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The contents and opinions described in this tutorial do 
not necessarily reflect the opinions of Microsoft.

Technologies mentioned might or might not be in 
actual use.
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Motivation
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Goals of this Tutorial

• Help identify many interesting applications in the field of Entity 
Recommendation and Understanding

• Present the current state of research on related topics

• Pinpoint challenging research problems
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Outline

• Introduction to Entity and Knowledge

• Demonstration of Microsoft’s Entity Experience

• Entity Recommendation and Understanding
̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦)

̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟)

̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)

• Summary
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Introduction to Entity and 
Knowledge
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Why “Entities”
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Why “Entities”
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Why “Entities”
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Time in florence

Florence population Florence travel tips

What’s the weather in florence

Popular schools in florence

Florence places to go

Cities similar to florence

Florence photos

How big is florence

One single Entity Pane can 
answer many user queries 
and satisfy users’ diverse 
information needs



Why “Entities”
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Why “Entities”
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Because Entities are Surrounded by 
Knowledge
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Why People Search?
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Our Job
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Entity Graphs
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Freebase

Knowledge Graph Satori Knowledge Base



Entity Definition
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Knowledge Definition
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Headquarters

Home Field

Location
NFL championships: 2013

Head coach: Pete Carroll

Founded: 1976

Division: NFC West

Address: 400 Broad St, Seattle, 98109

Phone: (800) 937-9582

Opened: Apr 21, 1962

Height: 605 feet (184.41 m)

Floors: 6

Founded: Mar 30, 1971 · Pike Place Market

Customer service: +1 800-782-7282

CEO: Howard Schultz

Founders: Jerry Baldwin · Zev Siegl · Gordon Bowker

Population: 652,405 (2013)

Area: 142.55 sq miles (369.20 km²)

Mayor: Ed Murray



Entity Graphs
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Why “Entity Recommendation”

• Information Explosion
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Why “Entity Recommendation”

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 22

Freebase



Why “Entity Recommendation”

• Information Overload
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Help Explore the 
Knowledge Base



Why “Entity Recommendation”
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Why “Entity Recommendation”
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Why “Entity Recommendation”
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Why “Entity Understanding”

• Knowledge Bases are just an unordered list of facts
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Why “Entity Understanding”

• Knowledge Bases are just an unordered list of facts

• Understanding is
̶ Ranking facts

̶ Creating connections between entities

̶ Connecting entities and facts to queries and documents

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 28



Why “Entity Understanding”
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• When a user typed “Florence”, how do you know which “Florence”?



Why “Entity Understanding”

• When a user typed “how tall is he”, how do you know who is “he”?
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Why “Entity Understanding”

• When a user clicked a few Web pages, how do you know what kind of 
entities this user is interested in?
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Technologies

• Natural Language Processing

• Machine Learning

• Information Retrieval

• Recommender Systems

• Text and Log Mining

• ……
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Data Sources

• Wikipedia
̶ Semi-structured free Internet encyclopedia, contributed by community members

• Freebase
̶ Structured data composed mainly by its community members
̶ Acquired by Google on July 2010, and will be retired on June 2015
̶ Data will be ported to WikiData

• WikiData
̶ a collaboratively edited knowledge base

• DBPedia
̶ Extracted structured information from Wikipedia

• Yago
̶ a knowledge base automatically extracted from Wikipedia and other sources
̶ Accuracy 95.02% based on manual evaulation

• Web Documents

• Queries and Search Click Log

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 34



Applications

• Entity Pane Experiences
• Entity Recommendation

̶ Recommendation and Ranking
̶ Interpretation
̶ Exploration
̶ Personalization

• Factoid Answers
• Graph Search
• Conversational Question and Answering
• Natural Language Question and Answering
• ... …
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Outline
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Demonstration of Microsoft’s 
Entity Experience
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Entities are deeply integrated

• Bing
̶ SERP, Images, Videos, Maps, …

• Office

• Windows

• Edge Browser

• Phone

• Xbox
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Integrated Entity Experiences

• Combine data from many sources for an entity to build a rich user 
experience.
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Entity
Licensed 

data

Web 
page

Web 
page UGC

Open 
data

Inferred 
knowledge
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http://blogs.bing.com/search/2013/12/12/expand-your-understanding-with-bing/

http://blogs.bing.com/search/2013/12/12/expand-your-understanding-with-bing/
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http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-peoples-lives/

http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-peoples-lives/


Online Courses
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Long tail of interconnected entities
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http://blogs.bing.com/search/2014/03/31/150-million-more-reasons-to-love-bing-everyday/

http://blogs.bing.com/search/2014/03/31/150-million-more-reasons-to-love-bing-everyday/


Actions – facilitate
task completion
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Demonstration of Microsoft’s Entity 
Experience

Question Answering
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Conversational Question Answering
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http://blogs.bing.com/search/2014/08/13/lets-have-a-conversation/

http://blogs.bing.com/search/2014/08/13/lets-have-a-conversation/
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Demonstration of Microsoft’s Entity 
Experience

Diversity of entity collections
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Segment-specific entity rankings



Demonstration of Microsoft’s Entity 
Experience

Entities in the platform
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Bing Predicts

https://www.bing.com/explore/predicts

https://www.bing.com/explore/predicts
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Bing Predicts



WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 72

Bing Widget API

http://blogs.bing.com/webmaster/2014/01/03/bringing-the-power-of-bing-knowledge-to-webmasters/
http://blogs.bing.com/webmaster/2014/06/19/bing-knowledge-comes-to-webmaster-tools/
http://blogs.bing.com/webmaster/2014/05/15/mark-it-up/

http://blogs.bing.com/webmaster/2014/01/03/bringing-the-power-of-bing-knowledge-to-webmasters/
http://blogs.bing.com/webmaster/2014/06/19/bing-knowledge-comes-to-webmaster-tools/
http://blogs.bing.com/webmaster/2014/05/15/mark-it-up/
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App Linking

http://blogs.bing.com/webmaster/2014/04/02/announcing-bing-knowledge-widget-app-linking/
http://www.bing.com/webmaster/help/app-linking-09399b4b

http://blogs.bing.com/webmaster/2014/04/02/announcing-bing-knowledge-widget-app-linking/
http://www.bing.com/webmaster/help/app-linking-09399b4b
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App Linking
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Office Insights

http://blogs.bing.com/search/2014/12/10/bing-brings-the-worlds-knowledge-straight-to-you-with-insights-for-office/
http://blogs.office.com/2014/12/11/first-look-insights-office-word-online-bringing-knowledge-web-document/
http://blogs.office.com/2014/12/10/whats-new-office-online/

http://blogs.bing.com/search/2014/12/10/bing-brings-the-worlds-knowledge-straight-to-you-with-insights-for-office/
http://blogs.office.com/2014/12/11/first-look-insights-office-word-online-bringing-knowledge-web-document/
http://blogs.office.com/2014/12/10/whats-new-office-online/
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Office Insights
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Office Insights
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Edge Browser

http://windows.microsoft.com/en-us/windows/preview-microsoft-edge-pc

http://windows.microsoft.com/en-us/windows/preview-microsoft-edge-pc
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http://blog.nwf.org/2014/01/is-the-seahawk-a-real-bird/

http://blog.nwf.org/2014/01/is-the-seahawk-a-real-bird/
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http://blog.nwf.org/2014/01/is-the-seahawk-a-real-bird/

http://blog.nwf.org/2014/01/is-the-seahawk-a-real-bird/
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Phone / Cortana

http://www.windowsphone.com/en-us/how-to/wp8/cortana/what-can-i-say-to-cortana
http://blogs.bing.com/search/2014/10/17/bing-adds-smarts-to-cortana/

http://www.windowsphone.com/en-us/how-to/wp8/cortana/what-can-i-say-to-cortana
http://blogs.bing.com/search/2014/10/17/bing-adds-smarts-to-cortana/
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Windows

http://blogs.bing.com/search/2013/10/18/unwrapping-windows-8-1-bing-smart-search/

http://blogs.bing.com/search/2013/10/18/unwrapping-windows-8-1-bing-smart-search/
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Windows
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Xbox

http://blogs.bing.com/search/2013/11/19/xbox-bing-deliver-me-a-whole-new-way-to-search/

http://blogs.bing.com/search/2013/11/19/xbox-bing-deliver-me-a-whole-new-way-to-search/


Challenges

• Speed – entity search can’t slow down web search.

• Size – serve hundreds of millions of entities online.

• Generalize to tail – how to retrieval and recommend tail entities when 
there are no popularity signals.

• Ambiguity – how to ask users to clarify intent.
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Outline

• Introduction to Entity and Knowledge

• Demonstration of Microsoft’s Entity Experience
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Entity Recommendation and 
Understanding
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Traditional Recommender Systems
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Traditional Recommender Systems

• Recommender Systems have been well studied from many aspects
̶ Collaborative filtering
̶ Content-based
̶ Context-aware
̶ Rating-based
̶ Learning to Rank
̶ Diversity
̶ Serendipity
̶ Social-Aware
̶ Temporal
̶ Explore/Exploit
̶ … … 
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Traditional Recommender Systems

• Majority of the algorithms is focusing on Personalization
̶ 𝑃(𝑖𝑡𝑒𝑚|𝑢𝑠𝑒𝑟)

̶ User-Item Matrix
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Entity Recommender Systems

• Entity Graph
̶ Heterogeneous Graph

Freebase
2K+ commonly used types
30K+ commonly used properties
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Entity Recommender Systems

• Entity Graph
̶ Hugh Size

Freebase
47M+ topics
2.9B+ facts
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Entity Recommender Systems

• Non-Personalized
̶ 𝑃 𝑖𝑡𝑒𝑚 𝑖𝑡𝑒𝑚

̶ 𝑃(𝑖𝑡𝑒𝑚|𝑞𝑢𝑒𝑟𝑦)
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Entity Recommender Systems

• Personalization
̶ 𝑃(𝑖𝑡𝑒𝑚|𝑢𝑠𝑒𝑟)

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 94



Entity Recommender Systems in Search

• Recommendation & Ranking

• Interpretation

• Entity Collection Recommendation

• Exploration

• Personalization
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Recommendation & Ranking
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Interpretation



WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 98

Entity Collection Recommendation
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Entity Collection Recommendation
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Exploration



Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑖𝑡𝑒𝑚 𝑖𝑡𝑒𝑚

̶ Recommendations given an item

• 𝑃 𝑖𝑡𝑒𝑚 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

• 𝑃(𝑖𝑡𝑒𝑚|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query
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Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ Recommendations given an entity

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query
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Item Entity



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦)

• 𝑃 𝐹𝑙𝑜𝑟𝑒𝑛𝑐𝑒 𝐼𝑡𝑎𝑙𝑦 =
𝐹𝑟𝑒𝑞(𝐹𝑙𝑜𝑟𝑒𝑛𝑐𝑒, 𝐼𝑡𝑎𝑙𝑦)

𝐹𝑟𝑒𝑞(𝐼𝑡𝑎𝑙𝑦)

• 𝑃 𝐹𝑙𝑜𝑟𝑒𝑛𝑐𝑒 𝐼𝑡𝑎𝑙𝑦 =
𝑆𝑖𝑚(𝐹𝑙𝑜𝑟𝑒𝑛𝑐𝑒,𝐼𝑡𝑎𝑙𝑦)

 𝑆𝑖𝑚( ∗ , 𝐼𝑡𝑎𝑙𝑦)

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 103

Item-Based Top-N Recommendation Algorithms [Mukund Deshpande, et al., ACM TOIS 2004]

Co-occurrence

Cosine Similarity



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

• Sources
̶ Within Queries

̶ Across Queries

̶ User Url Clicks

̶ Wikipedia Pages

̶ Wikipedia Categories/Templates

̶ Wikipedia Revision Histories

̶ Web documents

̶ … …
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The Wisdom of Crowds



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 – Co-occurrence

• Within Queries
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Entity Recommendations in Web Search [Roi Blanco, et al., ISWC 2013]

How to extract 
those entities?



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

• Across Queries
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Entity Recommendations in Web Search [Roi Blanco, et al., ISWC 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

̶ User Url Clicks
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

̶ Wikipedia Pages
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

̶ Wikipedia Pages
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An Effective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia Links [David Milne, et al., AAAI 2008]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

̶ Wikipedia Pages
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Direct Link Shared Link Shared Backlink Directed Path

Exploratory Recommendations Using Wikipedia's Linking Structure [Adrian M. Kentsch, et al., Benelearn 2011]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

̶ Wikipedia 
Categories &
Templates
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WikiRelate! Computing Semantic Relatedness Using Wikipedia [Michael Strube, et al., AAAI 2006]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

• Wikipedia 
Revision 
History
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence

• Web documents
̶ Moon

̶ John F. Kennedy

̶ United States

̶ NASA

̶ Apollo 11

̶ Neil Armstrong

̶ Edwin “Buzz” Aldrin

̶ Michael Collins

̶ Astronauts
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TimeMachine:Timeline Generation for Knowledge-Base Entities [Tim Althoff, et al., arXiv:1502.04662, 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Co-occurrence
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• Entity Recommendations based on Wikipedia Co-occurrence



Entity Linking

• How to extract entities from Queries and Documents?
̶ Through Entity Linking!
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Entity Linking
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Entity Linking - Main Problem
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• Linking free text to entities
̶ Any piece of text

▫ News document

▫ Blog posts

▫ Tweets

▫ Queries

▫ …

• Entities taken from a knowledge base
̶ Freebase

̶ Wikipedia

̶ …
Entity Linking and Retrieval for Semantic Search [Edgar Meij, et al., WSDM 2014]



Entity Linking - Common Steps

• Determine “linkable” phrases
̶ Mention detection

• Select candidate entity links
̶ Link generation

̶ May include NILs (null values, i.e., no target in KB)

• Use “context” to disambiguate/filter/improve
̶ Disambiguation
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Entity Linking and Retrieval for Semantic Search [Edgar Meij, et al., WSDM 2014]



Entity Linking

• An Example
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Learning to Link with Wikipedia [David Milne, et al., CIKM 2008]



Public Toolkits for Entity Linking

• Wikipedia Miner

• TagMe

• DBpedia Spotlight

• IIIinios Wikifier

• AIDA

• RPI Entity Linking System
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Entity Linking and Retrieval for Semantic Search [Edgar Meij, et al., WSDM 2014]



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 - Recap

• Co-occurrence
̶ Within Queries

̶ Across Queries

̶ User Url Clicks

̶ Wikipedia Pages

̶ Wikipedia Categories/Templates

̶ Wikipedia Revision Histories

̶ Web documents

• Entity Linking

• Similarity
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Similarity 

• TF*IDF scores based on Wikipedia Corpus
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Similarity

• Entity Recommendations based on Wikipedia textual similarity
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Similarity

• Challenges
̶ Textual Similarity suffers the vocabulary mismatch problem

▫ “USA” and “United States of America” are semantically equivalent, yet share no terms in 
common

• Solution
̶ Project entities into latent space that can semantically represent the entities
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding

• Word Embedding
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Linguistic Regularities in Continuous Space Word Representations [Tomas Mikolov, et al., ACL 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding

• Word Embedding
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Linguistic Regularities in Continuous Space Word Representations [Tomas Mikolov, et al., ACL 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding

• Word Embedding
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Efficient Estimation of Word Representations in Vector Space [Tomas Mikolov, et al., ICLR 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding
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Distributed Representations of Words and Phrases and their Compositionality [Tomas Mikolov, et al., NIPS 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding
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Efficient Estimation of Word Representations in Vector Space [Tomas Mikolov, et al., ICLR 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding

• How to apply Word Embedding 
in Entities?

̶ Perform entity linking on 
documents

̶ Treat each entity as a single word

̶ Learning the representation
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Word2Vec [Tomas Mikolov, et al., ICLR 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) – Word Embedding

• Entity Recommendations based on Word Embedding (Skip-gram)

• Trained on 100M Google News Articles
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Word2Vec [Tomas Mikolov, et al., ICLR 2013]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦)

• Co-occurrence and Textual 
Similarity methods work 
well

• Textual Similarity method 
is very topic- or genre-
related

• Word Embedding might 
not always work (depend 
on training data)
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Co-occurrence

Textual Similarity

Word Embedding



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 - Recap

• Co-occurrence
̶ Within Queries
̶ Across Queries
̶ User Url Clicks
̶ Wikipedia Pages
̶ Wikipedia Categories/Templates
̶ Wikipedia Revision Histories
̶ Web documents

• Entity Linking
• Similarity

̶ Textual Similarity
̶ Word Embedding

• Interpretation
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𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦
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Why are they related to 
“Florence Cathedral”?



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 - Interpretation
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Problem definition
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Explaining Relationships Between Entities [Nikos Voskarides]

Input

Output



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Entity text representation
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Explaining Relationships Between Entities [Nikos Voskarides]

Wikipedia Title:
Barack Obama

Wikipedia Anchor:
President obama

Wikipedia Redirect:
Obama

Wikipedia Title:
Bill Clinton

Wikipedia Anchor:
Clinton

Wikipedia Redirect:
President clinton



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Candidate Sentences
̶ On the wiki pages of “Barack Obama” and “Bill Clinton”

̶ Keep those sentences that contains at least one entity’s text representations
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Explaining Relationships Between Entities [Nikos Voskarides]

Wikipedia Title:
Barack Obama

Wikipedia Anchor:
President obama

Wikipedia Redirect:
Obama

Wikipedia Title:
Bill Clinton

Wikipedia Anchor:
Clinton

Wikipedia Redirect:
President clinton



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Sentences enrichment
̶ Perform Co-reference resolution

̶ Replace detected strings with the entity text representations

̶ Examples:
▫ “He”  Barack Obama

▫ “The company”  Toyota

▫ “The film”  Titanic
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Explaining Relationships Between Entities [Nikos Voskarides]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Sentences enrichment
̶ Perform Entity Linking on Wikipedia articles
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Explaining Relationships Between Entities [Nikos Voskarides]

In response to the 2010 Haiti earthquake, U.S. President 

Barack Obama announced that Clinton and George W. 

Bush would coordinate efforts to raise funds for Haiti's 
recovery.

http://en.wikipedia.org/wiki/2010_Haiti_earthquake
http://en.wikipedia.org/wiki/George_W._Bush


𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Ranking sentences
̶ Generate features and using Learning to Rank algorithms to rank sentences

• Features
̶ Text features: Average IDF of terms of 𝑠 in Wikipedia; Number of terms in s; 

Part of Speech distribution of 𝑠; etc.

̶ Entity features: Number of entities in 𝑠; Whether 𝑠 contains links to both 𝑒𝑎
and 𝑒𝑏; Distance between 𝑒𝑎 and 𝑒𝑏 in 𝑠; Number of entities between 𝑒𝑎 and 
𝑒𝑏; etc.

̶ Relation features: Whether 𝑠 contains any term of 𝑟 (binary); Average score 
of phrases in word2vec(𝑟) that are matched in 𝑠; etc.

̶ Source features: Position of 𝑠 in document 𝑑; etc.
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Explaining Relationships Between Entities [Nikos Voskarides]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation
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Explaining Relationships Between Entities [Nikos Voskarides]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Challenges
̶ Relationships are missing or unknown in the real world scenarios
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦) - Interpretation

• Challenges
̶ The selected sentences should be more “interesting” instead of just 

replicating the relationships

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 144



Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ Recommendations given an entity
▫ Co-occurrence
▫ Similarity
▫ Entity Linking
▫ Interpretation

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 145



Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ Recommendations given an entity
▫ Co-occurrence
▫ Similarity
▫ Entity Linking
▫ Interpretation

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query
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Personalized Recommender Systems

• Problem definition
̶ User-Item Matrix

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 147

Rating/Frequency Implicit/One-class



Personalized Recommender Systems

• Memory-based methods
̶ Pearson Correlation Coefficient

̶ Vector Space Similarity/Cosine Similarity

• Model-based methods
̶ Matrix Factorization

̶ Probabilistic models

̶ Clustering

̶ Classification

̶ …
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Personalized Recommender Systems

• Memory-based methods
̶ Pearson Correlation Coefficient

̶ Vector Space Similarity/Cosine Similarity

• Model-based methods
̶ Matrix Factorization

̶ Probabilistic models

̶ Clustering

̶ Classification

̶ …
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Memory-based methods
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Personalized Recommender Systems

• Pearson Correlation Coefficient

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 156

GroupLens: an open architecture for collaborative filtering of netnews [Paul Resnick, et al., CSCW 1994]



Personalized Recommender Systems

• Challenges on using Memory-based methods
̶ Sparsity issue

▫ User-item matrix is normally very sparse, and the density is normally under 1%

▫ The sparsity issue will make estimating user similarity difficult and inaccurate

̶ Scalability
▫ Finding nearest neighbors require computation that grows with both the number of 

users and the number of items
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Personalized Recommender Systems

• Matrix Factorization
𝑀 𝑚×𝑛 = 𝑈 𝑚×𝑟 𝑉𝑛×𝑟

𝑇
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Personalized Recommender Systems

• Matrix Factorization
̶ Adding bias

̶ 𝑏𝑖𝑗 = 𝜇 + 𝑏𝑖 + 𝑏𝑗

̶ Predicting rating as

̶ 𝑟𝑖𝑗 = 𝑏𝑖𝑗 + 𝑢𝑖𝑣𝑗
𝑇

• Matrix factorization method is the single most effective method in the 
Netflix 1M prize challenge
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The Recommender Problem Revisited [Xavier Amatriain, et al., KDD 2014]



Personalized Recommender Systems

• Matrix Factorization
̶ What about implicit user-item 

matrix?

̶ Negative Sampling
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Implicit/One-class Negative Sampling

One-Class Collaborative Filtering [Rong Pan, et al., ICDM 2008]



An Incomplete List of Academic Papers on RS
• Breese et al. “Empirical analysis of predictive algorithms for collaborative filtering. ” UAI-1998.

• Deshpande et al. “Item-based top-n recommendation.” ACM TOIS-2004.

• Herlocker et al. “An algorithmic framework for performing collaborative filtering.” SIGIR-2009.

• Hofmann et al. “Collaborative filtering via gaussian probabilistic latent semantic analysis.” SIGIR-2003.

• Koren et al. “Factorization meets the neighborhood: a multifaceted collaborative filtering model.” KDD-2008.

• Koren et al. “Collaborative filtering with temporal dynamics.” KDD-2009.

• Koren et al. “Matrix factorization techniques for recommender systems.” IEEE Computer-2009.

• Linden et al. “Amazon.com recommendations: Item-to-item collaborative filtering.” Internet Computing-2003.

• Rennie et al. “Fast maximum margin matrix factorization for collaborative prediction.” ICML-2005.

• Salakhutdinov et al. “Probabilistic matrix factorization.” NIPS-2007.

• Salakhutdinov et al. “Bayesian probabilistic matrix factorization using markov chain monte carlo.” ICML-2008.

• Sarwar et al. “Item-based collaborative filtering recommendation algorithms.” WWW-2001.

• Si et al. “Flexible mixture model for collaborative filtering.” ICML-2003.

• Srebro et al. “Weighted low-rank approximations.” ICML-2003.
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Why is Entity Recommender System different?

• The problem definition for traditional recommender systems is 
clearer than entity recommender systems since most of the time 
user-item matrix is given
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Rating/Frequency Implicit/One-class



Why is Entity Recommender System different?

• Entity recommender systems are embedded within searching process, 
users’ preferences on entities are more difficult to observe
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Queries Clicks

Users



Why is Entity Recommender System different?

• The huge Entity Graph with knowledge makes entity recommender 
systems more challenging and also appealing 

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 164

Entities



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
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Queries Clicks

Entities

Users

Universal 
Recommender Systems



Current Entity Experience
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Current Entity Experience
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𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟

Movie recommendation for you

Book recommendation for you

Restaurant recommendation for you

Music album recommendation for you



𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
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movie recommendation for you restaurant recommendation for you

point of interest recommendation for you event recommendation for you

dec 5th dec 13th dec 6th dec 5th



User Logs and Entity Graph
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Problem Definition

• Consider entity related web 
pages

• User log sequence, sorted by 
timestamp

• Use 𝐿𝑇
𝑢 to predict 𝑒𝑇

𝑢
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Freebase

recommender system recommendation

userentity graph

search engine 
user logs

< 𝑒1
𝑢, 𝑒2
𝑢, … , 𝑒𝑡

𝑢, … , 𝑒𝑇−1
𝑢 , 𝑒𝑇

𝑢 >

user log sequence before T, denotes as 𝐿𝑇
𝑢

target entity page

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Benefits in Using User Logs and Entity Graph

• Besides implicit feedback, user log also has
̶ e.g., timestamp, dwell time, user country or region, time of day …

• Cross domain user log events
̶ Which movies will foxnews.com readers like?

• Besides entity relationship, entity graph also has
̶ e.g., movie release date, tagline, running time, gross revenue, budget, MPAA

rating, text description, number of ratings, …
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Exploring data - User interests drift
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]

The longer the time interval is, the less similar users’ interests are

Left: accumulated user interest similarity for two weeks
Right: averaged user interest similarity with relative time difference (number of day)

User interests are consistent within a 
short time period but drift over time



Exploring data - Cross Domain Correlation
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]

comicbookresources.com
(comic books)

The Avengers
Spider-Man
The Dark Knight Rises
Prometheus
Men In Black 3
Iron Man 2
Superman: The Man Of Steel
Thor
Snow White & Huntsman
Battleship

ruelala.com
(women shopping)

Magic Mike
The Avengers
Prometheus
Moonrise Kingdom
Ted
Snow White & Huntsman
Savages
Hunger Games
Rock of Ages
The Best Exotic Marigold HotelTop 10 most viewed 

movies estimated using 
cross domain correlation



Entity Pairwise Features
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𝑆(𝑒𝑖 , 𝑒𝑗)
Meta-path based 
entity similarity 
from Freebase

Entity attribute 
similarity (e.g., 

movie description)

Entity relations 
derived from user 
log (e.g., conditional 

probability)

Other pairwise or 
non-pairwise 
feature (e.g., 

popularity)

Cross domain user 
log events 
correlation

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Entity Pairwise Features
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]

Representative Features



Recommendation Models

• Global recommendation model
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events happened before T
𝐿𝑇
𝑢 =< 𝑒1

𝑢, 𝑒2
𝑢 , … , 𝑒𝑡

𝑢, … , 𝑒𝑇−1
𝑢 >

entity at timestamp T

time decay function

𝑤𝑡 𝑒𝑇 , 𝑒𝑡 = 𝛽𝑒
−𝛼 𝑇−𝑡

pairwise features

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Recommendation Models

• Personalized recommendation model (PRM)

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 178

for each user at target 
timestamp T

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Recommendation Models

• Personalized Recommendation with K-NN (PRM+KNN)
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Collaborative filtering

neighbor subsequences neighbor similarity

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



• Movie recommendation with search engine user log and movie
related freebase knowledge graph

̶ Sampled 1+ million users with at least one movie entity

̶ 2+ million movie related entities with attributes and relationships, including
movies, actors/actresses, directors, producers, etc.

Experiment Setup
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Evaluation

• Top 10 Mean Reciprocal Rank (MRR) as evaluation metric
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𝑀𝑅𝑅 =
1

|𝑇𝑒𝑠𝑡|
 

𝑖=1

|𝑇𝑒𝑠𝑡|
1

𝑟𝑎𝑛𝑘𝑖

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Comparison
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Comparison Method Description

Global Popularity Frequently visited movies in 3 months

Local Popularity Frequently visited movies in short 
time period

Domain Co-Click Recommend based on non-movie
related events

Matrix Factorization Implicit feedback factorization

Co-Click with Time Decay Conditional probability of events

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Performance
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Method MRR

Global Popularity 0.024

Local Popularity 0.043

Domain Co-click 0.039

Matrix Factorization 0.160

Co-Click Time Decay 0.340

Global Model 0.354

PRM 0.361

PRM+KNN 0.451

comparison
methods

proposed 
methods

• PRM+KNN utilizes neighbor information when recommending (CF)

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Analysis – Entity Popularity

• Popular movies are easier to 
predict than other movies

̶ Features in recommendation 
models favor popular movies, e.g., 
global and local popularity

̶ With sufficient training data for 
popular movies, high quality 
recommendation models can be 
learned in such scenarios
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Analysis – Number of Neighbors

• The more neighbors each user 
log sequence has, the better the 
results

̶ More neighbors indicate more 
data during parameter estimation

̶ User log sequences with more 
neighbors, are usually associated 
with popular movie entities
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On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



Analysis – Length of User Log Sequence

• Performance varies with sequence length
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0

0.1

0.2

0.3

0.4

0.5

0.6

less than
3

3 to 5 5 to 10 10 to 20 20 to 50 50 to 80 more
than 80Length of Sequence

M
R

R

Not enough data

1. User interests drift over time
2. Movie-holics have more diverse interests

On Building Entity Recommender Systems Using User Click Log and Freebase Knowledge [Xiao Yu, et al., WSDM 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟) – Conclusion

• It is possible to build a universal recommender system on top of any 
search engines

• The heterogeneous information in the entity graph can be very 
helpful in improving the recommendation results
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Entity Personalization

• Entity recommender systems - 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟)

• What are other possible entity personalization experiences that are 
fundamentally different
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]

Music album recommendation for you



Definitions
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A User

Main 
Entity

Related 
Entities

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Related Entities

• Current recommender:

̶ 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ 𝑃 𝑂𝑡ℎ𝑒𝑟 𝑀𝑜𝑣𝑖𝑒𝑠 𝐿𝑖𝑛𝑐𝑜𝑙𝑛

• User-specific information is 
completely ignored
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



User’s information needs are diverse

• Given “Lincoln” movie, a user 
may be interested in

̶ Movies directed by “Steven 
Spielberg”, or

̶ Movies starred by “Daniel Day-
Lewis”, or

̶ Movies related to “Abraham 
Lincoln ”, or

̶ Biographical movies, or

̶ Civil War movies, or

̶ ……
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]

Personalizing
Related Entities



Related entity personalization

• Goal: Given a main entity, we aim to recommend a list of related 
entities based on the search user’s interest.

• Three important dimensions are involved:
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User

𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟, 𝑒𝑛𝑡𝑖𝑡𝑦

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]

New Paradigm of 
Recommender Systems



User dimension

• User interest patterns can be mined through users’ interactions with 
the search engine

• Two sources:
̶ Search click log

̶ Entity pane log
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



User dimension

• User interest patterns can be mined through users’ interactions with 
the search engine

• Two sources:
̶ Search click log

̶ Entity pane log
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



User dimension

• User interest patterns can be mined through users’ interactions with 
the search engine

• Two sources:
̶ Search click log

̶ Entity pane log
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User ID Time Main entity Related entity Rank Click

32
7/9/2013
10:32:26

Pacific Rim Man of Steel 1 0

32
7/9/2013
10:32:26

Pacific Rim The Wolverine 2 0

32
7/9/2013
10:32:26

Pacific Rim The Lone Ranger 3 1

498
6/16/2013 
15:16:41

Leonardo DiCaprio Kate Winslet 1 0

498
6/16/2013 
15:16:41

Leonardo DiCaprio Johnny Depp 2 1

Entity pane log

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



User dimension

• User interest patterns can be mined through users’ interactions with 
the search engine

• Two sources:
̶ Search click log

̶ Entity pane log

• Each user is represented as a vector of features: 
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x

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Main entity

• Reflects the user’s current search interest

• Ignoring main entities leads to inferior performance
̶ If related entities are obtained based purely on the user’s past interest, they 

will be completely independent of her information need

• Each main entity is represented as a feature vector:
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y

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Related entity

• A user may click a related entity, when it is aligned with both her 
interest pattern and current need

• Clicks on related entities specify user interests in certain facets of the 
main entities

• Each related entity is represented as a feature vector:
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z

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Goal
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Knowledge base Search click log Entity pane log

Three-way Entity Model

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Three-way Entity Model (TEM)
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• Trilinear function:

• Weights     capture the associations among users, main entities and 
related entities

• Feature vectors:

i-th feature of user uj-th feature of main entity mk-th feature of related entity r

h

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



CTR incorporation

• Trilinear function contributes an important indicator to entity 
recommendation, especially for rare/new entities

• To further enhance recommendation on popular entities:
̶ CTR(r): CTRs on related entities

̶ CTR(m,r): CTRs on related entities specific to main entity m

̶ CTR(u,m,r): CTRs on related entities specific to user u & main entity m

• Integration:
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CTR feature vectorweight vector

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Learning from entity pane log

• Clicks on entity pane
̶ Positive feedback from users

• Negative feedback is missing
̶ Users didn’t click recommended entities for different reasons

• Solution: we use entity pairs as training data instead of individual 
entities
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Constructing training data

• Assumption
̶ Users prefer the related entities they clicked over all the other suggestions
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User ID Time Main entity Related entity Rank Click

32 7/9/2013 10:32:26 Pacific Rim Man of Steel 1 0

32 7/9/2013 10:32:26 Pacific Rim The Wolverine 2 0

32 7/9/2013 10:32:26 Pacific Rim The Lone Ranger 3 1

32 7/9/2013 10:32:26 Pacific Rim World War Z 4 0

498 6/16/2013 15:16:41 Leonardo DiCaprio Kate Winslet 1 0

498 6/16/2013 15:16:41 Leonardo DiCaprio Baz Luhrmann 2 0

498 6/16/2013 15:16:41 Leonardo DiCaprio Johnny Depp 3 1

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Likelihood function

• Likelihood function relating          values to pairwise preferences:

• Likelihood of all preference observations:
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Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Experiments

• Two tasks:

• Data (3/2013 ~ 7/2013)
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Movie recommendation Celebrity recommendation

Dataset #users #entities #instances

Movie 36,641 15,409 224,567

Celebrity 26,371 2,016 1,450,609

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Features used for movie & celebrity 
recommendation
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Movie recommendation

User dimension Main & related movie

Viewed entities

Types of viewed entities

Viewed movie's actors

Viewed movie's directors

Viewed movie's genres

Viewed movie's country

Viewed movie's language

Viewed movie's producers

Viewed movie's series

Viewed movie's story

Viewed movie's subject

Viewed movie's music

......

Actors

Directors

Genres

Country of origin

Language

Producers

Series

Story

Subject

Music

......

Celebrity recommendation

User dimension Main & related movie

Viewed entities

Types of viewed entities

Attributes of viewed 

entities

Viewed pop singers

Viewed business leaders

Viewed writers

Viewed musicians

Viewed actors

Viewed film directors

......

Profession

Movie acted

Movie directed

Book written

Music genre

Organization

Spouse

Nationality

Language

Types

......

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Recommendation accuracy

• Metric: MRR
̶ calculates the reciprocal of the rank of the first hit in the list

̶
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Movie recommendation Celebrity recommendation



Efficacy of personalization

• Case study
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A fan of Leonardo DiCaprio Main movie entity

Related movie entities

Co-click CTR-model TEM

Iron Man 3

Man of Steel

Star Trek (2013)

Django Unchained

Iron Man 3

Star Trek (2013)

Django Unchained

Man of Steel

Django Unchained

Iron Man 3

Star Trek (2013)

Man of Steel

Learning to Recommend Related Entities to Search Users [Bin Bi, et al., WSDM 2015]



Other Entity Personalization Experience
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Other Entity Personalization Experience
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Other Entity Personalization Experience
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑞𝑢𝑒𝑟𝑦)



Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ Recommendations given an entity
▫ Co-occurrence
▫ Similarity
▫ Entity Linking
▫ Interpretation

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

▫ Universal recommender system

▫ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚)

▫ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑞𝑢𝑒𝑟𝑦)

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 212



Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦

̶ Recommendations given an entity
▫ Co-occurrence
▫ Similarity
▫ Entity Linking
▫ Interpretation

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟
̶ Recommendations given a user

▫ Universal recommender system

▫ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚)

▫ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑞𝑢𝑒𝑟𝑦)

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
̶ Recommendations given a query
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 214

Entity Linking and Retrieval for Semantic Search [Edgar Meij, et al., WSDM 2014]

Ad-hoc Object Retrieval in the Web of Data [Jeffrey Pound, et al., WWW 2010]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)

• Entity Retrieval/Finding

• Knowledge Base Question and Answering (KB QnA)

• Web-based Question and Answering (Web QnA)
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding

• TREC Entity Track (2009 – 2011) 
̶ Related Entity Finding Task

̶ Given
▫ Input entity

▫ Type of the target entity (PER/ORG/LOC)

▫ Narrative (describing the nature of the relation in free text)

̶ Return related entities
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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Narrative: What countries does Eurail operate in

Target Entity Type: LocationInput Entity: Eurail

Narrative: Airlines that currently use Boeing 747 planes

Target Entity Type: OrganizationInput Entity: Boeing 747

Narrative: Find companies that are included in the Dow 
Jones industrial average

Target Entity Type: OrganizationInput Entity: Dow Jones

Narrative: Chefs with a show on the food network

Target Entity Type: PersonInput Entity: The food network



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding

• A typical pipeline
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Entity Linking and Retrieval for Semantic Search [Edgar Meij, et al., WSDM 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding

• Three component model
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Related Entity Finding Based on Co-Occurrence [Marc Bron, et al., TREC 2009]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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Related Entity Finding Based on Co-Occurrence [Marc Bron, et al., TREC 2009]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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Related Entity Finding by Unified Probabilistic Models [Yi Fang, et al., World Wide Web 2013]

Model A

Model B



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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Related Entity Finding by Unified Probabilistic Models [Yi Fang, et al., World Wide Web 2013]

Narrative: Find companies that are included in the Dow 
Jones industrial average

Target Entity Type: OrganizationInput Entity: Dow Jones



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding

• Knowledge base are largely incomplete
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Knowledge Base Completion via Search-Based Question Answering [Robert West, et al., WWW 2014]

Entity Retrieval/Finding 
techniques can be used 
in Knowledge Base 
Completion



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding
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Knowledge Base Completion via Search-Based Question Answering [Robert West, et al., WWW 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Entity Retrieval/Finding

• Challenges
̶ The TREC’s related entity finding track is relatively easy since the “query 

intent” is known

̶ In real world search engines, we need to understand the intent of queries
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Companies in Dow Jones industrial

Narrative: Find companies that are included in the Dow 
Jones industrial average

Target Entity Type: OrganizationInput Entity: Dow Jones



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Typical Architect 
of KB QnA
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Who founded apple?

Steve Jobs

iPad

Apple Inc.

Founder

iPhone

Product

Steve 
Wozniak

Parsing and
Transformation

Founder

Founder

Product
Inventor

Inventor

Ronald 
Wayne

Question

Understanding

Knowledge Base

Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]



An Incomplete List of Academic Papers on KB QnA
• Unger et al. “Template-based question answering over RDF data.” WWW-2012.

• Yahya et al. “Natural language questions for the web of data.” EMNLP-2012.

• Cai & Yates. “Large-scale semantic parsing via schema matching and lexicon extension.” ACL-2013.

• Kwiatkowski et al. “Scaling semantic parsers with on-the-fly ontology matching.” EMNLP-2013.

• Berant et al. “Semantic parsing on Freebase from question-answer pairs.” EMNLP-2013.

• Zou et al. “Natural language question answering over RDF: a graph data driven approach.” SIGMOD-2014.

• Yih et al. “Semantic parsing for single-relation question answering.” ACL-2014.

• Bao et al. “Knowledge-Based Question Answering as Machine Translation.” ACL-2014.

• Berant & Liang. “Semantic Parsing via Paraphrasing.” ACL-2014.

• Yao & Van Durme. “Information extraction over structured data: Question answering with freebase.” ACL-2014.

• Fader et al. “Open question answering over curated and extracted knowledge bases.” KDD-2014.

• Bordes et al. “Open question answering with weakly supervised embedding models.” ECML-PKDD-2014.

• Bordes et al. “Question answering with subgraph embeddings.” EMNLP-2014.

• Yang et al. “Joint relational embeddings for knowledge-based question answering.” EMNLP-2014.

• Reddy et al. “Large-scale Semantic Parsing without Question-Answer Pairs.” TACL, 2014.

• Yih et al. “Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base.” ACL-2015

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 229



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Semantic Parsing
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Who did Tom Cruise marry in 1987?

semantic parsing

Type.Person ⊓Marriage.(Spouse.TomCruise ⊓ StartDate.1987)

execute logical form

Mimi Rogers

Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Traditional statistical semantic parsing
̶ Manually annotated logical forms

• Limitations
̶ Requires experts | slow, expensive, does not scale!

̶ Restricted to limited domains
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What's California's capital? Capital.California

How long is the Mississippi river? RiverLength.Mississippi

... ...

Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Simple model suggests candidate logical forms

• Simple model generates canonical utterances

• Ranking of canonical utterances
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

What languages do people in Brazil use?

Type.HumanLanguage ⊓ LanguagesSpoken.Brazil CapitalOf.Brazil...

What language is the language of Brazil? What city is the capital of Brazil?

Paraphrase Model

Portuguese, ...

Advantage: Use a lot 

of text and paraphrase 

methods



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Input
̶ Knowledge-base 𝐾

̶ Training set of question-answer pairs (𝑥𝑖, 𝑦𝑖) 1
𝑛

• Output
̶ Semantic parser that maps questions 𝑥 to answers 𝑦 through logical forms 𝑧
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

What are the main cities in California? SF, LA, ...

Countries in Asia Type.Country ⊓ ContainedBy.Asia

China, Japan, India, ...



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Logical forms are graph templates

WWW 2015 Tutorial: An Introduction to Entity Recommendation and Understanding, Florence, Italy, May 19th, 2015 234

Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

Type.Person ⊓ PlacesLived.Location.Chicago



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Candidate logical forms
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Candidate logical forms
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

𝑝, 𝑝1𝑝2– Freebase properties 𝑡 – Freebase type
𝑒, 𝑒1, 𝑒2– Freebase entities 𝑧 – logical form



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Canonical utterance generation
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Canonical utterance generation
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Paraphrase model

• Simple paraphrase model utilizing a lot of text
̶ Association model - Paralex

̶ Vector space model - Wikipedia
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

What countries in the world speak Arabic?

What country is Arabic language spoken in?



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]

PARALEX corpus with 18 millions pairs of question paraphrases 



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• Vector Space Model
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA

• WebQuestions dataset
̶ What character did Natalie Portman play in Star Wars?   Padme Amidala

̶ What kind of money to take to Bahamas? Bahamian dollar

̶ What currency do you use in Costa Rica?  Costa Rican colon

̶ What did Obama study in school?  political science

̶ What do Michelle Obama do for a living?  writer, lawyer

̶ What killed Sammy Davis Jr?  throat cancer

• 5,810 questions crawled from Google Suggest and answered using 
AMT
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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Semantic Parsing via Paraphrasing [Jonathan Berant, et al., ACL 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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• “Who first voiced Meg on Family Guy?”

• 𝜆𝑥. ∃𝑦. cast FamilyGuy, 𝑦 ∧ actor 𝑦, 𝑥 ∧ character(𝑦,MegGriffin)

Family Guy cast

Meg Griffinargmin

xy

Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base [Scott Yih, et al., ACL 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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“Who first voiced Meg on Family Guy?”

1. Topic Entity Linking (E2E tool)

Family Guy
s1

Meg Griffin
s2

ϕ 
s0

Family Guy
s1

Family Guy cast actor xy
s3

Family Guy writer start xy
s4

Family Guy genre x
s5

Family Guy cast actor xy

Family Guy cast actor xy

Meg Griffin

Family Guy xy

Meg Griffinargmin

s3

s6

s7

2. Core Inferential Chain (DSSM)

3. Augmenting Constraints

• Leveraging KB more tightly when 
forming the parse (search pruning)

• The expressiveness of the query 
graphs controlled by search actions

Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base [Scott Yih, et al., ACL 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base [Scott Yih, et al., ACL 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – KB QnA
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29.7
33

35.7
37.5

39.2 39.9
41.3

52.5

27

32

37

42

47

52

Avg. F1

Avg. F1 (Accuracy) on WebQuestions Test Set

Bordes-14a Yao-14 Berant-13 Bao-14 Bordes-14b Berant-14 Yang-14 Yih-15

Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base [Scott Yih, et al., ACL 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Knowledge Base is largely incomplete 
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Knowledge Base is largely incomplete 
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Knowledge Base Completion via Search-Based Question Answering [Robert West, et al., WWW 2014]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA
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An Incomplete List of Academic Papers on Web QnA
• Dumais et al. “Web Question Answering: Is More Always Better? ” SIGIR-2002.

• Brill et al. “An analysis of the AskMSR question-answering system.” EMNLP-2002.

• Chu-Carroll et al. “A multi-strategy and multi-source approach to question answering.” Technical report-2006.

• Ko et al. “A probabilistic graphical model for joint answer ranking in question answering.” SIGIR-2007.

• Schlaefer et al. “A pattern learning approach to question answering within the ephyra framework.” TSD-2006.

• Azari et al. “Web-Based Question Answering: A Decision-Making Perspective.” UAI-2003.

• Ravichandran et al. “Learning surface text patterns for a Question Answering system.” ACL-2002.

• Kwok et al. “Scaling question answering to the web.” TOIS-2001.

• Brill et al. “Data-intensive question answering.” TREC-2001.

• Bian et al. “Finding the Right Facts in the Crowd: Factoid Question Answering over Social Media.” WWW-2008.

• Cheng et al. “EntityRank: Searching Entities Directly and Holistically.” VLDB-2007.

• Lin et al. “Question answering from the web using knowledge annotation and knowledge mining techniques.” 
CIKM-2003.

• Chaturvedi et al. “Joint question clustering and relevance prediction for open domain non-factoid question 
answering.” WWW-2014
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𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Typical 
Architect of 
Web QnA
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Who first landed on the Moon?

Type Detection, 
NER Parsing and 

Candidate Ranking

Question

Understanding

Web Corpus
Apollo 11 was the spaceflight that
landed the first humans on the Moon,
Americans Neil Armstrong and Buzz
Aldrin, on July 20, 1969, at 20:18 UTC.

Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Detailed Architect 
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Question 
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Query 
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Answer Type 
Detection

Question

Passage 
Retrieval

Document 
Retrieval

Answer 
Processing

Answer

passages

Indexing

Relevant
Docs

Document
Document

Document

Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• QUESTION PROCESSING
̶ Detect question type, answer type

̶ Formulate queries to send to a search engine

• PASSAGE RETRIEVAL
̶ Retrieve ranked documents

̶ Break into suitable passages and rerank

• ANSWER PROCESSING
̶ Extract candidate answers

̶ Rank candidates
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Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Answer Type Detection: Name Entities
̶ Who first landed on the moon?

▫ Person

̶ Where is the headquarters of Microsoft?
▫ Location

̶ What is the largest country in terms of population?
▫ Country

̶ Highest flying bird
▫ Animal/Bird
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Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• 6 coarse classes
̶ ABBEVIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION, NUMERIC

• 50 finer classes
̶ LOCATION: city, country, mountain…

̶ HUMAN: group, individual, title, description

̶ ENTITY: animal, body, color, currency…
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Question Answering [Dan Jurafsky, Stanford]

Learning Question Classifiers [Xin Li, et al., COLING 2002]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Part of the Answer Type Taxonomy
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Question Answering [Dan Jurafsky, Stanford]

Learning Question Classifiers [Xin Li, et al., COLING 2012]

LOCATION

NUMERIC

ENTITY HUMAN

ABBREVIATION
DESCRIPTION

country city state

date

percent

money

sizedistance

individual

title

group

food

currency

animal

definition

reason
expression

abbreviation



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Answer Type Detection
̶ Rules

▫ Regular expression based rules
• Who {is|was|are|were} PERSON

▫ Question headword
• Which city in China has the largest number of foreign financial companies?

• What is the state flower of California?

̶ Machine Learning
▫ Define a taxonomy of question types

▫ Annotate training data for each question type

▫ Train classifiers for each question class using a rich set of features: Question words and 
phrases; Part-of-speech tags; Parse features (headwords); Named Entities; Related words
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Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Passage Retrieval
̶ Retrieve documents using query terms through search 

engines

̶ Segment the documents into shorter unites, like 
paragraphs.

̶ Passage ranking, features 
▫ Number of Named Entities of the right type in passage
▫ Number of query words in passage
▫ Number of question N-grams also in passage
▫ Proximity of query keywords to passage
▫ Longest sequence of question words
▫ Rank of the document containing passage
▫ …
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Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web QnA

• Run an answer-type named-entity  tagger on the 
passages

̶ Each answer type requires a named-entity tagger that 
detects it

̶ If answer type is CITY, tagger has to tag CITY

• Return the string with the right type:
̶ How many bones in a human body? (Number)

▫ The human skeleton is the internal framework of the body. It 
is composed of 270 bones at birth – this total decreases 
to 206 bones by adulthood after some bones have fused 
together.
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Question Answering [Dan Jurafsky, Stanford]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)
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Web QnAKB QnA



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web-KB QnA
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Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web-KB QnA

• Advantages
̶ Entity Linking: Reduce redundancy among 

answer candidates

̶ Answer candidates          Freebase types

̶ Freebase information        semantic features 
for ranking 
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Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web-KB QnA

• Type detection is modeled latently
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The likelihood of observing a question 

𝒒 and its answer types 𝒕𝑎 as:

Variational EM to optimize

Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]



𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) – Web-KB QnA

• Experiments
̶ Search Queries
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Open Domain Question and Answering via Semantic Enrichment [Huan Sun, et al., WWW 2015]

MRR Precision Recall F1

QuASE 0.6402 0.5962 0.5691 0.5823

AskMSR+ 0.5337 0.3782 0.3760 0.3771

SEMPRE 0.2372 0.2646 0.1940 0.2239

Systems
Measure

Web QnA

KB QnA



Outline

• Introduction to Entity and Knowledge

• Demonstration of Microsoft’s Entity Experience

• Entity Recommendation and Understanding
̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑒𝑛𝑡𝑖𝑡𝑦)

̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟)

̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦)

• Summary
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Summary
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Entity Recommendation & Understanding 
Taxonomy
• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑡𝑖𝑡𝑦 - Recommendations given an entity

̶ Co-occurrence
̶ Similarity
̶ Entity Linking
̶ Interpretation

• 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟 - Recommendations given a user
̶ Universal Recommender System

̶ 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚)

̶ 𝑃 𝑒𝑛𝑡𝑖𝑡𝑦 𝑢𝑠𝑒𝑟, 𝑞𝑢𝑒𝑟𝑦

• 𝑃(𝑒𝑛𝑡𝑖𝑡𝑦|𝑞𝑢𝑒𝑟𝑦) - Recommendations given a query
̶ Entity Retrieval/Finding
̶ Knowledge Base Question and Answering
̶ Web Question and Answering
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Challenges

• Entity Understanding
̶ Ranking, KB completion, Entity Triggering (𝑃(𝑞𝑢𝑒𝑟𝑦|𝑒𝑛𝑡𝑖𝑡𝑦)), …

• User Understanding
̶ Users’ Entity Preference, Interest Drift, Multiple Sources (query, url click, 

entity pane click), …

• Query Understanding
̶ Query Intent (definition, list, factoid, question, etc.), Question Type, …

• Document Understanding
̶ Entity Linking, NER, Event Detection, …
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Challenges

• Query Entity Linking
̶ Short and noisy

̶ When a user types “Florence”, 
which one to link?

̶ Utilize user location

̶ Utilize previous queries in the 
same session
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Personalized Entity 
Linking System



Challenges

• Question Understanding
̶ Rules are not always correct

̶ “where is my refund” 
▫ location?

▫ When and how to get refund

̶ “when a cat loves a dog”
▫ Date Time?

▫ TV series
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Challenges

• Question and Answering
̶ TREC data - Web QnA

̶ WebQuestions data – KB QnA

̶ All the question in these research datasets are real and valid questions
▫ Who first landed on the moon

▫ Who killed Abraham Lincoln

̶ Real world scenario
▫ When is the end of the world

▫ Who won the world cup 2017

̶ A data set contains both valid and invalid questions
▫ Make sure the algorithms won’t return answers for invalid questions
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Related Tutorials

• Entity Linking and Retrieval (Meij, Balog and Odijk)
̶ http://ejmeij.github.io/entity-linking-and-retrieval-tutorial/

• Entity Resolution (Getoor and Machanavajjhala)
̶ http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

• Constructing and Mining Web-scale Knowledge Graphs tutorial (Bordes, 
Gabrilovich)

̶ http://www.cs.technion.ac.il/~gabr/publications/papers/KDD14-T2-Bordes-
Gabrilovich.pdf

• The Recommender Problem Revisited (Amatriain, Mobasher)
̶ http://www.slideshare.net/xamat/kdd-2014-tutorial-the-recommender-problem-

revisited

• Question Answering Lecture (Jurafsky)
̶ https://web.stanford.edu/class/cs124/lec/qa.pdf
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Thanks!

Hao Ma: haoma at Microsoft.com

Yan Ke: yanke at Microsoft.com
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