A Novel Click Model and Its Applications to Online Advertising

Zeyuan Zhu
Weizhu Chen
Tom Minka
Chenguang Zhu
Zheng Chen

Introduction

- Click Model - To model the user behavior
- Application
- Predict CTR
- Improve NDCG
- AdPrediction
- Document relevance estimation
- Replace human judged data
- As ranking features.
- Clicks are biased
- presenting order

Related Works

examination hypothesis (position model)

- Observation: The relevance of a document at position i should be further multiplied by a term x_{i}.

cascade model

- Observation: user scans from top to bottom - a Bayesian network.

Related Works

- Examination Hypothesis
- if a displayed url is clicked, it must be both examined and relevant
- query q; url u; position i; binary click event C
- $P(C=1 \mid q, u, i)=\underbrace{P(C=1 \mid u, q, E=1)}_{r_{u, q}} \cdot \underbrace{P(E=1 \mid i)}_{x_{i}}$
- User Browsing Model
© previous clicked position l
- $P(C=1 \mid q, u, i, l)=\underbrace{P(C=1 \mid u, q, E=1)}_{r_{u, q}} \cdot \underbrace{P(E=1 \mid i, l)}_{x_{i, l}}$

Related Works

- Cascade Model

- Model for each queries separately
${ }^{\ominus} E_{i}, C_{i}$ be the probabilistic events indicating whether the i th url is examined and clicked resp.
- $P\left(E_{1}\right)=1$
(9) $P\left(E_{i+1}=1 \mid E_{i}=0\right)=0$
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}\right)=1-C_{i}$
- $P\left(C_{i}=1 \mid E_{i}=1\right)=r_{u_{i}, q}$ where u_{i} is the i th url
$\Rightarrow P\left(C_{i}=1\right)=r_{u_{i}, q} \prod_{j=1}^{i-1}\left(1-r_{u_{j}, q}\right)$

Related Works

- Cascade Model

$$
\text { (1) } P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}\right)=1-C_{i}
$$

- Extension
- Click Chain Model (CCM)
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=0\right)=\alpha_{1}$
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=1\right)=\alpha_{2}\left(1-r_{u_{i}, q}\right)+\alpha_{3} r_{u_{i}, q}$
- Dynamic Bayesian Network (DBN)
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=0\right)=\gamma$
${ }^{\ominus} P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=1\right)=\gamma\left(1-s_{u_{i}, q}\right)$

Transition probability only considers the relevance.

- Click Chain Model (CCM)
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=0\right)=\alpha_{1}$
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=1\right)=\alpha_{2}\left(1-r_{u_{i}, q}\right)+\alpha_{3} r_{u_{i}, q}$
- Dynamic Bayesian Network (DBN)
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=0\right)=\gamma$
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=1\right)=\gamma\left(1-s_{u_{i}, q}\right)$

Observation

- But a click is influenced by multiple bias:

- local hour - user agent

Big Challenge

- How to tolerate multiple-bias in the click model?

General Click Model

- We still need to keep E and C
- They are good assumption

The Outer Model

- Bayesian network, in which we assume users scan urls from top to bottom

The Inner Model

- define the transition probability in the network to be a summation of parameters, each corresponding to a single attribute value

General Click Model

- We need to consider multiple bias into transition probability

The Outer Model

- Bayesian network, in which we assume users scan urls from top to bottom

The Inner Model

- define the transition probability in the network to be a summation of parameters, each corresponding to a single attribute value

GCM - The Outer Model

GCM - The Outer Model

Different with DBN/CCM

- Similar Bayesian Network
- GCM has a general notation of A_{i}, B_{i} and R_{i}
- Our main contribution comes next:
- The inner model - how to build A_{i}, B_{i} and R_{i}

GCM - The Inner Model

- We assume each attribute value f is associated with three parameters $\theta_{f}^{A}, \theta_{f}^{B}$ and θ_{f}^{R}, each of which is a continuous random variable
- $A_{i}=\sum_{j=1}^{s} \theta_{f_{j}^{u s e r}}^{A}+\sum_{j=1}^{t} \theta_{f_{i, j}^{u r l}}^{A}+e r r$
- $B_{i}=\sum_{j=1}^{S} \theta_{f_{j}}^{B}$ user $+\sum_{j=1}^{t} \theta_{f_{i, j}}^{B}$
- $R_{i}=\sum_{j=1}^{S} \theta_{f_{j}}^{R}$ user $+\sum_{j=1}^{t} \theta_{f_{i, j}}^{R}$
- Let $\Theta=\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid \forall f\right\}$ be the parameter set.

GCM - The Inner Model

the query
the location
the browser type
the local hour
the IP address
the query length

$$
f_{1}^{u s e r}, f_{2}^{u s e r}, \ldots f_{s}^{u s e r}
$$

the url
the displayed position($=i$)
the classification of the url
the matched keyword
the length of the url

$$
f_{i, 1}^{u r l}, f_{i, 2}^{u r l}, \ldots f_{i, t}^{u r l}
$$

GCM - The Inference Method

- Assume parameters in Θ are independent Gaussians.
- Bayesian Inference
- Expectation Propagation method by Tom Minka
- Given the structure of a Bayesian network with hidden variables, EP takes the observation values as input, and is capable of calculating the inference of any variable.
© For each training session, we use the current Gaussians as prior, do the EP, and then calculate the posterior Gaussians and update them in Θ.

GCM - Algorithm

Algorithm: The General Click Model ${ }^{\boldsymbol{\gamma}}$

1. Initiate $\Theta=\left\{\theta_{f}^{A}, \theta_{f}^{E}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation. ${ }^{*}$
3. For each session s $^{+}$
4. $M \leftarrow$ number of urls in $s{ }^{\prime}$
5. Obtain the attribute values +

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}{ }^{\mu}
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{*}$
7. Input the user's clicks to G as observations. +
8. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Algorithm

Algorithm: The General Click Modelw

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{E}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.
3. For each session s^{*}
4. $M \leftarrow$ number of urls in $s{ }^{\prime}$
5. Obtain the attribute values +

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}{ }^{\mu}
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{*}$
7. Input the user's clicks to G as observations. +
8. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Algorithm

Algorithm: The General Click Model ${ }^{W}$

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.*
3. For each session s $^{+}$
4. $M \leftarrow$ number of urls in $s+$
5. Obtain the attribute values \downarrow

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}+1
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{*}$
7. Input the user's clicks to G as observations. '
8. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM-Algorithm

Algorithm: The General Click Model ${ }^{W}$

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{E}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.*
3. For each session s *
4. $M \leftarrow$ number of urls in $s{ }^{+}$
5. Obtain the attribute values \downarrow
$F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}$
6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{*}$
7. Input the user's clicks to G as observations.
8. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{E}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Algorithm

Algorithm: The General Click Model ${ }^{W}$

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{E}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.*
3. For each session s *
4. $M \leftarrow$ number of urls in $s{ }^{\prime}$
5. Obtain the attribute values \downarrow

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}{ }^{*}
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{+}$
7. Input the user's clicks to G as observations.
8. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Algorithm

Algorithm: The General Click Modelp

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.*
3. For each session s^{*}
4. $M \leftarrow$ number of urls in $s{ }^{\prime}$
5. Obtain the attribute values \downarrow

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{+}$
7. Input the user's clicks to G as observations.
8.

Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Algorithm

Algorithm: The General Click Modelp

1. Initiate $\theta=\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid \forall f\right\}$ and let each parameter in θ satisfy a prior $N(0,1 /(s+t))$.
2. Construct a Bayesian inference calculator G using Expectation Propagation.*
3. For each session s $^{+}$
4. $M \leftarrow$ number of urls in $s{ }^{\prime}$
5. Obtain the attribute values +

$$
F=\left\{f_{1}^{u s e r}, \ldots f_{s}^{u s e r}\right\} \cup\left\{f_{i, 1}^{u r l}, \ldots f_{i, t}^{u r l}\right\}_{i=1}^{M}{ }^{\text {ul }}
$$

6. Input $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\} \subset \theta$ to G as the prior

Gaussian distributions. ${ }^{*}$
7. Input the user's clicks to G as observations. Execute the G, measure the posterior distributions for $\left\{\theta_{f}^{A}, \theta_{f}^{B}, \theta_{f}^{R} \mid f \in F\right\}$, and update them in Θ
9. End For

GCM - Reductions

- Lemma: If we define an attribute value f to be the pair of query and url $f=\left(u_{i}, q\right)$,the traditional transition probability

$$
P\left(C_{i}=1 \mid E_{i}=1\right)=r_{u_{i}, q}
$$

can reduce to

$$
P\left(C_{i}=1 \mid E_{i}=1, R_{i}\right)=\mathbb{I}\left(R_{i}>0\right)
$$

if we set $R_{i}=\theta_{f}^{R}+e r r$ and θ_{f}^{R} is a point mass Gaussian centered at $F^{-1}\left(r_{u_{i}, q}\right)$, where F is the cumulative distribution function of $N(0,1)$.

- Recall $R_{i}=\sum_{j=1}^{S} \theta_{f_{j}^{u s e r}}^{R}+\sum_{j=1}^{t} \theta_{f_{i, j}}^{R u r l}+$ err

GCM - Reductions

- Examination Hypothesis
- $P\left(B_{i}>0\right)=P\left(A_{\mathrm{i}}>0\right)=x_{i+1}$
- $P\left(R_{i}>0\right)=r_{u_{i}, q}$
- define two attributes $f_{1}=i+1$ and $f_{2}=\left(u_{i}, q\right)$
- $A_{i}=\theta_{f_{1}}^{A}+e r r ; B_{i}=\theta_{f_{1}}^{B}+e r r ; R_{i}=\theta_{f_{2}}^{R}+e r r$
- Similar for other prior works

Experiment

Research

Baseline - Cascade \square CCM \square DBN \triangle GCM

Baseline - Cascade \square CCM \square DBN \triangle GCM

Experiment

Experiment

Microsoft ${ }^{\oplus}$
Research

Main Contribution

- Multi-bias aware.
- The transition probabilities between variables depend jointly on a list of attributes. This enables our model to explain bias terms other than the position-bias.

Future work

- To learn CTR@1
- Continuous attribute values
- Make use of the page structure
- Running time

Thanks!

Questions:
zhuzeyuan@hotmail.com wzchen@microsoft.com

Thanks to:
Haixun Wang
Gang Wang
Dakan Wang

- Implicit feedback
- Attributes
- Query text
- Timestamps
- Localities
- The click-or-not flag

Ө Etc...

Definitions

Query "Microsoft Research"

Query
$U=\left\{u_{1}, u_{2}, \ldots u_{M}\right\}$ session

Urls	$u_{2}=$ "research.microsoft.com"
impressions	

Attribute
192.168.0.1

IE
7am local time

Experiment

Set	Query Freq	\#Queries	Train set		Test set	
			\#Sessions	\#Urls	\#Sessions	\#Urls
1	1~10	141	866	5,698	177	1,057
2	10~30	1,211	24,928	1,664,403	2,122	13,664
3	30~100	5,058	308,203	1,810,009	18,629	105,716
4	100~300	3,988	674,654	3,148,826	40,304	180,532
5	300~1000	1,651	847,722	3,011,482	54,098	184,606
6	1,000~3,000	481	792,422	2,470,665	48,449	147,561
7	3,000~10,000	132	660,645	1,508,985	42,067	92,122
8	10,000~30,000	22	315,832	769,786	19,338	48,808
9	30,000+	7	642,835	1,046,948	37,796	64,236
All	All of above	12,691	4,267,241	15,431,104	262,803	837,245

Experiment

\square CCM \square DBN \triangle GCM
\square CCM \square DBN \triangle GCM

Related Works

Related Works

$$
p\left(R_{i} \mid C^{1: U}\right) \approx(\text { constant }) \times p\left(R_{i}\right) \prod_{u=1}^{U} P\left(C^{u} \mid R_{i}\right) .
$$

Case	Conditions	Results
1	$i<l, C_{i}=0$	$1-R_{i}$
2	$i<l, C_{i}=1$	$R_{i}\left(1-\left(1-\alpha_{3} / \alpha_{2}\right) R_{i}\right)$
3	$i=l$	$R_{i}\left(1+\frac{\alpha_{2}-\alpha_{3}}{2-\alpha_{1}-\alpha_{2}} R_{i}\right)$
4	$i>l$	$1-\frac{2}{\left.1+\frac{6-3 \alpha_{1}-\alpha_{2}-2 \alpha_{3}}{\left(1-\alpha_{1}\right)\left(\alpha_{2}+2 / \alpha_{1}\right)}\right)^{(1-l)-1}} R_{i}$
5	No Click	$1-\frac{2}{1+\left(2 / \alpha_{1}\right)^{i-1}} R_{i}$

Figure 4: Different cases for computing $P\left(C \mid R_{i}\right)$ up to a constant where l is the last clicked position. Darker nodes in the figure above indicate clicks.

Related Works

Related Works

Research

- DBN
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=0\right)=\gamma$
- $P\left(E_{i+1}=1 \mid E_{i}=1, C_{i}=1\right)=\gamma\left(1-s_{u_{i}, q}\right)$

$$
\begin{aligned}
r_{u} & :=P\left(S_{i}=1 \mid E_{i}=1\right) \\
& =P\left(S_{i}=1 \mid C_{i}=1\right) P\left(C_{i}=1 \mid E_{i}=1\right) \\
& =a_{u} s_{u}
\end{aligned}
$$

Related Works

Research

- DAN

$$
a_{u}=\arg \max _{a} \sum_{j=1} \sum_{i=1} I\left(d_{i}^{j}=u\right)
$$

$$
\left(Q\left(A_{i}^{j}=0\right) \log (1-a)+Q\left(A_{i}^{j}=1\right) \log (a)\right)+\log P(a)
$$

$$
s_{u}=\arg \max _{s} \sum_{j=1}^{N} \sum_{i=1}^{10} I\left(d_{i}^{j}=u, C_{i}^{j}=1\right)
$$

$$
\left(Q\left(S_{i}^{j}=0\right) \log (1-s)+Q\left(S_{i}^{j}=1\right) \log (s)\right)+\log P(s)
$$

$$
\begin{aligned}
& Q\left(A_{i}^{j}\right):=P\left(A_{i}^{j} \mid C^{j}, a_{u}, s_{u}, \gamma\right) \\
& Q\left(S_{i}^{j}\right):=P\left(S_{i}^{j} \mid C^{j}, a_{u}, s_{u}, \gamma\right)
\end{aligned}
$$

Related Works

- DBN

