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PREFACE

The John Wiley ATEX style file has been created to provide authors with a teragfiat
supplying their manuscript in a format that will be similarthe final typeset version. It has
been produced to help authors to concentrate on the contdmtulhaving to become too
concerned about the style. We recommend that you read thritig) document carefully
before you begin theATeX source for your book. By following the hints and style paint
set out in this document, you will be able to present your wiarla way that will meet
many of the required specifications for publication. Thes&lglines are not intended as
an introduction toATpX. Further sources of information abo#fEX can be found in the
appendix and bibliography at the end of this document.
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Semantic Frame Based Spoken
Language Understanding

Ye-Yi Wang, Li Deng and Alex Acero

Microsoft Research

Semantic frame based spoken language understanding {braseel SLU) is one of the most
commonly applied and well studied SLU technology for huncamputer interaction. It has
been used in many speech language processing tasks, ioutarthe transactional dialog
systems, where various pieces of information need to beaelli from users. A frame-based
SLU system is often limited to a specific domain, which has &-defined, relatively small
semantic space. The structure of the semantic space capreseated by a set of templates
called semantic frameseach contains some important component variables thatftee
referred asslots The goal of the frame-based SLU is to choose the correctsfeame
for an utterance, and extract from the utterance the valtiés @mponent slots.

1.1 Background

1.1.1 History of the Frame-based SLU

In the United States, the study of the frame-based SLU stamtéhe 1970's in the DARPA
Speech Understanding Research (SUR) and then the Resoaragkment (RM) tasks. At
this early stage, natural language understanding (NLUWjrtiegies like finite state machine
(FSM) and augmented transition networks (ATNs) were agdbe SLU (Woods 1983). The
study of SLU surged in the 90’s, with the DARPA sponsored AavEl Information System
(ATIS) evaluations (Dahl et al. 1994; Hemphill et al. 199@ltiple research labs from both
academia and industry, including AT&T, BBN, Carnegie Malldniversity, MIT and SR,
developed systems that attempted to understand userdasmomus spoken queries for air
travel information (including flight information, groundansportation information, airport
service information, etc.) and then obtain the answers feogtandard database. ATIS is
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Figure 1.1 Frame-based SLU in a typical ATIS system, which consistg afspeech recognizer with
both the acoustic model and language model trained with Th8 Apecific data; 2) a SLU system that
extracts the semantic representation (meaning) from ttegrézed text; and 3) a SQL generator that
automatically generates the database query based on taesenepresentation.

an important milestone for the frame-based SLU, largelynkisdo its rigorous component-
wise and end-to-end evaluation, participated by multipstifutions, with a common test set.
Figure 1.1 shows the role of the frame-based SLU componentypical ATIS system.

While ATIS focused more or less on the understanding of alsifgn utterance, the
more recent DARPA Communicator program (Walker et al. 206&)sed on the rapid and
cost-effective development of multi-modal speech enabialbg systems, in which general
infrastructures for dialog systems were developed, whiferent component systems for
ASR, SLU, DM and TTS can be plugged in and evaluated. Nagyrakny SLU technologies
developed in ATIS were used in the SLU component of the Comcator program. Eight
systems from AT&T, BBN, University of Colorado, Carnegie IMe University, IBM,
Lucent Bell Labs, MIT, and SRI participated in the 2001 eatibn (Walker et al. 2002).
In the mean time, the Al community had separate effort indig a conversational planning
agent, such as the TRAINS system (Allen et al. 1996b).

Parallel efforts were made on the other side of the Atlafitie French EVALDA/MEDIA
project aimed at designing and testing the evaluation ndeflogy to compare and
diagnose the context-dependent and independent SLU dipabépoken language dialogs.
Participants included both academic organizations (IRIA, LIMSI, LORIA, VALORIA,
CLIPS) and industrial institutions (FRANCE TELECOM R&D, T). Like ATIS, the
domain of this study was restricted to database queriesiwist and hotel information.

The more recent LUNA project sponsored by the European Ufdmused on the
problem of real-time understanding of spontaneous speedhe context of advanced
telecom services. Its major objective is the developmerat mfbust SLU toolkit for dialog
systems, which enhances users experience by allowingah&tuman-machine interactions
via spontaneous and unconstrained speech. One speciatthistic of the project, which
is absent in the similar projects in the US, is its emphasimatiilingual portability of the
SLU components.

Traditionally, the frame-based SLU has adopted a knowldszged solution. The problem
is tackled by writing context free (CFG) or unification grasms (UG) by hand. The manual
grammar authoring process is laborious, expensive andrescalot of expertise. In the early
90's, both knowledge-based and data-driven approachestfe®n applied in different ATIS
systems. Currently most commercial applications use tlavledge-based solutions, while
most research systems adopt a data-driven, statisticalibgpapproach to SLU. Attempts
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<frame name=ShowFlight type="Void” >
<slot name=8ubject’ type="Subject”>
<slot name=flight” type="Flight” >

<[frame>

<frame name=GroundTran$ type="Void" >
<slot name=tity” type="City” >
<slot name=type” type="TransType*>

<[frame>

<frame name=Flight” type="Flight” >
<slot name=DCity” type="City” >
<slot name=ACity " type="City” >
<slot name=DDate" type="Date”>

<[frame>

Figure 1.2 Simplified semantic class schema for the ATIS domBiGity stands for “departure city”
andACity stands for “arrival city”.

have also been made to incorporate knowledge in a datardsysem.

1.1.2 Semantic Representation and Semantic Frame

What is the goal for SLU? How can we tell whether a system’ssustdnding is appropriate
or not? Ultimately, the appropriateness of the understancin be measured by the system’s
responses or by the actions taken by the system after it fetawtel” an input utterance. For
the frame-based SLU tasks, using the ATIS domain as an exarfyi$ can be measured
by the accuracy of the air travel related information retarfrom a system after a spoken
guery is made by a user. However, generating the informatiarives more than the SLU
component. For better engineering practice and scientifiies, it is desirable to modularize
the end-to-end system and isolate the SLU module. For thipgse, an intermediate
semantic representation is introduced to serve as thefantebetween different modules.
Many spoken language systems adopt their own semanticseategions. However, most of
them can be abstracted as the semantic frame-based raptEsenvhich we introduce now.
The semantic structure of an application domain is defingdrims ofsemantic frames
Figure 1.2 shows a simplified example of three semantic fsdimethe ATIS domain. Each
frame contains several typed components calkddts” The type of a slot specifies what
kind of fillers it is expecting. For example, tisebject slot of theShowFlightframe can be
filled with the semantic terminal FLIGHT (expressed by theagolike “flight”, “flights”)
or the FARE semantic terminal (expressed by the words likee™ “cost”) that specifies
what particular information a user needs. In #lght frame,DCity stands for “departure
city” and ACity stands for “arrival city”. These two slots require objecithiCity” type as
their fillers, which can be, for example, a city name or a ciigde. The frame has the type
“Flight”, so it can be the filler of theflight” slot of the top level frame ShowFlight. Often
the semantic frame is related to and derived from the schérh @pplication database.
The meaning of an input sentence is an instantiation of theaséc frames. Figure 1.3
shows the meaning representation for the sentence “Showightsffrom Seattle to Boston
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ShowFlight
<ShowFlight>
<subjecttype="Subject®>FLIGHT </subject> /\
<Flight frame="Flight” type="Flight” > subject flight
<DCity type="City">SEA</DCity > | /‘\
<ACity type="City”">BOS</ACity > FLIGHT o I
<DDate Type="Date">12/24</DDate> DCity ACity DDate
<IFlight > ! | !
</ShowFlight> SEA BOS 12/24

Figure 1.3 The semantic representation for “Show me flights from SeattIBoston on Christmas
Eve” is an instantiation of the semantic frames in Figure Q@ the right is its tree representation.
The instantiation picks a frame that represents the mearmngeyed in the sentence and fills its slots
accordingly.

[Command: DISPLAY] [Subject: FLIGHT] [DCity: SEA] [ACityBOS][DDate: 12/24]

Figure 1.4 The attribute-value representation is a special case dfahnee representation where no
embedded structure is allowed. Here is an attribute-vapeesentation for “Show me the flights from
Seattle to Boston on Christmas Eve.”

on Christmas Eve.” Here the fram8HowFlight contains the sub-framd”light”. Some SLU
systems do not allow any sub-structures in a frame. In suak&, ¢the semantic representation
is simplified as a list oéttribute-value pairswhich are also callekeyword-pairgPieraccini
and Levin 1993) oflat conceptepresentation (Figure 1.4).

The hierarchical representation is more expressive andalhe sharing of substructures.
For example, theFlight frame in Figure 1.2 can be shared by b&howFlightand
CancelFlight(not shown) frames. The flat concept representation is gingpld often results
in a simpler statistical model.

The semantic representation in the French MEDIA projectptgl@n attribute-value
list to represent the hierarchical semantic informationr{Beau-Maynard et al. 2005), as
shown in Figure 1.5. This representation, used in the offiimotation and evaluation,
is ostensibly quite different from the frame based repriegem. However, a hierarchical
representation in Figure 1.6 can be constructed from suepm@sentation, which is much
similar to the frame-based representation. This effelstisengs the expression power of
the MEDIA annotation/evaluation scheme much similar toftaene-based representation.
In Figure 1.5, each segment of the sentence is tagged withdethat takes four possible
values: affirmative (+), negative (-), interrogative (?)optional (@). While most segments
are labeled with the “+” mode, the “le” and “tarif” segment® dabeled as “?”, indicating
this (“the rate”) is the information that the user has aslad Theattribute namencode
the hierarchical semantic information, amokrmalized valuesepresents the canonical values
for the attributes. To encode the hierarchical informatamattribute name contains multiple
parts separated by hyphens, each part represents antatbédanging to an attribute class:
The database attributeslass contains the attributes from a database table. Fdnads A
and B in this class A- B implies thatB is an attribute in the substructure 4f For example,
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words mode  attribute name normalized value
donnez-moi +  null

le ? r ef Li nk- coRef si ngul ar

tarif ? obj ect paynent - anount - r oom
puisque + connect Prop imly

je voudrais + null

une chambre + nunber-room 1

qui colte + obj ect paynent - anpunt - r oom
pas plus de + conparative- paynment | ess than

cinquante + paynent - anount -i nt eger-room 50

euros +  paynent-unit euro

Figure 1.5 Semantic concept (attribute/value) representation ferutiterancegive me the rate for
I'd like a room charged not more than fifty euro$Courtesy of Fabrice Lefevre).

ref Li nk: co-ref.

si ngul ar
obj ect: room
paynment: anount: ?
i mply
obj ect: room
nunber : 1
paynent: conparative: |ess than
anmount : i nteger: 50
unit: euro

Figure 1.6 Hierarchical representation derived from the attribuabse list in Figure 1.5.

paynent - amount - i nt eger indicates thatinount is an attribute in the substructure
of paynment, while i nt eger is an attribute in the substructure afrount . Similarly,
paynent - uni t implies thatuni t is another attribute in the substructurepafy ment .

A modifier attributeM is linked to a database attributein the form of M- A, indicating
that M modifiesA. For exampleconpar at i ve- paynent states thatonpar ati ve is

a modifier ofpayment , hence it is part of thepaynent structure. To fully reconstruct the
hierarchical representation, additional informationes@ssary to specify which components
should be joined together to form a structure. For that psep8onneau-Maynard et al.
(2005) introduced thepecifiersthat can be attached to the end of a hierarchical attribute
name. For example, the specifrasomin Figure 1.5 indicates thatunber andpaynent
should be grouped together under tteomspecifier, as shown in Figure 1.6.
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1.1.3 Technical Challenges

The frame-based SLU is closely related to natural languagkenstanding (NLU), a field
that has been studied for more than half a century. NLU focamiy on understanding
of general domain written texts. Because there is not a Bpegiplication domain for the
general purposed NLU, the semantics in NLU have to be defimedliroader sense, such
as thematic roles (agents, patients, etc.) In contrasfrainee-based SLU has, in the current
state of technology, focused only on specific applicatiomdins. The semantics are defined
very specifically according to the application domain, assttated by the above examples
of semantic frames. Many domain-specific constraints candleded in the understanding
model. Ostensibly, this may make the problem easier to sblaéortunately, there are many
new challenges for spoken language understanding, imgjudi

e Extra-grammaticality — spoken languages are not as well-formed as written
languages. People are in general less careful with speachviith writings. They
often do not comply with rigid syntactic constraints.

e Disfluencies — false starts, repairs, and hesitations are pervasiveeciedly in
conversational speech.

e Speech recognition errors— Speech recognition technologies are far from perfect.
Environment noise, speaker’s accent, domain specific taimgies, all make speech
recognition errors inevitable. It is common to see that segerspeech recognizer has
over 30% word error rates on domain specific data.

e Out-of-domain utterances— a dialog system can never restrict a user from saying
anything out of a specific domain, even in a system-initiatiadog, where users are
prompted for answers to specific questions. Because theeflased SLU focuses on
a specific application domain, out-of-domain utterancesat well modeled and can
often be confused as an in-domain utterance. Detectinguhefedomain utterances is
not an easy task — it is complicated by the extra-gramméticdisfluencies and ASR
errors of in-domain utterances.

In summary, robustness is one of the most important issu&.h A system should
be able to gracefully handle the unexpected inputs. If antisfring is not accepted by a
grammar/model, it is still desirable to identify the wedirined concepts in the input that
carry important information for a given domain. On the othand, a robust solution tends to
over-generalize and introduce ambiguities, leading taicédn in understanding accuracy.
A major challenge to the frame-based SLU is thus to strikemimal balance between the
robustness and the constraints that prevent over-geratiahis and reduce ambiguities.

1.1.4 Standard Data Sets

While there are many commercial applications for the frddmased SLU, most of the data
used in those applications are proprietary. The ATIS co(pasl et al. 1994; Hemphill et al.
1990) is the most broadly used data set by SLU researchéssntire realistic compared to
the previous speech corpus in the sense that it is the spniaspoken language instead of
the read speech, therefore it contains disfluencies, d@mns¢and colloquial pronunciations.
It was collected in a normal office setting, with a Wizard oé 9z interaction between a
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system and a subject who issued spoken queries for air frefeemation. Utterances were
recorded, manually transcribed, and manually categoritedhree different classes: class
A for queries that can be interpreted without the contexbrimiation; class D for queries

that can be interpreted with the context information; cldder unanswerable queries (e.g.,
out of domain utterances). The corpus also contains a bagldatabase of US domestic
flights. Each utterance in class A or D is also manually assediwith a SQL query for the

database, together with the reference answer, which isdiresponding query result from

the database.

The ATIS data set was designed to advance the state-oftlirespeech recognition and
understanding in early '90s. The DARPA Communicator projje©0’s focused on the rapid
and cost-effective development of multi-modal speechktkdialog systems with advanced
conversational capabilities. The data collected from tragegt are richly annotated with
dialog related information, including sessions/turnsfagion information, etc.

Both ATIS and Communicator corpus are available through Ltlmguistic Data
Consortium (LDC) (LDC n.d.). The data collected by the TRAIMject (Allen et al. 1996a)
is also available at LDC.

For the European SLU projects, the French corpus MEDIA has benotated in terms of
semantic structures as in Figure 1.5 For the LUNA projedtfibeuses on multilingual SLU
and language specific aspects for language modeling andstadding, new corpora with
complex human-human dialogs have been acquired in Itatid#Palish. They are transcribed
and annotated in terms of the syntactic constituents andsterstructures.

The MEDIA data is available via the European Language Reso@ssociation (ELRA)
(ELRA n.d.).

1.1.5 Evaluation Metrics

Various metrics are used in the evaluation of the framed&t&) systems. Some metrics
focus on component-wise performance of the SLU sub-sysidmrs emphasize the impact
of the SLU component on the performance of the end-to-enttisysHere we list some
commonly used evaluation metrics.

e Sentence/utterance Level Semantic Accurac{SLSA): this metric measures the
percentage of correct semantic representations assignedéntence/utterance. An
intermediate reference semantic representation is redjwiith this metric.

SLSA =

# of sentences assigned correct semantic representatio& 1)
# of sentences '

e Slot Error Rate (SER): slot error rate (a.k.a concept error rate (CER)) nness
the slot level performance of a frame-based SLU system.igihslthe semantic
representation of a sentence with its reference represamtéind the number of slots
incorrectly identified by the SLU system. These include tiserted slots (present in
the SLU output, absent in the reference representatiofgtedeslots (absent in the
SLU output, present in the reference) and substituted &bhiss that are aligned to
each other between the SLU output and the reference diffeithier the slot labels or
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the sentence segments they cover).

# of inserted/deleted/substituted slots
SER = - - . (1.2)
# of slots in reference semantic representations

e Slot Precision/Recall/R Score Precision/Recall is another way to measure the slot
level SLU performance. Fcombines precision and recall into a single score as their
harmonic mean:

# of reference slots correctly detected by SLU

Precision = 1.3
reciston # of total slots detected by SLU (1-3)
# of reference slots correctly detected by SLU
Recall = y y (1.4)
# of total reference slots
P - 2 x (Precision x Recall) (1.5)

Precision + Recall

e End-to-end Evaluation: The above evaluation metrics compare the SLU output
with the reference semantic representation. Since diffesgstems may use different
intermediate semantic representations, it is difficult wmpare different SLU
components even if a common test set is available. In thenaliARPA-sponsored
ATIS evaluation, the problem is addressed by an end-to-emdua@ion metric.
Utterances were first recognized and parsed to produce thansie representations,
fromwhich SQL queries were generated and submitted to ttiesimal database engine.
The resulting database outputs were then compared wittatgettentries created by
using the manually labeled SQL queries. Here a target emtypiir of minimum and
maximum information, which indicates the columns that htauge returned (minimum
information) and the columns that are permitted to be inetlich the database search
results (maximum information). The minimum-maximum resion penalizes the
implementation that always returns the information froittaé fields of a database
entry without understanding what specific information teenhas requested for. The
evaluation for SLU can be conducted on both the ASR and thauaddranscriptions
of the test utterances. The utterance level understandmgacy is the percentage of
the test utterances for which the correct database enngéesuput with at least the
minimum information (database columns) and at most the miamxi information.

1.2 Knowledge-based Solutions
1.2.1 Semantically-enhanced Syntactic Grammars

Many advocates of the knowledge-based approach belietgeharal linguistic knowledge
is helpful in modeling domain specific language. This inelsidhe syntactic constraints
as well as some optional rudimentary domain-independenasgc knowledge. However,
since the ultimate goal is to extract the domain-dependanastic information, one major
question is how to inject the domain specific semantic caimgts into a domain-independent
grammar.

MIT's TINA system (Seneff 1992) aims at the graceful, seaslaterface between syntax
and semantics. It uses context free grammar (augmentedanitit of features used to
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SENTENCE SENTENCE

‘ ‘
Q-SUBJECT BE-QUESTION Q-SUBJECT BE-QUESTION

|

[
LINK SUBJECT PRED-ADJUNCT

NOUN-PHRASE PREP-PHRASE

WHAT NOUN-SG | ‘ WHAT  STREET

\

‘

ARTICLE PROPNOUN PREP OBJECT HOTEL-NAME ON A-STREET
\ \ \ \ \

What street s the Hyatt on Q-SUBJECT What street is the Hyatt on Q-SUBJECT

i 1
LINK SUBJECT PRED-ADJUNCT

‘ |
ARTICLE A-PLACE ON-STREET

A-HOTEL ‘ ‘

Figure 1.7 TINA parse tree with syntactic rules only (left) and with lemlevel syntactic rules
replaced by domain-dependent semantic rules (right). Boersl one was reproduced from (Seneff
1992).

enforce several syntactic and semantic constraints vification). The injection of the
domain-dependent semantics is accomplished by replabiedotwv level syntactic non-
terminals with the semantic non-terminals. In doing so,ttipelevel syntactic rules makes
the grammar capable of modeling the domain-independegtiibtic constraints, such as
the Wh-movement/trace-management. The feature unificaiidroduce additional syntactic
and semantic constraints such as the person and numberegreand the subject/verb
selectional restrictions. On the other hand, the domaatifip semantic content of a sentence
is completely encoded by the lower level semantic non-teaisi(categories) in the parse
tree, thus making it feasible to extract the semantic fragprasentation directly from a
parse tree. Figure 1.7 shows two pare trees — one with thadjohon-terminals only, the
other has the low level syntactic categories replaced Wwél{lbold) domain-specific semantic
non-terminals.

The context-free rules are automatically converted to @lyr@presentation of shared
transition networks, where the transitions can be asstiaith probabilities by automatic
training when training data is available. It is reported $efeff 1992) that the introduction
of transition probabilities has greatly reduced the pedipleof the grammar — from 368 to
41.4 in the Resource Management domain.

SRI's Gemini system (Dowding et al. 1993) is implementedamdf its Core Language
Engine (CLE) (Alshawi 1992), a general natural languagesustdnding system that parses
an input sentence and generates its semantic represantatioe logical forms. Here the
unification grammar is also used to model the general syintaonhstraints. Unlike TINA
that blends syntax and semantics together with the mixedmia categories in constituent
parsing, it clearly separates the domain independent syindan the domain dependent
semantics. Another specialty of Gemini is its adoption @& lbgical forms instead of the
frame-like representation for semantics. Logical form ibEQs an extension to the first-
order (predicate) logic (Alshawi and van Eijck 1989). Thample below shows the logical
form for “a flight to Boston”:

exi sts(A, [and, [flight, A], [to, A ‘BOSTON]])

which can be read as “there is an varialllesuch thatd is a flight andA is to ‘BOSTON'.”
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In Gemini, recognized utterances are parsed accordingniajc rules. Each syntactic
node in a parse tree invokes a set of semantic rules to cohstraet of logical forms
for the node. Both domain dependent and domain-indepersééedtional restrictions on
logical forms are enforced througlertal constraintsSortal constrains are used by linguists,
logicians and philosophers to explain the oddity of sergeriike “the flight to boston is a
cat”, which cannot be conveniently explained by syntadtieories. Instead, the oddity is
explained by sort incompatibility — the semantic interptiein for each constituent in a parse
tree is assigned a sort. The sorts of constituents need torbpatible with each other when
compositional semantics are constructed with respecteacsymtactic rule that combines
the constituents. Since the sorts of “flight” and “cat” aré compatible, the reading of the
sentence is odd.

Sortal constraints can be used independent of the applicdttmains — they can model
the selectional constraints expected by the predicateth&r arguments in logical forms,
hence they cut down on structural (e.g. attachment) and s&mde ambiguities. In Gemini,
sortal constraints are also used to model the semantidctésis imposed by an application
domain, such that the logical forms are restricted by theanproonstraints. The following
is the logical form with sort assignments for the previouaragle:

exists((A, [flight]),
[and, [flight, (A [flight])]; [prop],
[to, (A [flight]), (*BOSTON; [city])]; [prop]
1; [prop]
): [prop]

here every expression/sub-expression in the logical fanfollowed by a sort it has
been assigned to, separated by a semicolon. For exampleguetified variableA
is assigned the softf I i ght]. The quantifierexi sts(A, [P A]) is assigned the
sort[ prop] (proposition), so are the sub-expressiprid i ght, (A; [flight])],
[to, (A [flight]), ('BOSTON ; [city])] and their conjunction (thand
expression). The literalBOSTON' is assigned the softci t y] .

To construct the logical form in the previous example, a greandeveloper needs to
introduce the following sortal constraints:

sort(‘BOSTON , [city])
sort(to, [[flight], [city]], [prop])
sort(and, [[prop], [prop]], [prop])

Here the first sort rule specifies that the literal ‘BOSTONhdae assigned the sort
[ city]. The second rule indicates that the predicate takes two arguments, one must
have been assigned the spftl i ght ], the other assignefci t y] . The compositional
semantics of the predicate is assigned the[sprtop] . The third rule states the conjunction
operator takes two arguments assigned with thg sorbp] and produces the compositional
logical form with the sorf pr op] .

Gemini adopts a two-stage parser. In the first stagmo$tituent parsingoottom-up chart
parser is used, which applies the syntactic and semants ttol populate the chart with
linguistic constituents that include the syntactic anddabform information. In the second
stage ofutterance parsinga second set of syntactic and semantic rules is appliedriiég
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are required to span the entire utterance, such that a ctaymaese for the utterance can be
constructed.

To improve the robustness to spontaneous speech with disfég when no complete
parse can be constructed during the stage of utterancengadsie to the violation of
either syntactic or sortal constraints, a repair compoigeirivoked to detect and correct
the disfluencies. To handle speech recognition errors, @ewpierates on the n-best ASR
outputs.

1.2.2 Semantic Grammars

While using the semantically-enhanced syntactic gramseres grammar developers from
the effort to model the general language structures, itiregprofound knowledge about the
general syntactic grammars. In addition, the knowledgeetapproach often requires the
exact matching of input sentences to the grammar rules,harhikes it not robust to ASR
errors, extra-grammaticality and disfluencies in spordasespeech. Often it has to resort to
some kind of semantic-based robust parsing as a backup.

The Phoenix spoken language understanding system (Wartl) t@&ctly models the
domain dependent semantics with a semantic grammar. It s&d oy CMU in the ATIS
evaluation, and was one of the top performing SLU systemberetaluation. As we have
discussed previously about semantic representation e gasmantic frames to represent
semantic relations — the basic type of action for the apgtinaSlots in a frame are filled by
matching the input strings (sentences) against the skst-tie recursive transition networks
(RTNs) that specifies the patterns for filler strings. RTNsfarite state transition networks,
where the arcs in the networks can include not only termir@abs, but also calls to other
networks. They are equivalents of the context free grammaysaph representation. During
parsing, the system uses the slot-nets to match substrntgeiinput sentence. When a
slot-net matches a substring, it is passed along for incatjpm into the frames. While the
slot-nets require the exact matches, the system is robtist iphase when a set of matching
slots are composed into a semantic frame — beam search igfsache construction. When
a slot matches, it will extend all the active frames that aamthe slot, and activate any
currently inactive frames that contain the slot. At the efthe search process, the single
best parse that covers the most slots discovered by theatstis returned from the beam.

The grammar used by Phoenix for ATIS was very complicatecbiisisted of 3.2K non-
terminals and 13K grammar rules. Figure 1.8 shows the d@bfem “PriceRange”, together
with some of the sub-nets that the slot-net calls.

1.2.3 Knowledge-based Solutions in Commercial Applicatio

In most commercial spoken dialog systems, the frame-badad iS tackled via the
knowledge-based approach. Domain dependent semantie@xtofree grammars are
developed to provide the powerful domain and linguisticstaaints to the ASR component
(language model), and to provide a mechanism to constrat¢atiyet semantic representation
from an input utterance. The rules in a grammar define the igsifole syntactic/semantic
expressions. They are also associated with semantic iatatjpn tags, from which the ASR
engine can construct the semantic representation fromettse ree.
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PriceRange: PriceExact:
<Dollars>

<PriceUpperBound> . <Number> .o@

<PriceLowerBound> O

PriceApproximate:

around

. .. <PriceExact>, O

<PriceApproximate> approximately

PriceLowerBound: expensive

<PriceExact>

<PriceExact> @

Figure 1.8 Recursive transition network for “PriceRange,” togethéhwhree sub-nets called by it:
“PriceExact”, “PriceApproximate” and “PriceLowerBouhd@he arc labels in angular bracket indicate
calls to sub-networks.

To ensure the portability of a speech recognition grammaBCWhas standardized
the grammar format SRGS (Speech Recognition Grammar Spwmfi) (Hunt and
McGlashan n.d.) and the semantic interpretation tags SE#nantic Interpretation for
Speech Recognition) (W3C n.d.). Figure 1.9 shows an exangpéammar with semantic
interpretation tags defined in the SRGS XML form (The altémeaABNF form is more
compact but less readable). Four rules of the grammar anersivo the figure, which
correspond to the RTNs in Figure 1.8. Each rule has a rulabtgri‘out ”, which holds
the semantic values of the rule. A rule valuable may haveugtsired value — it can contains
hierarchical properties. For examptayt . anount represents thedhount ” property of
the rule variable. A rule may not be associated with an eitpiemantic interpretation
tag. In such a case, the semantic structure (value of thewvai@able) for the rule is
constructed according to the implicit semantic intergietatags — If there are no rule
references (thecr ul er ef > tag) in the parse, the text covered by the rule is assigned to
the rule variable. Otherwise, the value of the rule variafl¢he last rule reference (non-
terminal) in the parse is automatically copied into the rdeable. The semantic of a rule
reference can be obtained via thasl es” variable. For example,“ul es. Pri ceExact”
in Figure 1.9 refers to the value of the structured rule \deigsemantic structure) for the
rule referencePri ceExact " in “Pri ceAppr oxi mat e” and “Pri ceLower Bound”,
and ‘rul es. Pri ceExact . anount " represents the value of thefrount ” attribute in
the structured rule variable oPt i ceExact ”.

Given the grammar in Figure 1.9, the parse tree for the utberdabout 500 dollars,”
together with the values of the rule variables for the ruédenenced in the tree, is illustrated
in Figure 1.10. From which the semantic representation Hfier éntire utterance can be
constructed as follows:
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<granmar version="1.0" xm ns="http://ww. w3. or g/ 2001/ 06/ gr anmar "
xm : lang="en-US" tag-format="senantics/1.0-literals"
root ="Pri ceRange" >
<rul e id="PriceRange" scope="public">
<one- of >
<itenp<rul eref uri="#PriceExact"/></itenp
<itenp<rul eref uri="#PriceApproximte"/></itenpr
<itenp<rul eref uri="#PriceLowerBound"/></itenp
<itenp<rul eref uri="#PriceUpperBound"/></itenp
</ one- of >
<tag>out . pricerange=rul es. | atest () </tag>
</rul e>
<rule id="PriceExact">
<itenmp<rul eref uri="#Nunmber"/></itenp
<itemrepeat="0-1"><rul eref uri="#Dollars"/></itenp
<t ag>out . anount =r ul es. Nunber </ t ag>
<t ag>out . mat ch="exact " </t ag>
</rul e>
<rul e id="PriceApproxinate">
<one- of ><i t emrabout </ i t enm>
<i t empappr oxi mat el y</itemnp
</ one- of >
<itenmp<rul eref uri="#PriceExact"/></itenp
<t ag>out . anount =rul es. Pri ceExact . anount </ t ag>
<t ag>out . mat ch="appr oxi nat e" </ t ag>
</rul e>
<rul e id="PriceLowerBound">
<one- of ><i t enrexceedi ng</itenpr
<i temrabove</itens
<i t emp<t oken>no | ess</t oken>
<item repeat ="0- 1">expensi ve</itenpr
<t oken>t han</t oken>
</itenp
<i t enp<t oken>great er than</token>
<itemrepeat="0-1">or equal to</itenp
</itemnp
</ one- of >
<itenp<rul eref uri="#PriceExact"/></itenp
<t ag>out . anount =rul es. Pri ceExact . anount </ t ag>
<t ag>out . mat ch="1 ower bound" </t ag>
</rul e>

</ gr ammar >

Figure 1.9 W3C SRGS grammar for “PriceRange” with SISR semantic imegion tags.
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PriceRange\ [pricerange:[amount:500;match:approximate]] \

PriceApproximate \ [amount:500;match:approximate] \

about PriceExact| [amount:500;match:exact] |
\ \

Number| [500] Dollars| [dollars]
\ \

500 dollars

Figure 1.10 The parse tree for the utterance “about 500 dollars” togetith the semantic structures
for the non-terminal nodes (in boxes), constructed acogrdo the explicit or implicit semantic
interpretation tags.

<pri cerange>

<amount >500</ anount >

<mat ch>appr oxi mat e</ mat ch>
</ pri cerange>

Readers can find more detailed information about the SRG®mea format and the
semantic interpretation tags in (Hunt and McGlashan nrad)(8/3C n.d.).

1.3 Data-Driven Approaches

The knowledge-based solution has the advantage of notrimegunuch labeled data. In
addition, almost everyone can start writing a SLU grammahwome basic training. The
grammar can be used as both the ASR language model and the 8tél im a single pass
speech understanding. However, a knowledge-based systdifficulty and expensive to
develop and maintain due to the following reasons:

1. Grammar developmentis an error-prone process. Whiteis dot take much effort for
a common developer to learn the syntax for writing a speedenstanding grammar,
it requires combined linguistic and engineering expestiggus the deep knowledge
about the application domain, to write good grammar. Grammar authoring is a
balancing act between simplicity and coverage. Peopleddf&rently, therefore a
good grammar has to account for the different expressiarteéosame concept, action
or request. If a grammar is too simple, it is inadequate toehtia linguistic diversity.
On the other hand, if a grammar is too complicated, it may miy¢ slow down the
parser, but also increase the ambiguities, hence confus& U system and degrades
its performance. Design the structure of a grammar is aftaakes much experience
to have a good design where frequently used concepts, fon@raare modeled by
separate rules to be shared by other rules at a higher level.

2. It takes multiple rounds to fine tune a grammar. Grammarairtg can hardly be a
one-shot deal — nobody can write a perfect grammar with desitng Furthermore,
grammars need to evolve over time — new features and scermagy be introduced
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to an application after its initial deployment. Ideally, &.U system should be
able to automatically adapt to the real data collected aftedeployment. On the
contrary, knowledge-based systems require an experggvement, sometimes even
the involvement of the original system designer, in the &atagm loop.

3. Grammar authoring is difficult to scale up. It is relativelasy to write a grammar
to model a single concept as in a system-initiated dialogesyswhere the user
is prompted to provide a single piece of information (e.@me, account number,
social security number, address, etc.) at a dialog turn.d¥ew if we allow users to
volunteer multiple pieces of information in a single uttere, the ways to put together
these pieces are combinational. As we have shown previdasia very restricted
domain like ATIS, the semantic grammar already containk 8dh-terminals and 13k
grammar rules.

SLU based on data-driven statistical learning approaclrestty addresses many of
the problems associated with the knowledge-based sotuttatistical SLU systems can
automatically learn from example sentences with theiresponding semantics annotated.
Compared to the manual grammar authoring, the annotati@snach easier to create,
without the requirement of the specialized knowledge. Tiadéissical approach can adapt
to new data, possibly via unsupervised learning. One daaadge of such an approach,
however, is the data-sparseness problem. The requirenieniavxge amount of labeled
training data is not very practical in real-world applicais, which are quite different from a
few showcase problems studied in research labs. This isstkeaspecially at the early stage
of system development.

In this section, we introduce a general framework for th¢istteal SLU, and review
various types of statistical SLU models in the literature #8sume that most readers have
been exposed to HMMs as commonly used in speech recognitiblaaguage processing.

1.3.1 Generative Models

In the statistical frame-based SLU, the task is often foizedl as a pattern recognition
problem. Given the word sequenidé, the goal of SLU is to find the semantic representation
of the meaningM that has the maximuna posteriori probability P(M | W). In the
generative model framework, the following decision rulesed:

M = argmax P(M | W) = argmax P(W | M)P(M) (1.6)
M M

And the objective function of a generative model is to mazinthe joint probability
P(W, M)=P(W | M)P(M) given a training sample o and its semantic annotation
M.

Two separate models exist in this generative framework sEmeantic priormodel P (M)
assigns probability to an underlying semantic structureneaning/. The lexicalization
model P(W | M), sometimes calletexical generatioror realization model (Miller et al.
1994), assigns probability to the surface sentence (i@diexical sequencdy given the
semantic structure. As an example, the HMM tagging model $grgple implementation
of Eqg. (1.6), in which a Markov chain consisting of the statest bear semantic meanings
models the semantic prior, and the emission from the stabelelmthe lexicalization process.
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Show me flights from Seattle to Boston

Pr(M) = 7,080,019, 0 033
Pr(W | M) = b,(Show) x b, (me) x b, (flights) x
b,(from) x b, (Seattle) x b, (to) x b, (Boston)

Figure 1.11 An HMM tagging model for SLU. State O represents “commandates 1 represents
the “subject” slot, state 2 represents the “DCity” slottetad represents the “ACity” slot. The HMM
topology and the transition probabilities; form the prior. The meaning of a sentence is represented by
its underlying state sequence. The emission distribufigres the states form the lexicalization model.
On the right is a possible state sequence that aligns to titersze “Show me flights from Seattle to
Boston”. Theoretically, the state should encode the sentaof the attribute-value pair like:DCity
SEA>. However, since this increases the state space signifyjcanthetimes infinitely, practical SLU
systems collapse the states corresponding to the sanfeutdfrand extract the value semantics from
the observation aligned to the slot state in a post-procgsgep.

The alignment between the observations (words) and thesstahidden (Figure 1.11). The
tagging model finds the Viterbi alignment between the statekthe words, and the meaning
associated with a state becomes the semantic tag of thedligord.

In this simple tagging model, observations (words) deparigon the states. They do not
depend on the words in the context. This independence assimgoes not work well with
language: according to this assumption, “Show me flightsiame Show flights” are equally
likely. Most statistical SLU systems attempt to overconephoblem by allowing a state to
emit one or more “segments” of multiple words at a time. Is ttdse, the generative process
for the observations is:

1. Generate a set of segments= (s, ..., s,) according to the semantic structuvé =
qly .-y 4m-

2. Determine the alignment = (a1, ..., a,,) that associates each segment with a state.

3. Determine the length = (I4, ..., [,,) for each segment.

4. Generatel; words for each segment;, for i = 1,....,n, assuming the words are
correlated and are sensitive to temporal ordering.

HereS, A andL are not observed. They are hidden variables that can be madimgid out
according to

P(WI|M)= Y P(W,SAL|M) (1.7)
S,A,L

=Y P(S|M)P(A|S,M)P(L|A,S M)P(W|L,A,S M)18)
S,A,L
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<ShowFlight>
<subject>flights</subject>
<Flight >
<DCity >Seattle</DCity >
<ACity >Boston</ACity >
<DDate>Christmas Eve/DDate>
</[Flight >
</ShowFlight>

Figure 1.12 Simplified semantic representation — a separate postgsinceis necessary for slot
value normalization. Nevertheless, the representatieasger to annotate.

This type of lexicalization model for correlated word oh&gion sequences is analogous
to the segment model in acoustic modeling for ASR (Ostendbidl. 1996). One main
difference, however, is that in SLU the alignment processidse elaborated than that for
ASR. This complexity arises from the syntactic constrainé allow generation of multiple
phrases from a single state and placement of the phrasesimlanthat is far more flexible
than pronunciations in a dictionary. The latter is largetyled as a left-to-right sequence
as defined by the dictionary, which is much less variable thany different ways a fixed
meaning may be expressed as a composite of phrases/woralyings/orders. The purpose
of the alignment in Step 2 above is to account for this typeasfability, which is largely
absent in ASR problems.

Eq. (1.7) has differentimplementations in various SLU sy&t. We will discuss this topic
of lexicalization modeling in detail in later in this seati@fter surveying semantic-prior
modeling first.

Note that in the semantic representation in Figure 1.3 oure€id.4, the frame slots
have normalized values that may be different from the oabtext in the utterance (e.g.,
the original text “Seattle” is normalized as the city codeE). Such a representation
relieves the application developers from handling difftexpressions for the same meaning.
However, training a model to produce such a normalized storapresentation requires the
training data be labeled in the same way, which adds extaeluo the annotators and makes
the model more complicated — we will show one of such modéds la a subsection titled
“2+1 SLU Model.". Instead, a majority of statistical modélst align the segments of an
utterance to the slots and produce a semantic represenligcthe one in Figure 1.12, and
employ a separate post-processing step to generate thalimgdrepresentation.

Semantic Priors in Understanding Models

In statistical SLU that models cross-word contextual dejeecy, each state represents
a slot in a semantic frame. For the systems that use the flatepts for semantic
representation, such as AT&T's CHRONUS (Pieraccini andm.é@93) and IBM’s fertility
model (Della Pietra et al. 1997), the topology of the modaelfislly connected network as in
Figure 1.13. Unlike the topology in Figure 1.11, there is alf ®op on a state because it is
already modeling a segment of words with the length inforometliready encoded.
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to Boston

Figure 1.13 The topology of the statistical model that adopts the flatephsemantic representation.
Each state represents a concept. States are fully intezct#th The initial state distributiary = P(7)
and the state transition distributiap; = P(j | 7) comprise the semantic prior of the model. (The final
state f = “</s>" is not shown in the topology.) The thicker lines illustréte correct state transitions
for the sentence “Show me flights from Seattle to Boston.” &ample sentence is also aligned to the
states.

The prior probability of the semantic structure underlyting representation in Figure 1.4,
i.e., the flat-concept sequence “Command Subject DCity YAQian be calculated as the
product of the probabilities of the marked transitions igu¥e 1.13:

P(M) = P (Command|<s>) P (Subject|Command) P (ACity|Subject)
P (ACity|DCity) P (</s>|ACity) = m1a12a23a34G4¢

where<s> represents the start of the semantic concept list<afstt represents the end of
the flat-concept list. The model is also used by a MEDIA sydtesthuses attribute-value list
to represent the hierarchical semantic information (luef@007).

For models that use hierarchical semantic structures,udimey BBN’'s Hidden
Understanding Model (Miller et al. 1994) and Microsoft Resd’'s HMM/CFG composite
model (Wang and Acero 2003a), the semantic prior is a naextEnsion of Eq. (1.9).
Figure 1.14 shows the topology of the underlying statedfesemantic frames in Figure 1.2.
The left part of the diagram shows the top level network togg) and the right part shows
a zoomed-in sub-network for state 2, which represents thgedded “Flight” frame. The
initial state probabilitiest; = P(ShowFlight) and 5 = P(GroundTrans) comprise the
prior distribution over the top level semantic frames. Ttamsitional weightsi1, anda;s
comprise the initial slot distribution for the “ShowFligtitame. The transitional weights;s
andas,; comprise the initial slot distribution for the “GroundTfirame, and the transitional
weightsacg, aca andacg in the sub-network comprise the initial slot distributiar the
Flight frame.

Given this topology, the semantic prior for the semantioctrre underlying the meaning
representation in Figure 1.3 is the product of the Markorditional probabilities across the
different levels in the semantic hierarchy (The marked fratfigure 1.14):

P(M) = P(ShowFlight) P(Subject|<s>; ShowFlight) P(Flight|Subject; ShowFlight)
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Figure 1.14 Hierarchical model topology for the semantic frames in Feggli2. On the left is the
top level network structure. On the right is the sub-netwofkhe semantic frame “Flight.” Since
the semantic frames are defined in a finite state languagesuth@etwork can substitute for state
2. Substitutions by the same sub-network may share the pteesnof the sub-network. The thicker
path shows the correct state sequence for the sentence ‘18hdbe flight from Seattle to Boston on
Christmas Eve.”

P(DCity|<s>; Flight) P(ACity|DCity; Flight) P(</s>|ACity; Flight)
P(</s>|Flight; ShowFlight)

= M10134320CAAA9A9ID 024 (1.9
Generally,
[M|+1
P(M)= ] P(Cu(i) | Crs(i — 1)) P (M(5)) (1.10)
i=1

Here | M |is the number of the instantiated slotsNh Cj,(4) is the name of thé-th slot

in M, (Cam(0)=<s> and C(|M]| + 1)=</s> stand for the beginning and the end of a
frame, respectively) and/ (i) is the sub-structure that fills theth slot in M. Eq. (1.10)
recursively calculates the prior probabilities of the stiuctures and includes them in the
prior probability of the parent semantic structure.

Cambridge University’s Hidden Vector State model (He andng2003) uses another way
to model the semantic prior with hierarchical structureasni¢d the hidden vector states, the
states in the Markov chain represent the stack status ofréréepminal nodes (the nodes
immediately above the terminal words) in a semantic tred|usdrated in Figure 1.15. The
hidden vector states encode all the structure informatimugthe tree, so the semantic tree
structure (without the terminal words) can be reconstdiétem the hidden vector state
sequence. The model imposes a hard limit on the maximum déftle stack, so the number
of the states becomes finite, and the prior model becomes dinkedM chain in an HMM. The
difference from the earlier examples in Figure 1.13 and fiédul4 is that the state transition
in this Markov chain is now modeled by the stack operatioastitansform one stack vector
state to another. The stack operations include 1)®dpét pops the top elements from the
stack; and 2) Push(C) that pushes a new concept C into tHe Bacexample, the transition
from the state represented by the fifth block in Figure 1.¥blamade with two operations:
Pop(2) and Push(ON). The pop operation depends on the statknts of the state from
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RETURN
DUMMY
cry DATE
<s> | want to return to Dallas on Thursday </s>
CITY DATE
TOLOC TOLOC ON ON
SB DUMMY RETURN RETURN RETURN RETURN RETURN SE
Ss Ss Ss Ss Ss Ss Ss Ss

Figure 1.15 Inthe Hidden Vector State model, the states (illustratethbylocks) represent the stack
status of a pre-terminal nodes (the parent node of the tefmiords) in the semantic tree, which is the
trace from a pre-terminal (at the top of the stack) to the ofdhe parse tree (Reproduced from (He
and Young 2003)).

which the transition exits, and the push operation depends@stack contents right before
the element is pushed in. Hence the probability of the ttemsirom the fifth block is

Ppop(2 |[CITY TOLOC RETURN SS]) P,us1(ON |[RETURN SS)) (1.11)

Let |S| denote the depth of the stack Given the stack vector states_; and S,
|Si—1] — |St| + 1 elements have to be popped fra#n_; in order to transfornd;_, to S;.
Thus the semantic prior is the product of the transition philities in the Markov chain:

|M]
P(M) = HP(St | St-1)
t=1

|M|
= [ Poop(1Si=1] = Se] + 1| Si1) Pousn(TOP[S,] | POP[1, )

t=1
§(POP[|Se—1] = [Se| + 1, 51-1], POP[L,5) (1.12)

Here|M | is the number of stack vector stateslify including the sentence end statg;.
So is the sentence initial stat& OP[S] is the top element of the stack andPOP|n, 5] is
the new stack after the tapelements are popped out of the stttk (z,y) =1if z =y,
otherwise) (z,y) = 0. It guarantees tha; _; to S, is a legal transition by restricting that all
the elements in the two stacks are the same, except for tlpgeed out of5;_; and the one
pushed intaS;.

The decomposition of the transition probability inf,, and P,,s, enables different
transitions to share the parameters. Therefore, it cannpally reduce the number of
parameters in the prior model.

It is important to note that the prior model does not have tostagic. It can change
depending on the context, for example, at a dialog state whersystem asks users for
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the departure city information, the probability for the ByG3lot can be significantly boosted.
The prior model can also be personalized (Yu et al. 2003).

Lexicalization Models

In this section we review the lexicalization models undergeneral framework of Eq.(1.7),
which captures the dependency and temporal ordering fooliiserved words within the
same state.

N-gram Lexicalization Model

The first lexicalization model, used by both CHRONUS (Pienaicand Levin 1993) and
the Hidden Understanding Model (Miller et al. 1994), asssiraaleterministic one-to-one
correspondence between model states and the segmentseie.is only one segment per
state, and the order of the segments follows the order ofttiess This effectively gets rid
of the hidden variableS and A in Eq. (1.7):

PWI|M)=> PW,L|qi, gm)= Y.  P@|q.am)

T=P1;:-,Pm

L
>, IIPwila (1.13)

T=P15Pm 1=1

Q

Here the jointeventi{/, L) corresponds to a segmentation= o1, ..., o, of W: ¢y is the
firstl, words of iV, - is the nexi, words of ¥/, etc., and the concatenation of the substrings
©1, .-, P €QUAISIV .

Both CHRONUS (Pieraccini and Levin 1993) and the Hidden Usidading Model
(Miller et al. 1994) exploited state specific n-grams to mo@y | ¢). Let's use the
flat-concept semantic structure in Figure 1.13 as an exarttpléustrates a segmentation
7 = “show me”, “flights”, “from Seattle”, “to Boston”. The probability of the surface
sentence under this segmentation is:

P(r | M = command, subject, DCity, ACity) =
P(Show|<s>; command)P(me|Show; command)P(</s>|me; command)
P(flights|<s>; subject) P(</s>|flights; subject)
P(from|<s>; DCity)P(Seattle|from; DCity)P(</s>|Seattle; DCity)
P(to|<s>; ACity)P(Boston|to; ACity) P(</s>|Boston; ACity) (1.14)

In Eqg. (1.14), the cross-state lexical dependency is notetead A word at a state only
depends on the history that belongs to the same state (orearotitext cue £s>" if it is
the first word emitted from a state). One can opt to model tbessstate lexical dependency
too. In this case, instead of depending ers’", the initial words from a state may depend
on the last few words (actual number is determined by theamagsrder) from the previous
state.

Fertility Lexicalization Model
IBM’s fertility model (Della Pietra et al. 1997) is another implementation of Eg.
(2.7). 1t is based on their statistical machine translatwwork. Similar idea was
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adopted in (Macherey et al. 2001). The generative processhef model can be
illustrated by the following example: let the semantic stame be the flat sequence
of four states, “DISPLAY FLIGHTS TO ARRIVALCITY”. The model first picks
the number of segments for each state, for example, (2, 1,)1,This results
in five segments, which are permutated to form the ordereduesesy S =<
SEGpispray, SEGrricuTs; SEGT0, SEGARRIVAL. CITY, SEGDISPLAY >. Each permu-
tation corresponds to an alignment. The permutation in f@mn@le corresponds to the
alignmentA = (1,2, 3,4, 1), where each element points to the state that gives rise gethe
ment. Since there ar@!/2!1!1!1!) different permutations, each possible alignment has the
uniform probability2!/5!. The model then picks the length in each segmght2,1,1,1),
and accordingly generates two words “I want” for the firstraegt, “to fly” for the second
segment, one word “to” for the third segment, “Boston” foe fourth segment, and “please”
for the last segment. This produces the final surface semtém@nt to fly to Boston please.”
As illustrated by this example, a state in this model can aonitconsecutive word sequences
(segments).

The fertility model makes the following assumptions in tfieramentioned process:

Cxg ymi

1 P(S|M=qu.qn) ~ I f(ni | ai) = [1[-) s, ie., each statg, gener-
atesn; segments according to a Poisson distribution calledfehiility model Here
m = |M| is the number of states i/, n = >_"", n; = |S] is the total number of
segments generated from thestates.

2. The alignment modeP (A = a1, ...,a, | S = 81, ..., 80, M = q1, ..., ¢) fOllOws a
uniform distribution. Herey; is the index of the state if/ that thej-th segment is
aligned to. In other words, according #y segment; is aligned to the statg, .

. P(L=Ul,. 0, |A=a1,..;an, S =81, ', $n, M = q1, ..., Gm) = H?:l n(lj | qa;),
i.e., the length of a segment only depends on the state igisea to.

4. P(WI|L,A S M)~} Hij:lp(wjk | ¢a;), i.e., each word in a segment is
generated with the dependency on the state which the segsraigned to; herey;,
is thek-th word in segmeng;, which has lengt;.

Given the above assumptions,

P(W,L,A,S | M)
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=P(S|M)PA|SSM)P(L|ASM)P(W|L,A S M) (1.15)
IM] =X, \ni 1 M n Ly

=11 Tq ~ an I, H p(wik | 4a;) | (1.16)
i=1 v j=1 k=1
IM\ l

== He"\qz)\’“ Hn (4 | qa, H p (wik | Ga;) (1.17)
| M|

- n'H HA% (| 4a;) H (wjk | 4a,) (1.18)

IM\

= H H (4, 551qa,) (1.19)

In Eq. (1.16), the second factor is the permutation (aligminerobability, which is the
inverse of the multinomial coefficient. Eq. (1.18) distttibsi the \'s inside the second
product. In Eq. (1.19),7(,s | ) 2 A\;n (1 | ¢) [T._, p(wji | ¢) is proportional to the
probability that a segment= w1, ..., w;; iS generated from the stage In this form, one
can sum over all possible alignmemtsn polynomial time:

P(W,L,S|M):ZP(W,L,A,S|M)

| M]

—Zml—[@ QTHrlyasglqaj (1.20)

The last step above can be shown by algebraic operations.

The Expectation-Maximization (EM) algorithm is used toimsite the parameters in the
model, and a dynamic programming algorithm is applied tockefor the meaning according
to

M = argmax P(W | M)P(M) = argmax » P(W,L,S | M)P(M)  (1.21)
M M S1

with marginalization over all possible segment sequescasd the length for the segments,
L.

2+1 Level SLU Model

In the lexicalization model we have discusses so far, a $tdtebute) is assigned to each
word in an utterance, such that the utterance can be segtriatiea sequence of attributes.
From this a semantic representation as in Figure 1.12 caorstracted, where the original
text of a segment specifies the value of the slots in the séofaate. The text is often not

in the canonical form as in Figure 1.3. It often needs a séparde-based post-processing
process to derive the normalized slot values from the text.

INote thatZL:‘l ng =n.
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Lefevre (2007) introduces a 2+1 SLU model that integrétesriormalization process in
the lexicalization model. Here the number “2” stands for skenantic prior model and the
concept model, which is the traditional lexicalization mbthat generates the lexical string
from the concept. “1” stands for the additional model thagtrthe normalized attribute
values as a hidden variables. Ideally, a decoder can joiimtl/the concept sequence and
the normalized value sequence according to the followirnisétn rule:

C,V =argmax P(C,V | W) = argmax P(W | C,V)P(V | C)P(C) (1.22)
c.v c.v

Here the lexicalization modé?(W | C, V') depends not only on the attribuf& but also on
the normalized value af’, V. However, the complexity of this decoding process is todhig
to allow an efficient algorithm, a two step “2+1” decoding pess is adopted instead. In the
first step, like the other frame-based SLU models we havewssd, the semantic prior model
and the concept model is applied to obtain the concept segtimmaccording to

C = argmax P(C | W) = argmax P(W | C)P(C) (1.23)
c c

whereP(C) is the flat attribute n-gram semantic prior model, &@V | C) is the attribute
dependent n-gram lexicalization model. Both of them aréereed earlier. In the second,
bothW and the attribute segment sequen€eare observed, and can be found according
to

V =argmax P(W | C,V)P(V | C)P(C) (1.24)

To further simplify the decoding process, the attribute eainC' in Eq. (1.23) and (1.24) do
not include the specifiers in the MEDIA semantic represé@mai he specifiers are assigned
to the concept sequence in a later stage with a conditiogaleseial labeling model, which
we will review in Section 1.3.4.

Model Training

Maximum likelihood (ML) estimation can be used to estimatagmeters in both the
semantic prior model and the lexicalization model. In sujsed training, if each word
is labeled with the state it belongs to, as in CHRONUS (P@ra@nd Levin 1993) and
the Hidden Understanding Model in (Miller et al. 1994), theath Markov transition
probabilities and the state-conditioned n-gram modelshmulirectly estimated from the
data by simply counting the relative frequencies. Howefidly annotated training data
are expensive to obtain. It is desirable to label only thewbeds that carry the important
semantic information, for example, only the slot filler werdn such a case, the state
labels for many words are hidden. The Expectation-Maxitiorealgorithm can be applied
to estimate the parameters. Section 1.3.2 presents a eabe ait the statistical learning
with the HMM/CFG composite model, a generative model asgdibly the domain/linguistic
knowledge.

Implementation of the Generative Models

Many generative models are implemented with standard itsdlike the stochastic finite
state transducers (SFST) (Raymond and Riccardi 2007) ayrighic models (Bilmes and
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concept 4+ concept
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transition . transition .-
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Figure 1.16 Graphic model representation of the DBNs for SLU. Left: thBNDused in first step
decoding, in which the words are aligned to the conceptshtRige DBN for second step decoding, in
which the concepts and words are observed, and the normalitees for the concepts are identified.
(Courtesy of Fabrice Lefevre)

Zweig 2002). For example, each SLU component can be impltedeas a SFST, and the
SLU system can be built by composing the component SFSTsmBiag and Riccardi
(2007) shows a SFST implementation of a generative moded. [&ttice from an ASR
is represented by a stochastic finite state machine (SE§M)It uses an n-gram as the
lexicalization model for “concepts”, which are slots or dl@ttribute that models the carrier
phrases connecting the slots. N-gram can be represente&bg as well, as described
in (Riccardi et al. 1996). An n-gram SFSM for a concept canuyadd into a SFST by
outputting the accepted words together with the conceptisen The union of all the SFSTs
for all concepts forms the lexicalization mode},. that maps words to concepts. Finally, a
statistical conceptual language model is used as the senmaiar model. The SFST model
Ao is flexible enough to implemented different semantic priardeds. In the case in
(Raymond and Riccardi 2007), the conceptual language nisdesked to compute the joint
probability P(W, M) instead ofP(M):

k

P(W, M) =[] P(wi, c; | h) (1.25)
=1
whereM = ¢y, co,...,c iS a sequence of concepld, = wy, ws, ..., wy IS a sequence of

words, andh; = w;_1¢;_1,w;_2c;_o is the trigram history of word/concept pairs. The SLU
model is thus a SFST composition:

ASLU = AW © Awac © Ao (1.26)

The generative models can also be easily implemented watlyémeral purpose graphic
model toolkit. For example, researchers from Universié&ignon used Dynamic Bayesian
Networks (DBNSs) (Leféevre 2007; Meurs et al. 2009) to impéarhgenerative SLU models.
The aforementioned “2+1 SLU” model can be represented with graphic models in
Figure 1.16, which is implemented with the generic graphadai toolkit GMTK (Bilmes
and Zweig 2002) and the language model toolkit SRILM (Stel2R02).
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1.3.2 Integrating Knowledge in Statistical Models — A Cas&l$ of the
Generative HMM/CFG Composite Model

One disadvantage of a purely data-driven, statistical Sipgr@ach is the requirement
of a large amount of training data. To overcome this problemny systems utilize a
preprocessing step to identify the “superwords” from ttpuirstream with pattern matching.
This step includes (a) replacing the words in a semanticsaldth the class name; e.g.,
“Seattle” and “Boston” are replaced with the superwordityname”; and (b) replacing a
word sequence that matches a regular expression with asoigbe.g., “one hundred twenty
five” is replaced with the superwordrfumber”.
Two problems arise, however, with this traditional solatio

1. Asitwill be discussed later, it is beneficial to use the Shbdel as the language model
for speech recognition. However, with actual words beiqdaeed by the superwords,
many of these are modeled with complicated CFGs instead afrd list as in class-
based language models (Brown et al. 1992; Kneser and Ney), 1t8@3model can no
longer be used for speech recognition.

2. The “superword” solution does not handle ambiguitiescefaly. Although a
sophisticated preprocessor can produce a lattice thatdaslambiguous tagging of
the superwords, they are not fairly evaluated by the undedshg model. For example,
in “Schedule a meeting tomorrow ten to eleven”, the phrasa to eleven” may be
ambiguously tagged astime” as in the interpretation “10:50” ortime to_time” as in
the interpretation “from 10:00 to 11:00". Since the phradeeated as one superword in
the first interpretation but three words in the second imtggion, only one transition
and one emission probability need to be applied for the firsrpretation, while
multiple transition and emission probabilities have to pplid for the second one.
Therefore, the SLU model will be biased toward the first iptetation.

This section presents a case study of the HMM/CFG composigeimThe case study
serves two purposes. First, it shows an effective way to kesmhy integrate the domain-
dependent knowledge in a data-driven, statistical legrfiamework to improve the SLU
performance. Second, it describes the application of itapooptimization algorithms for
the generative models in SLU, in particular, the EM alganttwith rigorous mathematic
derivations — until now, we have mentioned the EM algoritlevesal times without detailed
descriptions.

HMM/CFG Composite Model

Both problems mentioned above can be attributed to theHattlie preprocessing step is not
modeled statistically as an integral part of the SLU modkee Tack of information about the
preprocessing model makes the statistical SLU model unalpieedict the words for speech
recognition, and it prohibits the model from properly noliziag the probabilities because
the actual length of the segment replaced by the superwarkisown to the SLU model. An
HMM/CFG composite lexicalization model has been introdliog Wang and Acero 2003a),
which we review here, to aim at solving these problems. Thidehuses the same semantic
prior for hierarchical Markov topology as in Eg. (1.10). Turederlying state corresponding to
a slotin the semantic frame is expanded into a preamble-fitstamble three state sequence



Semantic Frame Based Spoken Language Understandin@7

@ : n-gram |:| ‘PCFG

departing from Boston Christmas Eve

on
T
Date 1.

\ \
@—ag PreDCity}l.&P{ City %l.(}»@ostDCity AAR 0 m 1.0 aBD@
A B

Figure 1.17 State alignment for the phrase “departing from Boston oristhas Eve” according to
the topology in Figure 1.14. The original states A and B agmexed to three states.

(Figure 1.17). The preamble and postamble serve as thextoatelue for the identity of the
slot, while the slot filler decides its value. The lexicatina model follows Eq. (1.13), similar
to CHRONUS and the Hidden Understanding model. The diffezemere include:

1. The HMM/CFG composite model uses either n-gram modelsairgbilistic context-
free grammars (PCFGs) fdP(¢ | ¢). If ¢ is a state corresponding to a slot filler,
a PCFG is used fop(¢ | ¢). The PCFG embeds the domain-specific and domain-
independent knowledge, like a city-name list and a date gramThe CFG rules
can be populated with database entries or pre-built in a grantibrary for domain-
independent concepts, for example, CFG rules for date amel fThe lexicalization
of other states is modeled with the n-grams. Figure 1.17 shbw state alignment
for an example phrase according to the network topology guféi 1.14. Note the
introduction of the preamble and postamble states doeshaoige the semantic prior
model, because the transition probabilities from the pfdasand to the postambles
are always 1.0.

2. The training data for the composite model is not requicelde fully annotated — not
every word is associated with a state. Instead, only a higdl BEEmantic annotation is
required, which labels the slots of semantic frames. Fomgi@, the utterance “show
flights departing from Seattle flying to Boston on Christma&’Hs labeled as in
Figure 1.12. The words without explicit labels, for examptn”, may be associates
with different states in the topology, for example, eithBo$tDCity” or “PreDDate”
in Figure 1.17. Because the alignments are hidden for thageatked words, EM
algorithm (Dempster et al. 1977) needs to be applied for irtogia@ing.

Formally, the lexicalization probability in this compasinodel is

m

PW|M)= > Pla,ma)= >, [[Puleila) (@27

T=P1;.-,Pm T=P1,...,pm i=1

Here P, is an n-gram model i is a preamble or a postamble state, or a PCR{isfa slot
filler. It is possible that for some # r, P, = P,.. For example, the PCFG for “cityname” are
shared by the fillers for the DCity and ACity slots.

Modeling slot fillers with PCFG has another advantage — stheeslot fillers are the
bearers of semantic information, the capability of sentanterpretation of PCFG introduced
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by the semantic interpretation tags allows compositiooastruction of normalized semantic
representation. For example, both “two fifteen PM” and “¢eiapast two in the afternoon”
may have the same semantic representation like

<Pr eci seTi ne>
<Ti mePoi nt >2: 15</ Ti nePoi nt >
<Ti mef Day>PM/ Ti meCf Day >
</ Preci seTi me>

such that application developers do not have to design am @dst-processing step to
specifically process the two literally different phrases.

Parameter Estimation

The composite model can be formalized(&s A4, G), whereS is a finite set of states] is
the state transition probability distributions, afids a set of emission grammars associated
with the statesS is determined by the semantic frame. Parameterd aind the n-gram
parts of G have to be estimated from the manually annotated trainirig ds shown in
Figure 1.12, in which only the semantic salient informatibe., frames and slot fillers, is
marked. The annotation determines the state sequence inatiel topology, as illustrated
by Figure 1.17. Therefore, the counts of state transiti@mshe collected directly, and the
ML estimation is applied for the state transition probaieiti. Here a prior countis used to
smooth the transition distributions, which can be optirdizgéth held-out data. To estimate
the lexicalization parameters, one possibility is to edtdre Forward-Backward algorithm
used in discrete HMM training (Rabiner and Juang 1993). Nb&t in discrete HMM
training, the posterior

o (q) B (q)
>, o (@) 5 (@) (1.28)

can be calculated with the Forward-Backward algorithm. Arelemission probability can
be then estimated by:

Y:(q) = Pylqr = q | W) =

T
by(w) = > %(Q)/Z%(‘J) (1.29)
t=1

twe=w

When a segment of words can be generated from a single sttegram is used to model

this generation process, the Forward-Backward algoritambe extended. Using bigram as
an example, the posteriéi(q, ) = P(q:—1 = q,q: = r | W) can also be calculated with the
Forward-Backward algorithm:

&g, ) =P(gg-1=q,q¢s =7 | W)

°Note that some states may be a dummy state that emits an etripty s
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ar—1(q) t(g,r, wi—1) P (wy | (g, 7, wi—1)) By (r)

= 1.30
Zq/ Zr/ Qp—1 (q/) t(qlv Tlv wtfl)Pr/ (wt | h(q’, 7’/, wtfl)) ﬁt (7’/) ( )
<s> whe
o= { 5 e ass
| Py<Is>|w)ag whenq#r
t(q,r,w) = { 1 when ¢ = (1.32)

There are several differences from the standard HMM trgitiere. First, the emission
probability now depends oh(g, r, w¢—1), the history of the previous word from the same
state or the context cue<s>" for the initial word in a segment. Second, in the segment
model there is no self-loop transition at a state. The géerprocess stays at the same
state unless the end of the segment is predicted by the bigradel for the state. This
segment ending probability must be included in the tramsigirobabilityt(q, r, w:—1) when
a state transition is made. The computation of the forwaddbatkward probabilitiesy; (q)
and3; (q), should be changed accordingly. With the postefidg, ») defined, the bigram
probability can be obtained by

Zt:wt,lzw,wtzv gt (Qa q)

Folv ) = = @0

(1.33)

for w # <s>, and

V@) (W1, ) + 3,2y D= & (15 @)
Y1(q) + 222y 2o &l )

whered(w,v) = 1 if w = v and0 otherwise.

This solution is complicated to implement, given all the bdary conditions in
h(q,r,we—1) andt(q,r,w), especially with higher order n-grams. One simpler sohytio
given the fact that many n-gram training and smoothing im@ietations are already
available, is to obtain all the stringsthat statey can generate, obtain the couNtq, ¢),
i.e., the number of times thatgenerates, and then compute the bigram probability with
the standard ML estimation:

P,(v|<s>) = (1.34)

th N(qv w)c(wkffﬂrlv ey wk;‘ﬁ)
Py(wy | Wy—n1, -y W—1) S, M@ 9O w0 10) (1.35)
HereC(w; o) is the number of times that word sequenceccurs ing.

When training samples are fully annotated, i.e., every vienslarked with its aligned state,
N(q, ) can be obtained by simple counting. When only partial artimstas available, as
illustrated by the example in Figure 1.1%¥q, ») can be viewed as the expected fractional
count the statg generate the string. Notice that the annotation pegs the slot fillers to the
slot states, which restricts the alignments of the remginiords and states, so a subsequence
of the observatiod (e.g.,W ="departing from”) can only align to a state subsequefce
(e.g.,Q ="PostSubject PreFlight PreACity” in Figure 1.12). The ntaiof these subsequence
alignments¢(Q, W), can be empirically collected from all the annotated tragnéxamples.
Then the state-specific n-gram parameters are estimatedhgEM algorithm (Dempster et
al. 1977). Inthe E-stepy (q, ), the fractional count that states aligned to the substring,
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is computed with the current model parameters (initiallgdzhon the uniform distribution).
Inthe M-step, Eq. (1.35) is applied to estimate the n-grasbability (with proper smoothing
such as deleted interpolation (Jelinek and Mercer 1980)]).

To computeN (g, ¢), the expected count for stajeo generate segmeant note that

N(g ) = D> e(Q W)Y Po(m | QW)e(g T ¢5m,Q, W) (1.36)

QW

herec(Q, W) is the number of occurrences that the state sequéneeq, go, ..., ¢, CO-
occurs with the word sequend® = w1, ..., w; according to the partially labeled training
data.7 is a segmentation that breakis into m non-overlapping segments, each segment
corresponds (aligns) to a state(h The segment may be an empty strin@; 1 ¢; 7, Q, W)
is the number of times that stajeppears i) and aligns to the substringaccording to the
segmentation.

The summation over all possible segmentation in Eq. (1.3@kes it difficult to
computeN (q, ¢) efficiently. To remove the summation, note that becaliger, Q, W) =

I1,. Polp | @)<aTem@m),

OPy(Q, W) 0% Py(m,Q, W)

Ps(vla) OPslelaq) .
B o>, H(W)ETr Py(¢p | q)claleim@W)
P [ q) -
-y c(q 1 ;m, QW)L o Poll )@ 1#m@W) (1.37)
- Ps(e | q) '
Rearranging Eq. (1.37), we obtain
Py(p | 4) OPo(Q. W) (1.38)

Py(m | QW)elg T o;m, QW) = :
2Pl Q. We )= R W) 0Pale ] 0
On the left of (1.38) is the summation that occurs in the etgubcount. On the right there
is no summation at all. The problem now becomes efficientipmating P, (2, W) and
%. For that purpose, defing, (i) = Pr(m = @1, ..., pm Ak = ..., wi; W | Q) to
be the probability of all the segmentatiomghat align the end of, in @ to thei-th word
in W, andgi (i) = P(m = ¢1, ..., om A pr = w;...; W | Q) to be the probability of all the

segmentations that align the beginning;gto thei-th word inTW. Then

Py(Q, W) = am(n) Py(Q)
=Py(Q) Y k(i — 1)Py(wi, ooy w; | q)Brra(j + 1), Yk (1.39)
ij

According to (1.39),

% = P4(Q) . qzk:: ) e—1(i = 1) Bkt (j + 1) (1.40)

1719 =W;...W;
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Combining Egs. (1.38), (1.39) and (1.40), the expected toun

c(QW . .
N(g,¢) = Ps(p la) Y LW) > ap-1(i = 1)1 (j + 1)
S el (iWl) it
‘qr =4
170 =wW;...W;

(1.41)
ax (i) and B, (¢) can be computed efficiently with dynamic programming acitwrdo Eq.
(1.42):

Oéo(i) = P¢(w1, ceey Wy | qO);
(i) = Zakfl(T)an(er, s Wi | qr);

r<i

ﬂm(l) = P¢(wi, ceey Wy | qm);

Br(i) = > Brar (1) Ps(wiy ooy w1 | qr) (1.42)
r>4

Here P,(w;, ...,w; | ¢) can be obtained according to the n-gram (initially with timéfarm
distribution) specific to state Whenr =4, Py(wy11,...,w; | ¢) = Py(</s>|<s>;q) is the
probability to generate an empty string frgm

The performance of the HMM/CFG Composite Model

The HMM/CFG composite model balances the trade-off betweebustness and
the constraints on over-generalizations/ambiguitiesh viie different models for the
preambles/postambles and the slot fillers. The CFG modebsem a relatively rigid
restriction on the slot fillers, which are more crucial forreet understanding and less
subject to the disfluencies because they are semanticdigrent units. The fillers are often
domain specific and can be obtained from the applicatiorbdats like the city names and
airport names in the ATIS domain; or they are common domzdependent concepts like
phone number, date, time, which are already modeled in argeartibrary; or they can be
automatically generated according to some high level gegumn like a regular expression
for an alphanumeric concept (Wang and Acero 2006). The fairstates serve as the “glue”
that sticks different slot fillers together. This type ofdntoncept language is normally
domain dependent, hard to pre-build a model for, and sulpetiore disfluencies. It varies
significantly across different speakers. The n-gram maetdre robust and thus suitable
for this sub-language. Furthermore, the knowledge inttediby the CFG sub-model greatly
compensates for the data sparseness problem (e.g., ityizinkkely to see all city names
occur in all context in the training data).

Figure 1.18 plots the slot error rate of the HMM/CFG compmsibdel with the ATIS 93
category A test set, with respect to the amount of the trgidata it used. Here the accuracy
of the model trained with half of the 1993 ATIS3 training daalose to that of the model
trained with all the 1993 data ("1700 sentences). With altthining data, the end-to-end
error rate is 5.3%, which is comparable to the best manualgldped grammar, and better
than the best data-driven statistical model that used allNAS2 and ATIS3 training data
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Figure 1.18 ATIS end-to-end system error rate on text input vs. trairsagsize for the HMM/CFG
composite model.

(over 6000 sentences). The inclusion of domain knowleddbkerstatistical model reduced
requirement on training data.

1.3.3 Use of Generative Understanding Models in SpeechdgRéam

Sub-optimality of Two-pass SLU

Eqg. (1.6) assumes that the sentence or word sequris¢he observation. This is only true
for typed-in language. However, for spoken language unaleding, the observation is the
acoustic observation sequer@eHence the optimal meaning for a speech utterdde

M = argmax P(M | O) = argmax P(O | M)P(M) (1.43)
M M

Eq. (1.43) is often implemented with a two-pass approachhénfirst pass, a “pseudo”
word observation sequentlé = arg max P(W | O) = argmax P(O | W)P(W) is obtained
w

with maximuma posterioriprobability by the recognizer. In the second pass, the sponed-
ing meaning) is extracted froni¥” by pluggingl¥ into Eq. (1.6):

M = argmax P(M | W) = arg max P (JV[ | argmax (P(O | W)P(W)))
M M w

= argmax P(M)P (arg max (P(O | W)P(W)) |M) (1.44)
M w

An alternative to this two-pass solution is shown in Eq. §).4

M = argmaxPr(M | O) = argmax P(O | M)P(M)
M M
= argmax Y _ P(O,W | M)P(M) (1.45)
Moy

Here the understanding modB(W | M)P(M ), which can be considered as meaning-
specific “language model”, is directly used in place of theeye language model in ASR.
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The two-pass solution is simpler from the engineering pointiew, and it runs faster
because there is no need to keep separate search paths evisartte prefix strings but
different semantic structures in speech decoding. Howet/és a sub-optimal solution
because the dependency link betw&@andM via W is broken. Instead) is generated via a
different language modé? (W) and acoustic mode&P(O | W) that have nothing to do with
M. In an extreme case we may ha?€W) = 0 wheneverP(W | M) # 0, so no optimal
solution can be found at all. In research spoken dialog Bystéhis problem has often been
heuristically addressed by performing SLU on the n-begtuistfrom a recognizer. Another
disadvantage of the two-pass solution lies in the diffictdtyadapt to changes. If new cities
are added into a database, or a new type of services is irteddthe language model in a
two-pass system has to be retrained unless a class-bage@tgnis used.

Using an Understanding Model as the LM for Speech Recognitio

For a knowledge-based system that uses CFG for SLU, it magaaip be easy to use the
SLU model for ASR since many speech recognizers take PCH@stlgi as the language
model. Even with a non-CFG formalism like the unificationgraar, they can be converted
to a CFG for ASR (Moore 1998; Rayner et al. 2001). Howeverpiitity remains only at the
engineering level. A fundamental problem is that the knogébased models are generally
not robust to disfluencies in spontaneous speech and rdimogairors. They depend on the
robust mechanism of the parser in the understanding conrmpémeeal with the inputs not
covered by the model. This robust mechanism is not availalitee speech recognizers.

In statistical SLU, robustness is built into the model itsetough proper smoothing. The
remaining problems have more of an engineering nature — laowacstatistical model like
the HMM/CFG composite model be converted into a format thatcagnizer can take as a
language model. In (Wang and Acero 2003b) the HMM/CFG coritpasodel is converted
to a CFG as follows: the backbone Markov chain is basicaltatistical finite state machine,
which is a sub-class of the PCFG. The efficient conversioh@htgram observation model
follows the work in (Riccardi et al. 1996), and the CFG obsaéion model is used directly.
The composite model, in the format of PCFG, was applied uthgdramework of Eq. (1.45),
and the results were compared with the two-pass recoghitiderstanding paradigm under
the framework of Eq. (1.44), where a domain-specific trigveam used as the language model
P(W) in speech recognition and the HMM/CFG composite model wasl éer the second
pass understanding.

Table 1.1 shows the findings with a commercial decoder andeareh decoder. For the
commercial decoder, even though the composite model’s ewod rate is over 46% higher
than the trigram model, its SLU error rate (again measuretth@slot insertion-deletion-
substitution rate) is 17% lower. With the research decduatris less aggressive in pruning,
the word error rate of the HMM/CFG model is about 27% highamntkhe trigram model.
However, the SLU error rate is still marginally lower.

The results clearly demonstrate the sub-optimality of s&psy the models for ASR
and SLU. In this approach, the trigram is trained to optimibe likelihood of the
training sentences. If the test data is drawn from the samsteluition, the trigram model
assigns higher likelihood to the correct transcriptiond &ence reduces the word error
rate. On the other hand, the objective of the HMM/CFG contpasiodel training is to
maximize the likelihood of the observed semantic repregims. Thus the correct semantic
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Table 1.1 The ASR word error rate and the SLU error rate (slot
ins-del-sub) of the trigram model (2-passes) and the HMMNGCF
composite mode (1-pass). “Transcription” column showsShe
error rate on the true text input. Both automatic and manual
transcriptions were sent to the same HMM/CFG model for a
second-pass SLU.

Decoder Trigram HMM/CFG  Transcription
Commercial WER 8.2% 12.0%

Decoder SLUER 11.6% 9.8% 5.1%
Research WER 6.0% 7.6%

Decoder SLUER 9.0% 8.8% 5.1%

representations of the test sentences will be assigne@hpgbbability. It is important to
note that the trigram model used all the ATIS2 and ATIS3 trajlata, while the HMM/CFG
composite model only used the 1993 ATIS3 training data. @ltth the comparison is not
fair to the HMM/CFG composite model, it is still meaningfld¢ause unannotated training
data is much easier to obtain than the annotated data. Whgtthenl 700 training samples
were used for LM training, the two-pass system had 10.4% WiiiR1:3.1% SLUER with
the commercial recognizer, and 7.5% WER and 10.2% SLUERtwéhesearch recognizer.

The results from other research work also provide evideocth& importance of keeping
the dependency link between the acoustics and the semadnt{&iccardi and Gorin 1998),
a language model that interpolated the word n-gram withamgrcontaining semantically
salient phrases was used for an automatic call-routing (A@8k. A slight word accuracy
improvement from the new language model resulted in a dEptmnately substantial
improvement in understanding. In (Chelba et al. 2003), glsipass ASR/ACR system, in
which the ACR statistical model was used as the language If@mdaSR as well, resulted
in worse word error rate but better call classification aacyrIn (Estéve et al. 2003), a
concept decoder that adopted a model similar to the HMM/CR@ahalso yielded better
understanding results.

1.3.4 Conditional Models

The statistical models for SLU we have introduced so far drgemerative models — the
semantic structuré/ is first generated according to the semantic prior m@tle¥/ ), from
which the observatiofi’ is generated according (W | M), which an be modeled by the
different lexicalization processes we just described.

Conditional models are non-generative. In a conditionadlehathe states (which encode
the meaning\/) are directly conditioned on the observation. For SLU, Gtodal Random
Fields (CRFs) or Hidden State Conditional Random FieldsRHAE) are commonly used
conditional models. With CRFs or HCRFs, the conditionalbataility of the entire state
(label) sequenceg given the observation sequence is modeled as an expongmgidinear)
distribution, with respect to a set of featurég(y,x). The features are functions of the
observation sequenaeand the associated label sequeynce
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HMM Linear Chain CRF

Figure 1.19 Graphic model representations for HMMs (generative modetj CRFs (conditional
model). A generative model is a directed graph that pointhéodirection of the generative process,
and observations are generated frame by frame in a unifowagdConditional models are represented
by undirected models, where the entire observation seguens observable for every states in the
model.

Py [x;A) = ﬁ exp {Z Ak fr (Y5 X)} (1.46)
: B

HereA = {)\;} is a set of parameters. The value\gfdetermines the impact of the feature
fi(y.x) on the conditional probabilityZ (x; A) = >~ exp {3, A fx (¥, X)} is a partition
function that normalizes the distribution. Given a setrofabeled training examples(, y1)

... %m, ym), the model is trained to optimize the following objectiumEtion:

e 1
L(A) = — > log P(y; | Xi:A) = 55 A
i=1

1
=Eppylog Py [ X 4) — 5 JA] (1.47)

WhereP(x, y) stands for the empirical distribution of the labeled tragnsamples.

The second termin Eq. (1.47) regularizes the parameteesipthem from taking extreme
values, thus prevents the model from over-fitting the trajniata. Note that the objective
function is a convex function, so a single global optimunsexi

The CRF in Eq. (1.46) is unconstrained in the sense that ttarfe functions are defined
on the entire label sequenge Because the number of all possible label sequences is
combinatorial, the model training and inference of an ust@ined CRF is very inefficient.
Because of that, it is common to restrict attention to thedirchain CRFs (Lafferty et al.
2001). The linear chain CRFs impose a Markov constraint emibdel topology, and as a
consequence, restrict the feature functions to dependoortlye labels assigned to the current
and the immediately previous states, in the foftp:_1, y:, X, t). The restrictions enable the
application of efficient dynamic programming algorithmsnirodel training and inference
— yet still support potentially interdependent featurefingel on the entire observation
sequence.

Figure 1.19 shows the difference between the HMMs and tleatiohain CRFs in graphic
model representations. First, since HMMs are generativaatsothe graph is directed, which
points to the direction of generative process. States asserhdepending on the previous
states, and observations are generated at the states. @Rfs,other hand, are represented
by undirected graphs since they are direct, non-genenatddels. Second, observations in
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HMMs are generated one at a time in a uniformed way, while ilr€fRe entire observation
sequence is given, so at each state it can employs featumesl¢pends on the entire
observation sequence.

When the state sequengeis not fully observable, as in the previous example where
only slot fillers are manually labeled and the remaining woad be aligned to different
preamble/postambles, HCRFs can be used. They treat theownkstate assignment as
hidden variables, and their features can be defined on thdderhvariables. In this case,
the following conditional probability is used instead irthbjective function in Eq. (1.47):

P x;A) = Z(xl; N Z _ exp{z e fr (y,x)} (1.48)
y:y is consistent with k

wherel is the partial label marked for that only partially determines the state sequence
for x. The objective function sums over all legal state sequentleat are consistent with
Because of this additional summation, the objective fumci$ no longer convex in.

The parametera in CRFs or HCRFs can be optimized according to the objectimetion
with numeric algorithms like stochastic gradient decent-@8FGS. Both of them use the
gradient of the objective function, which can be easilydstias

OL(A
8A(k L= B k0 )]~ By Lk, (1.49)
for CRFs and
OL(A
5)(\k) =Epunpm LG = Epg pyix 5 Y)] (1.50)

for HCRFs. In other words, the gradient with respect to auieatveight is the difference
between the expected value of the feature given both thenddigmn and the label sequence
and the expected value of the feature given only the obsenvabhd a modeP(y | x) trained
so far. These expected value can be collected with the farlvackward algorithm when the
linear-chain CRFs or HCRFs are used.

Compared with the generative models, conditional modets bi#ze following advantages:

1. A generative model wastes its capacity by modeling theegdion of observations,
which in practice are always known. Because of that, sewsatiminative training
algorithms like maximum mutual information (MMI) (Bahl €t 4986) and minimum
classification error (MCE) (Juang et al. 1997) have beengse@. Conditional models,
on the other hand, are discriminative in nature — its objectiinction can only be
optimized by maximizing the posterior probability of theri@zt state sequence while
minimizing the posterior of the competing hypotheses.

2. The components of a generative model, such as the t@ms#hd emission
distributions, need to be a properly normalized probabdiénsity functions, even
though the only probability distribution we are interesietbr a SLU task isP(y | x).
This makes the model too restrictive. In contrast, CRFs rsotlee entire state
sequence with the exponential model and the only restniég§dhat P(y | x) forms
a proper probabilistic distribution. In the specific cas¢idM and CRF, if the same
features (transition and emission) are used, then the spfattee HMM parameters
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list twa flights from washington to philadelphia

| | | | | | |
null  AirlineCode  null null ACity null DCity

Figure 1.20 Frame-based SLU as a sequential labeling problem: wordsaasigned labels
representing their meaning.

values is limited to a subset of that of the CRF due to the caims$ that is not relevant
to the objective function. This extra constraints may lithi2 model’s discriminative
capability.

3. A generative model has uniform observation space for s&th. It is very expensive
to expand the observation context at a state due to the ctiddmensionality — since
it needs to model the generative process for all possibla sypanded context. In
contrast, since the observation are given in a conditior@det it can incorporate
interdependent, overlapping features only observed irrttieing data. The features
can be defined on the entire observation, as illustrated dpyr&i1.19.

In a straightforward application of CRFs for the frame-lih&i U, x consists of a
transcribed utterance, andis the semantic label sequence assigned.tblon-slot filler
words are assigned a null state, as illustrated by Figu@ 1.2

Typical features used by the CRFs for SLU include the tramsiteatures, the n-gram
features, and the class membership (a.k.a. word list) fesitThe transition features model
the dependency among adjacent states, which capture tbherio# of context on the tag
assigned to a given word:

TR W1,y %, t) = 0(ye—1 = )0 (ye = J) (1.51)

wherei, j are states (labels) of the modéle) = 1 whene = true and d(e) = 0 when
e = false

The n-gram features often include the unlgré.ﬁf’ and the blgrarTy“BG features to
capture the relation between the current state and theitigerfithe current (and previous)
words

Furg Wi, 9%, 1) = (@ = w)o(y = 5) (1.52)
ffﬁ/,j(ytfl,yt,X, t) = 8(xi_1 = w)d(zy = w)d(ys = j)

wherew, w’ are words and is a model state (label).
The class member features check if the current word is pam @htry in the lexicon of a
syntactic or semantic class:

FES (o1, 9, %) = 6 (Co [X,1]) & (3 = ) (1.53)

whereC' is a classC i [X, t] indicates that a member @f is a substring ok that covers
x¢. j is a model state. Here the memberdtan be defined by either a phrase list, a finite
state machine (equivalently a regular expression) or aegbffitte grammar. For example,
fivieomve (-1, 9y, %, t) =1 whenx = “I need to fly to Boston three o’clock in the
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fly  from denver to

return from denver to

RETURN. MONTH

Figure 1.21 Example of long distance dependency in Air Travel data: therpretation of “dec.”
depends on the word (pointed to by the arrows) beyond theerangered by the local features.
(Courtesy of Minwoo Jeong & Gary Geunbae Lee).

afternoon,” “three o’clock in the afternoon” is recognizzsia TIME expression, € [7,11]
and the model is assigning the state DTIME to position

In (Raymond and Riccardi 2007), this approach is comparehk the SFST generative
model, using the same feature set — in this case, the tramdgature depends not only
on the adjacent states but also on the words that the st@essigned to. It is found that
SFST is more robust when data is sparse and inconsistebh#ield, while CRFs surpassed
SFST when more labeled data are available. However, dirgatiting the topology and
features of a generative SFST to a conditional model may &ttié most useful thing to try.
Although it takes advantage of the discriminative naturdhefmodel, the model’s capability
to incorporate interdependent, overlapping features aeréexeraged. Jeong and Lee (2008)
shows a good example of such features introduced to imphev8itU accuracy. It noticed
that long distance dependency is an important issue in St Uluatrated by Figure 1.21.

To overcome this problem, Jeong and Lee (2008) introduimggetr featured An element
a is atrigger for another elemerit(a — ) if a is significantly correlated tb, andb is called
thetrigged elementHere an element can be a word, an attribute associated witinch(e.g.,
the part-of-speech tag of a word), or a model statndb forms atrigger pair. For example,
the trigger pair “return— dec.” indicates that the currently observed word is “dend there
is a word “return” in the observation that is at least two weoasvay (long distance) before
the current word. The trigged element can be nglhen the identity of the current word
is not important. For example, “retur ¢” states that there is a word “return” that is long
distance away from the current word.

Given a trigger pain — b, a CRF feature function can be define on the pair:

S ety X, 1) = 0(zy ~ b)8(Fpcr—amv ~ a)d(y—1 = j)o(ye = k) (1.54)

wherez ~ a means that the is consistent with the elemeat- if a is a word, it means that
w = a. If a is an attribute like a POS tag, it means thais assigned the part-of-speech
x ~ ¢ is always true. For the state variablgs= ¢ is also always true — it means that the
feature does not care about the identity of a state.

Note that although by definition a trigger pair can be a paimofiel states separated by
a long distance, they can not be incorporated in a lineamc8&F because it breaks the
Markov assumption. Since the entire observation is knovandonditional model, this is not
a problem when the trigger pair is defined on the observation.

3Similar idea has been investigated in language modelingéRfeld 1996).
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An example can illustrate the power of the trigger featufés feature

et c.c RETURN.MONTH Yt —1, Yt: X £) (1.55)
is activated (has value 1) whenis at the position of the word “dec.” in Figure 1.21 and
the hypothesized state for the position is “RETURN.MONTHithis feature has occurred
in the training data, namely there is at least one trainimgpa where a word labeled as
RETURN.MONTH is preceded by “return” long distance aways tleature will likely be
associated with a positive weight and help generalizing other cases where the word
“return” precedes a month name, as in the example in Figre 1.

However, the use of the trigger features introduces angttaiem. There are too many
potential trigger pairs that are observed in the trainirtg danost of them may not satisfy the
requirement of strong correlation. If all those potentiairg are introduced into the model,
it will not only slow down the training speed, but also make thodel easy to over-fit
the training data. Therefore a feature selection mechaissmcessary in this case. Jeong
and Lee (2008) uses a feature selection algorithm adoptédrendified from the one in
(McCallum 2003). It is basically a greedy hill-climbing algthm that iteratively tries each
possible individual feature, check how much gain it bringshte objective function of the
CRF when it is added to the model, and select the one thattsdauthe most gain. This
is, again, a very expensive procedure since it needs tdarrétra CRF for each addition of
features. However, the procedure can be approximated eraalifferent ways to speed up
significantly. Detailed descriptions of the feature setectalgorithms is beyond the scope
of this introductory book. Interested readers can find thevest information in (McCallum
2003) and (Jeong and Lee 2008).

Figure 1.22 compares the recall-precision curve of the isodéh or without long
distance features with different types of inputs to the Sldinponents. It demonstrates
significant improvement on both text and speech (one-be® A& n-best ASR) inputs.
The paper also compared the conditional models with the HM®&ative model. Both CRFs
models with or without the long distance features outpentx the generative model.

Motivated by the success of the HMM/CFG composite model, §Veh al. (2006)
investigated the unified CFG/CRF model. To model the londadise dependency, it
introduces links between non-adjacent nodes in the graphiodel, as illustrated by
Figure 1.23.

Note that the nodes are fully connected to each other in Eitjl#3. Exact model inference
via dynamic programming will no longer be possible if thered additional constraint. CFG
comes to the rescue by introducing the additional congttia@t such a long distance link is
only allowed between the random variabjgsandy ;. when they have the values representing
the same slot, and there is a CFG riitec R(y), such thatR = x;,... x;. Here R(y)
stands for the set of grammar rules that is compatible toabelly (e.g., “PreciseTime”
is compatible to the label “StartTime”). This is equivaléatintroducing a feature of “no
compatible CFG rules (NCR)” to the model in Figure 1.23 whatlvays has the weight

—0OQ.
NG g,y %5, k) =6 (S(y) £S(W/)VIRERy): RS x;,..., xk) (1.56)

where S(y) stands for the slot that the labgl represents. This constraint of CFG rule
matching enables dynamic programming for model trainirfgfience when the observation
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Figure 1.22 The recall-precision curves on Air Travel data used by then@aonicator system
(Courtesy of Minwoo Jeong & Gary Geunbae Lee).
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Figure 1.23 The graphic model representation of the unified CFG/CRF mnobee nodes are
interconnected to each other according to the spans of Cle@ouerage.

Number City City

| __need | two | tickets _ to
Time State @

Figure 1.24 The observation includes a word sequence and the subsegueneered by CFG non-
terminals.

is chunk parsed into a lattice like the one in Figure 1.24 civldonsists of not only a word
sequencey] but also a list of CFG non-terminals (NT) that span differsggments ofv] .

The task of SLU becomes to select a path from the lattice asigraa semantic label to a
segment — the label has to be consistent with a CFG nontefrogaaring that segment. To
do so, the model must be able to resolve several kinds of aritigisf
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0 20 40 60 80 100 120
Figure 1.25 Test set slot error rates (in %) at different training itemas. The top curve is for the flat
start initialization, the bottom for the generative moddialization.

1. Filler/non-filler ambiguity, e.g., “two” can either fill &lum-of-tickets slot, or its
homonym “to” can form part of the preamble of an ACity slot.

2. CFG ambiguity, e.g., “Washington” can be either a City Gtate.
3. Segmentation ambiguity, e.g., [Washington] [D.C.] Waghington D.C].
4. Semantic label ambiguity, e.g., “Washington D.C.” carelbeer an ACity or a DCity.

In one setting, the same model topology and features of th&/HIFG composite model
were directly ported into the CFG/CRF model. Because the assignment for the non-slot
filler words were unknown (e.g., as shown in Figure 1.17, tbed#on” could be assigned
either the PostDCity state (postamble of the departurestitty or PreDate state (preamble
of the Date slot)), HCRF was used for this model.

To model the popularity of different top level semantic fesrin the air travel domain
like “ShowFlight,”, “GroundTransportation,” etc., the el also included th&rame prior
feature typef % in addition to the commonly used transition and n-gram fiestintroduced
earlier:

fCPR(yt_l,y(t), X, t) = d(t = 0)§(Frame(yo) = ¢) (1.57)

here Frame(y) stands for the frame of which the statés a part. The conditioh(t = 0)
ensures that the frame prior feature is only activated oacedch utterance.

Figure 1.25 shows the test set slot error rates (SER) atelifféraining iterations. With the
flat start initialization that set every parameter to 0 aiiyi (top curve), the error rate never
comes close to the 5% baseline error rate of the HMM/CFG maodfeh the generative
model initialization that imported the model parameters @fenerative model to initialize
the conditional model parameters, the error rate is redtwdd8% at the second iteration,
but the model quickly gets over-trained afterward.

The failure of the direct porting of the generative modeltte tonditional model can be
attributed to the following reasons:

1. The conditional log-likelihood function is no longer angex function due to the
summation over hidden variables. This makes the model yigtdly to settle on a
local optimum. The fact that the flat start initializatioriléal to achieve the accuracy
of the generative model initialization is a clear indicatif the problem.
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departing from boston on christmas eve

| | | | | |
PreDCity PreDCity DCity PreDate Date Date

Figure 1.26 The preamble-only labeling scheme: once the slots are mankihe simplified model
topology, the state sequence is fully marked, leaving ndéridvariables.

2. In order to account for the words in the test data, the mgra the generative model
are properly smoothed with back-offs to the uniform disttibn over the vocabulary.
This results in a huge number of parameters, many of whiclmatabe estimated
reliably in the conditional model, given that model regidation is not as well studied
as in n-grams.

3. The hidden variables make parameter estimation lesabteligiven only a small
amount of training data.

An important lesson here is that we should never think geivetga when applying the
conditional models. While it is important to find cues thalphidentify the slots, there is no
need to exhaustively model the generation of every word fildfarent states in a sentence.
Language model smoothing may not be necessary since theftéts& model is no long to
assign a likelihood to an observation — it is unnecessaryastevthe model's capacity to
predict unseen observation events. The worst consequérareunseen test n-gram is the
n-gram feature will not be used, while the model may still beedo make the right decision
based on the other available features. The distinction @dmbles and postambles, which
was designed to sharpen the distribution of the generatageito improve the likelihood
(perplexity) of the observation, may also be unnecessamtyEword that appears between
two slots can be labeled as the preamble state of the seamndsilustrated by Figure 1.26,
or all the null state, as illustrated in Figure 1.20. Thiselitg scheme effectively removes
the hidden variables and simplifies the model. It not onlyeshigs model training, but also
prevents parameters from settling at a local optimum, beethe objective function is convex
now.

To fully take advantage of the conditional models’ cap#piiin discriminative training

and in incorporating interdependent overlapping feafuhesfollowing types of features are
included in the model:

1. The first feature typegchunk coverage for preamble wordgims at correcting the
confusion between a slot filler state and a slot preamble stéttmay be a side effect
of not modeling the generation of every word in a sentencpp8se a preamble state
has never occurred in a position that is confusable with ssides in the training
data, and a word that is part of the string covered by the CHE far the filler
of s is unseen in the training data. Then, the unigram featurdefwtord for that
preamble state has weight 0, and there is thus no penalty iklabeling the word
as the preamble. The chunk coverage features detect thetipbteccurrence of this
confusion and informing the model that, which is a potential slot filler, has been
labeled as a preamble.

FSS i1, ye, %, t) = S(NT > [x, t])d(IsPreambléy;)) (1.58)
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2. The previous-slot contexfeature type tries to capture some of the long distance
dependency. This is based on the observation that the phaaseo PM’ in “flight
from Seattle to Boston at two PMand in “flight departing from Seattle arriving in
Boston at two PM.has different interpretations, which depends on the idestof
the words (to” versus ‘arriving at”) in the preamble of the ACity slots Bostorf)
preceding the time expressiorSince the starting position of the previous slot is
unknown given then Markov assumption of the linear chain GRFpreamble words
are approximated by the words in a window preceding the Isthgggment covered by
the CFG rules modeling the filler of the previous slot:

PC
51,52,W ( Yt—1, Y, X, t) =
t

arg min; (NT'(s Sty 1
Byt = 51)(ys = s2)d(w € 2”78 D7) (159)

i

hereK is a window size NT(s) stands for the CFG rule name for the filler of the slot
represented by the staﬁex{ =;,...,z;, andargmin;(NT — a:{) represents the
minimum index (the leftmost position) such that the subgtfrom this position tgi

is covered by the CFG rul&y 7.

Compared to the trigger features, this feature’s capghfitmodeling long distance
dependency is limited to the previous slot’s context onlgwidver, since there are
only a small set of words for the previous slots’ preamblestthe training data, there
is no need for the expensive feature selection procedure.

3. Thechunk coverage for slot boundafgature type is introduced to penalize erroneous
segmentation, such as segmentiigashington D.C.into two separate “City” slots
(or a “State” followed by a “City”). It is activated when a slooundary is covered by
a CFG non-terminadlT, i.e., when words in two consecutive slot¥\{shingtohand
“D.C.) can also be covered by one single CFG nonterminal:

fﬁ?(yt,l,yt,x, t)=0(NT — ...x¢_1x¢...)0(ys—1 is filler end
o (yy is filler stard (1.60)

In Wang et al. (2006), this feature type is tired with tteunk coverage features for
preamble wordsand does not introduce any new parameters.

Table 1.2 1 shows the number of new parameters and the stotrate (SER) on the test
data, after each new feature type has been cumulativelyddddiee model. The new features
improve the prediction of slot identities and reduce the BR1%, relative to the generative
HMM/CFG composite model. The additional features, agaia caitical in reducing the slot
error rate.

While CRF is often characterized as a sequential labelindahat is important to note
that such a model can perform semantic frame classificgticki(g the correct frame for an
utterance) and slot filling simultanoutly. In the unified GBRF model, this is achieved by

“Note that the preceding slot is ACity in both cases, hencéréimsition feature is not able to differentiate these
two cases.
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Table 1.2 Number of additional parameters and the slot error rate aéteh
new feature type has been added to the model cumulatively.

Feature Type Number of Parameters SER
Frame Prior 6

+State Transition +1377 18.68%
+Unigrams +14433 7.29%
+Bigrams +58191 7.23%
+Chunk Coverage of Preamble Word +156 6.87%
+Previous-Slot Context +290 5.46%
+Chunk Coverage of Slot Boundaries +0 3.94%

,(§)o (;)

(a) (b)

Figure 1.27 Graphical model representation of the joint model for frarassification and slot filling
with CRFs. (a) The model used in the unified CFG/CRF model &hd (general “triangular chain
CRF” model.

using frame-specfic slot labels and the introduction of thenk prior feature in Eq. (1.57),
which effectively results in the graphic model illustratey Figure 1.27(&) which can be
viewed as a special factorization of the more general masjgibtied by Figure 1.27(b). Jeong
and Geunbae Lee (2008) named Figure 1.27(b) the “trianghkin CRF”, and introduced a
couple of other factorizations of it for the frame-based SLU

In fact, this type of conditional model for joint classifizat/sequential labeling
is a common practice in many other speech processing apptisa For example,
Gunawardanaand et al. (2005) used HCRF for phone clasgificathere hidden states are
aligned (tagged) to acoustic frames, while a class labeddgyaed to the entire input in the
mean time.

1.3.5 Frame-based SLU in Context

Up till now we have only discussed the understanding of agramice out of its context. In
practical speech applications, however, users seldonifgdiche important information in
a single utterance. They are often engaged in a dialog wittsyistem such that important
pieces of information (slots) can be provided to the systémiféerent dialog turns. The

5For the sake of simplicity, the long distance dependencypdtuced by the unified CFG/CRF model is not shown
here
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USER1: Show me the flights from Seattle to San Francisco nexinasday.
SYS1l:  <Displays a list of flights, including flight AS 220

USER2: 1also need a return flight from San Francisco to Seattl

SYS2: What's the date for the flight?

USER3: The Monday after.

SYS3:  <Displays a list of flights-

USER4: Display details of AS 220.

SYS4:  <Displays the detailed information of the outbounding fligi& 220>

Figure 1.28 The effect of constraints on inheriting semantic inforroatfrom the discourse.

pieces need to be assembled incrementally to form the samapresentation, such that
the dialog system can take appropriate actions accorditigetinformation gathered up to
the current dialog turn. Without the capability of undenstimg in context, a dialog system
cannot interact with users proficiently. In the specific epof the ATIS corpora, there are
class D utterances that cannot be correctly interpretdabwittaking into consideration the
context inforamtion.

For that purpose, a discourse structlirés used to record the information till the current
dialog turn when the user uttets. D may contain multiple partially instantiated semantic
frames. The context agnostic SLU algorithms/models thatawe introduced can be applied
to obtain the context independent meanivlg of . From D and M,,, a context dependent
meaningMp can be constructed.

ConstructingVlp from D andM,, is much more complicated than simply adding together
the pieces of information i and M,,. The information inD often cannot be inherited by
Mp. Using ATIS as an example, the mention of a new departureaivdlxity often implies
that the infomation inD cannot be carried over td/p, because it signals that the user has
switched to another task of finding a different flight. Simlifaif the user mentions a specific
flight number, the focus has been reset and all the slot irdtiom need to be replaced by
the corresponding information of that particular flight.eTéxemplar dialog in Figure 1.28
shows the effect of these two constraints. There are mansticonts like these two in the
ATIS domain, which were often modeled by handcrafted ruBenéff et al. 1991), with the
exception of the statistical discourse model in (Millerletl&96), for which we discuss now.

The statistical discourse model represeifs with a vectorY, where each element
contains the value of a specific slot. Another vectoof the same dimension a5is used to
representa combination 8f,, and/,,, the latest instantiation of the same framéégin D.
The elements inX specify one of the five relations between the fillers of theegponding
slots inM,, andM,, (excerpted from (Miller et al. 1996)):

INITIAL Slot filled in M, but notiniZ,
TACIT Slot filled in M, but notin,
REITERATE Slot filled in bothd/,, and M,,, with the same value
CHANGE Slot filled in bothdM,, and M, with different values

IRRELEVANT  Slot not filled in eithetM,, or M,

Then
P(Mp|D,M,)~=P(Y |X)= HPslot Y| X;Y1,...,Y;1) (1.61)
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WhenX; # TACIT, P (Y; | X;Y4,...,Y;—1) = 1if Y; = M,;, theith slot of M,,. When
X,; = TACIT, a binary statistical classifier is trained for eactit$b determine if\/,,; should
be copied taV/p. Miller et al. (1996) employed the decision trees for clsation.

Putting it in a broad picture, Eq. (1.61) can be embeded ifidh@ving decision rule for
utterance understanding in context:

M = argmax P(Mp | U, D) = argmax Y _ P(Mp | M,,U, D)P(M, |U, D)
Mp Mp M

~ arg max max P(Mp | M, D)P(M, )
MD u

= argmaxrr]\lfo(MD | M., D)P(U | M,)P(M,) (1.62)
MD u

whereD represents the contex®(Mp | M,,, D) is the discourse modeR (U | M,,) is the
lexicalization model, and(,,) is the semantic prior model.

1.4 Summary

This chapter has introduced the problem of the semanticdrbased spoken language
understanding, a common SLU problem that has been faced imy mesearch and
commercial applications. It has covered some importanttiesis to the problem, ranging
from knowledge-based to data-driven, statistical learr@pproaches. In the knowledge
based solutions, manually developed grammars are coujfedolust parsing technologies.
There are two major camps in grammar design, one favors tise ref domain-independent
syntactic grammars across different domains and augngetiten grammars with domain-
specific semantic information; the other advocates thectiimodeling of semantics with
a domain dependent semantic grammar. For the data-drivemaghes, both generative
models and conditional models for the frame-based SLU aiewed. The generative model
framework has two major component, emantic prior modednd thdexicalization model.
Several seminal generative models are reviewed in detatlrims of these two component
models. The conditional models have the advantages ofimlis@tive learning and the
capability of incorporating many interdependent, oveplag features that are difficult to
be included in a generative framework. Hence it is powerfulésigning specific features to
address some difficult problems, such as long distance depey. It has also been shown not
a good practice to directly port a generative model’s toggland features into a conditional
model. Rather the design of a conditional model should facutaking full advantage of its
capabilities.

While it is necessary to have some real usage data for refererthe process of grammar
development, the knowledge-based approach in generakesdass training data to build
a model (grammar), and the data do not have to be labeled.akftert’s involvement, it is
agile to quickly adapt to the topic/trend shifts that maygepfrequently in practical spoken
dialog applications. However, it needs a combination ofiapflon and linguistic expertise,
and the robustness does not come from the model directtgddsit has to depend on a robust
parsing mechanism. The statistical models, on the othet,lzaa robust to noisy, error-prone
inputs by design. It does not need linguistic expertise fangnar development. However, its
performance is greatly affected by the availability of thledled training data. In this chapter,
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we have also shown the advantage of combining statisticaletsowith the knowledge-
based solutions by integrating CFG rules in both generating conditional models. This
has greatly reduce the dependency on a large amount of tefpaleing data.
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\Voice Search

Ye-Yi Wang, Dong Yu, Yun-Cheng Ju and Alex Acero

Microsoft Research

\Voice search is one of the most actively investigated speeaterstanding technologies
currently. It is the technology underlying many commersiabken dialog systems (SDSs)
that provide users with the information they request wittpaken query. The information
normally exists in a large database, and the query has to inpared with a field in the
database to obtain the relevant information. The contehtheo field, such as business
or product names, are often unstructured text. For exangdtectory assistance (DA)
(Bacchiani et al. 2008; Yu et al. 2007) is one of the most papubice search applications,
in which users issue a spoken query and an automated systamsréhe phone number and
address information of a business or an individual. Theiegibns include both telephone
only services and multi-modal services on mobile devicghefvoice search applications
include music/video management (Mann et al. 2007; Song 808B), business and product
reviews (Zweig et al. 2007), stock price quote, and confegémformation systems (Andreani
et al. 2006; Bohus et al. 2007). Recently the task has beem@sdl to using voice queries
for Web search from mobile devices, as manifested by the cenciad systems from Google
and Yahoo.

2.1 Background

Figure 2.1 shows the typical architecture of a voice seaystem, where a user’s utterance
is first recognized with an automatic speech recognizer (AB& utilizes an acoustic model
(AM), a pronunciation model (PM) and a language model (LM)eTmn-best results from
the ASR are passed to a search component to obtain the nelpeshsc interpretations, i.e.,
a list of up ton entries in the database. The interpretations are passedi&bog manager
(DM) subsequently. The DM utilizes confidence measures;kvimdicate the certainty of the
interpretations, to decide how to present the n-best ediithe system has high confidence
on a few entries, it directly presents them to the user. @tise;, a disambiguation module is
exploited to interact with the user to understand what headigtneeds. their true intent.

This is a Book Title Name of the Author/Editor
© XXXX John Wiley & Sons, Ltd
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Figure 2.1 Architecture of a typical voice search system.

2.1.1 Voice Search Compared to the Other Spoken Dialog dbafjies

For automated human-machine interaction, we have revidgivegroblem of the frame-
based SLU and call-routing. Compared to them, the problewoiok search has its unique
characteristics and needs to be addressed separatelyantehased SLU are used to gather
the attribute values of an entity that users are interestdiké the originating and destination
cities of a flight. In such systems, users often have to useethexpressions within a small
domain. In a directed dialog system, a user’s utterancebnaited to answers to what the
system has prompted for, which often contain a single piésemantic information; while
in a mixed-initiative system, users are allowed to volunteere semantic information in a
single utterance — we call this type of semantic understayitigh-resolutionin the sense
that multiple slots need to be identified. The call-routipglecations remove the constraints
on what a user can say, so one can speak naturally. This isngtisbed at the expense
of limiting the target semantic space: the understandingatdral language inputs is often
achieved with statistical classifiers, which map a usepsiirio a destination semantic class
(intent) in a predefined set of limited size. The classifi@ns lcardly perform high resolution
understanding with many slots, or scale up with a huge nuifgogr, thousands to millions)
of destination classes. Voice search applications diffanfthe frame-based applications in
their lack of detailed, high resolution semantic analy§teey are similar to the call-routing
applications with respect to the naturalness of user ignudshe huge input space. However,
they differ from the call-routing applications in the seribat their semantic space, or in
the terminology of the call-routing applications, the intary of the “destination classes,”
is enormous — sometimes in the range of millions of entriegtalare seldom sufficient to
train a statistical classifier. Instead, information etal techniques based on some similarity
measures between a query and a candidate entry are useediiselentry that best matches
the query. Hence in general there is no need of labeled thigathéta. Table 2.1 compares the
three types of technologies.
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Table 2.1 Comparison of the frame-based SLU, call-routing and voesrch spoken language
understanding with respect to the characteristics of thetintterance space and the output semantic
space.

SLU Task User input utterances Target semantic representabn
Naturalness  Input space Resolution Semantic space

Frame-based/directed dialog low small low small

Frame-based/mixed-initiative ~ Low-medium small high dmal

Call routing high large low small

\oice search Medium-high large low medium-large

2.1.2 History of Voice Search

Early work on voice search focused on directory assistaD£9. (Institutions on both sides
of the Atlantic have deployed experimental systems duriidlate 90's. The early studies
focused mainly on residential DA (Billi et al. 1998; Kamm ¢t E995; Lennig et al. 1994),
and speech recognition was the major topic of research —asde personal names were
correctly recognized, the search could be a simple datdbakap. As a result, the dialog
strategies centered on limiting the scope (hence perp)esitthe target listing space for
ASR and the confidence measures mostly relied on featurestfite ASR. Related work
includes enterprise level auto-attendant (a.k.a. nantied)jaervices from Phonetic Systems
(acquired by ScanSoft, then merged with Nuance), AT&T (Bohuh et al. 1998), IBM
(Gao et al. 2001), and Microsoft (Ollason et al. 2004). Whildomating residential DA
is important in reducing the operational cost, it is only aalimortion (19%) of the total
received calls compared to the 61% of business DA callsi@&ikl. 1998). Therefore there
have been increasing interests in business DA recentl, thiZ commercial deployments
from Tellme (acquired by Microsoft), Jingle Networks, AT&Google (Bacchiani et al.
2008), Verizon and Cingular (merged with AT&T Wireless naav)d Microsoft (Yu et al.
2007). Because the level of linguistic variance is much &igin business DA queries,
SLU/search aiming at correctly interpreting user’s intbetomes an important research
topic. The linguistic variance increases the ambiguity andertainty in the interpretation
of a user’s intent. As a result, dialog research focuses erdibambiguation strategy, as
well as the confidence measures that look into features fiiiereht system components to
accurately predict the end-to-end performance in intéiqye spoken query.

Other voice search applications include the stock quotéesysrom Tellme and a
product/business rating system from Microsoft (Zweig et2l07). Separate efforts have
been made on conference information systems by Carnegi®mehniversity (Bohus et
al. 2007) and by the collaboration among AT&T, ICSI, EdirfdutUniversity and Speech
Village (Andreani et al. 2006), where users can requestrinéion about thousands of
papers published in a conference. In entertainment, Dainds investigated digital music
management in automobiles (Mann et al. 2007), and Ford amdosbft have introduced
the commercial dashboard device Ford SYNC that allows inrtasic search. Like the
business DA applications, many new voice search applicatéall for research activities
in search/SLU and dialog management in addition to speexgrétion.

With the broad adoption of mobile devices and the availgbdf wireless access to the
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internet, many companies are actively engaged in the sgaagoe search on mobile or in-
car devices (Mann et al. 2007). Google has introduced spgeeolnition for Google Apps on
iPhone, which allows users to use speech input for busiregneral Web search. Yahoo has
similar offering with Yahoo! Search App. Microsoft has justeased a voice-enabled Bing
Mobile Search. AT&T is currently working on a voice enableddl search for iPhone (Feng
et al. 2009). In additional to the industrial efforts, acaikeis also studying the problem of
voice-enabled general Web search (Vertanen and Kristar&3e0) Ford SYNC can connect
to a user’s mobile device (mobile phones, mp3 players, attd)use voice to control the
device, including a media search with voice input. New regeahallenges include multi-
modal (GUI with touch screen and speech) user interfacesrfAet al. 2008; Mann et al.
2007) and efficient and scalable client-server architestur

2.1.3 Technical Challenges

\oice search poses new challenges to the spoken dialogdiegyrin the following areas:

1. Speech RecognitionThe state-of-the-art ASR systems have high error rates ime vo
search tasks. The vocabulary size of a voice search systerhecenuch larger than
a typical frame-based or a call routing application — somes reaching millions of
lexical entries. Many lexical entries in internationalividual or business names are
out of vocabulary and lack the reliable pronunciation infation. Calls are often made
from different noisy environments. In addition, the coasitts from language models
are often weaker than other ASR tasks — the perplexity of guage model is often
high (e.g., 4007500 bits for business DA) for voice search.

2. Spoken Language Understanding (SLU)/SearchOne big problem in SLU is the
enormous semantic space — a DA system can easily contaimédusof thousands (if
not millions) of listings in a city. There is also a high lewdllinguistic variance in the
input space. For example, users may not use the official nAmbusiness in a DA or
a business rating system. They would typically say, foraneg, “Sears” instead of the
listed official name, “Sears Roebuck & Co.” In addition, theUssearch component
must be robust to ASR errors.

3. Dialog Management: The difficulties in ASR and SLU cause much confusability

and uncertainty. Dialog manager has to effectively narrowrd the scope of what
a user may say to reduce the confusability and uncertaiaty.ch results often contain
multiple entries. Disambiguation strategy is crucial inadbing sufficient information
for the correct understanding of users’ intents with as féaod turns as possible.
Confidence measures are important for the dialog managerkkeothe appropriate
action with each of the hypothesized interpretations, shahthe dialog can recover
gracefully from ASR and SLU errors.

4. Feedback loop:No systems can be perfectly built at the initial deploym@&ialog
system tuning is often performed painstakingly by spokeiodiexperts, starting from
error analysis from the logged interaction data to find the<lan dialog and prompt
design, language/understanding model development,msyiatplementation, etc. An
interesting research topic is the automatic or semi-auticrdescovery and remedy of
design/implementation flaws.
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Like other SLU tasks, the grand challenge in voice searclicgijon is robustness. The
CSELT’s study on Telecom ltalia’s DA system (Billi et al. 18%howed that even though
the automation rate was 92% in a laboratory study, the afildltrial automation rate was
only 30% due to unexpected behavior of novice users and@mvient noise.

2.1.4 Data Sets

Unlike the research activities in the frame-based SLU, thite sponsored by public
fundings and participated by multiple institutions fromttb@cademia and industry, the
activities in voice search are largely conducted by sofveaitelecommunication companies,
each works with their own proprietary data collected from $ervices they provide. Out of
the concerns about their users’ privacy, it is almost imgdsgor them to share the data
with the research community — there are several failed gt®efrom the researchers in these
organizations. Due to this unfortunate situation, thereuisently no common data set for
voice search research. Researchers from academia hawketd tieeir own data to conduct
relevant research (Vertanen and Kristensson 2009).

2.1.5 Evaluation Metrics

Many evaluation metrics can be found in voice search relatddications, some of them are
used to assess the performance of a component like speegniten or language models.
Here we focus only on the metrics for an end-to-end evaloatioa voice search system.
Many of them, not surprisingly, are commonly used by therimfation retrieval community.
Note that there can be more than one listings that are thedctranswers to a query
(imagine a user search for “Starbucks in Seattle”, wheremay find two or three Starbucks
coffee shops within a block, and also a towing company withgame name). Hence the
metrics are designed to reflect a system’s capability to fieccbrrect answers and to reject
the incorrect ones. A listing returned from a search engimete either a true positivé'@,
correct answer) or a false positivé' P, incorrect answer); a listing in the database that is
not returned by the search engine can be a true negd&tie ¢orrect rejection) or a false
negative "N, incorrect rejection).

1. Precision, Recall and k-score:Precisionis the percentage of correct answers among
all the answers from the voice search system:

N(TP)

PR= 7Py + N(FP)

2.1)

Precision reflects a system’s capability in rejecting imeor answers. It does not
measure its capability in finding as many correct answersoasilple. So recall is
introduced for that purpose:

B N(TP)
RE = N(TP)+ N(FN) (2:2)
F-scoreis the harmonic mean of precision and recall:
P = 2+« PR+ RE 2.3)

PR+ RE
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A system may have multiple operating points (often set bfecdht thresholds to
accept a hypothesis), at which different precision andlrscares can be observed.
A recall-precision curveplots the different precision scores in relation to the
corresponding recall scores at the same operating poinileBly, areceiver operating
characteristic (ROC) curveplots the true positive rates (recall) in relation to the
corresponding false positive rate§ (FP)/ [N(FP) + N(TN)]).

. Mean Reciprocal Rank (MRR): The precision and recall does not reflect the ranking

power of a voice search system — if two results are returneslisocorrect and the other
is not, different placement of the results will not alter tldue of precision/recal,; -
score. ldeally, placing a relevant answer at a higher rardulshbe favored by
the evaluation metric. Theeciprocal rankof the search results for a query is the
multiplicative inverse of the rank of the first correct answiégnemean reciprocal rank
is the reciprocal ranks averaged over a set of test queries:

1L 1
MRR = — — 2.4
N2 @

whereN is the number of test queries, ands the rank of the first correct answer for
thei-th query.

. Mean Average Precision (MAP): The mean reciprocal rank metric does not take

precision or recall into consideration. Theean average precisios proposed to fix
this problem. Theaverage precisiorfAP) is the average of precisions computed at
different cut-off points in the result list:

AP SINIPIENER) pR(r) « COR(r)
N N(TP)+ N(FN)

(2.5)

wherer is the rank of a result (smaller number indicates higher iar&kresult list),
COR(r) is a binary function that has value 1 only when the resultrk ras a correct
answer to the query? R(r) is the precision of the top search results.

Mean average precisio(MAP) is the mean of the individual precision scores over a
test set of queries.

N
1
MAP = — AP; 2.6
N Zj (2.6)

where AP, is the average precision of the results for tkta query.

. Normalized Discounted Cumulative Gain (NDCG): The binary judgment of

correctness of a search result may not be enough to dissingiué quality of different
results. A relevance rating with more grades is more swgtablsome cases. For
example, the product search results for the query “blackl iflayer” may include
a perfect result of an iPod player that is black, and anothsult without color
information. It does not make sense to label the secondtrasuhcorrect, since it
is still more relevant than a result of an MP3 player of a ddfe¢ brand. A 5-grade

relevance ranking (“poor”, “fair”, “good”, “excellent” ah “perfect”) is ofter used,
corresponding to the numeric value 1-5.
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The relevance of a result is discounted by a factor accoririg rank in the search
results. The discounting factor penalizes presentingevael results at a lower rank.
Thediscounted cumulative gain (DCG) aikthe sum of the discounted relevance at
top k different ranks. A logarithm discounting factor is oftereds

E

2rel -1
DCG(k g:m@r+1 (2.7)

whererel,. is the relevance rating for theth search result.

The DCGs of the search results are not directly comparabtesadifferent queries,
since they may result in different number of results. Forhegaery, an oracle
maximum DCGmDCG (k) can be calculated by arranging thenost relevant results
according to their relevancy, such that the more relevatlte are always presented
before the less relevant one. Thermalized discounted cumulative gain (NDCG) at
rank kover a test set oV queries is

1 <N DCG;(

NDCG(k N mDCG (2.8)

5. M-best Search Accuracy:M-best Search AccuracyCC)y, is the percentage of the
correct answers among the tdp answers:

N M

ACCyy = (2.9)

zlrl

whereCOR;(r) is a binary function that has value 1 only when the result sk rais
a correct answer to thieth query in the test set.

When a voice search system has limited capacity to presdtiptaisearch results, as
in a telephony system, one-best and two-best search agdugaome more important
and are popularly used.

2.2 Technology Review

In this section we review the technology that addresses lialemges in voice search
applications, with a focus on the sub-problems of SLU/deartd language modeling. Not
surprisingly, much of the technology is developed with thedystems because they are the
most popular voice search applications so far. Howevertgblenology is often applicable
to other applications as well. For example, the produciitass rating systems (Zweig et al.
2007) directly used the technology developed in a DA apptiogYu et al. 2007).

2.2.1 Speech Recognition

A detailed error analysis for proper name recognition wasred in an auto-attendant
system (Gao et al. 2001). Figure 2.2 shows the distributiodifferent causes of errors
— besides 35% of common recognition errors, 31% were noisgere and 22% were
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Pronunciation
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Figure 2.2 Distribution of different causes of ASR errors, from theoemnalysis of an auto-attendant
system in (Gao et al. 2001).

pronunciation related. Many of the calls were made in a neisyironment over different
noise channels. Therefore, noise-robustness is crucimhpoove the ASR accuracy. On
the other hand, there were many foreign names that are diffcpronounce in an auto-
attendant/DA system. In fact, pronunciation is a pervapiablem that poses challenge in
many other voice search applications as well. For exampkrsumay specify a multilingual
guery‘Petit Bonheutby Salvatore Adambin music search. Hence pronunciation modeling
is another important topic in ASR for voice search. In additibetter acoustic and language
models are always important to reduce the ASR error rate.

Acoustic Modeling

IBM’s auto-attendant system applied speaker clusteringsiracoustic model (Gao et al.
2001). Simple HMMs that have one Gaussian per context intdge phone state were
trained first for each speaker. Then the vectors of the mefathese models were clustered
with the k-means algorithm. For each test utterance, thetermodel that yielded the highest
likelihood was selected. In doing so, different channel anie conditions can be more
precisely modeled by different cluster models, so noisated problems are alleviated. In
addition to speaker clustering, speaker adaptation ictafieto bring the performance of
a speaker-independent system closer to that of a speagendent system. Unlike normal
speaker adaptation, the adaptation in (Gao et al. 2001)messivein the sense that the
adaptation data was obtained from a pool of recent calldrerahan a single speaker.
The massive adaptation is helpful due to the fact that arcaften calls the same set of
individuals, and that a caller may try a name repeatedly waescognition error occurs.
While massive adaptation is helpful to bring down the ermterfor frequent callers,
unsupervised utterance adaptation aims at improving ttigracy from an unknown speaker.
In this adaptation scheme, the test utterance itself wad tmeadaptation with a two
pass decoding. In the first pass, a speaker independentrsgstie system after massive
adaptation was used to obtain the automatic transcript @hferward-backward algorithm
was applied to obtain the adaptation statistics. After idgphe acoustic models using the
collected statistics, the caller's utterance was decodeal $econd pass with the adapted
model — this second pass may adversely increase the latérewoice search system.
Overall, with all these acoustic model enhancements andnanpervised derivation of
pronunciations (to be described below), a 28% error rednatias observed.
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Pronunciation Modeling

One approach to improved pronunciation model is via augimgrthe dictionary with
pronunciation variants. Data-driven algorithms are comiymapplied, which typically
include four steps: generating phonetic transcriptiont \&irecognizer; aligning the auto
transcriptions with manually created canonical pronuiaie; deriving rules mapping from
the canonical pronunciations to the variants; and prurfiregrules. One limitation of this
approach is that the canonical reference pronunciatiorss beuavailable.

The IBM auto-attendant system (Gao et al. 2001) adopted anstics-only based
pronunciation generation approach (Ramabhadran et al8)19%he advantage of this
approach is that no canonical pronunciation is requireds Tinakes it more practical in
voice search applications since many words do not exist imoaymciation dictionary.
With this approach, a trellis of sub-phone units was cowstai from an utterance. The
transition probabilities in the trellis were derived by gieiing the transition probabilities
of all the context-dependent realizations of the sub-phumiis in a HMM acoustic model. A
Viterbi search was performed to obtain the best sub-phoqeesees from the trellis and a
pronunciation was subsequently derived from the sequé&xgeeriments in (Gao et al. 2001)
showed a 17% relative error reduction when the test set amtirtg set had overlapping
unseen words.

Trade-offs often have to be made in adding pronunciatioramés to a dictionary. The
additional pronunciations, on the one hand, make the wordietsanatch the actual acoustic
signal more precisely; on the other hand, give rise to a latgaber of highly confusable
word models. Instead of augmenting an existing pronuraiadictionary with variants, a
pronunciation distortion model was introduced in (Béahiedl. 2002) to rescore the n-best
hypotheses generated from a first recognition pass. Thertilist model incorporates the
“knowledge source” about the common distortions obseraeal $pecific spoken language.
For example, only insertions were considered in the distornodel for French in (Béchet et
al. 2002) because it is frequently observed that silencmeats are often inserted between
certain pairs of consonants likel[ n], and a schwa is often inserted after a consonant at the
end of an utterance. Formally, ldatand¥/ denote the acoustic signal and the text of a caller’'s
utterance, and,, a phone sequence that may be distorted from the canonicalipc@tion
of W, then a hypothesig’ can be selected from the first pass n-best recognitions diogpr
to the following decision rule:

W = argmax P (W | A) = argmaxZP(W,Tw | A)
W W

~ argmax P (W, 7, | A) ~ argmax P (7o) P (A | 7o) P(W | 7)  (2.10)
W, Tw W, Tw

The last approximation in the equation includes an apptinatf the Bayes rule and an
assumption of independence betwe¢rand IV given 7,,. The prior of a distorted phone
sequencer,,, can be written in terms of,,, which is the the canonical pronunciationldf;
andd.,,, which is the difference betweet), andy,,:

P (1y) =P (M | 0w) = P (0w | nw) P (M) (2.11)
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In theory, P (6., , m) and P (n,,) can be estimated from data. In (Béchet et al. 2002), a
uniform distribution over all plausible insertions was disestead forP (4., | 7,,) due to the
lack of data.P (A | 7,,) in the decision rule of Eq. (2.10) can be obtained from thauatio
model with all possible alignments betwednand r,,. Since only insertion is considered
in (Béchet et al. 2002)P (W | 7,) was obtained by multiplying the probabilities of all
successful insertions. Experiment results showed thatetbeoring had improved the one-
best ASR accuracy from 50% to 59.8%.

Language Modeling

Early DA systems compiled directory entries into a finitatstgrammar as the language
model for ASR. This rule-based language model does not sigaleell with directory size
due to the increased perplexity. It was found that the ASRir@ny decreases linearly with
logarithmic increases in directory size (Kamm et al. 19€8).the other hand, it was noticed
that the distribution of the requested listings followeé #hipf's law. 10% (20%) of call
volumes were covered by only 245 (870) listings. So in (Kantmale1995; Natarajan et
al. 2002), a semi-automated DA system was built that onleoed the frequently requested
listings and relayed the remaining requests to human agrsrat

One problem of the rule-based LMs constructed from the dagllistings is their poor
coverage. Callers seldom say a business name exactly ageiaiapin the database — just
consider the earlier example of “Sears Roebuck & Co” verSeafs.” It was mentioned in
(Béchet et al. 2000) that variant expressions for businasses could be semi-automatically
derived from data. Although it did not report how this was iaekd, a straightforward
method would compare a caller’s utterance (e.g., “Kung-Ho€se Restaurant”) with the
actual listing released to the caller (e.g. “Kung-Ho Cuasiri China”) by operators and learn
that “Chinese Restaurant” is a synonym of “Cuisine of CHimais “synonym?” rule-based
approach is usually expensive; the rule coverage is higiricted by the data available;
and the rules may be over-generalized without carefulioaft

The problem was tackled without using the data from the lle (Jan et al. 2003). A
method was proposed to automatically construct a finite sighature LM from a business
directory database alone, which would accept differentyjuariants. Here aignatureis a
subsequence of the words in a listing that uniquely ideustifie listing. For example, with
the listings “3-L Hair World on North 3rd Street” and “SuzdHair World on Main Street,”
“3-L", “Hair 3rd”, and “Hair Main” are signatures becausesthoccur in only one listing. On
the contrary, the subsequences “Hair World” and “World o’ mot signatures because they
appear in both listings. Based on the signatures, a finite s@nsducer can be constructed
as follows (the example is taken from (Jan et al. 2003)):

S := 3-L Hair World? On? North? 3rd ? Street? | 1
3-L Hair? World? On? North 3rd ? Street? | 1
3-L Hair? World on? North? 3rd ? Street? | 1
3-L? Hair World? On? North 3rd ? Street?} 1
Suzie's? Hair World? On? Main Street? | 2
Suzie’s Hair World? On? Main? Street?|:2
Suzie’s Hair? World on? Main? Street?|:2
Suzie’s? Hair? World on? Main Street? :2



\oice Search 59

where each entry in the grammar corresponds to a signatbheetéFms in a signature
are obligatory, whereas the terms in a listing but not in ilgaature are optional (marked
by ‘?’.) The numbers after ;" is the semantic output from tih@nsducer that represents
the ID of a listing in the database. In doing so, every utteeamatched by a rule can be
uniquely associated with a listing. Because the non-eisdeviirds are optional, this makes
the grammar more robust to utterances that omit these waéflden the directory gets larger,
an entry may bear no signature because each of its subsegusat be a subsequence of
another entry. This problem was handled with the “confusigis” in (Jan et al. 2003).

The rationale behind the signature grammar is that any taramientry is droppable as
long as the drop does not cause the confusion with another. gvile this is very practical
in reducing the search ambiguity, it may be risky in modelngnan language — speakers
are very likely to drop terms that would lead to ambiguityr Example, they often say
“Calabria” instead of “Calabria Restaurant” even though fitrmer may cause confusions
with “Calabria Electric” and “Calabria Jack J Do.”

Another approach to improved the robustness is via stalsti-gram models (Bacchiani
et al. 2008; Natarajan et al. 2002; Yu et al. 2007). An n-gramd@his more robust because
it does not require a user’s utterance to match a rule exdmlyause it provides a statistical
framework for fair comparison between different hypottsea@d because it has well-studied
smoothing algorithms to estimate the likelihood of unseames more accurately. Ideally, a
statistical n-gram model should be built from the trandsrgg real calls, which demonstrate
not only the different ways callers refer to businesses aat the probability of each such
ways. Unfortunately, it is not realistic to collect enougtlig to provide a good coverage for
a large listing set, especially during the early stage ottigment. An interpolated LM was
proposed to estimate the n-gram probability in (Yu et al. 200

P(w) = AP, (w)+ (1 = \) P (w), (2.12)

whereP,; (w) is the LM built using the transcripts of real callg,(w) is the LM built using

a listing database, andis the interpolation weight, which was tuned with a croskeiedion

set collected under real usage scenario. Hgrev) can be constructed from the transcribed
data straightforwardly. Buildin@, (w), on the other hand, takes more considerations because
the database entries may not reflect the actual ways thatsaéifer to them. A statistical
variation model was introduced to account for the commdiedihces between the database
listings and the actual callers’ queries. The model wasdasghe rationale similar to that
of the signature model, namely callers are more likely to theywords that distinguish
one listing from others. However, instead of making riskydry decisions, it modeled the
importance of a word statistically according to its disdriative capability and its positions
in a listing (based on the observations that callers are tikgly to say the initial words

in a listing). Here, the discriminative capability of a wongis determined by its inverse
document frequency (see Section 2.2.2), and a positionriapee weighto?, (0 < w! < 1)
was associated to each word position. A word was droppatite avprobability inversely
proportional to its importance. In addition, the model taato account the business category
information for smoothing — each word had a probability tofbowed by the category
words (e.g., “restaurant.”) This probability correlatedthe importance and the category-
indication capability (a mutual-information based mea}wf a word. Furthermore, an
efficient interpolation with a large vocabulary backgrolud (Yu et al. 2006) had provided
additional robustness. The internal investigation in Mgoft has revealed that the statistical
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Figure 2.3 ROC curves of the voice search performance for businessgsstiith language models
trained with different training materials. The bottom (messdb.roc) is the curve for the language
model trained with the listing data alone; the top (comb).i®the curve for the language model trained
with the listing data and the usage data from transcribedevqueries and logged Web queries. The
curves in the middle show the contributions from the traibsct voice search usage data (speech.roc)
and the Web search queries (weberies.roc). The big gaps between the bottom curve andeste r
show the style mismatch between the listing data and thelbgueries issued by the users (Courtesy
of Michiel Bacchiani).

language model, together with the vector space model fimdisearch (see Section 2.2.2),
has greatly outperformed the signature-based approactthe atame precision level, the
recall has been almost doubled.

Similarly, Bacchiani et al. (2008) uses a large amount of texm different sources to
train an n-gram language model. The data sources includiedssdistings, transcribed voice
search queries and the text queries logged by a local seagifiee Systematic studies show
that the latter two types of queries significantly improveslearch performance, as illustrated
by Figure 2.3.

In (Li et al. 2008), a machine-translation based approachugad to enrich the language
model training data in a directory assistance applicaticimed at modeling the linguistic
variations — users may refer to a listing in a different waytesoriginal form it appears in
the database; and there are often multiple paraphrasdssfeame listing. For example, the
listing Kung Ho Cuisine of Chinaan be expressed Ksing Ho, Kung Ho Chinese Restaurant
or Kung Ho Restaurantn this case, the LM trained using listing in the originalrfoin the
database may not best predict what users will actually say.

Li et al. (2008) used transcribed queries to search for gtang§ database. If the listing
of the top search result was close enough to the corresppmrgiary according to some
distance measure ((Li et al. 2008) used the Tf-ldf weightectar space model, which we
will discussed in Section 2.2.2), the listing/query paits ased as the training examples for
a machine translation system. The trained translation iniedgpplied to the listings in a
database to obtain a new data set that contains the listimtfgeioriginal form and up to
3-best translations (paraphrases). The new data seth&rgsith the transcribed queries,
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Table 2.2 Perplexity comparison between the language models
trained with the query augmented listings (QAL) and the guer
and translation augmented listings (QTAL).

# of queries in training 1k 3k 7k 10k 14k

QAL 1534 1414 1404 1054 888
QTAL 409 314 229 217 190

Relative Reduction % 73.4 77.8 793 804 785

forms a set of query and translation augmented listings (QTATAL was used to train a
language model. Its perplexity, measured on a held-oustrived query set, was compared
with the language model trained with a set of query augmdistings (QAL) —the QTAL set
minus the paraphrases from the machine translation conmpoFable 2.2 shows significant
perplexity reduction by applying this approach.

2.2.2 Spoken Language Understanding/Search

The task of spoken language understanding is to map a usierance to the corresponding
semantics. In voice search, the semantics is the intendediera database. Hence the SLU
becomes a search problem.

Traditionally, SLU is only an optional component for voiaeasch. In early voice search
applications like residential DA, SLU was not an issue, sitieere was not much expression
variance in saying a person’s name. Search was basicallyadatse lookup, with careful
considerations of initials, titles and homophones. If adistate based LM is used for ASR,
each rule is uniquely associated with a listing or a confuskit, there is no need of a separate
search component either. However, due to the deficiencyedidting data based finite-state
LM in modeling the actual language usage in queries, n-gras are often adopted in
recent more advanced voice search applications. In suckea mEcognitions are no longer
associated with a specific database listing. Hence a sepaatch step is necessary.

A majority of recent commercial products related to mohiledl/Web search use a text-
based Web search engine as the search component, and ASBdiasign interface to
voice-enable the search engine. While this is a practidatisa, it is sub-optimal because
the search algorithms were developed without the condideraf robustness to ASR errors,
and the voice search application has to adopt the same usdiage as text search, which
prohibits the system from taking full advantage of a spokiaiod system.

As voice search applications are getting more popular, SLibice search is becoming
an important issue. Many applications in a special vertinay not have an existing text
search engine, such as the task of music/video search omladexice. Some voice search
applications based on the existing text search enginesiaismduced a separate SLU
component (Feng et al. 2009). It is important for the SLU comgnt to address the following
problems:

1. Improving the robustness to linguistic variance of spokendnguage An important
difference between a spoken language only directory assistdialog system and a
speech-enabled local search on a mobile device lies in theacteristics of the input
to the systems. In speech-enabled mobile search, usersracted to speak into a



62 \oice Search

specific search input box, hence their utterance are maly lik be similar to their text
counterparts. In telephony directory assistance, uspegch may be more casual and
contain ‘carrier phrases, for example, ‘l need the number gbizza hut in downtown.”
Itis important to treat the carrier phrases differentlynfirthe name of a business listing
during search.

2. Handling the search from structured data. Many backends of voice search
applications have structured databases that contain ptaulields (columns). For
example, product search may have a backend database wihhaiind, model, product
name, category fields, etc. Music search may have a datalithshevartist, composer,
title, and genre fields. Users may issue queries that speédymation for more than
one fields, like “Yellow Submarine by the Beatles.” Localm#amay have the locality,
business name, business category, opening hours, etceksishg text search engines
adopt a bag-of-words approach that ignores the structfi@mation.

3. Improving the robustness to recognition errors Speech recognition is far from
perfect. Directly feeding the one-best ASR results to acteangine is a suboptimal
solution. A SLU component can bridge the information frone thoice search
semantic space (listings) and the information from the gaczer about the competing
hypotheses, such that the ASR results that make more senaatsgally can be chosen
to improve the overall voice search performance.

Robustness to Linguistic Variance in Spoken Language

To improve the robustness to linguistic variance in spokegliage, BBN adopted a channel
model (Natarajan et al. 2002). Given a locality and a query recognized from a user’s
utterance, it looks for the listing according to the following decision rule:

L=argmax P (L|C,Q)=argmaxP (C,Q | L)P (L)
~ arg?naxP (C|L)P(Q | L)LP (L) (2.13)
L

In (Natarajan et al. 2002), the prior distributiadP(L) and the locality distribution
P (C| L) were estimated from the training data. The training dateevilkee transcripts of
real users’ utterances augmented with database listifgs qUiery distributions® (Q | L)
were modeled with a two-state Hidden Markov Model (HMM) dtcated by Figure 2.4. In
this model, a wordv in Q is generated from either the General English (GE) statedoiar
phrases or the state corresponding to a listinghich is a value of the random variahle
With this model,

PQ|L)= [] (aP (w|GE)+aP(w|L)). (2.14)
wEeR

Here the transition weightg, anda; were tied across the HMMs for all values bf The
transition and emission probabilities were estimated fo@iming data. This model is robust
due to the inclusion of the GE state, which captures carhieages like I'need the number

1DA dialogs often start by asking users for the city and stafierination. See Section 2.2.3 for details.
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Figure 2.4 An HMM model is used to separate the listing terms from theeggnEnglish terms
(carrier phrases). The model is trained with a combinatfarsers’ queries and listing data (Reproduced
from (Natarajan et al. 2002)).

of” or ASR errors. The combination of the real user data and #talzhse listings facilitates
high accuracy on frequently requested listings and simatiasly enables broad coverage of
less frequently requested listings.

The HMM based listing selection requires training data, clhis only realistic for a
subset of listings that are most popularly sought for. Yule{2007) applied the Tf-Idf
(term frequency — inversed document frequency) weightedovespace model (VSM) to
business listing and product name search. The Tf-ldf weifjliector space model is broadly
used in information retrieval (IR). It represents a quenyo@ment) with a vectog (d). The
relevance (or similarity) of the document to the query is suead as the cosine between the
two vectors:

_ q-d
gl 1ld]|

For a documend, each element in its vector is a weight that represents tpertance of
aterm (e.g., aword or a bigram) in the document. Intuitivélg importance should increase
proportionally to the number of times the term appeard end decreases when the term
appears in many different documents. Téen frequencyTF) ¢ f; (d) is the frequency of the
termi in d, and thanverse document frequen@ipF) is the logarithm of the total number of
documents divided by the number of documents contaitiing

cos (g,d) (2.15)

_ ni(d) . |D|

wheren;(d) is the number of occurrences of terimn d, and D is the entire document
collection. The weight for term in the vector is the product of its TF and IDF scores. The
vector for a query can be defined similarly. There are otherradtives to define the TF
and IDF scores, but the gist of the metrics are the same — TBuresthe relevance of a
term to a query/document, while IDF discounts the relevafnite term occurs in too many
documents. The vectors for queries may sometime omit thestibFes, since they are already
taken into consideration by the IDFs in the document vectdisurvey of the vector space
model can be found in (Greengrass 2001).
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For voice search, each listing is treated as a “documentiepigtsented by a vector. The
standard VSM has been enhanced for voice search in (Yu eb@F)2n the following two
aspects:

1. Special treatment of duplicate words in listings and @pserin traditional IR,
documents and queries are generally long. The term frequersembles the true
distribution underlying a document/query. Listings an@gs in voice search, on the
other hand, are short in general, so the surface term freguaay not be a reliable
estimate of the true underlying distribution. A small nadis¢he surface form is more
likely to bring quite different search results. For examghe query “Big 5,” intended
for “Big 5 Sporting Goods”, results in the listing “5 star 5the additional 5 in the
listing brings it closer to the query. Since the term frequeis not reliable for search
among short listings, each term gets a unit count in voicechke& duplicate word is
treated as a different term, e.g., by replacing the secondltei example with 2nd.
This effectively adds another dimension to the vector sp8tee the Idf of this new
dimension is much higher, it plays a more important role ierrgumatching. A query
without duplicate words like “Big 5” will have a larger angfiem a listing with the
duplicate “5”. The angle will be significantly reduced if theery does contain the 2nd
term. So “5 5” will match “5 star 5” better.

2. Inclusion of category information in the listing vectarsaddition to the listing names.
Callers often voluntarily provide category informatioik@ restaurant, hospital, etc.)
in their queries. These category words can be identified rdetg to the mutual
information between them and the categories in a databfsatdgory information
is detected in a user’s query, the category information tbdisting in the database
can be appended to the listing’s vector so it can be compaitbdive query’s category
directly by the vector space model. With this enhancembetMSM would rank the
listing “Calabria Ristorante Italiano”higher than Calabria Electric” for the query
“Calabria Restaurant’

Search for Structured Data

In mobile local search, the problem related to the structuiea search is often alleviated
by directly speech enable two separate input boxes, onaddptation terrhand the other
for the search term. However, this solution does not fulketadvantage of a spoken dialog
system — as shown in (Feng et al. 2009), the separation ofatbeerms may add extra
burden to the users — the distinction of the two terms is noags clear, as manifested by
user’s query like “restaurants near Manhattan” as the baarm and “New York City” as
the location term. In addition, the solution may not be sigficto separate a searstbject
(often business names or categories) fromdbestraints as in the exemplar querynight
clubs open Christmas day.

AT&T's Speak4lt (Feng et al. 2009) allows users to includéhitbe search term and the
location term in a single utterance, and uses the framedifaise described in Chapter 1 to
separate them from the utterance. More specifically, it nsgeam model as the semantic
prior model, and slot specific n-gram models as the lexiaibn model — the same model
used by CHRONUS.

2Same as the “locality” in the previously mentioned BBN's HMibdel for voice search
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All rise, I guess, from Blues

ml Sarah, in the arms of an angel

2 Play legally blonde soundtrack
Glenn Miller, jazz.

03 Anton Bruckner, 7th Symphony,
Leonard Bernstein

S

Figure 2.5 Left: distribution of queries containing 1, 2, and 3 fieldsgiR: examples of queries
specifying information for multiple fields.

To separate the search subjects from the constraints,igingsa probabilityPy,jecc:(s)
to a segment for being a search subject based on the observation thatugrgeq with a
specific constraints occurs far fewer than the queries witlamy constraints (e.g., “night
club” is more popular than “night club open Christmas day'xorpusC of likely subjects
is constructed to include the simple local search queridgtamlisting names. Here a simple
guery is one with no more than five words and containing no tcaim$ indicators like the
word “with” or “that.” Ps,pjec¢(s) can be estimated frof:

Psubject(s) = (A * %‘16(}) + (1 - )\) * ﬁ)’y (217)

In (Song et al. 2009), HMM based models were introduced todleasearch from
structured music meta-data, where a query may containdpteuftelds. It observed that
more than half of users’ queries had contained the spedificddr more than one fields

(Figure 2.5.) An HMM can model the field-specific informationa query. Formally, given
a queryQ = wy, ..., w,, we need to find the entrl from the database, such that

E =argmax P(E | Q) = argmax P(Q | E)P(E)
E E

~argmax P(Q | E) = argmaXZP(Q,F | E) (2.18)
E E -

here F' is the segmentation af into multiple fields,F; represents the field that the word
w; belongs to. WhileP(E) can be modeled with the music popularity statistics, anaumif
distribution is used in Eq. (2.18) insteall(Q, F' | F) is a distribution that is specific to the
entry E, which is modeled by an HMM:

P(Q.F | E)~ [[ P(w: | Fi; E)P(F; | Fi_y: E) (2.19)
=1
Unlike the HMMs used by BBN for information retrieval, the H4 here do not need any
training data. The emission probabilities for a field arénested with the database content
of the field:

P(’LU | F, E) = /\fPMLE(w | F, E) + )\ePMLE(w | E) + )\CPMLE(’LU) (2.20)
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whereA; + A. + A = 1. In other words, the emission probability is the linear ipteation
of the maximum likelihood estimate of the field dependengtann, the entry dependent
unigram and the entry-independent unigram probabilityilMhe interpolation weights can
be set using held-out data, it is found that the search paence is not very sensitive to their
values as long as none of the weights is set too close to 0.

The transition probability is assigned as follows to perefrequent field hopping:

Yy if Fz = Fi,1
(1—v)x P(F;| E) otherwise

where~ is a parameter related to the likelihood that a query wily stethe specification of
one field of a structured entry. A large value for the parameiieffectively avoid frequent
field jumping. Its value can be tuned with a held-out getF | F) is the field popularity
probability, which is the field prior probability’(F') normalized according to the existence
of the fields in the database for the enify

P(F; | Fi-1; B) = (2.21)

P(F=z) .
P(F=g|E)=] TS, pr0=y H2€E (2.22)
0 otherwise

where P(E) can be either a uniform distribution or a distribution detered based on the
domain knowledge about the popularity of the fields in usgugries.

In (Song et al. 2009), it has shown that the HMM sequentiadagsg model has reduced
the end-to-end search error rate by 28% relatively on testige and up to 23% relatively on
spoken queries compared to the baseline system that ugpdg@mmodel IR on the database
with the contents of different fields collapsed into a sirtfg of words. In addition, the paper
has introduced an error model for HMM emissions based on gimoonfusability, which
has further improved the end-to-end search accuracy d¢enslisacross different levels of
speech recognition accuracy.

Robustness to Speech Recognition Errors

To improve the robustness to ASR errors, Wang et al. (2008§ uwharacter n-gram
unigrams/bigrams instead of word unigrams/bigrams asgenrthe vector space model.
The rationale is that the acoustically confusable words mmaye shared sub-word units
orthographically. For example, the listing “Lime Wire” iswritten as a sequence of character
4-grams — $Lim Lime imeme W e Wi _Wir Wire ire$, where “$” indicates the start and the
end of the listing and * indicates separation of words. If a caller’s query “Lime rei

is incorrectly recognized as “Dime Wired”, there is no woneedapping but still much
character n-gram overlapping between the ASR output anihtbeded listing.

Feng et al. (2009) used the listing information to select @RApath in the word
confusion network, a compact representation of the retiogriattice. Figure 2.6 shows an
example of the word confusion network, where each positioan utterance is associated
a set of confusable words with their negative log posteriobpbilities obtained from the
speech recognizer. Although the one-best path from thearktWGary Crites Springfield
Missouri,” has the listing names “Dairy Queen” mis-recagd as “Gary Crites,” The correct
information is buried in the word confusion network. The Wwhedge from listing in the
semantic space can help unearth the correct recognitiorairyQueen” is more like to be a
valid listing name than “Gary Crites.”
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crites/0.652

gary/0.323

creek/3.872
queen/1.439

cherry/4.104
dairy/1.442

springfield/0.303 "7  springfield/1.367 _ /7, missouri/7.021
in/1.346 _epsilon/0.294

jerry/3.956

kreep/4.540

kersten/2.045

Figure 2.6 A word confusion network is a compact representation of gait@n lattice that lists a
set of words for each position (Courtesy of Junlan Feng).

Feng et al. (2009) segments the one-best ASR to find the stamhgets the alternative
phrasess of the search term in the confusion networks, and rescora thith the subject
likelihood:

P(S) = PWCN(S)Psubject (S))\, (223)

wherePy o (s) = [[,,cs Pwen(w) is the posterior probability of the segmerdccording to
the word confusion networl&,.,»;e.: (s) has been introduced earlier for subjects/constraints
separation.

Similar idea was investigated with a flat direct model foresgrerecognition in (Heigold
et al. 2009). It is basically a Maximum Entropy (MaxEnt) mbdsed to rescore the n-best
search results. MaxEnt is a condition mod¥l | x) defined with respect to a set of features
F = {fr(x,y)}, with the constraints that the expected value of a featwrdipted according
to the conditional distribution equals to the empiricalueabf the feature observed in the
training data:

Epppiy | xfkXY) = ZP P(y | X) fe(X,y)

= Epyy) fe(X,Y) = ZP X Y) fe(%,¥), Vfr(X,y) € F (2.24)
Xy

where P stands for empirical distributions over a training set. fEhean be many possible
distributionsP(y | x) that satisfies Eq. (2.24). The maximum entropy principleestthat the
target distribution should have the maximum entropy suligthe condition of Eq. (2.24).
In other words, the model should make no more assumptioes tithn the expected feature
values according to the empirical distribution from thertireg data.

It has been proven that the maximum entropy distributionexitto the condition of
Eq. (2.24) have the following exponential (log-linear)rfo(Berger et al. 1996):

Py [x;A) = ﬁ exp {Z Ak fr (Y5 X)} (2.25)
: B

As in CRFs,A = {\;} is a set of parameters. The value)pf determines the impact of
the featuref,(y,x) on the conditional probability, and can be estimated witmarical
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Get Category

!

Get Listings LM for the
Name Category

Disambiguate Confirm > Confirm

Figure 2.7 A typical dialog flow of a voice search application.

A

algorithms by maximizing the conditional probability ofettraining data) _, , P(y | X).
Z(%;A) =32, exp {> 4 Ak fr (Y. X)} in Eq. (2.25) is a partition function that normalizes the
distribution. The difference between MaxEnt and CRFs lethée form of the labey. In the
CRFs,y is a sequence of random variables that may be inter-dependdgte in the MaxEnt
model,y is a single random variable, which make the model simplegims of learning and
inference.

Heigold et al. (2009) used a rich set of features extractemh fthe candidate listing
and from the speech input wherex was consists of not only the MFCC features but also
the n-best results from the recognizer. The feature setidecl character and/or word n-
grams, the posterior probability of word n-grams spotted with a dynamic time warping
(DTW) algorithm, etc. It found that the direct flat model haduced the error rate of a HMM
recognition baseline from 17.4% to around 13%.

2.2.3 Dialog Management

Figure 2.7 shows the common dialog strategy in voice segiphications. The dialog starts
with prompting a user for the category information about itieen they are looking for

to narrow down the downstream LM and search spaces. Theargtegn be the locality

information in a DA system (Bacchiani et al. 2008; Yu et al02)) the business/product
separation (national business, local business or produc)voice rating system (Zweig
et al. 2007), or a “search-by” attribute of the music mettda.g., title, album, genre,
artist, etc) in a music search dialog system (Mann et al. RO®ategory-specific LM is

subsequently used to recognize the user’s query contaihefisting information, and the
search component looks for the listing in a category-spedi#tabase. If multiple listings are
found, a disambiguation sub-dialog is engaged; othentisalialog system either directly
sends the user the listing information or asks for user’dinoation if the confidence score
is low.
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User: Tell me about restaurants in London.

System: | know of 596 restaurants in London. All price ranges are represented. Some of the cuisine options
are Italian, British, European, and French.

User: I’'m interested in Chinese food.

System: | know of 27 restaurants in London that serve Chinese cuisine. All price ranges are represented.
Some are near the Leicester square tube station.

User: How about a cheap one?

System: | know of 14 inexpensive restaurants that serve Chinese cuisine. Some are near the Leicester Square
tube station. Some are in Soho.

Figure 2.8 Search result summarization and disambiguation.

Many voice search applications adopt some task-specifiogigtrategies. For example,
based on the finding that the accuracy on spelled names is higiclr than that on spoken
names, the residential DA in (Schramm et al. 2000) explaiteuilti-stage dialog strategy to
improve the accuracy of proper name recognition. A listimgvdentified by first recognizing
its spelling from a caller. The spelling word graph greatuced the listing space for
subsequent recognition of names and addresses.

Disambiguation

Most voice search dialog systems adopt an applicationfspdtsambiguation strategy. In
residential DA, people with the same name are disambigwetedheir addresses (Schramm
et al. 2000). In business DA, business categories are usdistombiguation (Yu et al. 2007)
— from the set of businesses returned by the search comparlesttof possible categories is
compiled. For example, the quergalabria’ results in multiple search results, “Calabria
Ristorante Italiano” in categoryRestaurants, “ Calabria Jack J D6 in “Doctors and
Clinics” and “Calabria Electric” in Electric Contractors.” These categories are read to the
user for selection. All the matching listing names in theestdd category are subsequently
read to the user, until one is selected or the list is exhduSienilar disambiguation strategy
is used in a multi-modal voice search application (Mann e2@07), where multiple music
titles are displayed in a graphical user interface (GUI)Ueers’ selection when they belong
to the same category, or the different categories are gisgléirst for disambiguation. The
GUI allows users to scan the information visually, which eskhe multi-modal interaction
more effective.

One problem of the hard wired disambiguation strategy isniédficiency with long
category/entry lists in a speech only interface. It has bmeggested that spoken dialog
strategies such as summaries are a verbal equivalent ofighal scanning behavior that
makes GUIs effective (Polifroni and Walker 2006). Hence swarization can be used
when the search component returns a big ambiguous set.eRigRirshows an exemplar
dialog taken from (Polifroni and Walker 2006). Here the aguioius listings are summarized
along common attributes like price ranges and cuisinesgtwhuide users to provide the
most effective information for disambiguation. In contresthe hard wired disambiguation
strategy, the attributes were selected automatically iygus decision theoretic user model
and using the association rules derived from the datab&sesin the dialog focus (Polifroni
and Walker 2006).
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Confidence Measure

Confidence measures are used to determine what to do withegmehsresults for a
spoken query. The results will be played to callers if thefickmmces are high, otherwise a
confirmation/disambiguation sub-dialog will be invokedrfidence measures are also used
to determine when to elevate an automated service conimrdata live agent in an early
dialog stage if the confidence on the key information (e.g.individual’s last name in a
residential DA system) is too low (Schramm et al. 2000).

ASR only confidence measures were used in many early remtBvt systems because
search was not a significant source of uncertainty. A wetlistliconfidence measure is the
word or sentence posterior probability that can be caledldtom an ASR lattice, which
was shown to be more effective than some other heuristicsg®Vet al. 2001). A sentence
posterior probability obtained from an n-best list was use@Gchramm et al. 2000) for DA.
Another confidence measure originally proposed for uttarerification (Lee 1997) was
applied in (Béchet et al. 2000). It is based on hypothesisng that leads to a measure of
likelihood ratio.

In late voice search applications where statistical seaschpplied for robustness,
confidence measures that take into account of uncertafrdiegifferent system components
are more adequate. BBN's DA system applied a GeneralizedaktiModel classifier to
compute confidence score from a set of features extracted$pmken queries and listings
(Natarajan et al. 2002). The feature set included word cenfids, ASR n-best frequency,
etc. Among them, the two most important features were thaired and allowable word
sets. Much like IBM'’s signatures, the required word set ftisting is a set of word tuples,
at least one of which must be present in a recognized quersdier @0 associate the listing
with the query. The allowable word set is a list of words that @lowable in a query to be
associated with the listing.

A confidence model based on a maximum entropy classifier wasdimced for the
Microsoft Research’s experimental business DA system @Manal. 2007). Unlike the
required and allowable set features in (Natarajan et al2p0d0takes into consideration
the importance of words in a listing with features based @nattomatically acquired Idf
statistics of the word. The classifier takes multiple feasudtrawn from the ASR, the search
component and the dialog manager, and the combined feagxtescted from multiple
components. For example, tisearch related featurefor a hypothesized listind. and a
recognized query) include the VSM similarity betwee, and @; the ratio between the
maximum Idf value among the words existing in bdttand @ and the maximum Idf value
among all the words ir.. Thecombined featureattempt to model the dependency among
features across different components of voice search. @rtefeature is the ASR confidence
on the word that also exists ih and has the highest Idf value, i.e. the ASR confidence on
the word that contributes the most to the search result. ffaetiweness of the features were
studied with statistical significance tests, which gave tisseveral application-independent
features for confidence measures in the general voice sirarnbwork (Wang et al. 2007).

2.2.4 Closing the Feedback Loop

Every spoken dialog system needs to be tuned, often througjtpte iterations, for improved
performance. This involves a painstaking process of ematysis from logged data. An
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automatic or semi-automatic tuning tool is one of the mostted items by many dialog
experts. Due to the extreme difficulty of the problem, littlerk has been seen on automatic
remedy for design/implementation flaws in the feedback Iddpst research work focused
on automatic flaw discovery from logged data.

In (Popovici et al. 2002), an unsupervised learning algaritvas proposed to obtain the
linguistic variants of listings that were not modeled in ffedecom lItalia’s DA system. A
phone-looped model was exploited to obtain the phonetitstnaptions for the utterances
that failed the automated service and got routed to the tgrsra he phonetic transcriptions
were clustered with a furthest neighbor hierarchical erisg algorithm, where two clusters
with the shortest distance were merged in iterative stejps.distance between two clusters
was defined as the furthest distance between two instanagepbdranscriptions in the
clusters, and the distance between two phonetic trangsrgpivas obtained with the Viterbi
alignment using the log-probability for phone insertioeledion and substitution, where
the probabilities were trained using a set of field data bygrétig each decoded phonetic
sequence with its corresponding manual transcriptionuAter in the hierarchy was selected
according to the following criteria — the number of instasmae the cluster must exceed a
threshold and the dispersion of the cluster must be smaberanother threshold. The central
element of a selected cluster was presented to a spokeig @igpeert as a candidate variant
of a business listing.

A similar algorithm was proposed in (Li et al. 2005) to disebthe semantic intents that
were not covered by an auto-attendant spoken dialog systeidrosoft (Ollason et al.
2004). The system was originally designed to connect arcalle@ Microsoft employee
with name dialing. It was later found that in addition to naufialing an employee,
callers often ask for connections to an office, such sectirity or “shuttle servicé.To
discover these uncovered intents, a language model basadtimcclustering algorithm was
proposed. Unlike the algorithm in (Popovici et al. 2002}t thlasters the one-best phonetic
transcriptions, it treats thevord transcription and the cluster they belong to as hidden
variables, and optimizes the parameters associated véth thith respect to an objective
function. Specifically, given a fixed number of clusters,itlths a cluster-specific language
model P(w | ¢) and a cluster prior moddP (c) to maximizeP (z) =>__,, P (z,w,c) =
Y ewP (x| w)P(w]c)P(c), the likelihood of the observed acoustic sigmaln practice,
recognition was decoupled from cluster training — a taskjrahdent large vocabulary ASR
was used to obtain the hypotheseand their posterior probabilitid3(w | x). Sincew andc
are hidden variables, the Expectation-Maximization (EMpathm was used to estimate the
probability P (¢) andP (w | ¢) by maximizing the objective function. Here the EM algorithm
took as input the hypothesesandP(w | «) obtained from the task-independent ASR. In (Li
et al. 2005), unigram language models were used™6w | ¢). With these cluster-specific
distributions, a KL-divergence based distance measureused in hierarchical clustering.
The EM algorithm was subsequently applied for severalftitema to re-estimate the model
parameters after merging two clusters. The cluster pribtaineed from the EM algorithm
was used to rank the clusters for presentation to spokeogiédperts.

2.3 Summary

This chapter reviews the problem of voice search, which ie ofithe most actively
investigated technology underlying many practical aggions. We have compared voice
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search with other spoken language understanding techiesldgr human-computer

interaction, discussed the challenges in developing v&éeech applications, and reviewed
some important research work targeting at these problemsn Ather SLU applications,

robustness is the central issue in voice search. The temiyah acoustic modeling aims

at improved robustness to environment noise, differenhebhconditions and speaker
variance; the pronunciation research addresses the praffleinseen word pronunciation
and pronunciation variance; the language model reseamisés on linguistic variance;

the studies in SLU/search give rise to improved robustredisguistic variance and ASR

errors; the dialog management research enables gracefweary from confusions and

understanding errors; and the learning in the feedback sp&gds up system tuning for
more robust performance.

While tremendous achievements have been accomplishectipabt decade on voice
search, big challenges remain. Many voice search dialotgsgshave automation rates
around or below 50% in field trials. This provides a fertil@gnd and great opportunities
for future research.
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