Word-Lattice Based Spoken-Document Indexing
with Standard Text Indexers

Roger Peng Yu, Kit Thambiratnam, and Frank Seide

Microsoft Research Asia, Beijing Sigma Center, 49 Zhichun Rd., 100080 Beijing, P.R.C.
{rogeryukit,fseide}@microsoft.com

ABSTRACT

Indexing the spoken content of audio recordings requires the
use of automatic speech recognition, which is as of today not
reliable. Unlike indexing text, we cannot reliably know from
a speech recognizer whether a word is present or not at a
given point in the audio; we can only obtain a probability for
it. Making correct use of these probabilities can significantly
improve spoken-document search accuracy.

First, we will describe how to improve accuracy for “web-
search style” (AND /phrase) queries into audio by utilizing
speech recognition alternates (competing word hypotheses
during recognition) and word posterior probabilities (confi-
dence scores), based on word lattices.

Then, we will present an end-to-end approach to doing so
using standard text indezers, which by design cannot han-
dle probabilities and unaligned alternates. We present a se-
quence of approximations that transform the numeric lattice-
matching problem into a symbolic text-based one that can be
implemented by a commercial full-text indexer.

Experiments on a 170-hour lecture set show an accuracy
improvement by 30-60% for phrase searches and by 130% for
two-term AND queries, compared to indexing linear text.

General Terms
Audio Indexing, Word Lattice, Posterior, Full-Text Indexing

1. INTRODUCTION

The tremendous progress in audio compression and storage
technologies and the pervasive adoption of computing at work
and in our daily lives has fostered a dramatic increase of the
use of digital media not only on the Internet but also in the
enterprise, such as online lecture videos, archived meetings
or conference calls, and voicemail. Tools are needed to effi-
ciently manage digital audio assets—audio or video record-
ings with intrinsic value to the enterprise. The key problem
is keyword search into the spoken audio content.

On the Internet, the problem is somewhat alleviated be-
cause audio/video search engines often have metadata at
their disposal, such as anchor text, surrounding text, closed
captions, etc. For enterprise audio, we often have no such lux-
ury: such information is commonly not available. We cannot
escape to process the audio itself—by speech recognition to
index the spoken content. However, typical enterprise audio
is still a challenge for today’s speech-recognition technology,
which achieves word accuracies of only 50-70% [1, 2, 3].

Copyright is held by the author/owner(s).
SIGIR’08, July 20-24, 2008, Singapore.
ACM 978-1-60558-164-4/08/07.

In this paper, we will first describe how to improve ac-
curacy for “web-search style” AND and phrase queries into
audio. Unlike indexing text, we cannot reliably know from a
speech recognizer whether a word is present or not at a given
point in the audio; we can only obtain a probability for it.
To this end, we will show how the posterior probability that
an audio document contains all query terms and phrases can
be computed using speech recognition alternates (competing
word hypotheses during recognition) and confidence scores
(word posterior probabilities), based on word lattices.

The document-level posteriors are then compared to a
threshold representing the minimum precision required by the
user. Experiments on a 170-hour lecture set show an accu-
racy improvement by 30-60% for multi-word phrase searches
and by 130% for two-term AND queries, compared to index-
ing linear text.

Secondly, we will present an end-to-end approach to doing
so using standard text indexers—which by their design cannot
handle probabilities and unaligned alternates.

Text search engines are complex systems involving substan-
tial investments—in both development and deployment—and
also in order to seamlessly search text and audio/video ma-
terials. For this reason, maximizing their reuse is highly de-
sireable. In fact, text indexers can “easily” be extended to
index lattices (few extra bits of storage per hit, few lines of
code). However, for the same reason, even minor changes can
be costly and bear significant risk.

We present a sequence of approximations to transform the
numeric lattice-matching problem into a symbolic text-based
one implementable by a commercial full-text indexer.

This paper is organized as follows. The next section gives
an overview about the concepts and prior work on spoken-
document search. Then, we establish the theoretical founda-
tion of word-lattice-based speech indexing in section 3. Sec-
tion 4 introduces the proposed method to index word lattices
with STTs, and section 5 presents experimental results. Sec-
tion 6 concludes the paper.

2. SPOKEN-DOCUMENT SEARCH:
OVERVIEW AND PRIOR WORK

Audio and video is among the least accessible content for
search engines. Today’s popular Internet video-search en-
gines work by indexing meta-data, such as title and descrip-
tion texts, obtained from the media files themselves and also
from hyperlinks in the form of anchor text or descriptive text
surrounding a link. Also, for professionally produced TV con-
tent, closed captions often exist (although often not surfaced
in Internet releases).

The meta-data approach is suitable for many types of In-
ternet audio/video content such as podcasts and the Internet

release channel for TV content. However, in many scenar-
ios such as “low-production value” enterprise recordings like
phone-conference recordings or video-taped presentations, we
often have no such luxury, sufficient meta-data is commonly
not available, and we must consider the spoken content of
the audio itself. The audio must be “cracked open” using
automatic speech recognition.
Literature roughly distinguishes two categories of spoken-
document search tasks:
e Spoken Document Retrieval (SDR): to find audio docu-
ments that are relevant to the query;
e Spoken Term Detection (STD): to locate individual oc-
currences of query keywords. This is also known as “key-
word spotting”.

2.1 Spoken-Document Retrieval (SDR)

“SDR” is often understood with the connotation of the
TREC (Text REtrieval Conference) SDR benchmarks [4].
Here, queries were relatively long topic descriptions similar to
TREC text benchmarks, and the task was to retrieve relevant
broadcast news stories from a large broadcast-news archive.

The mainstream approach to this problem was straight-
forward: Transcribe the audio into text using large-vocabula-
ry speech recognition, and then use known techniques for text
retrieval on the transcripts, such as the vector-space model
with weighting functions of the likes of TF.IDF or BM25.

The robustness of this approach was surprising to some:
Even with transcription word-error rates as high as 35%, re-
trieval accuracy was on par compared to using manually cre-
ated ground-truth transcriptions. Recognition did not lead
to catastrophic failures due to the redundancy in the long
queries and news segments. As a result, some researchers
consider SDR a “solved problem” [4].

2.2 “Web-style” Search and Spoken-Term De-
tection (STD)

However, the kind of search that most computer users
are familiar with—web-search engines—is different. In web
search, queries are commonly short, 2-3 words, and unlike
SDR vector-space matching, for a document to match, all
query terms must be present (aside from query modifications
like stemming and spelling normalization). Relevance rank-
ing is applied only to the subset of documents that match
the boolean condition specified by the query.

Thus, to create an audio-search engine that accommodates
the expectation of web users, we are first faced with the prob-
lem of selecting documents that contain all query terms (a
classic STD problem). For the remainder of this paper, we
want to focus on this problem (while leaving the challenge
of relevance weighting—arguably a non-speech problem—to
our colleagues in the IR community).

2.3 Word Spotting vs. Large-Vocabulary
Continuous Speech Recognition (LVCSR)

To detect query keywords in audio, a full transcription is
actually not necessary. Word spotting systems use a recogni-
tion dictionary that consists only of the query terms and a
“garbage model.” The garbage model is to match all speech
except the query terms themselves.

The key challenge of word spotters lies in the garbage
model and the calibration between “garbage” and keyword
scores. An alternative are “anti-models” [5]—models for the
“complement” of each phoneme of the language trained on
“complementary” phonemes or phoneme classes. Another
challenge is that the vocabulary is defined at search time,
so word-spotting systems don’t lend themselves to indexing.

On the other hand, large-vocabulary continuous-speech rec-
ognizers (LVCSR) deploy vocabularies of up to 200,000 words
and more. For the purpose of STD, all of these words except
for the few query terms constitute a huge garbage model.
Generally, LVCSR systems are significantly more accurate
due to their use of word-M-gram language models—as long
as all query terms are not only included in the vocabulary
but also reasonably well-represented in the language model.

As a rule of thumb, word spotters without language model
tend to suffer from poor Precision, while LVCSR systems are
Recall-challenged, especially for rare query terms missing in
the vocabulary or underrepresented in the language model.
We found search accuracy for (phonetic lattice-based) word
spotters to deteriorate about twice as fast with the log of
the database size as LVCSR, rendering it unusable beyond
a few hundreds of hours. Word spotters tend to be more
suitable for known-item searches in smaller databases like
personal meeting recordings, audio notes, or voicemail, while
LVCSR-based systems are often the choice for ad-hoc search
applications on large audio databases such as Internet video
or lecture archives. We therefore focus on the LVCSR ap-
proach.

2.4 The Unknown-Word Problem

The unknown-word problem is not the topic of this paper,
we therefore only want to briefly review this area (the in-
terested reader shall be referred to [6]). If the query terms
are not known at indexing time, this means that the recog-
nition dictionary is defined at search time. An alternative
to garbage-model based word spotters described above is
vocabulary-independent indexing using subword units. One
approach is to translate LVCSR transcriptions into phonetic
or word-fragment sequences [7] or phonetic M-grams [8] and
[9] and index those. These approaches are technically not
STD, as some words are only partially matched. Accuracy
improvements for OOV words are modest.

Another approach is to search phoneme lattices. A speech
recognizer whose “dictionary” consists of the phonemes of the
language recognizes the audio to generate phoneme hypothe-
ses, which are kept in a lattice structure. At search time,
the lattices are searched for phoneme sequences comprising
the query keyword [10, 11]. [12] proposed a similar approach
called “phonetic search track.” Accuracy can be improved
by hybrids combining phonetic and LVCSR [13, 14]. All
of these are extensions of word spotting where the bulk of
the speech-recognition effort is off-loaded to a preprocessing
stage. Further search speed-up can be achieved by approxi-
mate indexing, e.g. of phoneme M-grams [6, 15].

2.5 Word Lattices Improve Accuracy

A major challenge remains the poor speech-to-text accu-
racy of state-of-the-art speech recognizers for general spoken
content. With accuracies of only 50-70% [1, 2, 3], “naive”
methods based on speech-to-text transcripts suffer from poor
Recall—If all query terms are required to be found for a doc-
ument to match, a single query keyword missed causes the
entire document to be missed.

Significant improvements can be achieved by taking the
probabilistic nature of speech recognition into account [14,
16, 13, 17, 6]. The use of word confidence scores helps to
reduce false positives, allows ranking the most reliable hits
first, and by thresholding, users can adjust between “known-
item” (high Recall) and “ad-hoc” (high Precision) type search.
Secondly, using alternative recognition candidates instead of
linear speech-to-text output significantly improves Recall for
multi-word queries.

IHIS-20.2

SFAINN -2u.2

HIM -20.2

YOU -284 ™,

THINKING -16.1

SPANK -28.4
SPANK=26.7
THE -26.7
THIS-16.1

IN-184 JUST -18.4

BANK -24.4
BANK -26.6

BANK -29.0

THIS-27.6
THIS-29.7

INTEREST -27.6
INTO-27.6
CHANGE -29.6 IN -29.6

BANK=S:
NK=147

YEAH-113_-11

INTO -26.1

ST -26.1 [

BANK -6.5 [BANK -17.8

BEEN -6.5 JUST -6.5

THERE'S-10.0

INTO -10.0

e € L)
BANK -12.9 BANK 113

ACCOUNT -12.9

INTO 0.0
INTO-26.1
INTO -16.2

THERE'S0.0

Figure 1: Word-lattice example for the word sequence

All required probabilities can be naturally computed from
word lattices—compact representations of word candidates
as directed acyclic graphs (DAG) that are augmented with
recogniton probabilities and time information. Fig. 1 shows
an example word lattice.

2.6 Indexing Word Lattices

Indexing word lattices is, in principle, no problem. For
example, [14] proposed a direct inversion of raw lattices from
the speech recognizer in the same way as text is indexed. No
information is lost, and accuracy is the same as for directly
searching the lattice.

A challenge is to reuse existing text search engines. This is
highly desireable because search engines are complex systems
involving substantial investments in both development and
deployment, and also in order to seamlessly search text and
audio material. However, standard full-text indexers cannot
index lattices. This is because text indexers assign a unique
word position to each word—thus they cannot represent the
complex time structure of partially overlapping alternative
recognition hypotheses. There is also no facility to store
speech-recognition confidence scores. Lastly, word lattices
can be as large as 100 times the size of text or more—beyond
the range typical text search engines are optimized for.

[16] proposed a posterior-probability based approxi-
mate representation in which word hypotheses are merged
w.r.t. word position, which is treated as a hidden variable.
It more easily integrates with text search engines, but only
achieves a small reduction of index entries and loses time
information for individual hypotheses. An alternative are
confusion networks (“sausages”), a method to align a speech
lattice with its top-1 transcription [18]. Sausages are a par-
simonious approximation of lattices. However, they do not
lend themselves naturally for indexing due to the presence of
a large number of null links,

In [17] we have proposed the “TMI” method (Time-based
Merging for Indexing) that achieves significant reduction of
lattice size by merging of similar hypotheses, and in [19] we
introduced the “TALE” method (Time-Anchored Lattice Ex-
pansion) to map the complex time structure onto the word-
position concept of text indexers, similar to [16] and [18].
The paper at hand extends this work in that we address the
problem of storing posteriors and performing probabilistic
searches using symbolic representation.

3. WORD POSTERIORS AND LATTICES

In this section, we want to formally specify the problem we
are trying to solve, then motivate the use of word-posterior
probabilities, and lastly show how we use word lattices to
compute posteriors effiently.

In summary, we first limit the scope to the common “web-
search” style queries where all query terms must be found in
matching documents, without or with phrase constraints. We
then argue that an important quantity is the posterior proba-
bility that an audio document D fulfills the boolean condition

BANG-25.1

TO-251 COUNT -25.1

“..into this bank account.”

given by the query Q. This quantity is simply the product
over the per-query-term probabilities of a query term ¢ to oc-
cur at least once in D, which in turn can be easily computed
from all locations where query term g was hypothesized and
the corresponding hit posterior probabilities. Lastly, hit pos-
teriors can be naturally computed from word lattices, which
many state-of-the-art speech recognition packages can readily
generate. The remainder of this section details all of this.

3.1 AND and Phrase Queries

The type of search query that is most familiar to us Internet
users is a query that consists simply of a set or sequence of
words, possibly with quotation marks to denote phrases.

Such a query is taken to specify the boolean condition
that all of the query terms are required to be present in re-
turned documents, and that, additionally, terms in quotes
must match in precise sequence.

An Internet search engine first identifies all documents that
fulfill the boolean condition, and then ranks them by “rel-
evance” to the query using elaborate term and document
weighting schemes.

In this paper, we will exclusively focus on such
AND/phrase queries. Further, for the purpose of this pa-
per, we shall not be concerned with relevance weighting, but
simply consider all audio documents that match the boolean
condition equally relevant.

Yet, there is value in ranking—because we can not reliably
decide whether the boolean condition is fulfilled. We can only
work with the probability that an audio document matches the
condition. In the next subsection, we want to motivate that
it is optimal to rank by exactly this probability.

3.2 Probability for Matching the Query

We formally specify our objective as follows: An (audio)
document D shall be deemed “relevant” to a query @ if D
fulfills the boolean condition specified by Q). We denote this
as R(Q,D) =1 for a relevant document, 0 otherwise.

Because the true transcription of the audio to be indexed is
unknown, R(Q, D) is not directly known. All we are provided
with by the speech recognizer is

e hypotheses (W, T) on what might have been said (with
W = (w1,ws,...,wn) = hypothesized transcription of
the audio database and T = (1, t2, ..., tN+1) = associ-
ated word time boundaries), and

e associated posterior probabilities P(WT|O) (O for ob-
servation denoting the totality of all audio), denot-
ing the probability that transcription hypothesis (W, T')
was indeed the underlying event that caused the gener-
ation of the audio we observed.

With this, we can compute the posterior probability that
document D matches query @ as:

P(R(Q,D)|0) = Ewrjo{Rwr(Q,D)}
= Y P(WT|O)- Rwr(Q,D) (1)

wT

where Rwr(-) shall be relevance w.r.t. the hypothe-
sized transcription/alignment. The expectation is taken
w.r.t. P(WT|O) as provided by the recognizer.

By comparing this probability against a pre-determined
threshold Ppnin, we can select the documents that match the
query with a probability of Puyin or higher, where the thresh-
old would be chosen so that a target Precision will be reached.

3.3 Hit Posteriors

We now incorporate our specific query type under
consideration—all individual query terms ¢ € @ shall be
present in D. Under the assumption that the query terms
are independent, we can rewrite P(R(Q, D)|O) as:

P(R(Q,D)[0) =][] P(R(g,D)|O)
qeqQ

where P(R(q, D)|O) is the posterior probability that the in-
dividual query term q occurs in D (at least once).

To deal with phrases (multiple words “in quotes” that must
match in precise sequence), we shall consider multi-word
phrases simply as single query terms, i.e. a query term g
can consist of a sequence of words that are required to match
in precise sequence.

To further break down P(R(gq, D)|O), we define the hit
posterior P(x,ts,q,te, *|O) to denote the posterior probabil-
ity for the hypothesis that query term ¢ occurred covering
the precise time range ts...t.. It is computed by marginaliz-
ing out over all transcription hypotheses that contain ¢ with
precise time boundaries ts and t.:

P(*7t5aq7 te? *‘O) = Z P(WT‘O) (2)
WT:3k,lity =ts Atg =te
AWpgseens Wyl —1=4

Note that hit posteriors are not concerned with the context
in which a query keyword is hypothesized to have occurred.
Thus, Eq. (2) marginalizes out all contexts. Also, there are
often multiple hypotheses for the same query keyword with
slightly dissimilar time boundaries. For our purposes, small
boundary variations should be considered “estimation noise”
and be marginalized out as well. Therefore, in our practical
implementation, we merge all hypotheses that overlap into
the one with the highest word posterior.

With this, the probability that all terms of Q) occur at least
once in D can be easily computed as:

PR(Q,D)[0) =] |1- [@ =P(xts,q,te,x(0)| (3)

qeQ (ts,a,te)

where the product is taken over all time ranges (ts,te)
for which the recognizer hypothesized query term g. This
is assumes that all those hits are independent, i.e. non-
overlapping and sufficiently far enough from each other.

The remainder of this section will show how hit posteriors
can computed efficiently and easily from word lattices, which
we are going to introduce next.

3.4 Word Lattice Definition

Figure 1 shows an example word lattice. A lattice is a
compact representation of speech recognition word hypothe-
ses as a directed acyclic graph (DAG). For every word in the
audio, the lattice contains multiple alternative hypotheses
that were considered during the recognition process, includ-
ing word matching probabilities and time boundaries.

In this DAG, each arc a represents a word hypothesis, while
nodes n represent transition conditions (time and context)

between word hypotheses.! Any route through the graph
from the unique start node nstart to the unique end node
Nend constitutes a hypothesis to explain the entire utterance,
and its utterance-level hypothesis probability can be derived
from the weights along the route.

We define a lattice as £ = (N, A, Nstart, Mend). Each node
n € N has an associated time ¢[n] and possibly an acoustic
and/or language-model context condition. Arcs are 4-tuples
a = (S[a], Ela], Wla], Parcla]). Sla], Ela] € N denote the
start and end node of the arc. W{a] is the word identity.

We use a unique variant of lattices that we call posterior
lattices, where arc weights are word posterior probabilities
Pirc[a]. The word posterior for arc a is the posterior prob-
ability of the hypothesis that word Wa] occurred covering
the time range t[S[a]]...t[E]a]], in the context of arcs entering
Sla] and arcs leaving Fla]. Pac[a] is the aggregate posterior
probability of all routes through the graph containing arc a.

3.5 Relationship of Word and Hit Posteriors

Hit posteriors P(x,ts,q,te,*|O) (Eq. (2)) can be easily
computed from arc posteriors Parc[a]. For single-word queries
(lg| = 1), the hit posterior P(x,ts,q,te,*|O) is simply the
arc-posterior sum over all arcs a that match g in a given time
range, i.e. ¢ = Wial, ts = t[S[a]], and t. = t[E]al]:

P(*7t53q7t67*|0) = Z Parc[a] (4)
WT:3a:t[S[a]]=ts At[Ela]]=tc
AW la]=q

This is slightly relaxed in that we merge all hypotheses that
overlap into the one with the highest word posterior (see 3.3).
For multi-word queries ¢ = (g1, ..., qx), the hit posterior
P(%,ts,q,te,*|O) can be computed as the sum over all con-
nected routes m = (a1, ...,ax) that begin at time ¢s, end at

te, and constitute the token sequence ¢, as follows:

K
P(*7tqu7 tE:*|O) = E Parc[al] Hparc\node[ak|s[ak”~
r=(aq, - aK): k=2
t[S[n]]l=ts
AE[r]]=te
AW |[r]=q

with the “conditional” Pyycjnode|ax |S[ax]] defined as:

Pacla] Parcla]
Parc|node [CLlS[aH = Parc [a/] Pnode [S[a]]
a’:S[a’]=S]a]

Poode [n] is a convenience quantity that we call the node poste-
rior. It does have a “physical meaning” in that it is the poste-
rior for the hypothesis that the correct route passes through
node n, and it can be computed both from incoming and

outgoing arcs.
Z Parc[a} =
a:S[a]=n

> Pucla) ()

a:Ela]=n

Prode [n] -

It can be precomputed and stored with the lattice nodes. In
practical terms, however, we find that ignoring it (replacing
it by a constant) does not negatively impact results.

3.6 Relationship to “Likelihood Lattices”

Posterior lattices are not directly generated by speech rec-
ognizers. Instead, recognizers output what we call “likelihood
lattices” weighted by acoustic emission likelihoods (e.g. com-
puted by Hidden Markov Models, HMM) and language-
model probabilities [20]. Most speech-recognition packages
can generate these.

In alternative definitions of lattices found in literature,
nodes represent words and arcs word transitions.

The primary advantage of posterior lattices is that poste-
riors are close to what we need, resilient to approximations
like quantization and merging of similar alternates, and they
allow comparing arcs with different time durations and tem-
poral splitting e.g. compound words. Further, the node pos-
teriors is uncritical and can be ignored.

For reference, we want to explain the relationship between
the common likelihood lattice with our posterior lattices. The
difference is that arc weights, instead of arc posteriors, are
recognition scores, in particular log-linear combinations of an
acoustic emission likelihood pa.(W[a]|S[a], E[a]) computed
with a Hidden Markov Model (HMM) and a language-model
probability Pry(Wla]|S[a]). Let us denote the arc weights
of the Likelihood Lattice as grr[a]. Then,

gurlal = pac(a)l/)"PLM(a)

with language-model weight .
With this definition, arc and node posteriors can be calcu-
lated with the well-known forward-backward recursion [21].
On * POn
5 Pnode[n] = ﬁ) (6)

anend

as(q] - qurlal - Bela

anend

Parc [CL] -

with the forward probability o, defined as the sum over par-
tial path recognition scores for all paths leading from the
lattice start node to n, and backward probability 3, likewise
as the sum over partial paths leading from n to the end of
the lattice:

an = > Jlawld = > qula-ase (7)
W:SA[E][?]”:S:?R acm a:Ela]=n
B o= Y. Jlawled = > auld Bew (8

m:S[r]l=n a€m

a:S[a]=n
Elr]=nend

m = (a1, az,...) denotes a connected sequence of arcs. Eq. (5)
follows from Egs. (6-8).

4. INDEXING WORD LATTICES WITH
STANDARD FULL-TEXT INDEXERS

We have defined the spoken-document search task as
retrieving all audio documents D that contain all query
terms/phrases ¢ € @, such that a certain Precision is
met. We have further derived how, mathematically, this
is achieved by by determining and thresholding against the
posterior probability that an audio document contains all
query terms/phrases from word posterior probabilities ob-
tained from word lattices.

In this section, we now want to show how this can be ap-
proximately achieved in an efficient manner that by reusing
existing text indexers as much as possible. When attempting
to use text indexers to index word lattices, one encounters
two blocking issues:

e Word-position concept: Text indexers locate word oc-
currences by word-position counts in the running text,
for phrase matching and proximity-based relevance
scoring. However, the concept of word positions is ill-
defined to represent the temporal nature of word hy-
potheses, as word hypotheses are not generally word-
aligned with each other. As seen in Fig. 1, word hy-
potheses may partially overlap, and even the number of
words spanning a period of time is often not the same
across hypotheses;

e No posteriors (confidence scores): For text indexers,
there is no uncertainty whether a word occurred at a

given position or not, so they do not store posteriors
with word occurrences. At search time, the ranker con-
siders only the “existence” of query words or phrases.

Besides, one encounters the practical problem that lattices
can be really large, up to 100 times or more the size of a
text transcript, beyond the range that most text indexers are
designed and optimized for. Thus, size reduction will also be
a desirable property of our method.

There is no exact solution for mapping word lattices onto a
text index. We attempt to solve this conundrum by a series of
transformations and approximations that transform the nu-
meric problem of retrieving documents that match the query
with a certain probability into a symbolic text-based one that
can be implemented by a commercial full-text indexer.

In summary, the “TMI” method (Time-based Merging for
Indexing) is first used to significantly reduce the lattice size
by merging multiple similar word hypotheses that likely rep-
resent the same spoken word. After TMI, the graph becomes
much more compact such that representing its connectivity
in the word index would require just 2—3 additional bits of
storage for each word hit. Yet, we cannot always assume
that even such small modification can be done. To address
this case, we then use the “TALE” method (Time-Anchored
Lattice Expansion) to approximately map the complex time
structure of the lattice onto word positions, while retaining
phrase constraints as much as possible. Next, assuming that
likewise we cannot extend the index to store the lattice’s
posterior probabilities directly, we quantize the probabilities
and—this is where it becomes tricky—represent them sym-
bolically by “decorating” the word tokens. Last, we show how
the resulting index can be queried symbolically to return doc-
uments that contain all (possibly quoted) query terms with a
given minimum probability, and provide an example runtime
measurement using a commercial full-text engine.

4.1 Size Reduction: Time-based Merging for
Indexing (TMI)

TMI—Time-based Merging for Indexing—is a technique
for merging lattice arcs that likely represent the same spoken
word [17]. A single word often generates many competing
lattice arcs that differ in acoustic or language-model context
conditions and exact time boundaries. Both effects can be
seen in Fig. 1. In the problem at hand, hypotheses represent-
ing the same event are not competitors but should rather be
considered jointly as a single hypothesis?.

The TMI process is a heuristic approximation that aims at

e reducing redundancy/competitors that aren’t (multiple
hypotheses for the same query keyword with slightly
dissimilar time boundaries);

e significantly reducing the total number of hypotheses
to be indexed; and

e reducing storage per item,

while retaining all word sequences to avoid false negatives,
but allowing a small amount of false positives.

The basic idea is to cluster lattice nodes with similar times,
and to approximate word hypotheses by arcs between node
clusters rather than individual nodes. The clustering crite-
rion is a simple heuristic: two consecutive nodes can be clus-
tered together unless that would create a loop (a hypothesis
starting and ending in the same clustered node); and amongst
the manifold of clusterings that satisfy this, the one leading

2For the case of phrase matches, context and precise time
boundaries does matter in theory, but has little impact on
actual accuracy.

BANK -8.2
SPANK -28.4

THERE'S0.0
IN -29.5 THE-26.7

BEEN -6.5

TO-25.1

ACCOUNI -129
YEAH-11.3
CAN-129
HIM 0.0

THERES 0.0 sy

THINKING -16.1 BANK -8.9 TO-259

CHANGE -29.6THINKING -16.1 THIS-16.1 BANG -25.1{ BANK U_QYOU -8.2
SPANK -20.2

(a) TMI

INTO 0.0

SPANK -29.1 BANK 0.0

BEEN -6.5

CANT-92 J
COUNT-8.7 BANG 259 SPANK -20.2
CANNES-12.9 N ‘ BANG-258 / |\ ’f

(b) TALE

Figure 2: The lattice of Fig. 1 after TMI (a) and TALE (b) processing.

to the smallest number of clusters is considered the optimal
solution. It can be found using dynamic programming:

e sort nodes nj...ny in ascending time

e for each node n;, determine m;: the maximum node that n;
can be grouped with without causing a loop

e set cluster counts Cy «— 1; C; «— ocoVi >0

e set backpointers B; «— n; Vi > 0

o fori=1.N: // DP recursion

* Cj —Ci1+1
* Bj —1 // cluster {n;...n;}
e k « N; while k #0: // trace back, merge nodes
— create new node cluster {By...ny}, relink arcs
— kB —1
e merge arcs that connect the same two clusters with same
word by summing up their posteriors

3

We call this “Time-based Merging for Indexing,” as it ef-
fectively clusters nodes with similar time points, although
node times are only used for node sorting. The process re-
tains the expected term frequency Ewrjo{TFw (w)} (with
TFw (w) being the word count of word w in the hypothe-
sized transcript W) and keeps all phrases. It also introduces
additional paths, but they are restricted to not cause inser-
tions or deletions of full words. Our experiments show no loss
of accuracy from false positives (these random combinations
are unlikely to be valid phrases one would search for).

The final arc merging significantly reduces lattice size,
into the range of operating characteristics that text engines
are optimized for (further reduction is possible by pruning).
Fig. 2(a) shows the lattice in Fig. 1 after TMI processing.

TMI also dramatically reduces the numeric range of arc
spans (E[a] — S[a]) to a few bits only. E.g., a raw example
lattice with 4502 nodes and 30806 arcs had a maximum span
max,{E[a] — S[a]} = 1303, requiring 11 bits of storage (av-
erage: 371). TMI processing reduced it to 785 arcs and a
maximum span of 8 (3 bits) with only 7% of the arcs above
4. Most text indexers provide a few bits per-word hit, to
store attributes like whether a word occurred in a headline
or was bold-faced in the text [22], which could be repurposed
to store this information. Phrase-matching code would have
to be modified to take this information into account.

4.2 Word-Position Mapping: Time-Anchored
Lattice Expansion (TALE)

Not always can we assume that we can make even small
modifications to an existing text-indexing engine. If we can-
not even extend the index to store the few bits of arc-span
information required to correctly match phrases, we will need
a further approximation. The goal is to “get away” without
storing the span, yet doing phrase matching as accurately
as still possible. A method we call “Time-Anchored Lattice
Expansion” (TALE) addresses this problem [19].

TALE approximates a lattice so that words are aligned to
word positions, forming a “sausage”-like lattice. The stan-
dard phrase matcher requires words belonging to phrases to
be in consecutive word positions. TALE addresses this by
aligning some words to multiple slots (overgeneration). It is
impossible to guarantee that all possible phrases are retained
while keeping phrase posteriors and keeping the index small.
We have to set priorities.

TALE aims to retain the expected term frequencies
Eyjo{TFw(w)}; keep time points of individual hits accurate
enough to allow playback; and have all phrases up to three
words in consecutive word positions. The following method
satisfies these criteria while keeping the index size reasonable.

First, we define the d-conditional probability: probability
that word w happens as the §-th path token after a given
node n:

> P(k-n-wi-ni-...-w-ns-*|0)
Vg, wg
i=1...6 Awg=w

P(x-n-x|O)

P(w|n,d,0) =

We then choose time anchor points to...t7 to define word-
position slots (¢;,t:11), e.g. the time boundaries of the best
path, and align each node n to the closest slot, denoted by
i = sn. We call this “binning.”
We can now compute the probability distribution for slot
i of words w being the d-th token of a phrase:
Ps(wli,0) = > P(+n-|0) - P(w|n,6,0)

Vn:isnp+6=1i

We call this the “Ajs-Expansion.” Time information is re-
tained by the anchor points.

To guarantee to retain all M-word phrases in consecutive
slots, we interpolate multiple As-Expansions:

M
P(wli,0) = > s Ps(wli,0)

6=1

with Y~ As = 1. It can be proven that merging Ao, A1 and Ag
retains all 3-word phrases. The weights Aa would ideally be
optimized on a development set to maximize overall accuracy,
but it is not necessary: Experiments show that using equal
weights yields almost as good result as full lattice. Fig. 2 (b)
shows the lattice in Fig. 1 after TALE processing.

4.3 Storing Posteriors: Quantization and
Symbolic Representation

The remaining problem is to store posteriors in the index.
We found posteriors to be resilient to quantization, and 16
levels are sufficient, thus requiring 4 extra bits per hit. If stor-
ing this in the index is not possible, we must use a trick and
“decorate” the word symbols themselves to encode the quan-
tized posterior value. For example, a word “computer” with
quantized posterior level 8 is stored in the index as the dec-
orated token spoken:computer@8. (The prefix distinguishes
spoken words from regular text.)

4.4 Symbolic Querying:
Min/Max Approximation
With the above steps, we are now not only able to store
lattices in the text index, but also to query for all documents
matching the query approximately with a minimum proba-
bility Pmin—using a fully symbolic query.
We achieve that by—rather crudely—approximating the

products in Eq. (3) by minimum and maximum operations:

H(li H (17P(*atS7Q7t€7*‘O)))

q€Q (ts,q,te)

~ min(l — min (1 — P(xts,q,te, *|O
gl = min (1= Pln b 0,e,4(0))

= min max P(x,ts,q,te,*|O)
9€Q (ts,q,te)

P(R(Q,D)|O) =

Experiments show only little degradation of accuracy from
this. Then, cutting off document relevance probabilities at
given threshold Pnin can be expressed as:

<~ Vq € Q7 H(tsaqv te)7P(*7tsyq7te, *lO) > Pmin

It is easy to see that this can be implemented as a combina-
tion of symbolic AND and OR clauses.

4.5 System Architecture

Fig. 3 shows the suggested system architecture. Raw lat-
tices from the recognizer are TMI-compacted, pruned, saved
in a forward index, and fed to the text indexer, which ingests
it through a custom ingestion plug-in. Text indexers com-
monly expose a plug-in interface to ingest proprietary binary
file formats such as PDF. Our custom plug-in applies TALE
processing to bin lattices into positions, quantizes the word
posteriors, and outputs the decorated words to the index.

At query time, the user-requested minimum precision Ppin
is mapped to a confidence threshold and encoded into the user
query by the query construction module. For efficiency, we
encode only the lowest allowed confidence level in the query
itself, and use a custom FORMSOF expansion plug-in to ex-
pand it to include all higher levels as well. FORMSOF expan-
sion is intended to implement stemming, but it is commonly
expandable through plug-ins for language support. FORM-
SOF expansion is more efficient than explicit expansion with
OR operators, especially for phrases.

The documents returned by the full-text indexer are ren-
dered by the user interface module. An important Ul feature
are transcription snippets surrounding keyword hits. These
are generated from the TMI lattices stored in the forward in-
dex. Associated time information can be used for navigation.

S. RESULTS

5.1 Setup

We have evaluated our method on the 170-hour MIT iCam-
pus lecture set [3] with 160 lectures. The data set came pre-
segmented into 65927 sentences, with an average sentence
about 10 seconds. A speaker-independent Large Vocabulary

laudio raw ™I
latgtlce ™I Iatt?ce custom ingestion é_ g
speech | . || |Plug-in: 2=
- ™ processing ——®-TaLE ° x
recognition & pruning - quantization -
- decoration
TMI lattice
Indexing time [——]
______ "7 forward - - ’
query time index confidence
level
TMI lattice ¢
x v =
doc hits with doc | [custom FORMSOE |8 &
" = I
shippets user hits | |plug-in: o g uer
< Snippets | . [——- confidence expansion | X [€— 4 y.
interface stemming 2 construction
queryT

Figure 3: System Architecture.

Table 1: Spoken-document search results for phrase, single-word,
and two-term AND queries. Shown are mean average precision
(mAP) and Recall at a certain Precision cutoff (Rp) for P=75%
and 50%. “Index size” is index entries per spoken word. “Relative
improvement” is from “STT transcript with confidence” to the last
setup. All numbers in percent.

query type: phrase single-word z AND y index
configuration mAP | Rzs | mAP | Rs0 | mAP | Rys size
STT transcript| 42.6 | 43.4 | 44.3 | 45.2 | 26.1 | 26.1 1.0
raw lattice 67.2 | 52.9 | 56.3 | 46.1 | 63.3 | 61.6 1617
+TMI 69.6 | 55.0 | 56.3 | 46.0 | 66.2 | 62.9 46.2
+pruning 67.1 | 55.6 | 55.6 | 46.0 | 60.4 | 60.9 9.9
+TALE 67.6 55.5 55.3 46.2 61.5 61.1 11.5

+min approx. 67.3 | 54.1 | 55.2 | 46.1 | 61.2 | 58.4 11.5
+quantization | 66.2 | 54.2 | 52.1 | 46.1 | 60.9 | 57.4 11.5
rel. impr. F55%| +25%| +18%| +2% | x2.3 | x2.2 B

Continuous Speech Recognition (LVCSR) system was used
to generate word lattices. The acoustic model was trained
on the 1700-hour Switchboard “Fisher” telephone-speech set
[2]. Due to limited LM data for lectures, we partitioned the
test set into 10 parts, and recognized each part with an LM
trained on the transcripts of the remaining 9 parts, keeping
training and test sets disjunct. The Word Error Rate (WER)
for the test set is 46.6%.

We evaluate our method with multi-word (phrase), single-
word, and two-term AND queries (x AND y where x and y
can be single terms or phrases). The keyword set is synthetic
and consists of noun phrases chosen from the transcripts such
that for each query there are at most two matching lectures.

5.2 Spoken-Document Search Experiments

In this section, we investigate the quality of the document-
level posteriors through ranking experiments, and the effect
of our various approximations. We use two accuracy metrics:

e mAP: mean average precision, where documents are
ranked by their document-level matching posterior as
defined in Eq. (3);

e R75/Rs0: Rp is the document Recall at Precision P
(after the fact), with P=75% for most query sets, and
P=50% for single words as there were insufficient data
points at P =75%.

Table 1 shows the results. The first and second result
rows compare accuracies for the “naive” approach, indexing
speech-to-text (STT) plain-text transcripts, with raw lattice
indexing. To be able to compare transcript results with lat-
tices, we attached posteriors from the lattice to each tran-
script word. Significant improvements are observed from in-
dexing only STT transcripts to indexing lattices.

The next row shows the result for TMI processing. TMI
reduces the lattice size over 30 times, from around 1600 arcs
per spoken word to 46. We admittedly use wvery rich lat-
tices here — in earlier experiments [17] with smaller lattices
of about 25 arcs per word, TMI achieved about a 5-fold size
reduction. Compared with the “raw lattice,” TMI does not
lead to an accuracy loss—in fact it improves accuracy by 2-3
points for multi-word queries: By creating additional paths,
TMI has recovered a few phrases. For single-word queries,
TMI is very close to the raw lattice as expected.

TMI processing merges arcs with same words and similar
time range together, so it is more accurate for pruning arcs
with low posteriors. In the next row, we prune the lattice by
removing all arcs with logarithmic posteriors below -8.0. The
result (in the next row “+ pruning”) shows a 2-6 points ac-
curacy loss for multi-word queries and AND queries for mAP
(while Rp is almost not affected). Le., unlike false positives
from creating new paths, false negatives are expensive. The
loss is much smaller for the high-precision R7s metric.

Table 2: Recall (R) and precision (P) in percent when using a
cutoff threshold targeting precision 50% for single-word queries
and 75% for phrase and AND queries. STT transcripts are not
cut off. The last row is with all the approximation we have made
(TMI+pruning+TALE+MinMaz approximation+quantization).

query type: phrase single word xz AND y
setup P R P R P R
STT transcript 80.9 | 43.4 41.7 | 48.6 97.9 | 26.1
raw lattice 75.6 | 54.7 || 50.4 | 46.1 75.0 | 61.0
all approximations 75.9 | 55.9 49.5 | 45.8 75.0 | 58.1

The next row shows the further TALE processing result.
The is a small size increase as TALE over-generates arcs,
while the accuracy is almost not affected.

The next rows show results for the Min/Max approxima-
tion and posterior quantization. Posteriors are quantized to
15 levels. We observe largest accuracy loss for single-word
queries (3 points).

Overall, except the Rso for single-word queries, the pro-
posed setups significantly outperform “naive” indexing of
speech-to-text transcripts, with the best improvement on
AND queries from 26% to 62%.

5.3 Cutoff Experiments for Spoken Docu-
ments Search

In this setup, we want to evaluate the accuracy for the
primary task of this paper—retrieving documents that con-
tain all query terms with a probability greater than a given
threshold. We consider 75% a realistic choice for the target
Precision—with anything less, users may consider the system
broken! For single-word queries, we had to reduce it to 50%.

The cutoff threshold should be tuned on a development
set, but in our case we split our test set in two and applied a
threshold measured on one half to the other half.

Table 2 compares three setups: STT transcripts, raw lat-
tices, and the proposed method with all approximations. For
phrase queries and AND queries, STT transcript suffers from
a poor Recall despite high Precision. Raw lattices achieve sig-
nificantly better Recall through using alternates, while the
precision is within the target range. For single-word queries,
STT transcript without confidence cannot achieve the tar-
geted Precision level of 50%, while using lattices achieves this
while trading Recall. Again, the loss caused by the proposed
approximations is less than 3 points.

5.4 Runtime Performance

As a feasibility test, the method in this paper has been
implemented in Microsoft SQL Server 2005. The system
architecture follows Fig. 3. For example, searching for the
four-word query “barack obama” “hillary clinton” in an audio
database containing 5000 hours (different from our experi-
mental database used above) indexed as described in section
4 with minimum quantized probability level of 10 takes 290
ms using the following symbolic query:

SELECT fileid FROM files
WHERE CONTAINS (aib, ’FORMSOF (INFLECTIONAL,
"spoken:barack@10 spoken:obama®10")
AND FORMSOF (INFLECTIONAL,
"spoken:hillary@10 spoken:clinton@10")’)

6. CONCLUSION

We have examined the problem of indexing the spoken
content of audio recordings. Unlike indexing text, today’s
speech recognition technology does not allow to reliably know
whether a word is present or not at a given point in the au-
dio; one can only obtain a probability for it. Simply indexing

the speech-to-text transcripts results in poor accuracy.

In this paper, we have significantly improved search accu-
racy for “web-search style” (AND /phrase) queries by making
correct use of speech-recognition probabilities—in particular
by utilizing recognition alternates and word posterior proba-
bilities (confidence scores) based on word lattices.

We have further presented an end-to-end approach to do-
ing so with standard full-text indexers, despite the fact that
by design text indexers cannot handle probabilities and un-
aligned alternates. We presented a sequence of approxima-
tions that transform the numeric lattice-matching problem
into a symbolic text-based one that can be implemented by
a commercial full-text indexer (Microsoft SQL Server 2005).

Experiments on a 170-hour lecture set have shown a rela-
tive accuracy improvement of 30-130% compared to indexing
linear text.

7. REFERENCES

[1] M. Padmanabhan, G. Saon, J. Huang, B. Kingsbury, and
L. Mangu, Automatic Speech Recognition Performance on a
Voicemail Transcription Task. IEEE Trans. on Speech and Audio
Processing, Vol. 10, No. 7, 2002.

[2] G. Evermann, H. Y. Chan, M. J. F. Gales, B. Jia, X. Liu,

D. Mrva, K. C. Sim, L. Wang, P. C. Woodland, K. Yu,
Development of the 2004 CU-HTK English CTS Systems Using
More Than Two Thousand Hours of Data. Proc. Fall 2004 Rich
Transcription Workshop (RT-04), 2004.

[3] J. Glass, T. J. Hazen, L. Hetherington, C. Wang, Analysis and
Processing of Lecture Audio data: Preliminary investigation.
Proc. HLT-NAACL’2004 Workshop: Interdisciplinary
Approaches to Speech Indexing and Retrieval, Boston, 2004.

[4] J. Garofolo. TREC-9 Spoken Document Retrieval Track. National
Institute of Standards and Technology, http://trec.nist.
gov/pubs/trec9/sdrt9_slides/s1d001.htm

[5] T. Kawahara, C. H. Lee, B. H. Juang, Combining key-phrase
detection and subword-based verification for flexible speech
understanding, Proc. ICASSP’1997, Munich,1997.

[6] P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-Independent
Indexing of Spontaneous Speech, IEEE Transactions on Speech
and Audio Processing, Vol.13, No.5.

[7] Beth Logan et al. Word and subword indexing approaches for
reducing the effects of OOV queries on spoken audio.

Proc. HLT’2002.

[8] P. Schiuble et al. First experiences with a system for content
based rtrieval of information from speech recordings.
Proc. IJCAI’95.

[9] Kenney Ng. Subword-based approaches for spoken document
retrieval. PhD thesis, Massachusetts Institute of Technology, 2000.

[10] D. A. James and S. J. Young, A fast lattice-based approach to
vocabulary-independent wordspotting. Proc. ICASSP’04, 2004.

[11] F. Seide, P. Yu, et al, Vocabulary-Independent Search in
Spontaneous Speech. Proc. ICASSP’04, Montreal, 2004.

[12] Mark Clements et al, Phonetic Searching vs. LVCSR: How to
find what you really want in audio archives. Proc. AVIOS’2001,
San Jose, 2001.

[13] P. Yu, F. Seide, A hybrid word / phoneme-based approach for
improved vocabulary-independent search in spontaneous speech.
Proc. ICLSP’04, Jeju, 2004.

[14] M. Saraclar, R. Sproat, Lattice-based search for spoken
utterance retrieval. Proc. HLT’2004, Boston, 2004.

[15] C. Allauzen, M. Mohri, M. Saraclar, General indexation of
weighted automata — application to spoken utterance retrieval.
Proc. HLT’2004, Boston, 2004.

[16] C. Chelba and A. Acero, Position specific posterior lattices for
indexing speech. Proc. ACL’2005, Ann Arbor, 2005.

[17] Z.Y. Zhou, P. Yu, C. Chelba, F. Seide, Towards Spoken-
Document Retrieval for the Internet: Lattice Indexing For
Large-Scale Web-Search Architectures. Proc. HLT’06, 2006.

[18] L. Mangu, E. Brill, A. Stolcke, Finding Consensus in Speech
Recognition: Word Error Minimization and Other Applications of
Confusion Networks. Computer, Speech and Language, 14(4).

[19] F. Seide, P. Yu, Y. Shi, Towards Spoken-Document Retrieval for
the Enterprise: Approximate Word-Lattice Indexing with Text
Indexers. Proc. ASRU’2007, Kyoto, 2007.

[20] D. Jurafsky and J. Martin, An Introduction to Natural
Language Processing, Computational Linguistics, and Speech
Recognition, Second Edition, Pearson Prentice Hall, 2008.

[21] F. Wessel, R. Schliiter, and H. Ney, Using posterior word
probabilities for improved speech recognition.

Proc. ICASSP’2000, Istanbul, 2000.

[22] S. Brin and L. Page, The anatomy of a large-scale hypertextual

Web search engine. Computer Networks and ISDN Systems, 30.

