
A Comparison of Network Coding and Tree Packing

Yunnan Wu∗, Philip A. Chou†, and Kamal Jain†

∗Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
†Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399 USA

yunnanwu@princeton.edu, pachou@microsoft.com, kamalj@microsoft.com

1 Introduction

In this paper, we consider the problem of information multicast, namely transmitting
common information from a sender s to a set of receivers T , in a communication net-
work. Conventionally, in a communication network such as the Internet, this is done
by distributing information over a multicast distribution tree. The nodes of such a tree
are required only to replicate and forward, i.e., route, information received. Recently,
Ahlswede et al. [1] demonstrated that it is in general suboptimal to restrict the network
nodes to perform only routing. They show that the multicast capacity, which is defined
as the maximum rate that a sender can communicate common information to a set of re-
ceivers, is given by the minimum C = mint∈T Ct of max-flows Ct = maxflow(s, t) between
the sender and each receiver. Moreover, they showed that while the multicast capacity
cannot be achieved in general by routing, it can be achieved by network coding. Network
coding refers to a scheme where coding is done at the interior nodes in the network, not
only at the sender and receivers. Li, Yeung, and Cai [2] showed that it is sufficient for
the encoding functions at the interior nodes to be linear. Koetter and Médard[3] gave an
algebraic characterization of linear encoding schemes and proved existence of linear time-
invariant codes achieving the multicast capacity. Jaggi, Sanders, et al. [4][5][6] showed for
acyclic networks how to find the encoding and decoding coefficients in polynomial time.
Chou, Wu, and Jain [7][8] proposed a distributed scheme for practical network coding in
real packet networks achieving throughput close to capacity with low delay that is robust
to random packet loss and delay as well as robust to any changes to network topology or
capacity.

In this paper, we compare network coding solutions and routing solutions for the
problem of information multicast, and we investigate the potential advantages of network
coding over routing. To maximize the performance of the routing solutions, we investigate
the use of multiple multicast distribution trees. Finding the best collection of multicast
distribution trees is called packing Steiner trees in graph theoretic language. A Steiner
tree is a distribution tree that connects the sender with the set of receivers, possibly
through Steiner nodes, which are pure relays. However, it has been shown that finding an
optimal packing of Steiner trees, providing maximum throughput, is a NP-hard problem;
see, for example, [9]. Thus we develop greedy tree packing algorithms. We compare
network coding to tree packing on the network graphs of six Internet service providers.
In terms of throughput, tree packing performs comparably to practical network coding
in all of the six networks. However, network coding offers additional benefits, including
fewer network resources consumed, ease of management, and robustness.

2 Preliminaries

A communication network can be represented as a capacity graph G = (V,E, c), where
V and E are the set of vertices and edges respectively and associated with each directed
edge e ∈ E is a non-negative edge capacity c(e). In essence, a capacity graph models
the connectivity of a communication network as well as the supported bit rates for the
underlying communication links. We use the notation G′ = (V ′, E ′, c′) � G = (V,E, c)
to indicate that (V ′, E ′) is a subgraph of (V,E) and c′(vw) ≤ c(vw),∀vw ∈ E ′ ⊆ E.
A capacity sub-graph G′ � G may indicate a particular feasible use of the available
network resources, in terms of supported bit rates for the communication links. We also
introduce the addition and scaling operations on capacity graphs. Given two capacity
graphs G1 = (V1, E1, c1), G2 = (V2, E2, c2) and two non-negative scaling factors λ1, λ2, the
linear combination λ1G1 +λ2G2 refers to a capacity graph (V1∪V2, E1∪E2, λ1c1 +λ2c2),
where the edge capacities c1 and c2 are each extended to E1 ∪ E2 in the obvious way.

3 Packing Distribution Trees

A distribution tree gives one routing assignment, for information packets to go from the
root of the directed tree, namely the sender s, to the receivers T . We can symbolically
represent a distribution tree as a capacity sub-graph Gk = (Vk, Ek, ck) � G = (V,E, c), in
which the edge set Ek has been reduced to contain only those edges involved in the tree
and the vertex set Vk has been reduced accordingly. A distribution tree, Gk = (Vk, Ek, ck),
can deliver common information to the receivers at a rate

R(Gk) ≡ min
e∈Ek

ck(e). (1)

Multiple distribution trees, say Gk, k = 1, . . . , K, may be used to achieve a high through-
put by using different trees to distribute different information streams, as long as their
sum

∑
Gk fits in the network, i.e.,

∑
Gk � G. The problem of packing distribution trees

for the maximum throughput can thus be stated as the following optimization

max
{Gk}:

∑
Gk�G

K∑

k=1

R(Gk), (2)

where Gk’s are distribution trees connecting s with T . Note that this maximum through-
put achievable by packing trees is certainly less than or equal to the multicast capacity
C = mint∈T Ct.

In general, a distribution tree may involve nodes other than the sender s and the
receivers in T . These additional nodes serve solely as information relays and are called
Steiner nodes. Correspondingly, a Steiner tree refers to a general tree, possibly containing
Steiner nodes. Two extremes of the Steiner tree packing problem are fundamental theo-
rems in combinatorics. One extreme is the maximum flow problem, or “packing paths,”
for a single sender and a single receiver. This problem has been well solved. The other
extreme is when all nodes are receivers. In this case, a Steiner tree becomes a spanning
tree since it reaches all other nodes. The following theorem [10] shows the multicast
capacity can be achieved by packing spanning trees.

Theorem 1 (Edmonds’ Theorem).
Consider a capacity graph G = (V,E, c) under the discrete model, where all edges in E

Reached
nodes

Non-reached
nodes

Choose the edge with
maximum capacity

Reached
nodes

Non-reached
nodes

Choose the unit-capacity edge
whose removal leads to the least
reduction in the multicast capacity

Figure 1: (left): constructing the maximum-rate distribution tree based on Prim’s al-
gorithm. (right): constructing a distribution tree based on Lovasz’s proof to Edmonds’
Theorem.

have unit capacity, and multiple edges may exist for each ordered pair (v, w), v, w ∈ V .

There are C pair-wise edge-disjoint spanning trees rooted at a sender s ∈ V , where C is

the minimum of the maximum flow values for each sender-receiver pair (s, t), t ∈ V \{s}.

The presence of Steiner nodes makes the general packing problem (2) NP-hard [9].
Until now, known algorithms for packing Steiner trees have guaranteed a throughput
only around C/|T |, which is often pessimistic in practice.

In the following, first, we show that packing the best single Steiner tree, i.e., the one
providing the largest throughput among all distribution trees, is solvable in polynomial
time. Based on this observation, a greedy algorithm is proposed, which repeatedly packs
the maximum-rate distribution tree.

Let G1 = (V1, E1, c1) denote a distribution tree. Finding the maximum-rate distribu-
tion tree is characterized by the following optimization

max
G1�G

R(G1) = max
G1=(V1,E1,c1)�G

min
e∈E1

c1(e). (3)

At first glance, formulation (3) may appear similar with the classical minimum-cost
Steiner tree problem, if we treat the negated capacity as the “cost” for each edge, except
that the cost of a tree is defined as the sum of the costs for all the constituent edges in the
minimum-cost Steiner tree problem, whereas the rate of a tree is defined as the minimum
of the edge capacities. The minimum-cost Steiner tree problem is a well-known NP-hard
problem in graph theory. Nevertheless, the degenerate version without Steiner nodes,
namely the minimum spanning tree (MST) problem, is solvable in polynomial time.
Representative algorithms for the minimum spanning tree problem include Kruskal’s
algorithm[11] and Prim’s algorithm[12]. This difference in computational complexity
again demonstrates the difficulties caused by Steiner nodes.

Fortunately, the maximum-rate Steiner tree problem turns out to be as easy as the
minimum-cost spanning tree problem. Moreover, algorithms may be constructed based
on Kruskal’s algorithm and Prim’s algorithm. A simple explanation of the polynomial
solvability is as follows. The maximum-rate Steiner tree can be constructed by first taking
the union of the maximum-rate paths from the sender s to each receiver t ∈ T , and then
eliminating redundant edges. In fact, Prim’s algorithm, or the idea of greedily augmenting
a tree edge by edge, can be applied as an efficient way to find all the maximum-rate paths
from the sender s to each receiver t ∈ T together.

Figure 1(left) illustrates the process of constructing the maximum-rate distribution
tree according to Prim’s algorithm. During the process, each node v is classified as either

“reached” or “non-reached”, showing if v has already been reached or not. The ellipse
on the left represents the set of reached nodes, which we denote by U , and the ellipse
on the right represents the set of non-reached nodes V − U . Initially, the set of reached
nodes includes only the sender s. In each subsequent step, we select the edge uv with
maximum capacity, among those pointing from a reached node to a non-reached node.
Then the node v is added to the set of reached nodes, and the edge uv is recorded as
an edge on the distribution tree. The process continues until all the receivers have been
reached.

After the steps above, a post-processing step is then applied to the constructed dis-
tribution tree to prune unnecessary uses of rates on the edges. This pruning is based on
two observations. First, there is no need to keep leaf nodes that are not receivers in the
tree, since they are not contributing to the delivery to the desired receivers. Hence, we
can backtrack from the receivers to the sender in order to identify the contributing edges
and nodes and remove those non-contributing edges and nodes. Denote the distribution
tree after this pruning step by G′ = (V ′, E ′, c′) � G. Second, there is no need to let
an edge in the tree consume more than the achievable throughput R(G′), which is the
minimum rate over all the remaining edges, mine∈E′ c′(e). Thus, we can just set the rate
for all edges in E ′ to be R(G′), as

G′ ← (V ′, E ′, R(G′)) . (4)

Next, we can remove the constructed maximum-rate distribution tree G′ from the
graph G, i.e.,

G← G−G′. (5)

The above procedure may be repeated until no maximum-rate distribution tree, connect-
ing the sender with the receivers, can be further constructed.

An alternate algorithm to find the maximum-rate distribution tree is based on the
pruning step described above. Simply, consider all the edges, one by one, in the increasing
order of their capacities. If the deletion of the edge does not disconnect a receiver from
the sender then delete the edge else keep it. The edges which survive the deletion process
form the maximum-rate distribution tree.

We also develop a third greedy tree-packing algorithm based on Lovasz’s constructive
proof [13] to Edmonds’ Theorem[10]. Assuming all edges have unit-capacity and allowing
multiple edges for each ordered node pair, the algorithm packs unit-capacity trees one by
one and each tree is constructed by greedily augmenting a tree edge by edge, similar to
the greedy tree-packing algorithm based on Prim’s algorithm. The distinction lies in the
rule of selecting the edge among those pointing from the set of reached nodes U to the set
of non-reached nodes V − U . Figure 1(right) illustrates the rule, which is to choose the
unit-capacity edge whose removal leads to the least reduction in the multicast capacity.
For details, see [8].

4 Comparison of Network Coding and Tree Packing

Historically, throughput gain has been the primary motivation for network coding. In
their pioneering work [1], Ahlswede et al. gave a simple example network, showing that
network coding can potentially achieve a higher throughput than routing solutions. Jaggi
et al.[6] gave a construction demonstrating that network coding could gain as large as
Ω(log(|V |)) in throughput over routing. However, it remained unclear how large would be

the throughput gap in practical networks. Here, we compare the achievable throughput
for network coding and tree packing using the network topologies of six commercial
Internet Service Providers (ISPs). We use the graphs obtained from the Rocketfuel
project at the University of Washington. For each ISP graph, we arbitrarily selected one
sender and 20 receivers.

Figure 2 shows the achievable throughput on the six ISP graphs. The figure is parti-
tioned into six sections, each corresponding to an ISP graph. Within each section, from
left to right, the shown throughput results are for the maximum-rate distribution tree,
repeated packing of maximum-rate distribution trees, greedy tree packing based on Lo-
vasz’s proof to Edmonds’ Theorem, practical network coding, and the multicast capacity,
respectively.

From Figure 2, it can be seen that packing multiple distribution trees offers a signif-
icant gain in throughput compared to using only one distribution tree (as in traditional
IP multicast, for example). The achievable throughput for both network coding and
greedy tree packing is observed to be reasonably close to the multicast capacity. Given
the limited six tests, we are not yet ready to conclude that the small throughput gap
would often be the case. The throughput gap between network coding and greedy tree
packing may depend critically on the structure of the network. It would be an interesting
future topic to characterize the structural features that determine the throughput gap.

Comparison of Achievable Throughput

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

ISP#

(M
b

p
s)

Maximum-rate distribution tree

Repeated packing of maximum-rate distribution trees

Greedy tree-packing based on Lovasz's proof to Edmonds' theorem

Practical network coding

Multicast capacity

Figure 2: Comparison of achievable throughput on 6 ISP graphs.

Nevertheless, network coding offers additional benefits, including fewer network re-
sources consumed, ease of management, and robustness to both ergodic losses (e.g.,
packet losses) and non-ergodic failures (e.g., node and link failures). For details, see [8].
Here, we investigate robustness to random link failures. The results are presented in Fig-
ure 3(a)-(f) for the six ISP graphs, respectively. Denote the original capacity graph by
G = (V,E, c). We run the algorithm that repeatedly packs maximum-rate distribution
trees on G and obtains a sum of distribution trees F . We loop through the edges in E
and evaluate the throughput after removing one edge at a time. For each edge vw ∈ E,
three data points are collected. A first number, which we denote by C1(G− vw), is the

multicast capacity of G− vw, corresponding to the throughput potentially achievable by
network coding. A second number, which we denote by C2(G − vw), is the throughput
obtained by the repeated packing of distribution trees on G− vw. This result is labelled
“adaptive tree packing”, since it re-packs the trees after a link failure. A third number,
which we denote by C3(F, vw), is for the “fixed tree packing”, which evaluates the effect
of removing vw from G on a given set of distribution trees F . If vw is not used in F , the
throughput remains the same; otherwise, the offspring nodes on those trees containing
edge vw will be affected.

In Figure 3(a)-(f), the horizontal axis is the index of the removed edge, sorted by
the throughput with fixed tree packing. For visualization, only the first 200 edges are
shown. It can be observed from these 6 figures that adaptive tree packing improves
noticeably over fixed tree packing, and network coding offers some further enhancement
over adaptive tree packing. Thus, the ability to adapt to changes may result in noticeable
throughput advantages.

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE
Trans. Information Theory, IT-46(4):1204-1216, Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Information
Theory, IT-49(2):371-381, Feb. 2003.

[3] R. Koetter, and M. Médard, “An algebraic approach to network coding,” IEEE/ACM
Trans. Networking, vol. 11, no. 5, pp. 782-795, Oct. 2003.

[4] S. Jaggi, P. A. Chou, and K. Jain, “Low complexity optimal algebraic multicast codes,”
In Proc. IEEE Int’l Symp. Information Theory, Yokohama, Japan, June 2003.

[5] P. Sander, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for network informa-
tion flow,” In ACM Symp. Parallel Algorithms and Architectures (SPAA), pp. 286-294,
San Diego, CA, June 2003.

[6] S. Jaggi, P. Sander, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen, “Polyno-
mial time algorithms for network code construction,” submitted to IEEE Trans. Informa-
tion Theory.

[7] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” 51st Allerton Conf. Com-
munication, Control and Computing, Oct. 2003.

[8] Y. Wu, P. A. Chou, and K. Jain, “Practical network coding,” Technical report, Microsoft
Research. In preparation.

[9] K. Jain, M. Mahdian, and M.R. Salavatipour, “Packing Steiner trees,” 14th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2003.

[10] J. Edmonds, “Edge-disjoint branchings,” in: Combinatorial Algorithms, ed. R. Rustin, pp.
91-96, Academic Press, NY, 1973.

[11] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proc. American Math. Society, 7:48-50, 1956.

[12] R. C. Prim, “Shortest connection networks and some generalizations,” Bell System Tech-
nical J., 36:1389-1401, 1957.

[13] L. Lovasz, “On two minimax theorems in graph theory,” J. Combin. Theory B 21, pp.
96-103, 1976.

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(a)

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(b)

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(c)

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(d)

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(e)

0 20 40 60 80 100 120 140 160 180 200
100

200

300

400

500

600

700

Index of the removed edge (sorted by throughput with fixed tree packing)

T
hr

ou
gh

pu
t (

M
bp

s)

Multicast Capacity (Network Coding)
Adaptive Tree Packing
Fixed Tree Packing

(f)

Figure 3: Comparison of throughput after removing one edge at a time. Edges are sorted
by the throughput for the fixed tree packing.

