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ABSTRACT
Search tasks, comprising a series of search queries serving
the same information need, have recently been recognized
as an accurate atomic unit for modeling user search inten-
t. Most prior research in this area has focused on short-
term search tasks within a single search session, and heavily
depend on human annotations for supervised classification
model learning. In this work, we target the identification of
long-term, or cross-session, search tasks (transcending ses-
sion boundaries) by investigating inter-query dependencies
learned from users’ searching behaviors. A semi-supervised
clustering model is proposed based on the latent structural
SVM framework, and a set of effective automatic annota-
tion rules are proposed as weak supervision to release the
burden of manual annotation. Experimental results based
on a large-scale search log collected from Bing.com con-
firms the effectiveness of the proposed model in identifying
cross-session search tasks and the utility of the introduced
weak supervision signals. Our learned model enables a more
comprehensive understanding of users’ search behaviors vi-
a search logs and facilitates the development of dedicated
search-engine support for long-term tasks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Cross-session search task, query log mining, semi-supervised
clustering, weak supervision

1. INTRODUCTION
Search engine users’ information needs span a broad spec-

trum [11, 15]: simple needs, such as homepage finding, can
mostly be satisfied via a single query; but users may also
issue a series of queries, collect, filter, and synthesize infor-
mation from multiple sources to solve a complex task, e.g.,
planning a vacation. To comprehensively and accurately un-
derstand these needs from recorded actions in the user query
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logs, we must segment and associate chronologically-ordered
queries into a semantically-coherent structure.

The primary mechanisms for segmenting the logged query
streams are session-based, where short inactivity timeouts
between user actions are applied as a means of demarcating
session boundaries [17, 19]. Recently, there has been sig-
nificant research on identifying tasks within these sessions,
e.g., Lucchese et al [15] proposed the concept of a“task-based
session”: where a cluster of queries within the same session
serves a particular common search intent. However, those
methods rely on the accurate identification of the original
session boundaries and the empirically-set timeout thresh-
old may not be a valid criterion for identifying the semantic
structure among queries: many tasks have been shown to s-
pan multiple search sessions [1, 11]. It suggests that there is
value in studying and improving task identification methods
spanning session boundaries.

Table 1: An example of cross-session search tasks.

Time Query SessionID TaskID

05/29/2012 14:06:04 bank of america 1 1
05/29/2012 14:11:49 sas 1 2
05/29/2012 14:12:01 sas shoes 1 2
05/30/2012 10:19:34 credit union 2 3
05/30/2012 12:25:19 6pm.com 3 4
05/30/2012 12:49:21 coupon for 6pm 3 4

Motivating Example: Consider a real example of search
tasks from a single user shown in Table 1, which is extract-
ed from the logs of Bing.com. We manually annotated the
in-session tasks in the last column of the table and segment-
ed the sessions using 30-min inactivity threshold. We can
observe that the user performed two tasks in the first search
session on May 29, 2012, one for personal banking and an-
other for shopping (for shoe-brand San Antonio Shoes). And
on the second day, the user performed two individual search
sessions, and each session consists of one single task, i.e.,
banking and shopping (at the online discount merchant 6p-
m.com) accordingly. However, humans can easily recognize
that those four tasks annotated in three different sessions
happen to be only two unique tasks: a shopping task in-
cluding queries of “sas”, “sas shoes”, “6pm.com”and“coupon
for 6pm”, and a personal banking task including queries of
“bank of america” and “credit union.”

Prior work on identifying cross-session tasks has target-
ed pairs of queries, and made predictions about whether
they share the same goal or represent the same task [11,
13]. Unfortunately, pairwise predictions alone cannot gen-
erate the partition of tasks, and post-processing is need-



ed to obtain the final task partitions [14]. Besides, such
pairwise predictions might not be consistent: e.g., predict-
ing query i and j, query i and k to be in the same task,
but query j and k are not. As a result, definite decision-
s have to be made in post-processing; but such decisions
are isolated from the classifier training, and are therefore
not guaranteed to be optimal. To understand this limita-
tion, taking the search tasks shown in Table 1 as an exam-
ple. A lexicon-similarity-based classifier can easily recognize
the query “6pm.com” and “coupon for 6pm,” and “sas” and
“sas shoes” belong the same search tasks, because of query
overlap; but it can hardly associate “sas” with “6pm.com.”
Furthermore, the query “sas” is ambiguous: it has other in-
terpretations such as the business analytic software SAS or
special air service in British Army. Hence, even the features
leveraging external knowledge bases [15] may be unable to
assist. But when we consider the temporal juxtaposition of
“sas shoes” and “sas,” we can confidently infer that the “sas”
here refers to “San Antonio Shoes”; and since we know that
the queries “6pm.com” and “sas shoes” are both associated
with shoe shopping, we can safely conclude that those four
different queries are part of the same shopping task. From
this example, we can conclude that the queries belonging to
the same search task convey rich dependency relationships,
which provide us with valuable information to analyze and
exploit the search task structure. In contrast, traditional
binary classification methods are only optimized for inde-
pendent predictions and thus cannot explore such in-depth
relationships among queries.
Moreover, existing methods for cross-session search task

extraction heavily depend on the manual annotation of tasks
[11, 13, 14], which is expensive to acquire at scale. Fortu-
nately, we have the opportunity to leverage problem-specific
knowledge to assist with model learning, where various in-
formative signals are available for us to identify such knowl-
edge. For example, identical and reformulated queries, e.g.,
“sas” and “sas shoes” in Table 1, and queries with identical
returned URLs should belong to the same search task with
high confidence. Such knowledge can be summarized by a
set of annotation rules, i.e., must-link and cannot-link [22],
and applied at scale to reduce the burden of manual an-
notation. We refer to such knowledge as weak supervision,
because it only provides pairwise supervision over a subset
of queries; and the quality of such supervision might vary.
The research described in this paper addresses the above

challenges and makes the following research contributions:

• Address the cross-session search task extraction prob-
lem in a structural learning framework, where we treat
a user’s entire query log as a whole and explicitly mod-
el the dependency among queries in the same task.

• Explore helpful weak supervision from different per-
spectives to reduce the burden of manual annotation
and guide the supervised model learning for cross-session
task extraction.

• Provide a detailed analysis of the proposed method
whereby we compare it against state-of-the-art cross-
session task extraction baselines and demonstrate sig-
nificant performance gains on a variety of metrics.

2. RELATED WORK
Various methods have been proposed to segment and or-

ganize query logs into semantically coherent structures. The

most commonly used unit, the search session, was often de-
fined based on a timeout criterion, where different thresh-
olds, ranging from 5 to 120 minutes, have been proposed
[4, 9, 19]. In addition, Radlinski and Joachims [17] used a
30-minute timeout together with query similarity measures
to define sequences of similar queries that combine to form
so-called query chains.

Search tasks within the temporally-demarcated session
boundaries have also been studied. Spink et al. [20] demon-
strated that multi-tasking behavior, whereby multiple tasks
are intertwined within the same time period, occurs fre-
quently. Lucchese et al. [15] referred to such sessions as
task-based sessions (or in-session tasks). Various methods,
based on time splitting [2, 9], lexicon similarity [11, 15], and
query reformulation patterns [9, 11], have been proposed to
identify in-session tasks.

Recently, researchers have realized the necessity of going
beyond the session timeout, and several methods have been
proposed to tackle the problem by classifying whether two
queries share the same search goal, i.e., same-task predic-
tion. Jones et al. [11] claimed that no particular time-
out threshold is necessary a valid constraint for identifying
task boundaries. They found over 15% of search tasks are
performed across time-out based session boundaries in their
search log data set. To extract the cross-session tasks (which
were defined as mission and goal), they built classifiers to i-
dentify task and sub-task boundaries, as well as pairs of
queries belonging to the same task. Kotov et al. [13] and
Agichtein et al. [1] studied the problem of cross-session task
extraction via binary same-task classification, and found d-
ifferent types of tasks demonstrate different life spans.

In this work, although we focus on cross-session tasks,
our solution is actually more general than cross-session on-
ly. Our only criterion for extracting search tasks is that
queries in the same task should serve for the same high-level
information need; tasks can be performed in a single session
or can span multiple sessions. The major difference between
our work and existing cross-session task extraction work is
that instead of making a series of binary same-task predic-
tions, we cast this problem as a structural learning prob-
lem, which explicitly models the dependency among queries
in a search task. As we have discussed in Section 1, in-
dependent binary classification cannot capitalize on depen-
dencies between pairs of predictions. In addition, existing
classification-based methods heavily depend on manual an-
notations for model training. This will greatly limit their
generalization capability when there is few or no task an-
notation available. In this work, we explored a variety of
informative signals as weak supervision to release the bur-
den of manual annotation and guide model learning.

3. PROBLEM DEFINITION
In this section, we formally define the problem of cross-

session search task extraction.
Query log records the interaction behaviors from a set of

different users, U = {u1, u2, . . . , uN}, in a search engine.
It stores a sequence of queries Qn = {qn1, qn2, . . . , qnM}
from user un, together with the timestamp tni when the
query is submitted and the corresponding list of returned
URLs, URLni = {urlni1, urlni2, . . . , urlniL}. Each query
qni is represented as the original string that users submitted
to the search engine, and Qn is ordered according to query
timestamp tni. Each URL urlnil has two attributes: URL
string and click timestamp cnil (cnil=0 if it was not clicked).



Definition (Session) Given user un’s search history Qn

and a fixed time-out threshold τcut, a session Snt is a set
of consecutive queries from Qn, such that ∀qni ∈ Snt, qnj ∈
Snt, qnl /∈ Snt, |tni − tnj | ≤ τcut and |tni − tnl| > τcut.

The definition of session implies that {Snt}Tt=1 is a set of
disjoint partitions of query sequence Qn, such that ∀i ̸= j,
Sni∩Snj = ∅ andQn =

∪
i Sni. A typical time-out threshold

is set to be 30 minutes [13, 15, 17].

Definition (Search Task) Given user un’s search history
Qn, a search task Tnk is a maximum subset of queries in Qn,
such that all the queries in Tnk correspond to a particular
information need.

This definition of search task indicates {Tnk}Kk=1 is also
a set of disjoint partitions of query sequence Qn: ∀j ̸= k,
Tnj ∩ Tnk = ∅ and Qn =

∪
k Tnk. Therefore, each Tnk is

not confined to a particular session Snt; instead they can
overlap, or one search task can contain multiple sessions. To
emphasize such a difference, we will refer to our definition
of search task as Cross-session Search Task as opposed to
the previous definition of In-session Search Task [15, 20].
Based on the above notations and definitions, we define

the problem of cross-session search task extraction as,

Definition (Cross-Session Search Task Extraction)
Given user un’s search query log Qn, partition the sequence
into disjoint subsets {Tn1, Tn2, . . . , Tnk}, such that the par-
tition is consistent with the user’s underlying information
need; when explicit task annotation is available, the extract-
ed tasks should be consistent with the annotation.

In particular, such task partition can be uniquely deter-
mined by a mapping function y(qni) → Tnk from query qni to
its corresponding task partition Tnk for the query sequence
Qn. In addition, we should note that the number of tasks,
e.g., K, user un can take is not specified in our definition,
and therefore the learning method should find the appropri-
ate K for each given Qn automatically.

4. SEARCH TASK EXTRACTION WITH LA-
TENT STRUCTURED SVM

We model the cross-session search task extraction as a
supervised clustering problem (SCP) [6, 8, 22], where given
the clustering membership, we need to build up a model
which captures the connection between queries.

4.1 Motivation: Best Link vs. All Links
A commonly used assumption in SCP is the all-link clus-

tering structure [8, 10], where one needs to associate the
queries belonging to the same task together, such that the
in-cluster similarity defined by the summation of similarities
over all the pairs of instances within a cluster is maximized.
However, this objective may not be the most appropriate
for our problem: in a task consisting of m queries, many of
the O(m2) pairs are not necessarily similar, or even quite
different. Recall the example search tasks shown in Table
1, the query “sas” and “coupon for 6pm” are not directly
related under most of similarity metrics, e.g., edit distance
or term overlap; putting them into the same task can on-
ly hurt the in-cluster similarity. As a result, any algorithm
aims at maximizing the all-link -based in-cluster similarity
can hardly discover this type of task.

A more reasonable way for clustering queries into tasks
is to find the strongest link between a candidate query and
queries in the target cluster, i.e., bestlink [10]. For example,
after scanning through all the queries listed in Table 1, we
can easily infer the relation between “sas” and “coupon for
6pm” based on the decision over the other two queries, “sas
shoes” and “6pm.com”, which have been recognized as being
in the same shoe shopping task.

This motivates us to revise the objective of clustering
queries: a query belonging to one particular search task does
not need to be similar to all the other queries in this task
(all-link), but there has to be at least one query, which is
strongly associated with this query in that task (bestlink).
Intuitively, this modeling assumption simulates how a hu-
man editor annotates the search tasks in the query log:
one might determine if two queries belong to the same task
by reasoning transitively over strong connections between
queries in the same task.

4.2 Best Link as Latent Structure
Unfortunately, the bestlink structure is hidden in the query

log, and it is even impossible for the human editors to ex-
plicitly annotate, since such structure might not be unique.
Therefore, we adopt the structural learning method with la-
tent variables, i.e., latent structural SVMs [5, 24], to realize
the bestlink modeling assumption, and utilize the hidden
structure to explore the dependency among queries within
the same task. We name our method as bestlink SVM.

To formalize the idea of bestlink SVM, we denote the hid-
den best-link structure as h. Before stating clearly the de-
tailed definition of h, it helps to consider h as a graph whose
edges connect the “most similar” queries. Given a query se-
quence Q = {q1, q2, . . . , qM}1, we define a feature vector for
the task partition y specified by the hidden best-link struc-
ture h as Φ(Q, y, h). And based on Φ(Q, y, h), our bestlink
SVM is a linear model parameterized by w, and predicts the
task partition at testing time by,

(ŷ, ĥ) = argmax
(y,h)∈Y×H

wTΦ(Q, y, h), (1)

where Y and H represent the sets of possible structures of
y and h respectively. ŷ becomes the output for cross-session

tasks and ĥ is the inferred latent structure. In this paper,
we refer to solving Eq (1) as the decoding problem.

The decoding problem of Eq (1) clearly distinguishes the
proposed bestlink SVM model from the previous binary-
classification-based methods. In bestlink SVM, we model
the entire query sequence Q as a whole, and predict the
task membership for all the queries simultaneously; while
the previous two-step approaches cannot explore the inter-
actions among queries in the same task, and isolated predic-
tions are made on each pair of queries in those methods.

The definition of h needs to be carefully designed, oth-
erwise the decoding problem (hence the training algorith-
m as well) can be intractable. We define h(qi, qj) = 1 if
query qi and qj are directly connected in h; and otherwise,
h(qi, qj) = 0. To model the first query of a new search task,
i.e., the query that does not have a strong connection with
any previous queries, we add a dummy query q0 at the be-
ginning of each user’s query log. All the queries connecting
to q0 would be treated as the initial query of a new search

1In the following discussion, when no ambiguity is invoked,
we drop the index n for user un to simplify the notations.



task. Besides, we enforce that a query can only link to an-
other query in the past, or formally,

j−1∑
i=0

h(qi, qj) = 1, ∀j ≥ 1

Taking the search tasks shown in Table 1 as an example,
we illustrate the idea of bestlink structure in Figure 1. From
the figure, we can clearly notice that the bestlink defines a
hierarchical tree structure of“strong”connections among the
queries: rooted in the dummy query q0, each subtree of q0
corresponds to one specific search task in a user’s search
history. For a new query, it can only belong to a previous
search task or be the first query of a new task. Therefore,
the temporal order provides us a helpful signal to explore
the dependency between queries.

Figure 1: Illustration of hidden search task structure
specified in bestlink SVM. {S1,S2,S3} are the ses-
sions segmented by the 30-minutes inactivity thresh-
old, {T1, T2} are the search tasks annotated by human
editor. The dotted arrows indicate one possible hid-
den structure identified by bestlink SVM.

We require h to be consistent with y – that is, h(qi, qj) = 1
implies y(qi) = y(qj); in other words, the task partition y is
determined by the connected components in h. As a result,
the dependency among the queries belonging to the same
task is explicitly encoded by the latent bestlink structure h:
as shown in Figure 1, predicting “sas” and “sas shoes”, “sas
shoes” and“6pm.com”belonging to the same task would im-
mediately lead to the conclusion that all these three queries
belong to the same task, even though “sas” and “coupon for
6pm.com” are not directly connected to each other.
Accordingly, our feature vector for a particular task par-

tition y is defined over the links in h as,

Φ(Q, y, h) =
∑
i,j

h(qi, qj)

S∑
s=1

ϕs(qi, qj), (2)

where a set of symmetric pairwise features {ϕs(·, ·)}Ss=0 is
given to characterize the similarity between query qi and qj .
In particular, to accommodate the dummy query q0, we set
ϕ0(q0, ·) = 1 and ∀s > 0, ϕs(q0, ·) = 0.
Based on our feature vector design and the directed link-

age structure of h, exact inference can be efficiently cal-
culated for the decoding problem in Eq (1). Algorithm 1
described an incremental implementation to solve the exact
inference problem, where we only need the queries appear-
ing before the given query to determine its task member-
ship. This makes bestlink SVM feasible to be deployed in

Algorithm 1: Task Partition Prediction

Input: Query sequence Q = {q1, q2, . . . , qM}, pairwise
features {ϕk(·, ·)}Kk=0 and linear weight w.

Output: Task partition ŷ.

//Step 1: Initialize the latent structure ĥ

ĥ(·, ·) = 0;

//Step 2: Search for the best latent structure ĥ
for i = 1 . . .M do

j′ = argmax0≤j<i

∑K
k=1 w

T
kϕk(qi, qj);

ĥ(i, j′) = 1;
end
//Step 3: Construct the best task partition ŷ:
t = 0;
for i = 1 . . .M do

j′ = argmax0≤j<i h(i, j);

if j′ = 0 then
ŷ(i) = t;
t = t+ 1;

end
else

ŷ(i) = ŷ(j′);
end

end

return ŷ

the search engine query log system in an online fashion, s-
ince the newly arrived queries will not affect the method’s
prediction on previous queries.

4.3 Solving the bestlink SVM
For a given set of query logs with annotated tasks, {(Qn,

yn)}Nn=1, we need to retrieve the optimal weight setting w
for the proposed bestlink SVM. Empirically, the optimal
weight w should minimize the error between the predict-
ed task partition ŷn and ground-truth yn. In addition, w
should also be optimized for good generalization capability,
e.g., maximize the margin between ground-truth partition
and wrong partitions [21]. This naturally gives rise to the
following optimization problem within the latent structural
SVMs framework [5, 24]:

min
w,ξ

1

2
||w||2 + C

N∑
n=1

ξ2n (3)

s.t. ∀n, max
h∈H

wTΦ(Qn, yn, h) ≥

max
(ŷ,ĥ)∈Y×H

[wTΦ(Qn, ŷ, ĥ) + ∆(yn, ŷ, ĥ)]− ξn

where ∆(yn, ŷ, ĥ) characterizes the distance between the ground-
truth partition yn and predicted partition ŷ specified by the

latent structure ĥ, {ξn}Nn=1 is a set of slack variables to al-
low errors in the training set, and C controls the trade-off
between empirical loss and model complexity.

Because the ground-truth bestlink structure h∗
n for Qn is

unobservable in the training data, we cannot measure the

distance between (yn, h
∗
n) and (ŷ, ĥ). As a result, we de-

fine the margin between the ground-truth task partition yn
and predicted task partition ŷ based on the inferred latent

structure ĥ as,

∆(yn, ŷ, ĥ) = |Qn| − |Tn| −
∑
i,j

h(i, j)σ(yn, (i, j)) (4)

where |Qn| is the number of queries in Qn, |Tn| is the num-
ber of annotated tasks in Qn, and σ(y, (i, j)) = 1 if y(i) =



Table 2: Pairwise Similarity Features.

Type Feature Description

Q-COSINE cosine similarity between the term sets of qi and qj
Q-EDIT norm edit dist between query strings of qi and qj
Q-JAC Jaccard coeff between the term sets of qi and qj
Q-TIME 1.0/(absolute time difference in seconds between qi and qj)

Query Q-DIST (# of queries in between of qi and qj)/|Qn|
-based Q-URL-MATCH-SUM

∑
url∈URLi

(
c(qj , url)

)
+

∑
url∈URLj

(
c(qi, url)

)
Q-URL-MATCH-MAX maxurl∈URLi

(
c(qj , url)

)
+maxurl∈URLj

(
c(qi, url)

)
Q-CLICK-URL-MATCH-AVG

∑
url∈clicked URLi

(
c(qj , url)

)
+

∑
url∈clicked URLj

(
c(qi, url)

)
Q-CLICK-URL-MATCH-MAX maxurl∈clicked URLi

(
c(qj , url)

)
+maxurl∈clicked URLj

(
c(qi, url)

)
U-EDIT-DOMAIN-MIN min norm edit dist between domain of URLi and domain of URLj

U-EDIT-ALL-MIN min norm edit dist between URLi and URLj

U-EDIT-ALL-CLICK-MIN min norm edit dist between clicked URLi and clicked URLj

U-EDIT-DOMAIN-AVG avg norm edit dist between domain of URLi and domain URLj

U-EDIT-ALL-AVG avg norm edit dist between URLi and URLj

URL U-EDIT-ALL-CLICK-AVG avg norm edit dist between clicked URLi and clicked URLj

-based U-JAC-ALL-CLICK Jaccard coeff between clicked URLi and clicked URLj

U-JAC-ALL Jaccard coeff between URLi and URLj

U-JAC-DOMAIN-CLICK Jaccard coeff between domain of clicked URLi and domain of clicked URLj

U-JAC-DOMAIN Jaccard coeff between domain of URLi and domain of URLj

U-SIM-CLICK-MAX max ODP category similarity of clicked URLi and clicked URLj

U-SIM-CLICK-AVG avg ODP category similarity of clicked URLi and clicked URLj

U-SIM-MAX max ODP category similarity of URLi and URLj

U-SIM-AVG avg ODP category similarity of URLi and URLj

S-SAME if qi and qj are in the same session
Session S-FIRST if both qi and qj are the first query of session
-based S-DIST # queries in between of qi and qj

Note: 1) norm edit dist is the edit distance between string s and t divided by the maximum length of s and t;
2) c(q, url) is a function counting the number of query terms in q contained in url;

3) clicked URL is a subset of URLs, whose click timestamp cil > 0.

y(j), otherwise σ(y, (i, j)) = −1. It is easy to verify that

∆(yn, ŷ, ĥ) is non-negative, and equals to zero if and only if
the task partition ŷ is the same as yn.
Since we are minimizing the square hinge loss over the

training set, the optimization problem introduced in Eq (3)
can be efficiently solved by the iterative algorithm proposed
in [5]: the optimization procedure minimizes Eq (3) by con-
structing a sequence of convex problems in each iteration,
and each iteration guarantees to decrease the objective func-
tion. In the employed optimization algorithm, two type-
s of inference are required: loss-augmented inference, i.e.,

max(ŷ,ĥ)∈Y×H[wTΦ(Qn, ŷ, ĥ) +∆(yn, ŷ, ĥ)]; and latent vari-

able completion inference, i.e., maxh∈H wTΦ(Qn, yn, h). S-

ince the calculation of ∆(yn, ŷ, ĥ) can be decomposed on-
to the edges in h, loss-augmented inference can be directly
solved via Algorithm 1 by adding an additional cost σ(yn, (i, j))
into Step 2 when finding the best link for query qi. And the
latent variable completion inference can also be achieved vi-
a Algorithm 1 by restricting Step 2 to only search in the
queries with the same task label as qi. Both inference algo-
rithms are exact, which renders us a more precise optimiza-
tion result for Eq (3). The detailed algorithm is omitted due
to the lack of space.

4.4 Pairwise Similarity Features
Our bestlink SVM requires a set of pairwise similarity

features as input to characterize the connection between a
pair of queries. In this work, we explored a variety of signals,
from lexicon similarity to query semantic category similarity,
to measure the similarity between a pair of queries.

Our proposed pairwise similarity features are list in Table
2, and categorized into three types: query-based, URL-based
and session-based similarities. To analyze the semantic re-
lationships between queries, we assign each URL to a top-
ic distribution over 385 categories from the second level of
“Open Directory Project” (ODP, dmoz.org) with a content-
based classifier [18]. The inner product of the predicted
topic distribution is used to measure the semantic similarity
between queries. Besides, to make the features compara-
ble across each other, we normalize them into the range of
[0,1] accordingly, e.g., taking reciprocal of the absolute time
difference between two queries.

5. IMPROVING THE MODEL WITH WEAK
SUPERVISION SIGNALS

The bestlink SVM proposed in Section 4.2 is a supervised
clustering algorithm that requires full annotation of tasks in
the query log. As we have discussed in Section 1, various
types of signals, which can be automatically derived from the
query logs, are helpful for identifying the search tasks. In
this section, we discuss how to make use of large quantities of
unlabeled data with weak supervision signals in the proposed
bestlink SVM.

We explore weak supervision signals for the cross-session
search task extraction problem from different perspectives,
and formalize them in terms of“must-link”and“cannot-link”
[22]. Query matching, e.g., identical or reformulated queries,
is a strong indication that two queries belong to the same
task. Besides, the returned URLs for the given query are also
an important source for determining the task membership:
because modern search engines have sophisticated query pre-



Table 3: Partial Annotation Rules.

Type Description

qi = qj
Must-link qi ⊂ qj or qj ⊂ qi

(ỹ(i) = ỹ(j)) URLi = URLj

clicked URLi=clicked URLj

Cannot-link qi ̸= qj AND URLi ∩ URLj = ∅
(ỹ(i) ̸= ỹ(j))

processing procedures, e.g., spelling correction [7] and query
rewriting [12], when it decides to return identical URLs for
two different queries, it is a strong signal that the two queries
are related. Table 3 lists four types of must-link and one
type of cannot-link we have defined in this work. When
there is conflict between the automatically generated must-
links and cannot-links, e.g., nontransitive, we will drop the
cannot-links to make the annotations consistent.
Though one may treat such signals as features and man-

ually tune the weights to stress their importance, we want
emphasize that this approach is sub-optimal for the follow-
ing two reasons: 1) features are independent in linear mod-
els, the knowledge about one feature cannot help the model
learn for other features; instead, if we treat such information
as supervision, all the features can be adjusted according-
ly; 2) it is difficult to manually set the appropriate weights
for all the features; while optimizing the objective function
defined on both weak supervision and manual annotations
would estimate the weights in a systematic way.
Note that when we apply the proposed must-link and

cannot-link to the unlabeled user query logs, we can only
get partial annotations on those queries given that the cov-
erage of the weak supervision is not perfect. We denote the
partial annotation as ỹ, and to accommodate such partial
annotations in bestlink SVM, we modify the margin defined
in Eq (4) as follows,

∆̃(ỹn, ŷ, ĥ) = |Qn| − |Cn| −
∑
i,j

h(i, j)σ̃(y, (i, j)) (5)

where |Cn| is the number of connected components (includ-
ing singletons) defined by must-links inQn, and σ̃(y, (i, j)) =
λ+ if ỹ(i) = ỹ(j), σ̃(y, (i, j)) = −λ− if ỹ(i) ̸= ỹ(j), other-
wise σ̃(y, (i, j)) = 0 when there is no annotation between
query i and j. This modificatoin makes our bestlink SVM a
semi-supervised clustering algorithm.

We can easily verify that ∆̃(ỹn, ŷ, ĥ) is a more general
definition of the distance between the given (or partial) task
partition and the predicted task partition, in which we count

how many edges in ĥ are consistent with given annotation
(or must-links) in ỹ, and how many of them are conflicting
with the annotation (or must-/cannot-links). In addition,
to distinguish the creditability of the rule-based must-link
and cannot-link, we assign them different cost factors, i.e.,
λ+ > 0 and λ− > 0, which can be set according to model’s
performance on a manually annotated held-out set.

6. EXPERIMENT RESULTS
In order to evaluate the proposed method, we performed a

series of experiments on a large scale search dataset sampled
from the query logs from Bing.com. First, we compared the
performance of the proposed bestlink SVM to several state-
of-the-art methods for the cross-session search task extrac-

tion problem. Then, a set of experiments were conducted
to study the effectiveness of using weakly supervised data,
which is automatically derived from user query logs, for i-
dentifying cross-session search tasks.

6.1 Query Log Dataset
We extracted five days’ search logs from Bing.com, from

May 27 2012 to May 31 2012, for our experiments. Dur-
ing this period, a subset of users are randomly selected
and all their search activities are collected, including the
anonymized user ID, query string, timestamp, returned URL
sets and the corresponding user clicks. The 30-minutes in-
activity threshold is used to segment queries into sessions as
pre-processing [14, 23]. Since the focus is identifying cross-
session search tasks, we further filtered out the users who
submitted less than two queries or had less than two ses-
sions during this period. As a result, we collected 7,628
users with 114,723 queries. The basic statistics of this data
set are shown in Table 4.

Table 4: Statistics of evaluation query log data set.
# User # Session # Query
7628 37547 114723

Query/User Session/User Query/Session
15.1±17.2 4.9±3.5 3.1±1.2

Table 5: Statistics of annotated search tasks.
Single-query Task Multi-query Task

8044 2283
Multi-session Task Interleaving Task

1307 709
Task/User Query/Task*
7.2±10.1 6.6±8.2

Session/Task* Task duration (mins)*
2.8±2.6 491.1±933.5
∗count only in multi-query tasks

In order to evaluate the performance of the proposed method
in identifying cross-session search tasks, three editors were
recruited to annotate the search tasks. Editors were in-
structed to group the queries into tasks according to their
understanding of users’ information needs, and they were
encouraged to use external resources, e.g., search for the
logged queries and browse the clicked URLs, to infer the
relation between queries. The same set of 200 users’ query
logs are distributed in each editor’s annotation assignment
to measure their annotation agreement. Cohen’s kappa on
pairwise annotation of queries showed high inter-annotator
agreement, 0.68, 0.73 and 0.77, for the three pairs of edi-
tors. After aggregating the three editors’ annotations, we
got a collection of 10,327 tasks annotated out of 1,436 user-
s’ search logs, and the basic statistics of this data set are
shown in Table 5.

From Table 5, we observed that in average a user takes 7.2
different tasks during this period, 22.1% of which contain
multiple queries, more than 57.2% multi-query tasks span
across session boundaries, and 31.1% of them are interleav-
ing. This shows the need of going beyond session boundaries
to extract the long-term search tasks. In particular, when we
look into those multi-query tasks, they span 6.6 queries, 2.8
sessions and more than 8 hours in average. This indicates
that cross-session task extraction is not a trivial problem,
and one needs to leverage rich information for identifying
the structure of a cross-session search task.



6.2 Search Task Extraction

6.2.1 Baselines
Several methods have been proposed to identify cross-

session search tasks based on the idea of same-task clas-
sification [11, 13]. However, those methods only provide
predictions over pair of queries, and post-processing is need-
ed to obtain the final task partitions. In our experiment,
we adapted two best performing clustering methods from
Lucchese et al.’s work [15], i.e., QC wcc and QC htc, as the
post-processing procedure for the baselines. QC wcc per-
forms clustering by dropping “weak edges” among queries
and extracting the connected components as tasks. QC htc
assumes a cluster of queries can be well represented by only
the chronologically first and last query in the cluster, and
therefore only the similarity among the first and last queries
of two clusters is considered in agglomerative clustering. We
trained a linear SVM model to classify if two queries are in
the same task, treated the predicted positive query pairs
as “strong edges,” and applied QC wcc and QC htc to ob-
tain the final task partition. In this setting, QC wcc works
exactly the same as Liao et al. proposed in [14].
Since our proposed bestlink-SVM can be viewed as a su-

pervised clustering method [6, 8, 22], we also included two
state-of-the-art supervised clustering methods, i.e., “adaptive-
clustering” [6] and “cluster-svm” [8] as baselines. Adap-
tive clustering (AdaptClu) performs single-link agglomer-
ative clustering based on binary classification results. To
avoid overfitting, it selects a representative subset of all the
candidate pairs based on their similarities when training the
binary classifier. In our experiment, we used the summation
of all the pairwise similarities as defined in Table 2 between
two queries (with negative signs for edit-distance-based sim-
ilarities) for selecting the representative subset of queries.
cluster-svm performs correlation clustering by learning a
structural SVM model, which simultaneously optimizes the
pairwise accuracy and in-cluster similarity defined by all-link
in one cluster.
To make a fair comparison, all the methods are trained

on the same set of pairwise features defined in Table 2.

6.2.2 Performance metrics
A commonly used evaluation metric for search task ex-

traction is pairwise precision/recall [11, 13] defined as,

ppair =

∑
i<j δ

(
y(qi), y(qj)

)
δ
(
ŷ(qi), ŷ(qj)

)∑
i<j δ

(
ŷ(qi), ŷ(qj)

) (6)

rpair =

∑
i<j δ

(
y(qi), y(qj)

)
δ
(
ŷ(qi), ŷ(qj)

)∑
i<j δ

(
y(qi), y(qj)

) (7)

where ppair evaluates how many pairs of queries predicted
in the same task, i.e., δ

(
ŷ(qi), ŷ(qj)

)
= 1, are actually anno-

tated as in the same task, i.e., δ
(
y(qi), y(qj)

)
= 1; and rpair

evaluates how many pairs annotated as in the same task are
recovered by the algorithm.
However, it is worth noting that these metrics cannot di-

rectly measure the clustering quality, and have some limita-
tions: 1) they ignore singleton tasks, since no pairs can be
formed from such tasks; 2) they intrinsically favor methods
producing fewer tasks [16]. Inspired by the metrics used in
the problem of co-reference resolution in natural language
processing, we employed the Constrained Entity-Alignment
F-Measure (f1CEAF) as proposed in [16] to evaluate the clus-

tering quality. CEAF defines the clustering precision and
recall based on the best alignment between the predicted
cluster and ground-truth cluster, where the alignment can
be measured by any similarity function defined on two sets:

pCEAF =

∑
i π(T̂i, g(T̂i))∑
i π(T̂i, T̂i)

(8)

rCEAF =

∑
i π(T̂i, g(T̂i))∑
j π(Tj , Tj)

(9)

where π(A,B) is a similarity measure between set A and
B, which is chosen to be Jaccard coefficient in our evalua-
tion; and g(·) is the optimal mapping between the predicted

task partition T and ground-truth task partition T̂ . Then,
f1CEAF can be calculated as,

f1CEAF =
2× pCEAF × rCEAF

pCEAF + rCEAF
(10)

Furthermore, we also included Normalized Mutual Infor-
mation (NMI), a standard metric for evaluating the cluster-
ing quality, as one of our evaluation metrics. The detailed
definition of NMI can be found in [3]. Basically, the higher
the NMI score the better clustering performance an auto-
matic system achieves: NMI= 1 if the prediction is identical
to the ground-truth; and NMI= 0 if the prediction is inde-
pendent from the ground-truth.

6.2.3 Evaluation of search task extraction methods
We randomly split the annotated user query logs into a

training set with 712 annotated users, and a testing set with
the rest 725 annotated users. The parameters in each model,
e.g., C in SVM-based models, are tuned by 5-fold cross-
validation on the training set (splitting the annotated users
into different folds).

We trained all the methods on the manually annotat-
ed training set, and compared their task extraction perfor-
mance in Table 6, where we averaged the performance under
each metric over all the testing cases. A paired two-sample
t-test is performed to validate the significance of improve-
ment from the best performing method against the runner-
up method under each metric.

Table 6: Search Task Extraction Performance.

ppair rpair f1CEAF NMI

Q wcc 0.8653 0.9833∗ 0.4826 0.4058
Q htc 0.9213 0.8607 0.5461 0.5636

AdaptClu 0.9059 0.9046 0.5583 0.5466
cluster-svm 0.9232 0.7908 0.5363 0.5602

bestlink SVM 0.9330∗ 0.9273 0.5895∗ 0.6046∗

AdaptCluall 0.8681 0.4611 0.2880 0.3236
Rule-based 0.8954 0.5570 - -

∗ indicates p-value<0.01

In Table 6 we first observed that cluster-svm, which is
also a structural learning method, performed much worse
than bestlink SVM, especially on rpair. The reason is that
cluster-svm optimizes the in-cluster similarity defined by all-
link among the queries; while in bestlink SVM, the in-cluster
similarity is only defined on the bestlink among the queries,
or more precisely, the edges exist in h (as shown in Eq (2)).
To validate this hypothesis, we implemented an additional
baseline of all-link -based adaptive clustering (AdaptCluall).
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Figure 2: Task extraction performance with increasing volume of weakly supervised data.

In AdaptCluall, we changed the original single-link agglom-
erative clustering to all-link agglomerative clustering, where
the in-cluster similarity is defined the same as in cluster-
svm. As observed in the result, AdaptCluall performed sig-
nificantly worse than AdaptClu, especially on rpair. This
result validates our basic modeling assumption in the pro-
posed bestlink SVM, i.e., a query belonging to a particular
task should have a strong connection with at least another
one query rather than all the other queries in the same task.
Besides, as discussed in Section 2, due to the lack of inter-

action between the binary classifier training and query clus-
tering in post-processing, the two-step approaches are likely
to give suboptimal task extraction performance. Q wcc and
Q htc are based on the same binary classifier’s output, but
their performance differs because of distinct strategies used
in post-processing. Q wcc tends to connect all the queries
together, and results in a high rpair, but poor performance
on other metrics. On the other hand, because Q htc on-
ly compares the first and last queries between two different
clusters, it gives a relatively lower rpair, but better clustering
performance due to a better ppair, as compared to Q wcc.
In Section 5, we proposed a method for automatically gen-

erating weak supervision from search logs in the form of
must-link and cannot-link. In Table 6, we also evaluated
the quality of such weak supervision. Since the rule-based
supervision merely provides pairwise annotations, we only
evaluated its ppair and rpair. In general, ppair of these auto-
generated annotations is reasonably good, while rpair is rel-
atively poor. This result is expected: the method described
in Table 3 uses strong signals for annotation; but the cover-
age of such signals is limited, since some relations between
two distinct queries can only be inferred by reasoning over
the whole query sequence by human judges.

6.2.4 Effectiveness of weakly supervised data
To investigate the effectiveness of the weak supervision in

helping to train the supervised model, we gradually added
the weakly supervised data into our training set. We first
obtained the pairwise annotations, as defined in Table 3, for
those users who have not been manually annotated; then we
gradually added such partially labeled user query logs into
the manually-annotated training set. For binary-classification-
based baselines, i.e., Q wcc, Q htc and AdaptClu, the newly
added pairwise annotations are used as regular training su-
pervision; for cluster-svm, the loss function is modified to
adopt the partial annotations (similar as Eq (5)). The ex-
perimental results are summarized in Figure 2.

From Figure 2 we can study the utility of weakly super-
vised data on cross-session task extraction. As shown in Fig-
ure 2 (c) and (d), the supervised learning methods benefit
from a medium volume of weakly supervised data; but when
the volume reaches certain limit, the performance stops im-
proving, and even degrades. Figure 2 (a) and (b) help to
explain why this happens: all methods’ rpair performance
drops when adding the weakly supervised data for train-
ing, but their ppair performance improves. With the im-
proved ppair, all methods’ clustering performance, in terms
of f1CEAF and NMI, gets improved. As shown in Table 6,
the weakly supervised data has high precision but low recal-
l, adding more such training signals would bias the models
toward recognizing the pairs similar to those high-precision
must-links. When the volume of weakly supervised data
passes a limit, it will overwhelm the signals from human an-
notations; and therefore hinders further improvement. Fig-
ure 2 also shows that, compared to the two-step methods,
the structural learning based method, i.e., cluster-svm and
bestlink SVM, can utilize more weakly supervised data be-



fore the performance saturates. The reason is that struc-
tural learning method directly optimizes (or approximates)
the clustering metrics during training. The two-step meth-
ods perform classification and clustering independently, and
there is inconsistency between training objective and evalu-
ation in these two-step methods. As a result, errors in the
learned binary classifier cannot be recovered easily in the
clustering stage in those methods.

6.2.5 Weakly supervised search task extraction
We are also interested in investigating how well the models

could perform when there is only weakly supervised data
generated by the proposed must-link and cannot-link. In
other words, we want to test if the learning methods’ task
extraction capability can go beyond the simple annotation
rules. In this experiment, we only trained the models on the
6,192 unannotated users with weak supervision, and tested
them on the same manually annotated testing set as before.
In order to analyze how well the methods generalize from the
weakly supervised data, we included a naive baseline Rule-
Q wcc: we adopted Q wcc by treating the queries connected
by the must-links as a task.

Table 7: Task extraction performance when trained
only on the weakly supervised data.

ppair rpair f1CEAF NMI

Rule-Q wcc 0.9084 0.5136 0.5492 0.5602
Q wcc 0.9123 0.8582 0.5397 0.5285
Q htc 0.9204 0.7747 0.5440 0.5669

AdaptClu 0.9131 0.8613∗ 0.5426 0.5325
cluster-svm 0.9155 0.7565 0.5197 0.4805

bestlinkSVM 0.9334∗ 0.8161 0.5676∗ 0.5893∗

∗ indicates p-value<0.01

As shown in Table 7, all the methods improved ppair and
rpair against Rule-Q wcc, and especially for rpair. However,
not all of them can improve the clustering quality metric:
besides bestlink SVM, only Q htc improves NMI metric. We
looked into the detailed output of those methods and found
that: Rule-Q wcc generated many singleton tasks because of
the low coverage of must-links; the baseline models merged
some of the small clusters into larger ones, but they still cre-
ated too many smaller clusters than ground-truth. bestlink
SVM further merged the small clusters correctly, making the
number of predicted tasks closest to the ground-truth, and
therefore it achieved better clustering performance.
We wanted to further investigate how many“complex tasks,”

which are not covered by the must-links defined in Table
3, can be extracted by learning from the weak supervision.
Specifically, we define the complex task as: T ∗

strict, in which
no must-link can be applied on any pair of queries in it
(strict criterion); or T ∗

loose, there exists at least one pair of
queries cannot be connected via must-links in it (loose cri-
terion). Based on this notation, we define the coverage of
complex task as the proportion of complex tasks which can
be perfectly recovered by the automatic methods,

cloose =

∑
Ti∈T̂

∑
Tj∈T ∗

loose
δ(Ti, Tj)

|T ∗
loose|

(11)

cstrict =

∑
Ti∈T̂

∑
Tj∈T ∗

strict
δ(Ti, Tj)

|T ∗
strict|

(12)

where δ(X ,Y) = 1 when the set X and Y are the same, and
otherwise δ(X ,Y) = 0.

In this experiment, we used all the 1436 annotated users
as testing set, where we collected 357 strict complex tasks
and 1540 loose complex tasks out of the total 2283 multi-
query tasks. All the models are trained on the rest 6192
unannotated users with weak supervision, and the experi-
mental results are list in Table 8, where we used sign-test
for validating the improvement over the baselines.

We should note that all those complex tasks cannot be
identified by the straight-forward Rule-Q wcc baseline, so
that the newly defined task coverage metric measures how
well the learning methods can generalize from the weak su-
pervision. From the results we can notice that bestlink SVM,
which achieved the best performance against all the other
baselines, can successfully recover about 30% of complex
tasks by leveraging the knowledge from weak supervision,
which validates the effectiveness of using such signals as su-
pervision for model training.

Table 8: Coverage of complex tasks when trained
only on the weakly supervised data.

cloose cstrict

Q wcc 0.2914 0.2745
Q htc 0.2617 0.2761

AdaptClusingle 0.2837 0.2717
cluster-svm 0.2883 0.2997
bestlinkSVM 0.3207∗ 0.3501∗

∗ indicates p-value<0.01

6.3 Feature Weights in bestlink SVM
In order to understand which similarity features are im-

portant for the problem of cross-session task extraction, we
list the top two positive and top two negative features learned
by the proposed bestlink SVM under each category of pair-
wise similarity features defined in Table 9. To avoid bias
introduced by weak supervision, we only demonstrated the
weights learned from the manually annotated training set.

Table 9: Top 2 positive and top 2 negative features
under each type of pairwise similarity features in
bestlink SVM model.

Feature Weight

Q-COSINE 5.30
Q-JAC 1.51

U-JAC-ALL 4.53
U-SIM-AVG 3.05

S-SAME 1.00
S-DIST 0.60
Q-DIST -3.38
Q-EDIT -2.73

U-EDIT-DOMAIN-AVG -1.39
U-EDIT-ALL-CLICK-AVG -0.83

S-FIRST -0.28

As can be noticed in Table 9, Q-COSINE has the largest
importance weight for identifying queries belonging to the
same task; and U-JAC-ALL is also very informative for rec-
ognizing the similar queries. Besides, we found that bestlink
SVM assigns relatively low positive weight to S-SAME, and
Q-TIME is not the most important feature in the mod-
el. The reason is that we already knew 12.7% tasks span
cross session boundaries (as shown in Table 5), and placing
too large a weight on S-SAME and Q-TIME will forbid the
method from identifying those cross-session tasks.
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Figure 3: Identified latent search task structure.

6.4 Analysis of Identified Tasks
As we have discussed in Section 4.2, the latent structure

h defined in bestlink SVM is a tree formed by strong con-
nections between queries, where each subtree of the dummy
query q0 corresponds to a search task. In Figure 3, we il-
lustrated the latent task structure inferred by our bestlink
SVM from two different users’ query logs.
Comparing to the flat clustering structure given by the

traditional search task extraction methods [13, 15], the hi-
erarchical structure inferred by bestlink SVM provides us
with more in-depth details to understand users’ search be-
haviors and their information needs. For example, in Figure
3 we can clearly notice that the identified task structure for
User2 is more complex than that for User1: User1 attempt-
ed three consecutive tasks on May 29; while User2’s two
major search tasks, i.e., checking daily news and looking for
solutions of her health issue, spanned from May 28 to May
31, and were performed in an interleaved manner. And the
subtrees in an identified search task represent finer grained
subtasks. For instance, as shown in Figure 3, in User2’s sec-
ond identified task of “plantar fasciitis symptoms,” there are
two subtasks, one starts with “plantar fasciitis pictures” and
another starts with “chagas disease.”
At the beginning of Section 6, we listed a brief overview of

basic properties of search tasks based on a limited number
of human annotations. Now we can get a more comprehen-
sive understanding of user’s search behaviors based on the
automatically extracted search tasks in our whole query log
data set. We listed a set of statistics in Table 10, where
we applied a proprietary multi-class classifier to categorize
a query into 80 different categories, e.g., navigational, com-
merce, celebrity and etc., in order to annotate the search
intent of queries.
As shown in Table 10, user’s search intent in each extract-

ed task is quite concentrated: despite the fact that there are
in average 4.41 queries in a task, there are only 1.47 differ-
ent intents. Particularly, when the user’s intent is purely
navigational, the task will get mostly simplified: only 1.38
unique queries per task. And more than 25% identified tasks
only contain navigational queries. Another interesting phe-
nomenon we found is the transition probability between the
navigational and non-navigational queries, which is estimat-
ed within the identified tasks, is quite different: the chance
a user issues a non-navigational query after a navigation-

Table 10: Statistics of extracted search tasks.
Query/Task UniQuery/Task
4.41±7.48 2.80±4.04
Intent/Task % of NavTask
1.47±1.20 25.37

Query/NavTask UniQuery/NavTask
2.45±2.67 1.38±0.80

P(non-nav|nav) P(nav|non-nav)
0.288 0.124

al query is much lower than the opposite direction. One
possible explanation for this is that when user issues a non-
navigational query, they usually do not have a clear sense
of where to find the information yet, so they are more likely
to keep submitting the questions to the search engine; but
when they have specific destination in mind, they would s-
tart to issue questions to explore more perspectives of the
information they are interested in.

7. CONCLUSIONS
Search tasks frequently span multiple sessions, and thus

developing methods to extract these tasks from historic da-
ta is central to understanding longitudinal search behaviors
and in developing search systems to support users’ long-
running tasks. In this paper, we have presented a nov-
el method for learning to accurately extract cross-session
search tasks from users’ historic search activities. We devel-
oped a semi-supervised clustering model based on the laten-
t structural SVM framework, which is capable of learning
inter-query dependencies from users’ searching behaviors.
A set of effective automatic annotation rules are proposed
as weak supervision to release the burden of manual an-
notation. Comprehensive experimentation using large-scale
search logs from a commercial search engine demonstrated
the superior performance of our method in identifying cross-
session search tasks versus a number of state-of-the-art al-
gorithms. Importantly, we were able to obtain performance
gains while reducing the reliance on costly human annota-
tions via the automatically generated weak supervision. The
results are promising and pave the way for a range of future
work in this area, including user modeling and long-term
task based personalization.
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