 (c) also makes clear the disparity in the num-

ber of victims found for a fixed attack budget. At this
density, with a total attack budget of log10(k/N) = −3
(i.e., attacking one in a thousand) the solo attacker
finds 25% of victims while the importance and square-
root strategies for competing attackers find 9% and 3%
respectively.
Observe that the gap between the solo and competing

strategies is worst when k/N is small. A very plausible
strategy for the solo attacker is to pick only the most
likely targets and then stop. The cumulative fraction of
victims that he will find this way is small, but he can do
so at very low cost. Figure 4 (c) makes clear that com-
petition is fiercest for the earliest, and most obvious,
victims. The solo attacker can get the easiest 10% of
victims for about 100× less effort than the square-root
strategy.
Finally, observe that Figure 4 provides little support

for the claim that a square-root strategy is better than
importance sampling. While it may be better in the
limiting case where we pursue every victim, it appears
worse than importance sampling at most operating points
of interest. It avoids the waste in the late stages of a
coupon collector’s problem, but appears to do worse
early on.
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Figure 3: Inefficiency, µ
′
/µ

′

solo as a function of
density. Exploitation of an opportunity by sev-
eral independent attackers is always less efficient
than when exploited by one. Monte Carlo sim-
ulation with N = 106 users and attackers who
need an average success rate of pmin ≥ d.

4. DISCUSSION

4.1 Comparison to [7]
We find that several attackers always make less effi-

cient use of an opportunity than a solo attacker would.
Further, the inefficiency increases rapidly as victim den-
sity falls. The latter conclusion echoes our earlier result
that economic value falls far faster than victim density
[7]. It is worth emphasizing that these are not alter-
native paths to the same conclusion. The result of [7]
was that the economic opportunity for a solo attacker
dropped very sharply with d. We have here shown that
several attackers extract less value than one, and again
the situation gets worse with d. It appears the dete-
rioration for multiple attackers is then catastrophic as
density falls: they can extract only a falling fraction of
a falling total. This reinforces the conclusion reached
earlier, when attacks with low enough victim densities
pose little economic threat.

4.2 Equal attackers
Our model assumed attackers who were equal in that

they had the same information and abilities. None had
the ability to increase his share at the expense of others.
Thus, the best they could do (in the absence of cen-
tral control or collusion) is minimize the overall waste.
Under these assumptions, as we have seen, waste is in-
evitable. No matter how good the original opportunity
things converge quickly to the returns that would be
found attacking at random.
Under these assumptions we have shown that the

economic opportunity decays as others join the party.
However, it would be a mistake to think that attacks

Figure 4: Cumulative fraction of victims founds
as the number of attacks increases. Monte Carlo
simulation with N = 105; the least skewed distri-
bution from Figure 1 (a) is used. The results for
solo (black), importance (blue) and square-root
(red) sampling are shown. Observe that several
attacker always do worse than a solo attacker:
more total attacks are needed to find the same
fraction of victims. Note that the gap between
the performance of the solo attacker and the col-
liding attackers is a function of victim density:
the lower the density the worse the effect of colli-
sions on return. (a) Density d = 10−2 (b) Density
d = 10−3 (c) Density d = 10−4.
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on small victim densities do not occur. Several attack-
ers with the same skills and knowledge rapidly destroy
their communal opportunity. Things are obviously a
great deal better for those who have unique skills, or
unique knowledge about viability. Those who have only
commodity skills and knowledge share only bad oppor-
tunities.

5. RELATED WORK
The question of attacker collisions has occasionally

been raised, but has seldom been explored in detail.
Geer and Conway allude to it [3]. Enright et al. [2] men-
tion the possibility of different research teams colliding
while examining the same botnet. The problem does
not appear to have received a systematic treatment.
Herley examines the difficulty of attackers who tar-

get as a strategy. He shows that competing against a
scalable attacker is hard [6]. He shows that economic
opportunity drops much faster than victim density [7].
Thus, an opportunity with victim density d/2 has less
than half the value of one with density d. This implies
that opportunities with very low densities are hard to
exploit.
A point of contrast between this work and [7] is that

there a single attacker makes a binary decision as to
whether to attack or not. Here, several attackers com-
pete. The main finding of [7] was that the economic
opportunity falls far faster than density. In this work
we find that the inefficiency that several attackers ex-
perience increases with density.
Press examines a problem very close to ours, where

rare malfeasors are sought in a large population. The
sampling is constrained to be done with replacement.
Press suggests square-root sampling as the way of min-
imizing the expected number of searches before malfea-
sors are found. This criterion however, assumes that
screening can continue to infinity (i.e., there’s no re-
source constraint).
Variations of the Coupon Collector’s problem occur in

numerous engineering problems. The last-block prob-
lem in coding. Maximizing the use of a resource under
collisions occurs in many areas. Medium Access Con-
trol (MAC) policies such as ALOHA try to maximize
throughput subject to the constraint that an unknown
number of users compete for the resource.
Herley and Florêncio [8] examine the economic com-

petition that leads to a Tragedy of the Commons.
Anderson [14] shows that incentives greatly influence

security outcomes and demonstrates some of the per-
verse outcomes when they are mis-aligned. Since 2000
the Workshop on the Economics of Information Secu-
rity (WEIS) has focussed on incentives and economic
tradeoffs in security.
Varian suggests that many systems are structured so

that overall security depends on the weakest-link [5].

Gordon and Loeb [9] describe a deferred investment ap-
proach to security. They suggest that, owing to the de-
fender’s uncertainty over which attacks are most cost ef-
fective, it makes sense to “wait and see” before commit-
ting to investment decisions. Boehme and Moore [15]
develop this approach and examine an adaptive model
of security investment, where a defender invests most
in the attack with the least expected cost. Interest-
ingly, in an iterative framework, where there are mul-
tiple rounds, they find that security under-investment
can be rational until threats are realized. Unlike much
of the weakest-link work, our analysis focusses on the at-
tacker’s difficulty in selecting profitable targets rather
than the defender’s difficulty in making investments.
However, strategies that suggest that under-investment
is not punished as severely as one might think spring
also from our findings.
Grossklags et al.[4] examine security from a game

theoretic framework. They examine weakest-link, best-
shot and sum-of-effort games and examine Nash equi-
libria and social optima for different classes of attacks
and defense. They also introduce a weakest-target game
‘where the attacker will always be able to compromise
the entity (or entities) with the lowest protection level,
but will leave other entities unharmed.” A main point
of contrast between our model and the weakest-target
game is that in our model those with the lowest protec-
tion level get a free-ride. So long as there are not enough
of the to make the overall attack profitable, then even
the weakest targets escape.
Fultz and Grossklags [12] extend this work by now

making the attacker a strategic economic actor, and
extending to multiple attackers. As with Grossklags
et al.[4] and Schechter and Smith [16] attacker cost is
not included in the model, and the attacker is limited
mostly by a probability of being caught. Our model, by
contrast, assumes that for Internet attackers the risk of
apprehension is negligible, while the costs are the main
limitation on attacks.
Odlyzko [1] addresses the question of achieving secu-

rity with insecure systems, and also confront the para-
dox that “there simply have not been any big cyberse-
curity disasters, in spite of all the dire warnings.” His
observation that attacks thrive in cyberspace because
they are “less expensive, much more widespread, and
faster” is similar to our segmentation of broadcast at-
tacks.

6. CONCLUSION
We examine how independent attackers share an eco-

nomic opportunity. The collisions that inevitably arise
reduce returns, so that the value extracted is always
less than a solo attacker would do. This factor gets sig-
nificantly worse as victim density falls. Competition is
worst for the easiest targets, i.e., those most likely to
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be viable. Thus, concentrating on only the easiest tar-
gets (a very plausible strategy when there is only one
attacker) is the very point where competition is fiercest
when there are many.
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