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PREFACE

The John Wiley LATEX style file has been created to provide authors with a template for
supplying their manuscript in a format that will be similar to the final typeset version. It has
been produced to help authors to concentrate on the content without having to become too
concerned about the style. We recommend that you read through this document carefully
before you begin the LATEX source for your book. By following the hints and style points
set out in this document, you will be able to present your workin a way that will meet
many of the required specifications for publication. These guidelines are not intended as
an introduction to LATEX. Further sources of information about LATEX can be found in the
appendix and bibliography at the end of this document.
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Semantic Frame Based Spoken
Language Understanding

Ye-Yi Wang, Li Deng and Alex Acero

Microsoft Research

Semantic frame based spoken language understanding (frame-based SLU) is one of the most
commonly applied and well studied SLU technology for human-computer interaction. It has
been used in many speech language processing tasks, in particular the transactional dialog
systems, where various pieces of information need to be collected from users. A frame-based
SLU system is often limited to a specific domain, which has a well-defined, relatively small
semantic space. The structure of the semantic space can be represented by a set of templates
called semantic frames, each contains some important component variables that areoften
referred asslots. The goal of the frame-based SLU is to choose the correct semantic frame
for an utterance, and extract from the utterance the values of its component slots.

1.1 Background

1.1.1 History of the Frame-based SLU

In the United States, the study of the frame-based SLU started in the 1970’s in the DARPA
Speech Understanding Research (SUR) and then the Resource Management (RM) tasks. At
this early stage, natural language understanding (NLU) techniques like finite state machine
(FSM) and augmented transition networks (ATNs) were applied for SLU (Woods 1983). The
study of SLU surged in the 90’s, with the DARPA sponsored Air Travel Information System
(ATIS) evaluations (Dahl et al. 1994; Hemphill et al. 1990).Multiple research labs from both
academia and industry, including AT&T, BBN, Carnegie Mellon University, MIT and SRI,
developed systems that attempted to understand users’ spontaneous spoken queries for air
travel information (including flight information, ground transportation information, airport
service information, etc.) and then obtain the answers froma standard database. ATIS is
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Figure 1.1 Frame-based SLU in a typical ATIS system, which consists of 1) a speech recognizer with
both the acoustic model and language model trained with the ATIS specific data; 2) a SLU system that
extracts the semantic representation (meaning) from the recognized text; and 3) a SQL generator that
automatically generates the database query based on the semantic representation.

an important milestone for the frame-based SLU, largely thanks to its rigorous component-
wise and end-to-end evaluation, participated by multiple institutions, with a common test set.
Figure 1.1 shows the role of the frame-based SLU component ina typical ATIS system.

While ATIS focused more or less on the understanding of a single-turn utterance, the
more recent DARPA Communicator program (Walker et al. 2001)focused on the rapid and
cost-effective development of multi-modal speech enableddialog systems, in which general
infrastructures for dialog systems were developed, where different component systems for
ASR, SLU, DM and TTS can be plugged in and evaluated. Naturally, many SLU technologies
developed in ATIS were used in the SLU component of the Communicator program. Eight
systems from AT&T, BBN, University of Colorado, Carnegie Mellon University, IBM,
Lucent Bell Labs, MIT, and SRI participated in the 2001 evaluation (Walker et al. 2002).
In the mean time, the AI community had separate effort in building a conversational planning
agent, such as the TRAINS system (Allen et al. 1996b).

Parallel efforts were made on the other side of the Atlantic.The French EVALDA/MEDIA
project aimed at designing and testing the evaluation methodology to compare and
diagnose the context-dependent and independent SLU capability in spoken language dialogs.
Participants included both academic organizations (IRIT,LIA, LIMSI, LORIA, VALORIA,
CLIPS) and industrial institutions (FRANCE TELECOM R&D, TELIP). Like ATIS, the
domain of this study was restricted to database queries for tourist and hotel information.

The more recent LUNA project sponsored by the European Unionfocused on the
problem of real-time understanding of spontaneous speech in the context of advanced
telecom services. Its major objective is the development ofa robust SLU toolkit for dialog
systems, which enhances users experience by allowing natural human-machine interactions
via spontaneous and unconstrained speech. One special characteristic of the project, which
is absent in the similar projects in the US, is its emphasis onmultilingual portability of the
SLU components.

Traditionally, the frame-based SLU has adopted a knowledge-based solution. The problem
is tackled by writing context free (CFG) or unification grammars (UG) by hand. The manual
grammar authoring process is laborious, expensive and requires a lot of expertise. In the early
90’s, both knowledge-based and data-driven approaches have been applied in different ATIS
systems. Currently most commercial applications use the knowledge-based solutions, while
most research systems adopt a data-driven, statistical learning approach to SLU. Attempts
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<frame name=“ShowFlight” type=“Void”>
<slot name=“subject” type=“Subject”>
<slot name=“flight ” type=“Flight”>

</frame>
<frame name=“GroundTrans” type=“Void”>

<slot name=“city” type=“City”>
<slot name=“type” type=“TransType”>

</frame>
<frame name=“Flight” type=“Flight”>

<slot name=“DCity ” type=“City”>
<slot name=“ACity ” type=“City”>
<slot name=“DDate” type=“Date”>

</frame>

Figure 1.2 Simplified semantic class schema for the ATIS domain.DCity stands for “departure city”
andACity stands for “arrival city”.

have also been made to incorporate knowledge in a data-driven system.

1.1.2 Semantic Representation and Semantic Frame

What is the goal for SLU? How can we tell whether a system’s understanding is appropriate
or not? Ultimately, the appropriateness of the understanding can be measured by the system’s
responses or by the actions taken by the system after it “understood” an input utterance. For
the frame-based SLU tasks, using the ATIS domain as an example, this can be measured
by the accuracy of the air travel related information returned from a system after a spoken
query is made by a user. However, generating the informationinvolves more than the SLU
component. For better engineering practice and scientific studies, it is desirable to modularize
the end-to-end system and isolate the SLU module. For this purpose, an intermediate
semantic representation is introduced to serve as the interface between different modules.
Many spoken language systems adopt their own semantic representations. However, most of
them can be abstracted as the semantic frame-based representation, which we introduce now.

The semantic structure of an application domain is defined interms ofsemantic frames.
Figure 1.2 shows a simplified example of three semantic frames for the ATIS domain. Each
frame contains several typed components called “slots.” The type of a slot specifies what
kind of fillers it is expecting. For example, thesubject slot of theShowFlightframe can be
filled with the semantic terminal FLIGHT (expressed by the words like “flight”, “flights”)
or the FARE semantic terminal (expressed by the words like “fare”, “cost”) that specifies
what particular information a user needs. In theFlight frame,DCity stands for “departure
city” andACity stands for “arrival city”. These two slots require objects with “City” type as
their fillers, which can be, for example, a city name or a city code. The frame has the type
“Flight”, so it can be the filler of the “flight ” slot of the top level frame “ShowFlight”. Often
the semantic frame is related to and derived from the schema of the application database.

The meaning of an input sentence is an instantiation of the semantic frames. Figure 1.3
shows the meaning representation for the sentence “Show me flights from Seattle to Boston
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<ShowFlight>
<subject type=“Subject”>FLIGHT</subject>
<Flight frame=“Flight” type=“Flight”>

<DCity type=“City”>SEA</DCity>

<ACity type=“City”>BOS</ACity >

<DDateType=“Date”>12/24</DDate>
</Flight>

</ShowFlight>

ShowFlight

flightsubject

DCity ACity
FLIGHT

SEA BOS

DDate

12/24

Figure 1.3 The semantic representation for “Show me flights from Seattle to Boston on Christmas
Eve” is an instantiation of the semantic frames in Figure 1.2. On the right is its tree representation.
The instantiation picks a frame that represents the meaningconveyed in the sentence and fills its slots
accordingly.

[Command: DISPLAY] [Subject: FLIGHT] [DCity: SEA] [ACity:BOS][DDate: 12/24]

Figure 1.4 The attribute-value representation is a special case of theframe representation where no
embedded structure is allowed. Here is an attribute-value representation for “Show me the flights from
Seattle to Boston on Christmas Eve.”

on Christmas Eve.” Here the frame “ShowFlight” contains the sub-frame “Flight”. Some SLU
systems do not allow any sub-structures in a frame. In such a case, the semantic representation
is simplified as a list ofattribute-value pairs, which are also calledkeyword-pairs(Pieraccini
and Levin 1993) orflat conceptrepresentation (Figure 1.4).

The hierarchical representation is more expressive and allows the sharing of substructures.
For example, theFlight frame in Figure 1.2 can be shared by bothShowFlight and
CancelFlight(not shown) frames. The flat concept representation is simpler and often results
in a simpler statistical model.

The semantic representation in the French MEDIA project adopts an attribute-value
list to represent the hierarchical semantic information (Bonneau-Maynard et al. 2005), as
shown in Figure 1.5. This representation, used in the official annotation and evaluation,
is ostensibly quite different from the frame based representation. However, a hierarchical
representation in Figure 1.6 can be constructed from such a representation, which is much
similar to the frame-based representation. This effectively brings the expression power of
the MEDIA annotation/evaluation scheme much similar to theframe-based representation.
In Figure 1.5, each segment of the sentence is tagged with amodethat takes four possible
values: affirmative (+), negative (-), interrogative (?) oroptional (@). While most segments
are labeled with the “+” mode, the “le” and “tarif” segments are labeled as “?”, indicating
this (“the rate”) is the information that the user has asked for. Theattribute namesencode
the hierarchical semantic information, andnormalized valuesrepresents the canonical values
for the attributes. To encode the hierarchical information, an attribute name contains multiple
parts separated by hyphens, each part represents an attribute belonging to an attribute class:
Thedatabase attributesclass contains the attributes from a database table. For attributesA
andB in this class,A-B implies thatB is an attribute in the substructure ofA. For example,
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words mode attribute name normalized value

donnez-moi + null
le ? refLink-coRef singular
tarif ? object payment-amount-room
puisque + connectProp imply
je voudrais + null
une chambre + number-room 1
qui coûte + object payment-amount-room
pas plus de + comparative-payment less than
cinquante + payment-amount-integer-room 50
euros + payment-unit euro

Figure 1.5 Semantic concept (attribute/value) representation for the utterance“give me the rate for
I’d like a room charged not more than fifty euros.”(Courtesy of Fabrice Lefèvre).

refLink: co-ref.
singular

object: room
payment: amount: ?

imply
object: room

number: 1
payment: comparative: less than

amount: integer: 50
unit: euro

Figure 1.6 Hierarchical representation derived from the attribute-value list in Figure 1.5.

payment-amount-integer indicates thatamount is an attribute in the substructure
of payment, while integer is an attribute in the substructure ofamount. Similarly,
payment-unit implies thatunit is another attribute in the substructure ofpayment.
A modifier attributeM is linked to a database attributeA in the form ofM -A, indicating
thatM modifiesA. For example,comparative-payment states thatcomparative is
a modifier ofpayment, hence it is part of thepayment structure. To fully reconstruct the
hierarchical representation, additional information is necessary to specify which components
should be joined together to form a structure. For that purpose, Bonneau-Maynard et al.
(2005) introduced thespecifiersthat can be attached to the end of a hierarchical attribute
name. For example, the specifierroom in Figure 1.5 indicates thatnumber andpayment
should be grouped together under theroom specifier, as shown in Figure 1.6.
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1.1.3 Technical Challenges

The frame-based SLU is closely related to natural language understanding (NLU), a field
that has been studied for more than half a century. NLU focus mainly on understanding
of general domain written texts. Because there is not a specific application domain for the
general purposed NLU, the semantics in NLU have to be defined in a broader sense, such
as thematic roles (agents, patients, etc.) In contrast, theframe-based SLU has, in the current
state of technology, focused only on specific application domains. The semantics are defined
very specifically according to the application domain, as illustrated by the above examples
of semantic frames. Many domain-specific constraints can beincluded in the understanding
model. Ostensibly, this may make the problem easier to solve. Unfortunately, there are many
new challenges for spoken language understanding, including

• Extra-grammaticality – spoken languages are not as well-formed as written
languages. People are in general less careful with speech than with writings. They
often do not comply with rigid syntactic constraints.

• Disfluencies – false starts, repairs, and hesitations are pervasive, especially in
conversational speech.

• Speech recognition errors– Speech recognition technologies are far from perfect.
Environment noise, speaker’s accent, domain specific terminologies, all make speech
recognition errors inevitable. It is common to see that a generic speech recognizer has
over 30% word error rates on domain specific data.

• Out-of-domain utterances– a dialog system can never restrict a user from saying
anything out of a specific domain, even in a system-initiateddialog, where users are
prompted for answers to specific questions. Because the frame-based SLU focuses on
a specific application domain, out-of-domain utterances are not well modeled and can
often be confused as an in-domain utterance. Detecting the out-of-domain utterances is
not an easy task – it is complicated by the extra-grammaticality, disfluencies and ASR
errors of in-domain utterances.

In summary, robustness is one of the most important issues inSLU. A system should
be able to gracefully handle the unexpected inputs. If an input string is not accepted by a
grammar/model, it is still desirable to identify the well-formed concepts in the input that
carry important information for a given domain. On the otherhand, a robust solution tends to
over-generalize and introduce ambiguities, leading to reduction in understanding accuracy.
A major challenge to the frame-based SLU is thus to strike an optimal balance between the
robustness and the constraints that prevent over-generalizations and reduce ambiguities.

1.1.4 Standard Data Sets

While there are many commercial applications for the frame-based SLU, most of the data
used in those applications are proprietary. The ATIS corpus(Dahl et al. 1994; Hemphill et al.
1990) is the most broadly used data set by SLU researchers. Itis more realistic compared to
the previous speech corpus in the sense that it is the spontaneous spoken language instead of
the read speech, therefore it contains disfluencies, corrections, and colloquial pronunciations.
It was collected in a normal office setting, with a Wizard of the Oz interaction between a
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system and a subject who issued spoken queries for air travelinformation. Utterances were
recorded, manually transcribed, and manually categorizedinto three different classes: class
A for queries that can be interpreted without the context information; class D for queries
that can be interpreted with the context information; classX for unanswerable queries (e.g.,
out of domain utterances). The corpus also contains a back-end database of US domestic
flights. Each utterance in class A or D is also manually associated with a SQL query for the
database, together with the reference answer, which is the corresponding query result from
the database.

The ATIS data set was designed to advance the state-of-the-art in speech recognition and
understanding in early ’90s. The DARPA Communicator project in 00’s focused on the rapid
and cost-effective development of multi-modal speech-enabled dialog systems with advanced
conversational capabilities. The data collected from the project are richly annotated with
dialog related information, including sessions/turns/operation information, etc.

Both ATIS and Communicator corpus are available through theLinguistic Data
Consortium (LDC) (LDC n.d.). The data collected by the TRAINproject (Allen et al. 1996a)
is also available at LDC.

For the European SLU projects, the French corpus MEDIA has been annotated in terms of
semantic structures as in Figure 1.5 For the LUNA project that focuses on multilingual SLU
and language specific aspects for language modeling and understanding, new corpora with
complex human-human dialogs have been acquired in Italian and Polish. They are transcribed
and annotated in terms of the syntactic constituents and semantic structures.

The MEDIA data is available via the European Language Resource Association (ELRA)
(ELRA n.d.).

1.1.5 Evaluation Metrics

Various metrics are used in the evaluation of the frame-based SLU systems. Some metrics
focus on component-wise performance of the SLU sub-system,others emphasize the impact
of the SLU component on the performance of the end-to-end system. Here we list some
commonly used evaluation metrics.

• Sentence/utterance Level Semantic Accuracy(SLSA): this metric measures the
percentage of correct semantic representations assigned to a sentence/utterance. An
intermediate reference semantic representation is required with this metric.

SLSA =
# of sentences assigned correct semantic representation

# of sentences
(1.1)

• Slot Error Rate (SER): slot error rate (a.k.a concept error rate (CER)) measures
the slot level performance of a frame-based SLU system. It aligns the semantic
representation of a sentence with its reference representation, find the number of slots
incorrectly identified by the SLU system. These include the inserted slots (present in
the SLU output, absent in the reference representation), deleted slots (absent in the
SLU output, present in the reference) and substituted slots(slots that are aligned to
each other between the SLU output and the reference differ ineither the slot labels or
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the sentence segments they cover).

SER =
# of inserted/deleted/substituted slots

# of slots in reference semantic representations
(1.2)

• Slot Precision/Recall/F1 Score: Precision/Recall is another way to measure the slot
level SLU performance. F1 combines precision and recall into a single score as their
harmonic mean:

Precision =
# of reference slots correctly detected by SLU

# of total slots detected by SLU
(1.3)

Recall =
# of reference slots correctly detected by SLU

# of total reference slots
(1.4)

F1 =
2 × (Precision × Recall)

Precision + Recall
(1.5)

• End-to-end Evaluation: The above evaluation metrics compare the SLU output
with the reference semantic representation. Since different systems may use different
intermediate semantic representations, it is difficult to compare different SLU
components even if a common test set is available. In the original DARPA-sponsored
ATIS evaluation, the problem is addressed by an end-to-end evaluation metric.
Utterances were first recognized and parsed to produce the semantic representations,
from which SQL queries were generated and submitted to the backend database engine.
The resulting database outputs were then compared with the target entries created by
using the manually labeled SQL queries. Here a target entry is a pair of minimum and
maximum information, which indicates the columns that haveto be returned (minimum
information) and the columns that are permitted to be included in the database search
results (maximum information). The minimum-maximum restriction penalizes the
implementation that always returns the information from all the fields of a database
entry without understanding what specific information the user has requested for. The
evaluation for SLU can be conducted on both the ASR and the manual transcriptions
of the test utterances. The utterance level understanding accuracy is the percentage of
the test utterances for which the correct database entries are output with at least the
minimum information (database columns) and at most the maximum information.

1.2 Knowledge-based Solutions

1.2.1 Semantically-enhanced Syntactic Grammars

Many advocates of the knowledge-based approach believe that general linguistic knowledge
is helpful in modeling domain specific language. This includes the syntactic constraints
as well as some optional rudimentary domain-independent semantic knowledge. However,
since the ultimate goal is to extract the domain-dependent semantic information, one major
question is how to inject the domain specific semantic constraints into a domain-independent
grammar.

MIT’s TINA system (Seneff 1992) aims at the graceful, seamless interface between syntax
and semantics. It uses context free grammar (augmented witha set of features used to
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SENTENCE

Q-SUBJECT

PREP-PHRASE

WHAT NOUN-SG

LINK SUBJECT PRED-ADJUNCT

ARTICLE

isstreetWhat on

OBJECTPREP

Hyatt
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SENTENCE

Q-SUBJECT

ON-STREET

WHAT STREET
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A-HOTEL

Q-SUBJECT

BE-QUESTION

A-PLACE

the

Figure 1.7 TINA parse tree with syntactic rules only (left) and with lower-level syntactic rules
replaced by domain-dependent semantic rules (right). The second one was reproduced from (Seneff
1992).

enforce several syntactic and semantic constraints via unification). The injection of the
domain-dependent semantics is accomplished by replacing the low level syntactic non-
terminals with the semantic non-terminals. In doing so, thetop level syntactic rules makes
the grammar capable of modeling the domain-independent linguistic constraints, such as
the Wh-movement/trace-management.The feature unifications introduce additional syntactic
and semantic constraints such as the person and number agreement and the subject/verb
selectional restrictions. On the other hand, the domain-specific semantic content of a sentence
is completely encoded by the lower level semantic non-terminals (categories) in the parse
tree, thus making it feasible to extract the semantic frame representation directly from a
parse tree. Figure 1.7 shows two pare trees – one with the syntactic non-terminals only, the
other has the low level syntactic categories replaced with the (bold) domain-specific semantic
non-terminals.

The context-free rules are automatically converted to a graph representation of shared
transition networks, where the transitions can be associated with probabilities by automatic
training when training data is available. It is reported in (Seneff 1992) that the introduction
of transition probabilities has greatly reduced the perplexity of the grammar – from 368 to
41.4 in the Resource Management domain.

SRI’s Gemini system (Dowding et al. 1993) is implemented on top of its Core Language
Engine (CLE) (Alshawi 1992), a general natural language understanding system that parses
an input sentence and generates its semantic representation in the logical forms. Here the
unification grammar is also used to model the general syntactic constraints. Unlike TINA
that blends syntax and semantics together with the mixed grammar categories in constituent
parsing, it clearly separates the domain independent syntax from the domain dependent
semantics. Another specialty of Gemini is its adoption of the logical forms instead of the
frame-like representation for semantics. Logical form in CLE is an extension to the first-
order (predicate) logic (Alshawi and van Eijck 1989). The example below shows the logical
form for “a flight to Boston”:

exists(A, [and, [flight, A], [to, A ‘BOSTON’]])

which can be read as “there is an variableA, such thatA is a flight andA is to ‘BOSTON’.”
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In Gemini, recognized utterances are parsed according to syntactic rules. Each syntactic
node in a parse tree invokes a set of semantic rules to construct a set of logical forms
for the node. Both domain dependent and domain-independentselectional restrictions on
logical forms are enforced throughsortal constraints. Sortal constrains are used by linguists,
logicians and philosophers to explain the oddity of sentences like “the flight to boston is a
cat”, which cannot be conveniently explained by syntactic theories. Instead, the oddity is
explained by sort incompatibility – the semantic interpretation for each constituent in a parse
tree is assigned a sort. The sorts of constituents need to be compatible with each other when
compositional semantics are constructed with respect to the syntactic rule that combines
the constituents. Since the sorts of “flight” and “cat” are not compatible, the reading of the
sentence is odd.

Sortal constraints can be used independent of the application domains – they can model
the selectional constraints expected by the predicates fortheir arguments in logical forms,
hence they cut down on structural (e.g. attachment) and wordsense ambiguities. In Gemini,
sortal constraints are also used to model the semantic restrictions imposed by an application
domain, such that the logical forms are restricted by the domain constraints. The following
is the logical form with sort assignments for the previous example:

exists((A; [flight]),
[and, [flight, (A; [flight])]; [prop],

[to, (A; [flight]), (‘BOSTON’; [city])]; [prop]
];[prop]

); [prop]

here every expression/sub-expression in the logical form is followed by a sort it has
been assigned to, separated by a semicolon. For example, thequantified variableA
is assigned the sort[flight]. The quantifierexists(A, [P A]) is assigned the
sort [prop] (proposition), so are the sub-expressions[flight, (A; [flight])],
[to, (A; [flight]), (’BOSTON’; [city])] and their conjunction (theand
expression). The literal‘BOSTON’ is assigned the sort[city].

To construct the logical form in the previous example, a grammar developer needs to
introduce the following sortal constraints:

sort(‘BOSTON’, [city])
sort(to, [[flight], [city]], [prop])
sort(and, [[prop], [prop]], [prop])

Here the first sort rule specifies that the literal ‘BOSTON’ can be assigned the sort
[city]. The second rule indicates that theto predicate takes two arguments, one must
have been assigned the sort[flight], the other assigned[city]. The compositional
semantics of the predicate is assigned the sort[prop]. The third rule states the conjunction
operator takes two arguments assigned with the sort[prop] and produces the compositional
logical form with the sort[prop].

Gemini adopts a two-stage parser. In the first stage ofconstituent parsing, bottom-up chart
parser is used, which applies the syntactic and semantic rules to populate the chart with
linguistic constituents that include the syntactic and logical form information. In the second
stage ofutterance parsing, a second set of syntactic and semantic rules is applied. Therules
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are required to span the entire utterance, such that a complete parse for the utterance can be
constructed.

To improve the robustness to spontaneous speech with disfluencies, when no complete
parse can be constructed during the stage of utterance parsing due to the violation of
either syntactic or sortal constraints, a repair componentis invoked to detect and correct
the disfluencies. To handle speech recognition errors, Gemini operates on the n-best ASR
outputs.

1.2.2 Semantic Grammars

While using the semantically-enhanced syntactic grammarssaves grammar developers from
the effort to model the general language structures, it requires profound knowledge about the
general syntactic grammars. In addition, the knowledge-based approach often requires the
exact matching of input sentences to the grammar rules, which makes it not robust to ASR
errors, extra-grammaticality and disfluencies in spontaneous speech. Often it has to resort to
some kind of semantic-based robust parsing as a backup.

The Phoenix spoken language understanding system (Ward 1991) directly models the
domain dependent semantics with a semantic grammar. It was used by CMU in the ATIS
evaluation, and was one of the top performing SLU systems in the evaluation. As we have
discussed previously about semantic representation, it uses semantic frames to represent
semantic relations – the basic type of action for the application. Slots in a frame are filled by
matching the input strings (sentences) against the slot-nets, the recursive transition networks
(RTNs) that specifies the patterns for filler strings. RTNs are finite state transition networks,
where the arcs in the networks can include not only terminal words, but also calls to other
networks. They are equivalents of the context free grammarsin graph representation. During
parsing, the system uses the slot-nets to match substrings in the input sentence. When a
slot-net matches a substring, it is passed along for incorporation into the frames. While the
slot-nets require the exact matches, the system is robust inthe phase when a set of matching
slots are composed into a semantic frame – beam search is usedin frame construction. When
a slot matches, it will extend all the active frames that contain the slot, and activate any
currently inactive frames that contain the slot. At the end of the search process, the single
best parse that covers the most slots discovered by the slot-nets is returned from the beam.

The grammar used by Phoenix for ATIS was very complicated. Itconsisted of 3.2K non-
terminals and 13K grammar rules. Figure 1.8 shows the slot-net for “PriceRange”, together
with some of the sub-nets that the slot-net calls.

1.2.3 Knowledge-based Solutions in Commercial Applications

In most commercial spoken dialog systems, the frame-based SLU is tackled via the
knowledge-based approach. Domain dependent semantic context free grammars are
developed to provide the powerful domain and linguistic constraints to the ASR component
(language model), and to provide a mechanism to construct the target semantic representation
from an input utterance. The rules in a grammar define the permissible syntactic/semantic
expressions. They are also associated with semantic interpretation tags, from which the ASR
engine can construct the semantic representation from the parse tree.
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PriceLowerBound:

PriceExact:

<Number>
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Figure 1.8 Recursive transition network for “PriceRange,” together with three sub-nets called by it:
“PriceExact”, “PriceApproximate” and “PriceLowerBound.” The arc labels in angular bracket indicate
calls to sub-networks.

To ensure the portability of a speech recognition grammar, W3C has standardized
the grammar format SRGS (Speech Recognition Grammar Specification) (Hunt and
McGlashan n.d.) and the semantic interpretation tags SISR (Semantic Interpretation for
Speech Recognition) (W3C n.d.). Figure 1.9 shows an exemplar grammar with semantic
interpretation tags defined in the SRGS XML form (The alternative ABNF form is more
compact but less readable). Four rules of the grammar are shown in the figure, which
correspond to the RTNs in Figure 1.8. Each rule has a rule variable “out”, which holds
the semantic values of the rule. A rule valuable may have a structured value – it can contains
hierarchical properties. For example,out.amount represents the “amount” property of
the rule variable. A rule may not be associated with an explicit semantic interpretation
tag. In such a case, the semantic structure (value of the rulevariable) for the rule is
constructed according to the implicit semantic interpretation tags – If there are no rule
references (the<ruleref> tag) in the parse, the text covered by the rule is assigned to
the rule variable. Otherwise, the value of the rule variableof the last rule reference (non-
terminal) in the parse is automatically copied into the rulevariable. The semantic of a rule
reference can be obtained via the “rules” variable. For example, “rules.PriceExact”
in Figure 1.9 refers to the value of the structured rule variable (semantic structure) for the
rule reference “PriceExact” in “ PriceApproximate” and “PriceLowerBound”,
and “rules.PriceExact.amount” represents the value of the “amount” attribute in
the structured rule variable of “PriceExact”.

Given the grammar in Figure 1.9, the parse tree for the utterance “about 500 dollars,”
together with the values of the rule variables for the rules referenced in the tree, is illustrated
in Figure 1.10. From which the semantic representation for the entire utterance can be
constructed as follows:
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<grammar version="1.0" xmlns="http://www.w3.org/2001/06/grammar"
xml:lang="en-US" tag-format="semantics/1.0-literals"
root="PriceRange">

<rule id="PriceRange" scope="public">
<one-of>

<item><ruleref uri="#PriceExact"/></item>
<item><ruleref uri="#PriceApproximate"/></item>
<item><ruleref uri="#PriceLowerBound"/></item>
<item><ruleref uri="#PriceUpperBound"/></item>

</one-of>
<tag>out.pricerange=rules.latest()</tag>

</rule>
<rule id="PriceExact">

<item><ruleref uri="#Number"/></item>
<item repeat="0-1"><ruleref uri="#Dollars"/></item>
<tag>out.amount=rules.Number</tag>
<tag>out.match="exact"</tag>

</rule>
<rule id="PriceApproximate">

<one-of><item>about</item>
<item>approximately</item>

</one-of>
<item><ruleref uri="#PriceExact"/></item>
<tag>out.amount=rules.PriceExact.amount</tag>
<tag>out.match="approximate"</tag>

</rule>
<rule id="PriceLowerBound">

<one-of><item>exceeding</item>
<item>above</item>
<item><token>no less</token>

<item repeat="0-1">expensive</item>
<token>than</token>

</item>
<item><token>greater than</token>

<item repeat="0-1">or equal to</item>
</item>

</one-of>
<item><ruleref uri="#PriceExact"/></item>
<tag>out.amount=rules.PriceExact.amount</tag>
<tag>out.match="lowerbound"</tag>

</rule>
......

</grammar>

Figure 1.9 W3C SRGS grammar for “PriceRange” with SISR semantic interpretation tags.
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about PriceExact

Number Dollars

PriceApproximate

PriceRange

500 dollars

[dollars]

[amount:500;match:exact]

[500]

[amount:500;match:approximate]

[pricerange:[amount:500;match:approximate]]

Figure 1.10 The parse tree for the utterance “about 500 dollars” together with the semantic structures
for the non-terminal nodes (in boxes), constructed according to the explicit or implicit semantic
interpretation tags.

<pricerange>
<amount>500</amount>
<match>approximate</match>

</pricerange>

Readers can find more detailed information about the SRGS grammar format and the
semantic interpretation tags in (Hunt and McGlashan n.d.) and (W3C n.d.).

1.3 Data-Driven Approaches

The knowledge-based solution has the advantage of not requiring much labeled data. In
addition, almost everyone can start writing a SLU grammar with some basic training. The
grammar can be used as both the ASR language model and the SLU model in a single pass
speech understanding. However, a knowledge-based system is difficulty and expensive to
develop and maintain due to the following reasons:

1. Grammar development is an error-prone process. While it does not take much effort for
a common developer to learn the syntax for writing a speech understanding grammar,
it requires combined linguistic and engineering expertises, plus the deep knowledge
about the application domain, to write agood grammar. Grammar authoring is a
balancing act between simplicity and coverage. People talkdifferently, therefore a
good grammar has to account for the different expressions for the same concept, action
or request. If a grammar is too simple, it is inadequate to model the linguistic diversity.
On the other hand, if a grammar is too complicated, it may not only slow down the
parser, but also increase the ambiguities, hence confuses the SLU system and degrades
its performance. Design the structure of a grammar is an art.It takes much experience
to have a good design where frequently used concepts, for example, are modeled by
separate rules to be shared by other rules at a higher level.

2. It takes multiple rounds to fine tune a grammar. Grammar authoring can hardly be a
one-shot deal – nobody can write a perfect grammar with a single try. Furthermore,
grammars need to evolve over time – new features and scenarios may be introduced
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to an application after its initial deployment. Ideally, anSLU system should be
able to automatically adapt to the real data collected afterits deployment. On the
contrary, knowledge-based systems require an expert’s involvement, sometimes even
the involvement of the original system designer, in the adaptation loop.

3. Grammar authoring is difficult to scale up. It is relatively easy to write a grammar
to model a single concept as in a system-initiated dialog system, where the user
is prompted to provide a single piece of information (e.g., name, account number,
social security number, address, etc.) at a dialog turn. However, if we allow users to
volunteer multiple pieces of information in a single utterance, the ways to put together
these pieces are combinational. As we have shown previously, for a very restricted
domain like ATIS, the semantic grammar already contains 3.2k non-terminals and 13k
grammar rules.

SLU based on data-driven statistical learning approaches directly addresses many of
the problems associated with the knowledge-based solutions. Statistical SLU systems can
automatically learn from example sentences with their corresponding semantics annotated.
Compared to the manual grammar authoring, the annotations are much easier to create,
without the requirement of the specialized knowledge. The statistical approach can adapt
to new data, possibly via unsupervised learning. One disadvantage of such an approach,
however, is the data-sparseness problem. The requirement of a large amount of labeled
training data is not very practical in real-world applications, which are quite different from a
few showcase problems studied in research labs. This is the case especially at the early stage
of system development.

In this section, we introduce a general framework for the statistical SLU, and review
various types of statistical SLU models in the literature. We assume that most readers have
been exposed to HMMs as commonly used in speech recognition and language processing.

1.3.1 Generative Models

In the statistical frame-based SLU, the task is often formalized as a pattern recognition
problem. Given the word sequenceW , the goal of SLU is to find the semantic representation
of the meaningM that has the maximuma posteriori probability P (M | W ). In the
generative model framework, the following decision rule isused:

M̂ = arg max
M

P (M | W ) = arg max
M

P (W | M)P (M) (1.6)

And the objective function of a generative model is to maximize the joint probability
P (W, M) = P (W | M)P (M) given a training sample ofW and its semantic annotation
M .

Two separate models exist in this generative framework. Thesemantic priormodelP (M)
assigns probability to an underlying semantic structure ormeaningM . The lexicalization
modelP (W | M), sometimes calledlexical generationor realizationmodel (Miller et al.
1994), assigns probability to the surface sentence (i.e., word/lexical sequence)W given the
semantic structure. As an example, the HMM tagging model is asimple implementation
of Eq. (1.6), in which a Markov chain consisting of the statesthat bear semantic meanings
models the semantic prior, and the emission from the states models the lexicalization process.
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Figure 1.11 An HMM tagging model for SLU. State 0 represents “command”, state 1 represents
the “subject” slot, state 2 represents the “DCity” slot, state 3 represents the “ACity” slot. The HMM
topology and the transition probabilitiesaij form the prior. The meaning of a sentence is represented by
its underlying state sequence. The emission distributionsbk of the states form the lexicalization model.
On the right is a possible state sequence that aligns to the sentence “Show me flights from Seattle to
Boston”. Theoretically, the state should encode the semantics of the attribute-value pair like<DCity
SEA>. However, since this increases the state space significantly, sometimes infinitely, practical SLU
systems collapse the states corresponding to the same attribute, and extract the value semantics from
the observation aligned to the slot state in a post-processing step.

The alignment between the observations (words) and the states is hidden (Figure 1.11). The
tagging model finds the Viterbi alignment between the statesand the words, and the meaning
associated with a state becomes the semantic tag of the aligned word.

In this simple tagging model, observations (words) depend only on the states. They do not
depend on the words in the context. This independence assumption does not work well with
language: according to this assumption, “Show me flights” and “me Show flights” are equally
likely. Most statistical SLU systems attempt to overcome the problem by allowing a state to
emit one or more “segments” of multiple words at a time. In this case, the generative process
for the observations is:

1. Generate a set of segmentsS = (s1, ..., sn) according to the semantic structureM =
q1, ..., qm.

2. Determine the alignmentA = (a1, ..., an) that associates each segment with a state.

3. Determine the lengthL = (l1, ..., ln) for each segment.

4. Generateli words for each segmentsi, for i = 1, ..., n, assuming the words are
correlated and are sensitive to temporal ordering.

HereS, A andL are not observed. They are hidden variables that can be marginalized out
according to

P (W | M) =
∑

S,A,L

P (W, S, A, L | M) (1.7)

=
∑

S,A,L

P (S | M)P (A | S, M)P (L | A, S, M)P (W | L, A, S, M)(1.8)
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<ShowFlight>
<subject>flights</subject>
<Flight>

<DCity>Seattle</DCity>

<ACity >Boston</ACity >

<DDate>Christmas Eve</DDate>
</Flight>

</ShowFlight>

Figure 1.12 Simplified semantic representation – a separate post-processing is necessary for slot
value normalization. Nevertheless, the representation iseasier to annotate.

This type of lexicalization model for correlated word observation sequences is analogous
to the segment model in acoustic modeling for ASR (Ostendorfet al. 1996). One main
difference, however, is that in SLU the alignment process ismore elaborated than that for
ASR. This complexity arises from the syntactic constraintsthat allow generation of multiple
phrases from a single state and placement of the phrases in anorder that is far more flexible
than pronunciations in a dictionary. The latter is largely coded as a left-to-right sequence
as defined by the dictionary, which is much less variable thanmany different ways a fixed
meaning may be expressed as a composite of phrases/words in varying orders. The purpose
of the alignment in Step 2 above is to account for this type of variability, which is largely
absent in ASR problems.

Eq. (1.7) has different implementations in various SLU systems. We will discuss this topic
of lexicalization modeling in detail in later in this section after surveying semantic-prior
modeling first.

Note that in the semantic representation in Figure 1.3 or Figure 1.4, the frame slots
have normalized values that may be different from the original text in the utterance (e.g.,
the original text “Seattle” is normalized as the city code “SEA”). Such a representation
relieves the application developers from handling different expressions for the same meaning.
However, training a model to produce such a normalized semantic representation requires the
training data be labeled in the same way, which adds extra burden to the annotators and makes
the model more complicated – we will show one of such models later in a subsection titled
“2+1 SLU Model.”. Instead, a majority of statistical modelsjust align the segments of an
utterance to the slots and produce a semantic representation like the one in Figure 1.12, and
employ a separate post-processing step to generate the normalized representation.

Semantic Priors in Understanding Models

In statistical SLU that models cross-word contextual dependency, each state represents
a slot in a semantic frame. For the systems that use the flat concepts for semantic
representation, such as AT&T’s CHRONUS (Pieraccini and Levin 1993) and IBM’s fertility
model (Della Pietra et al. 1997), the topology of the model isa fully connected network as in
Figure 1.13. Unlike the topology in Figure 1.11, there is no self loop on a state because it is
already modeling a segment of words with the length information already encoded.
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Figure 1.13 The topology of the statistical model that adopts the flat concept semantic representation.
Each state represents a concept. States are fully interconnected. The initial state distributionπi = P (i)
and the state transition distributionaij = P (j | i) comprise the semantic prior of the model. (The final
state f = “</s>” is not shown in the topology.) The thicker lines illustratethe correct state transitions
for the sentence “Show me flights from Seattle to Boston.” Theexample sentence is also aligned to the
states.

The prior probability of the semantic structure underlyingthe representation in Figure 1.4,
i.e., the flat-concept sequence “Command Subject DCity ACity” can be calculated as the
product of the probabilities of the marked transitions in Figure 1.13:

P (M) = P (Command|<s>)P (Subject|Command)P (ACity|Subject)
P (ACity|DCity)P (</s>|ACity) = π1a12a23a34a4f

where<s> represents the start of the semantic concept list and</s> represents the end of
the flat-concept list. The model is also used by a MEDIA systemthat uses attribute-value list
to represent the hierarchical semantic information (Lefèvre 2007).

For models that use hierarchical semantic structures, including BBN’s Hidden
Understanding Model (Miller et al. 1994) and Microsoft Research’s HMM/CFG composite
model (Wang and Acero 2003a), the semantic prior is a naturalextension of Eq. (1.9).
Figure 1.14 shows the topology of the underlying states for the semantic frames in Figure 1.2.
The left part of the diagram shows the top level network topology, and the right part shows
a zoomed-in sub-network for state 2, which represents the embedded “Flight” frame. The
initial state probabilitiesπ1 = P (ShowFlight) and π5 = P (GroundTrans) comprise the
prior distribution over the top level semantic frames. The transitional weightsa12 anda13

comprise the initial slot distribution for the “ShowFlight” frame. The transitional weightsa56

anda57 comprise the initial slot distribution for the “GroundTrans” frame, and the transitional
weightsaC9, aCA andaCB in the sub-network comprise the initial slot distribution for the
Flight frame.

Given this topology, the semantic prior for the semantic structure underlying the meaning
representation in Figure 1.3 is the product of the Markov transitional probabilities across the
different levels in the semantic hierarchy (The marked pathin Figure 1.14):

P (M) = P (ShowFlight)P (Subject|<s>; ShowFlight)P (Flight|Subject; ShowFlight)
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Figure 1.14 Hierarchical model topology for the semantic frames in Figure 1.2. On the left is the
top level network structure. On the right is the sub-networkof the semantic frame “Flight.” Since
the semantic frames are defined in a finite state language, thesub-network can substitute for state
2. Substitutions by the same sub-network may share the parameters of the sub-network. The thicker
path shows the correct state sequence for the sentence “Showme the flight from Seattle to Boston on
Christmas Eve.”

P (DCity|<s>; Flight)P (ACity|DCity; Flight)P (</s>|ACity; Flight)
P (</s>|Flight;ShowFlight)

= π1a13a32aCAaA9a9Da24 (1.9)

Generally,

P (M) =

|M|+1
∏

i=1

P (CM (i) | CM (i − 1))P (M(i)) (1.10)

Here |M |is the number of the instantiated slots inM. CM (i) is the name of thei-th slot
in M , (CM (0)=<s> and CM (|M | + 1)=</s> stand for the beginning and the end of a
frame, respectively) andM(i) is the sub-structure that fills thei-th slot in M . Eq. (1.10)
recursively calculates the prior probabilities of the sub-structures and includes them in the
prior probability of the parent semantic structure.

Cambridge University’s Hidden Vector State model (He and Young 2003) uses another way
to model the semantic prior with hierarchical structures. Named the hidden vector states, the
states in the Markov chain represent the stack status of the pre-terminal nodes (the nodes
immediately above the terminal words) in a semantic tree, asillustrated in Figure 1.15. The
hidden vector states encode all the structure information about the tree, so the semantic tree
structure (without the terminal words) can be reconstructed from the hidden vector state
sequence. The model imposes a hard limit on the maximum depthof the stack, so the number
of the states becomes finite, and the prior model becomes the Markov chain in an HMM. The
difference from the earlier examples in Figure 1.13 and Figure 1.14 is that the state transition
in this Markov chain is now modeled by the stack operations that transform one stack vector
state to another. The stack operations include 1) Pop(n) that pops the topn elements from the
stack; and 2) Push(C) that pushes a new concept C into the stack. For example, the transition
from the state represented by the fifth block in Figure 1.15 can be made with two operations:
Pop(2) and Push(ON). The pop operation depends on the stack contents of the state from
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Figure 1.15 In the Hidden Vector State model, the states (illustrated bythe blocks) represent the stack
status of a pre-terminal nodes (the parent node of the terminal words) in the semantic tree, which is the
trace from a pre-terminal (at the top of the stack) to the rootof the parse tree (Reproduced from (He
and Young 2003)).

which the transition exits, and the push operation depends on the stack contents right before
the element is pushed in. Hence the probability of the transition from the fifth block is

Ppop(2 |[CITY TOLOC RETURN SS])Ppush(ON |[RETURN SS]) (1.11)

Let |S| denote the depth of the stackS. Given the stack vector statesSt−1 and St,
|St−1| − |St| + 1 elements have to be popped fromSt−1 in order to transformSt−1 to St.
Thus the semantic prior is the product of the transition probabilities in the Markov chain:

P (M) =

|M|
∏

t=1

P (St | St−1)

=

|M|
∏

t=1

Ppop(|St−1| − |St| + 1 | St−1)Ppush(TOP [St] | POP [1, St])

δ(POP [|St−1| − |St| + 1, St−1], POP [1, St]) (1.12)

Here|M | is the number of stack vector states inM , including the sentence end stateS|M|.
S0 is the sentence initial state.TOP[S] is the top element of the stackS, andPOP[n, S] is
the new stack after the topn elements are popped out of the stackS. δ (x, y) = 1 if x = y ,
otherwiseδ (x, y) = 0. It guarantees thatSt−1 to St is a legal transition by restricting that all
the elements in the two stacks are the same, except for those popped out ofSt−1 and the one
pushed intoSt.

The decomposition of the transition probability intoPpop and Ppush enables different
transitions to share the parameters. Therefore, it can potentially reduce the number of
parameters in the prior model.

It is important to note that the prior model does not have to bestatic. It can change
depending on the context, for example, at a dialog state whenthe system asks users for
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the departure city information, the probability for the DCity slot can be significantly boosted.
The prior model can also be personalized (Yu et al. 2003).

Lexicalization Models

In this section we review the lexicalization models under the general framework of Eq.(1.7),
which captures the dependency and temporal ordering for theobserved words within the
same state.

N-gram Lexicalization Model
The first lexicalization model, used by both CHRONUS (Pieraccini and Levin 1993) and
the Hidden Understanding Model (Miller et al. 1994), assumes a deterministic one-to-one
correspondence between model states and the segments, i.e., there is only one segment per
state, and the order of the segments follows the order of the states. This effectively gets rid
of the hidden variablesS andA in Eq. (1.7):

P (W | M) =
∑

L

P (W, L | q1, ..., qm) =
∑

π=ϕ1,...,ϕm

P (π | q1, ..., qm)

≈
∑

π=ϕ1,...,ϕm

m
∏

i=1

P (ϕi | qi) (1.13)

Here the joint event (W , L) corresponds to a segmentationπ = ϕ1, ..., ϕm of W : ϕ1 is the
first l1 words ofW , ϕ2 is the nextl2 words ofW , etc., and the concatenation of the substrings
ϕ1, ..., ϕm equalsW .

Both CHRONUS (Pieraccini and Levin 1993) and the Hidden Understanding Model
(Miller et al. 1994) exploited state specific n-grams to model P (ϕ | q). Let’s use the
flat-concept semantic structure in Figure 1.13 as an example. It illustrates a segmentation
π = “show me′′, “flights′′, “from Seattle′′, “to Boston′′. The probability of the surface
sentence under this segmentation is:

P (π | M = command, subject,DCity,ACity) =
P (Show|<s>; command)P (me|Show; command)P (</s>|me; command)
P (flights|<s>; subject)P (</s>|flights; subject)
P (from|<s>;DCity)P (Seattle|from; DCity)P (</s>|Seattle;DCity)
P (to|<s>;ACity)P (Boston|to;ACity)P (</s>|Boston;ACity) (1.14)

In Eq. (1.14), the cross-state lexical dependency is not modeled. A word at a state only
depends on the history that belongs to the same state (or on the context cue “<s>” if it is
the first word emitted from a state). One can opt to model the cross-state lexical dependency
too. In this case, instead of depending on “<s>”, the initial words from a state may depend
on the last few words (actual number is determined by the n-gram order) from the previous
state.

Fertility Lexicalization Model
IBM’s fertility model (Della Pietra et al. 1997) is another implementation of Eq.
(1.7). It is based on their statistical machine translationwork. Similar idea was
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adopted in (Macherey et al. 2001). The generative process ofthe model can be
illustrated by the following example: let the semantic structure be the flat sequence
of four states, “DISPLAY FLIGHTS TO ARRIVALCITY”. The model first picks
the number of segments for each state, for example, (2, 1, 1, 1). This results
in five segments, which are permutated to form the ordered sequence S =<
SEGDISPLAY, SEGFLIGHTS, SEGTO, SEGARRIVAL CITY , SEGDISPLAY >. Each permu-
tation corresponds to an alignment. The permutation in the example corresponds to the
alignmentA = (1, 2, 3, 4, 1), where each element points to the state that gives rise to theseg-
ment. Since there are(5!/2!1!1!1!) different permutations, each possible alignment has the
uniform probability2!/5!. The model then picks the length in each segment,(2, 2, 1, 1, 1),
and accordingly generates two words “I want” for the first segment, “to fly” for the second
segment, one word “to” for the third segment, “Boston” for the fourth segment, and “please”
for the last segment. This produces the final surface sentence “I want to fly to Boston please.”
As illustrated by this example, a state in this model can emitnon-consecutive word sequences
(segments).

The fertility model makes the following assumptions in the aforementioned process:

1. P (S | M = q1, ..., qm) ≈
∏m

i=1 f(ni | qi) =
∏m

i=1

e
−λqi λ

ni
qi

ni!
, i.e., each stateqi gener-

atesni segments according to a Poisson distribution called thefertility model. Here
m = |M | is the number of states inM , n =

∑m
i=1 ni = |S| is the total number of

segments generated from them states.

2. The alignment modelP (A = a1, ..., an | S = s1, ..., sn, M = q1, ..., qm) follows a
uniform distribution. Hereaj is the index of the state inM that thej-th segment is
aligned to. In other words, according toA, segmentsj is aligned to the stateqaj .

3. P (L = l1, ..., ln | A = a1, ..., an, S = s1, ..., sn, M = q1, ..., qm) ≈
∏n

j=1 n(lj | qaj ),
i.e., the length of a segment only depends on the state it is aligned to.

4. P (W | L, A, S, M) ≈
∏n

j=1

∏lj
k=1 p(wjk | qaj ), i.e., each word in a segment is

generated with the dependency on the state which the segmentis aligned to; herewjk

is thek-th word in segmentsj , which has lengthlj .

Given the above assumptions,

P ( W, L, A, S | M)
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= P (S | M)P (A | S, M)P (L | A, S, M)P (W | L, A, S, M) (1.15)

=





|M|
∏

i=1

e−λqi λni
qi

ni!


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n
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∏
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In Eq. (1.16), the second factor is the permutation (alignment) probability, which is the
inverse of the multinomial coefficient. Eq. (1.18) distributes theλ’s inside the second
product1. In Eq. (1.19), r(l, s | q) , λqn (l | q)

∏l
k=1 p(wjk | q) is proportional to the

probability that a segments = wj1, ..., wjl is generated from the stateq. In this form, one
can sum over all possible alignmentsA in polynomial time:

P (W, L, S | M) =
∑

A

P (W, L, A, S | M)

=
∑

A

1

n!

|M|
∏

i=1

e−λqi

n
∏

j=1

r(lj , sj | qaj ) (1.20)

The last step above can be shown by algebraic operations.
The Expectation-Maximization (EM) algorithm is used to estimate the parameters in the

model, and a dynamic programming algorithm is applied to search for the meaning according
to

M̂ = arg max
M

P (W | M)P (M) = argmax
M

∑

S,L

P (W, L, S | M)P (M) (1.21)

with marginalization over all possible segment sequencesS and the length for the segments,
L.

2+1 Level SLU Model
In the lexicalization model we have discusses so far, a state(attribute) is assigned to each
word in an utterance, such that the utterance can be segmented into a sequence of attributes.
From this a semantic representation as in Figure 1.12 can be constructed, where the original
text of a segment specifies the value of the slots in the semantic frame. The text is often not
in the canonical form as in Figure 1.3. It often needs a separate rule-based post-processing
process to derive the normalized slot values from the text.

1Note that
∑|m|

i=1
ni = n.



24 Semantic Frame Based Spoken Language Understanding

Lefèvre (2007) introduces a 2+1 SLU model that integrates the normalization process in
the lexicalization model. Here the number “2” stands for thesemantic prior model and the
concept model, which is the traditional lexicalization model that generates the lexical string
from the concept. “1” stands for the additional model that treat the normalized attribute
values as a hidden variables. Ideally, a decoder can jointlyfind the concept sequence and
the normalized value sequence according to the following decision rule:

Ĉ, V̂ = argmax
C.V

P (C, V | W ) = arg max
C.V

P (W | C, V )P (V | C)P (C) (1.22)

Here the lexicalization modelP (W | C, V ) depends not only on the attributeC, but also on
the normalized value ofC, V . However, the complexity of this decoding process is too high
to allow an efficient algorithm, a two step “2+1” decoding process is adopted instead. In the
first step, like the other frame-based SLU models we have reviewed, the semantic prior model
and the concept model is applied to obtain the concept segmentation according to

Ĉ = argmax
C

P (C | W ) = arg max
C

P (W | C)P (C) (1.23)

whereP (C) is the flat attribute n-gram semantic prior model, andP (W | C) is the attribute
dependent n-gram lexicalization model. Both of them are reviewed earlier. In the second,
bothW and the attribute segment sequencesC are observed, and̂V can be found according
to

V̂ = arg max
v

P (W | Ĉ, V )P (V | Ĉ)P (Ĉ) (1.24)

To further simplify the decoding process, the attribute names inC in Eq. (1.23) and (1.24) do
not include the specifiers in the MEDIA semantic representation. The specifiers are assigned
to the concept sequence in a later stage with a conditional sequential labeling model, which
we will review in Section 1.3.4.

Model Training

Maximum likelihood (ML) estimation can be used to estimate parameters in both the
semantic prior model and the lexicalization model. In supervised training, if each word
is labeled with the state it belongs to, as in CHRONUS (Pieraccini and Levin 1993) and
the Hidden Understanding Model in (Miller et al. 1994), thenboth Markov transition
probabilities and the state-conditioned n-gram models canbe directly estimated from the
data by simply counting the relative frequencies. However,fully annotated training data
are expensive to obtain. It is desirable to label only the thewords that carry the important
semantic information, for example, only the slot filler words. In such a case, the state
labels for many words are hidden. The Expectation-Maximization algorithm can be applied
to estimate the parameters. Section 1.3.2 presents a case study of the statistical learning
with the HMM/CFG composite model, a generative model assisted by the domain/linguistic
knowledge.

Implementation of the Generative Models

Many generative models are implemented with standard toolkits like the stochastic finite
state transducers (SFST) (Raymond and Riccardi 2007) or thegraphic models (Bilmes and
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Figure 1.16 Graphic model representation of the DBNs for SLU. Left: the DBN used in first step
decoding, in which the words are aligned to the concepts. Right: the DBN for second step decoding, in
which the concepts and words are observed, and the normalized values for the concepts are identified.
(Courtesy of Fabrice Lefèvre)

Zweig 2002). For example, each SLU component can be implemented as a SFST, and the
SLU system can be built by composing the component SFSTs. Raymond and Riccardi
(2007) shows a SFST implementation of a generative model. The lattice from an ASR
is represented by a stochastic finite state machine (SFSM)λW . It uses an n-gram as the
lexicalization model for “concepts”, which are slots or a null attribute that models the carrier
phrases connecting the slots. N-gram can be represented by aSFSM as well, as described
in (Riccardi et al. 1996). An n-gram SFSM for a concept can be turned into a SFST by
outputting the accepted words together with the concept’s name. The union of all the SFSTs
for all concepts forms the lexicalization modelλw2c that maps words to concepts. Finally, a
statistical conceptual language model is used as the semantic prior model. The SFST model
λCLM is flexible enough to implemented different semantic prior models. In the case in
(Raymond and Riccardi 2007), the conceptual language modelis used to compute the joint
probabilityP (W, M) instead ofP (M):

P (W, M) =

k
∏

i=1

P (wi, ci | hi) (1.25)

whereM = c1, c2, . . . , ck is a sequence of concepts,W = w1, w2, . . . , wk is a sequence of
words, andhi = wi−1ci−1, wi−2ci−2 is the trigram history of word/concept pairs. The SLU
model is thus a SFST composition:

λSLU = λW ◦ λw2c ◦ λCLM (1.26)

The generative models can also be easily implemented with the general purpose graphic
model toolkit. For example, researchers from Université d’Avignon used Dynamic Bayesian
Networks (DBNs) (Lefèvre 2007; Meurs et al. 2009) to implement generative SLU models.
The aforementioned “2+1 SLU” model can be represented with the graphic models in
Figure 1.16, which is implemented with the generic graphic model toolkit GMTK (Bilmes
and Zweig 2002) and the language model toolkit SRILM (Stolcke 2002).
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1.3.2 Integrating Knowledge in Statistical Models – A Case Study of the
Generative HMM/CFG Composite Model

One disadvantage of a purely data-driven, statistical SLU approach is the requirement
of a large amount of training data. To overcome this problem,many systems utilize a
preprocessing step to identify the “superwords” from the input stream with pattern matching.
This step includes (a) replacing the words in a semantic class with the class name; e.g.,
“Seattle” and “Boston” are replaced with the superword “cityname”; and (b) replacing a
word sequence that matches a regular expression with a superword; e.g., “one hundred twenty
five” is replaced with the superword “number”.

Two problems arise, however, with this traditional solution:

1. As it will be discussed later, it is beneficial to use the SLUmodel as the language model
for speech recognition. However, with actual words being replaced by the superwords,
many of these are modeled with complicated CFGs instead of a word list as in class-
based language models (Brown et al. 1992; Kneser and Ney 1993), the model can no
longer be used for speech recognition.

2. The “superword” solution does not handle ambiguities gracefully. Although a
sophisticated preprocessor can produce a lattice that includes ambiguous tagging of
the superwords, they are not fairly evaluated by the understanding model. For example,
in “Schedule a meeting tomorrow ten to eleven”, the phrase “ten to eleven” may be
ambiguously tagged as “time” as in the interpretation “10:50” or “time to time” as in
the interpretation “from 10:00 to 11:00”. Since the phrase is treated as one superword in
the first interpretation but three words in the second interpretation, only one transition
and one emission probability need to be applied for the first interpretation, while
multiple transition and emission probabilities have to be applied for the second one.
Therefore, the SLU model will be biased toward the first interpretation.

This section presents a case study of the HMM/CFG composite model. The case study
serves two purposes. First, it shows an effective way to seamlessly integrate the domain-
dependent knowledge in a data-driven, statistical learning framework to improve the SLU
performance. Second, it describes the application of important optimization algorithms for
the generative models in SLU, in particular, the EM algorithm, with rigorous mathematic
derivations – until now, we have mentioned the EM algorithm several times without detailed
descriptions.

HMM/CFG Composite Model

Both problems mentioned above can be attributed to the fact that the preprocessing step is not
modeled statistically as an integral part of the SLU model. The lack of information about the
preprocessing model makes the statistical SLU model unableto predict the words for speech
recognition, and it prohibits the model from properly normalizing the probabilities because
the actual length of the segment replaced by the superword isunknown to the SLU model. An
HMM/CFG composite lexicalization model has been introduced in (Wang and Acero 2003a),
which we review here, to aim at solving these problems. This model uses the same semantic
prior for hierarchical Markov topology as in Eq. (1.10). Theunderlying state corresponding to
a slot in the semantic frame is expanded into a preamble-filler-postamble three state sequence
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City DatePreDCity PostDCity PreDate PostDate DaCA 1.0 1.0 aBD1.0 1.0aABC

ondeparting from Boston Christmas Eve

A B

: n-gram    :PCFG

Figure 1.17 State alignment for the phrase “departing from Boston on Christmas Eve” according to
the topology in Figure 1.14. The original states A and B are expanded to three states.

(Figure 1.17). The preamble and postamble serve as the contextual clue for the identity of the
slot, while the slot filler decides its value. The lexicalization model follows Eq. (1.13), similar
to CHRONUS and the Hidden Understanding model. The differences here include:

1. The HMM/CFG composite model uses either n-gram models or probabilistic context-
free grammars (PCFGs) forP (ϕ | q). If q is a state corresponding to a slot filler,
a PCFG is used forp(ϕ | q). The PCFG embeds the domain-specific and domain-
independent knowledge, like a city-name list and a date grammar. The CFG rules
can be populated with database entries or pre-built in a grammar library for domain-
independent concepts, for example, CFG rules for date and time. The lexicalization
of other states is modeled with the n-grams. Figure 1.17 shows the state alignment
for an example phrase according to the network topology in Figure 1.14. Note the
introduction of the preamble and postamble states does not change the semantic prior
model, because the transition probabilities from the preambles and to the postambles
are always 1.0.

2. The training data for the composite model is not required to be fully annotated – not
every word is associated with a state. Instead, only a high level semantic annotation is
required, which labels the slots of semantic frames. For example, the utterance “show
flights departing from Seattle flying to Boston on Christmas Eve” is labeled as in
Figure 1.12. The words without explicit labels, for example, “on”, may be associates
with different states in the topology, for example, either “PostDCity” or “PreDDate”
in Figure 1.17. Because the alignments are hidden for those unmarked words, EM
algorithm (Dempster et al. 1977) needs to be applied for model training.

Formally, the lexicalization probability in this composite model is

P (W | M) =
∑

π=ϕ1,...,ϕm

P (π | q1, ..., qm) =
∑

π=ϕ1,...,ϕm

m
∏

i=1

Pqi (ϕi | qi) (1.27)

HerePq is an n-gram model ifq is a preamble or a postamble state, or a PCFG ifq is a slot
filler. It is possible that for someq 6= r, Pq = Pr. For example, the PCFG for “cityname” are
shared by the fillers for the DCity and ACity slots.

Modeling slot fillers with PCFG has another advantage – sincethe slot fillers are the
bearers of semantic information, the capability of semantic interpretation of PCFG introduced
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by the semantic interpretation tags allows compositional construction of normalized semantic
representation. For example, both “two fifteen PM” and “quarter past two in the afternoon”
may have the same semantic representation like

<PreciseTime>
<TimePoint>2:15</TimePoint>
<TimeOfDay>PM</TimeOfDay>

</PreciseTime>

such that application developers do not have to design an extra post-processing step to
specifically process the two literally different phrases.

Parameter Estimation

The composite model can be formalized as(S, A, G), whereS is a finite set of states,A is
the state transition probability distributions, andG is a set of emission grammars associated
with the states.S is determined by the semantic frame. Parameters ofA and the n-gram
parts ofG have to be estimated from the manually annotated training data as shown in
Figure 1.12, in which only the semantic salient information, i.e., frames and slot fillers, is
marked. The annotation determines the state sequence in themodel topology2, as illustrated
by Figure 1.17. Therefore, the counts of state transitions can be collected directly, and the
ML estimation is applied for the state transition probabilities. Here a prior countc is used to
smooth the transition distributions, which can be optimized with held-out data. To estimate
the lexicalization parameters, one possibility is to extend the Forward-Backward algorithm
used in discrete HMM training (Rabiner and Juang 1993). Notethat in discrete HMM
training, the posterior

γt(q) = Pφ(qt = q | W ) =
αt (q)βt (q)

∑

q′ αt (q′) βt (q′)
(1.28)

can be calculated with the Forward-Backward algorithm. Andthe emission probability can
be then estimated by:

bq(w) =
∑

t:wt=w

γt(q)

/

T
∑

t=1

γt(q) (1.29)

When a segment of words can be generated from a single state and n-gram is used to model
this generation process, the Forward-Backward algorithm can be extended. Using bigram as
an example, the posteriorξt(q, r) = P (qt−1 = q, qt = r | W ) can also be calculated with the
Forward-Backward algorithm:

ξt(q, r) = P (qt−1 = q, qt = r | W )

2Note that some states may be a dummy state that emits an empty string.
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=
αt−1 (q) t(q, r, wt−1)Pr (wt | h(q, r, wt−1)) βt (r)

∑

q′

∑

r′ αt−1 (q′) t(q′, r′, wt−1)Pr′ (wt | h(q′, r′, wt−1)) βt (r′)
(1.30)

h(q, r, w) =

{

<s> when q 6= r
w when q = r

(1.31)

t(q, r, w) =

{

Pq(</s> | w)aqr when q 6= r
1 when q = r

(1.32)

There are several differences from the standard HMM training here. First, the emission
probability now depends onh(q, r, wt−1), the history of the previous word from the same
state or the context cue “<s>” for the initial word in a segment. Second, in the segment
model there is no self-loop transition at a state. The generative process stays at the same
state unless the end of the segment is predicted by the bigrammodel for the state. This
segment ending probability must be included in the transition probabilityt(q, r, wt−1) when
a state transition is made. The computation of the forward and backward probabilities,αt (q)
andβt (q), should be changed accordingly. With the posteriorξt(q, r) defined, the bigram
probability can be obtained by

Pq(v | w) =

∑

t:wt−1=w,wt=v ξt(q, q)
∑

t:wt−1=w ξt(q, q)
(1.33)

for w 6= <s>, and

Pq(v | <s>) =
γ1(q)δ(w1, v) +

∑

r 6=q

∑

t:wt=v ξt(r, q)

γ1(q) +
∑

r 6=q

∑

t ξt(r, q)
(1.34)

whereδ(w, v) = 1 if w = v and0 otherwise.
This solution is complicated to implement, given all the boundary conditions in

h(q, r, wt−1) and t(q, r, w), especially with higher order n-grams. One simpler solution,
given the fact that many n-gram training and smoothing implementations are already
available, is to obtain all the stringsϕ that stateq can generate, obtain the countN(q, ϕ),
i.e., the number of times thatq generatesϕ, and then compute the bigram probability with
the standard ML estimation:

Pq(wk | wk−n+1, ..., wk−1) =

∑

ϕ N(q, ϕ)C(wk−n+1, ..., wk;ϕ)
∑

ϕ N(q, ϕ)C(wk−n+1, ..., wk−1;ϕ)
(1.35)

HereC(ω; ϕ) is the number of times that word sequenceω occurs inϕ.
When training samples are fully annotated, i.e., every wordis marked with its aligned state,

N(q, ϕ) can be obtained by simple counting. When only partial annotation is available, as
illustrated by the example in Figure 1.12,N(q, ϕ) can be viewed as the expected fractional
count the stateq generate the stringϕ. Notice that the annotation pegs the slot fillers to the
slot states, which restricts the alignments of the remaining words and states, so a subsequence
of the observationW (e.g.,W =“departing from”) can only align to a state subsequenceQ
(e.g.,Q =“PostSubject PreFlight PreACity” in Figure 1.12). The counts of these subsequence
alignments,c(Q, W ), can be empirically collected from all the annotated training examples.
Then the state-specific n-gram parameters are estimated with the EM algorithm (Dempster et
al. 1977). In the E-step,N(q, ϕ), the fractional count that stateq is aligned to the substringϕ,
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is computed with the current model parameters (initially based on the uniform distribution).
In the M-step, Eq. (1.35) is applied to estimate the n-gram probability (with proper smoothing
such as deleted interpolation (Jelinek and Mercer 1980)]).

To computeN(q, ϕ), the expected count for stateq to generate segmentϕ, note that

N(q, ϕ) =
∑

Q,W

c(Q, W )
∑

π

Pφ(π | Q, W )c(q ↑ ϕ; π, Q, W ) (1.36)

herec(Q, W ) is the number of occurrences that the state sequenceQ = q1, q2, ..., qm co-
occurs with the word sequenceW = w1, ..., wk according to the partially labeled training
data.π is a segmentation that breaksW into m non-overlapping segments, each segment
corresponds (aligns) to a state inQ. The segment may be an empty string.c(q ↑ ϕ; π, Q, W )
is the number of times that stateq appears inQ and aligns to the substringϕ according to the
segmentationπ.

The summation over all possible segmentation in Eq. (1.36) makes it difficult to
computeN(q, ϕ) efficiently. To remove the summation, note that becausePφ(π, Q, W ) =
∏

q,ϕ Pφ(ϕ | q)c(q↑ϕ;π,Q,W ),

∂Pφ(Q, W )

∂Pφ(ϕ | q)
=

∂
∑

π Pφ(π, Q, W )

∂Pφ(ϕ | q)

=
∂

∑

π

∏

(q,ϕ)∈π Pφ(ϕ | q)c(q↑ϕ;π,Q,W )

∂Pφ(ϕ | q)

=
∑

π

c(q ↑ ϕ; π, Q, W )
∏

q′,ϕ′ Pφ(ϕ′|q′)c(q′↑ϕ′;π,Q,W )

Pφ(ϕ | q)
(1.37)

Rearranging Eq. (1.37), we obtain

∑

π

Pφ(π | Q, W )c(q ↑ ϕ; π, Q, W ) =
Pφ(ϕ | q)

Pφ(Q, W )

∂Pφ(Q, W )

∂Pφ(ϕ | q)
. (1.38)

On the left of (1.38) is the summation that occurs in the expected count. On the right there
is no summation at all. The problem now becomes efficiently computingPφ(Q, W ) and
∂Pφ(Q,W )
∂Pφ(ϕ | q) . For that purpose, defineαk(i) = Pr(π = ϕ1, ..., ϕm ∧ ϕk = ..., wi; W | Q) to
be the probability of all the segmentationsπ that align the end ofqk in Q to thei-th word
in W , andβk(i) = P (π = ϕ1, ..., ϕm ∧ ϕk = wi...; W | Q) to be the probability of all the
segmentations that align the beginning ofqk to thei-th word inW . Then

Pφ(Q, W ) = αm(n)Pφ(Q)

= Pφ(Q)
∑

ij

αk−1(i − 1)Pφ(wi, ..., wj | qk)βk+1(j + 1), ∀k. (1.39)

According to (1.39),

∂Pφ(Q, W )

∂Pφ(ϕ | q)
= Pφ(Q)

∑

k : qk = q
ij : ϕ = wi . . . wj

αk−1(i − 1)βk+1(j + 1) (1.40)
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Combining Eqs. (1.38), (1.39) and (1.40), the expected count

N(q, ϕ) = Pφ(ϕ | q)
∑

Q,W

c(Q, W )

α|Q|(|W |)

∑

k : qk = q
ij : ϕ = wi . . . wj

αk−1(i − 1)βk+1(j + 1)

(1.41)
αk(i) andβk(i) can be computed efficiently with dynamic programming according to Eq.
(1.42):

α0(i) = Pφ(w1, ..., wi | q0);

αk(i) =
∑

r≤i

αk−1(r)Pφ(wr+1, ..., wi | qk);

βm(i) = Pφ(wi, ..., wn | qm);

βk(i) =
∑

r≥i

βk+1(r)Pφ(wi, ..., wr−1 | qk) (1.42)

HerePφ(wi, ..., wj | q) can be obtained according to the n-gram (initially with the uniform
distribution) specific to stateq. Whenr = i, Pφ(wr+1, ..., wi | q) = Pφ(</s>|<s>; q) is the
probability to generate an empty string fromq.

The performance of the HMM/CFG Composite Model

The HMM/CFG composite model balances the trade-off betweenrobustness and
the constraints on over-generalizations/ambiguities with the different models for the
preambles/postambles and the slot fillers. The CFG model imposes a relatively rigid
restriction on the slot fillers, which are more crucial for correct understanding and less
subject to the disfluencies because they are semantically coherent units. The fillers are often
domain specific and can be obtained from the application database, like the city names and
airport names in the ATIS domain; or they are common domain-independent concepts like
phone number, date, time, which are already modeled in a grammar library; or they can be
automatically generated according to some high level description like a regular expression
for an alphanumeric concept (Wang and Acero 2006). The non-slot states serve as the “glue”
that sticks different slot fillers together. This type of inter-concept language is normally
domain dependent, hard to pre-build a model for, and subjectto more disfluencies. It varies
significantly across different speakers. The n-gram model is more robust and thus suitable
for this sub-language. Furthermore, the knowledge introduced by the CFG sub-model greatly
compensates for the data sparseness problem (e.g., it is very unlikely to see all city names
occur in all context in the training data).

Figure 1.18 plots the slot error rate of the HMM/CFG composite model with the ATIS 93
category A test set, with respect to the amount of the training data it used. Here the accuracy
of the model trained with half of the 1993 ATIS3 training datais close to that of the model
trained with all the 1993 data (˜1700 sentences). With all the training data, the end-to-end
error rate is 5.3%, which is comparable to the best manually developed grammar, and better
than the best data-driven statistical model that used all the ATIS2 and ATIS3 training data
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Figure 1.18 ATIS end-to-end system error rate on text input vs. trainingset size for the HMM/CFG
composite model.

(over 6000 sentences). The inclusion of domain knowledge inthe statistical model reduced
requirement on training data.

1.3.3 Use of Generative Understanding Models in Speech Recognition

Sub-optimality of Two-pass SLU
Eq. (1.6) assumes that the sentence or word sequenceW is the observation. This is only true
for typed-in language. However, for spoken language understanding, the observation is the
acoustic observation sequenceO. Hence the optimal meaning for a speech utteranceO is

M̂ = argmax
M

P (M | O) = arg max
M

P (O | M)P (M) (1.43)

Eq. (1.43) is often implemented with a two-pass approach. Inthe first pass, a “pseudo”
word observation sequencêW = argmax

W

P (W | O) = arg max
W

P (O | W )P (W ) is obtained

with maximuma posterioriprobability by the recognizer. In the second pass, the correspond-
ing meaningM̂ is extracted fromŴ by pluggingŴ into Eq. (1.6):

M̂ = argmax
M

P (M | Ŵ ) = arg max
M

P

(

M | argmax
w

(P (O | W )P (W ))

)

= argmax
M

P (M)P

(

arg max
w

(P (O | W )P (W )) |M

)

(1.44)

An alternative to this two-pass solution is shown in Eq. (1.45):

M̂ = arg max
M

Pr(M | O) = arg max
M

P (O | M)P (M)

= arg max
M

∑

W

P (O, W | M)P (M) (1.45)

Here the understanding modelP (W | M)P (M), which can be considered as meaning-
specific “language model”, is directly used in place of the generic language model in ASR.
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The two-pass solution is simpler from the engineering pointof view, and it runs faster
because there is no need to keep separate search paths with the same prefix strings but
different semantic structures in speech decoding. However, it is a sub-optimal solution
because the dependency link betweenO andM via W is broken. Instead,O is generated via a
different language modelP (W ) and acoustic modelP (O | W ) that have nothing to do with
M. In an extreme case we may haveP (W ) = 0 wheneverP (W | M) 6= 0, so no optimal
solution can be found at all. In research spoken dialog systems, this problem has often been
heuristically addressed by performing SLU on the n-best outputs from a recognizer. Another
disadvantage of the two-pass solution lies in the difficultyto adapt to changes. If new cities
are added into a database, or a new type of services is introduced, the language model in a
two-pass system has to be retrained unless a class-based language is used.

Using an Understanding Model as the LM for Speech Recognition

For a knowledge-based system that uses CFG for SLU, it may appear to be easy to use the
SLU model for ASR since many speech recognizers take PCFGs directly as the language
model. Even with a non-CFG formalism like the unification grammar, they can be converted
to a CFG for ASR (Moore 1998; Rayner et al. 2001). However, simplicity remains only at the
engineering level. A fundamental problem is that the knowledge-based models are generally
not robust to disfluencies in spontaneous speech and recognition errors. They depend on the
robust mechanism of the parser in the understanding component to deal with the inputs not
covered by the model. This robust mechanism is not availablein the speech recognizers.

In statistical SLU, robustness is built into the model itself through proper smoothing. The
remaining problems have more of an engineering nature – how can a statistical model like
the HMM/CFG composite model be converted into a format that arecognizer can take as a
language model. In (Wang and Acero 2003b) the HMM/CFG composite model is converted
to a CFG as follows: the backbone Markov chain is basically a statistical finite state machine,
which is a sub-class of the PCFG. The efficient conversion of the n-gram observation model
follows the work in (Riccardi et al. 1996), and the CFG observation model is used directly.
The composite model, in the format of PCFG, was applied underthe framework of Eq. (1.45),
and the results were compared with the two-pass recognition/understanding paradigm under
the framework of Eq. (1.44), where a domain-specific trigramwas used as the language model
P (W ) in speech recognition and the HMM/CFG composite model was used for the second
pass understanding.

Table 1.1 shows the findings with a commercial decoder and a research decoder. For the
commercial decoder, even though the composite model’s worderror rate is over 46% higher
than the trigram model, its SLU error rate (again measured asthe slot insertion-deletion-
substitution rate) is 17% lower. With the research decoder that is less aggressive in pruning,
the word error rate of the HMM/CFG model is about 27% higher than the trigram model.
However, the SLU error rate is still marginally lower.

The results clearly demonstrate the sub-optimality of separating the models for ASR
and SLU. In this approach, the trigram is trained to optimizethe likelihood of the
training sentences. If the test data is drawn from the same distribution, the trigram model
assigns higher likelihood to the correct transcriptions and hence reduces the word error
rate. On the other hand, the objective of the HMM/CFG composite model training is to
maximize the likelihood of the observed semantic representations. Thus the correct semantic
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Table 1.1 The ASR word error rate and the SLU error rate (slot
ins-del-sub) of the trigram model (2-passes) and the HMM/CFG
composite mode (1-pass). “Transcription” column shows theSLU
error rate on the true text input. Both automatic and manual
transcriptions were sent to the same HMM/CFG model for a
second-pass SLU.

Decoder Trigram HMM/CFG Transcription

Commercial WER 8.2% 12.0%
Decoder SLUER 11.6% 9.8% 5.1%

Research WER 6.0% 7.6%
Decoder SLUER 9.0% 8.8% 5.1%

representations of the test sentences will be assigned higher probability. It is important to
note that the trigram model used all the ATIS2 and ATIS3 training data, while the HMM/CFG
composite model only used the 1993 ATIS3 training data. Although the comparison is not
fair to the HMM/CFG composite model, it is still meaningful because unannotated training
data is much easier to obtain than the annotated data. When only the 1700 training samples
were used for LM training, the two-pass system had 10.4% WER and 13.1% SLUER with
the commercial recognizer, and 7.5% WER and 10.2% SLUER withthe research recognizer.

The results from other research work also provide evidence for the importance of keeping
the dependency link between the acoustics and the semantics. In (Riccardi and Gorin 1998),
a language model that interpolated the word n-gram with n-grams containing semantically
salient phrases was used for an automatic call-routing (ACR) task. A slight word accuracy
improvement from the new language model resulted in a disproportionately substantial
improvement in understanding. In (Chelba et al. 2003), a single pass ASR/ACR system, in
which the ACR statistical model was used as the language model for ASR as well, resulted
in worse word error rate but better call classification accuracy. In (Estève et al. 2003), a
concept decoder that adopted a model similar to the HMM/CFG model also yielded better
understanding results.

1.3.4 Conditional Models

The statistical models for SLU we have introduced so far are all generative models – the
semantic structureM is first generated according to the semantic prior modelP (M), from
which the observationW is generated according toP (W | M), which an be modeled by the
different lexicalization processes we just described.

Conditional models are non-generative. In a conditional model, the states (which encode
the meaningM ) are directly conditioned on the observation. For SLU, Conditional Random
Fields (CRFs) or Hidden State Conditional Random Fields (HCRFs) are commonly used
conditional models. With CRFs or HCRFs, the conditional probability of the entire state
(label) sequencey given the observation sequence is modeled as an exponential(log-linear)
distribution, with respect to a set of featuresfk(y,x). The features are functions of the
observation sequencex and the associated label sequencey:
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Figure 1.19 Graphic model representations for HMMs (generative model)and CRFs (conditional
model). A generative model is a directed graph that points tothe direction of the generative process,
and observations are generated frame by frame in a uniformedway. Conditional models are represented
by undirected models, where the entire observation sequence o is observable for every states in the
model.

P (y | x; Λ) =
1

Z(x; Λ)
exp

{

∑

k

λkfk (y, x)

}

(1.46)

HereΛ = {λk} is a set of parameters. The value ofλk determines the impact of the feature
fk(y,x) on the conditional probability.Z(x; Λ) =

∑

y exp {
∑

k λkfk (y, x)} is a partition
function that normalizes the distribution. Given a set ofm labeled training examples (x1, y1)
. . . (xm, ym), the model is trained to optimize the following objective function:

L(Λ) =
1

m

m
∑

i=1

log P (yi | xi; Λ) −
1

2σ2
‖Λ‖

2

= EP̂ (x,y) log P (y | x; Λ) −
1

2σ2
‖Λ‖2 (1.47)

whereP̂ (x, y) stands for the empirical distribution of the labeled training samples.
The second term in Eq. (1.47) regularizes the parameters to keep them from taking extreme

values, thus prevents the model from over-fitting the training data. Note that the objective
function is a convex function, so a single global optimum exists.

The CRF in Eq. (1.46) is unconstrained in the sense that the feature functions are defined
on the entire label sequencey. Because the number of all possible label sequences is
combinatorial, the model training and inference of an unconstrained CRF is very inefficient.
Because of that, it is common to restrict attention to the linear-chain CRFs (Lafferty et al.
2001). The linear chain CRFs impose a Markov constraint on the model topology, and as a
consequence, restrict the feature functions to depend onlyon the labels assigned to the current
and the immediately previous states, in the formf(yt−1, yt, x, t). The restrictions enable the
application of efficient dynamic programming algorithms inmodel training and inference
– yet still support potentially interdependent features defined on the entire observation
sequencex.

Figure 1.19 shows the difference between the HMMs and the linear chain CRFs in graphic
model representations. First, since HMMs are generative models, the graph is directed, which
points to the direction of generative process. States are chosen depending on the previous
states, and observations are generated at the states. CRFs,on the other hand, are represented
by undirected graphs since they are direct, non-generativemodels. Second, observations in
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HMMs are generated one at a time in a uniformed way, while in CRFs the entire observation
sequence is given, so at each state it can employs features that depends on the entire
observation sequence.

When the state sequencey is not fully observable, as in the previous example where
only slot fillers are manually labeled and the remaining wordcan be aligned to different
preamble/postambles, HCRFs can be used. They treat the unknown state assignment as
hidden variables, and their features can be defined on these hidden variables. In this case,
the following conditional probability is used instead in the objective function in Eq. (1.47):

P (l | x; Λ) =
1

Z(x; Λ)

∑

y:y is consistent withl

exp

{

∑

k

λkfk (y, x)

}

(1.48)

where l is the partial label marked forx that only partially determines the state sequence
for x. The objective function sums over all legal state sequencesy that are consistent withl.
Because of this additional summation, the objective function is no longer convex inΛ.

The parametersΛ in CRFs or HCRFs can be optimized according to the objective function
with numeric algorithms like stochastic gradient decent orL-BFGS. Both of them use the
gradient of the objective function, which can be easily derived as

∂L(Λ)

∂λk

= EP̂ (x,y) [fk(x, y)] − EP̂ (x)P (y|x) [fk(x, y)] (1.49)

for CRFs and

∂L(Λ)

∂λk

= EP̂ (x,l)P (y|x,l) [fk(x, y)] − EP̂ (x)P (y|x) [fk(x, y)] (1.50)

for HCRFs. In other words, the gradient with respect to a feature weight is the difference
between the expected value of the feature given both the observation and the label sequence
and the expected value of the feature given only the observation and a modelP (y | x) trained
so far. These expected value can be collected with the forward-backward algorithm when the
linear-chain CRFs or HCRFs are used.

Compared with the generative models, conditional models have the following advantages:

1. A generative model wastes its capacity by modeling the generation of observations,
which in practice are always known. Because of that, severaldiscriminative training
algorithms like maximum mutual information (MMI) (Bahl et al. 1986) and minimum
classification error (MCE) (Juang et al. 1997) have been proposed. Conditional models,
on the other hand, are discriminative in nature – its objective function can only be
optimized by maximizing the posterior probability of the correct state sequence while
minimizing the posterior of the competing hypotheses.

2. The components of a generative model, such as the transition and emission
distributions, need to be a properly normalized probability density functions, even
though the only probability distribution we are interestedin for a SLU task isP (y | x).
This makes the model too restrictive. In contrast, CRFs models the entire state
sequence with the exponential model and the only restriction is thatP (y | x) forms
a proper probabilistic distribution. In the specific case ofHMM and CRF, if the same
features (transition and emission) are used, then the spaceof the HMM parameters
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list twa flights from washington to philadelphia
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null AirlineCode null null ACity null DCity

Figure 1.20 Frame-based SLU as a sequential labeling problem: words areassigned labels
representing their meaning.

values is limited to a subset of that of the CRF due to the constraints that is not relevant
to the objective function. This extra constraints may limitthe model’s discriminative
capability.

3. A generative model has uniform observation space for eachstate. It is very expensive
to expand the observation context at a state due to the curse of dimensionality – since
it needs to model the generative process for all possible such expanded context. In
contrast, since the observation are given in a conditional model, it can incorporate
interdependent, overlapping features only observed in thetraining data. The features
can be defined on the entire observation, as illustrated by Figure 1.19.

In a straightforward application of CRFs for the frame-based SLU, x consists of a
transcribed utterance, andy is the semantic label sequence assigned tox. Non-slot filler
words are assigned a null state, as illustrated by Figure 1.20.

Typical features used by the CRFs for SLU include the transition features, the n-gram
features, and the class membership (a.k.a. word list) features. The transition features model
the dependency among adjacent states, which capture the influence of context on the tag
assigned to a given word:

fTR
i,j (yt−1, yt, x, t) = δ(yt−1 = i)δ(yt = j) (1.51)

where i, j are states (labels) of the model.δ(e) = 1 when e = true and δ(e) = 0 when
e = false.

The n-gram features often include the unigramfUG
w,j and the bigramfBG

w,w′,j features to
capture the relation between the current state and the identity of the current (and previous)
words

fUG
w,j (yt−1, yt, x, t) = δ(xt = w)δ(yt = j) (1.52)

fBG
w,w′,j(yt−1, yt, x, t) = δ(xt−1 = w)δ(xt = w′)δ(yt = j)

wherew, w′ are words andj is a model state (label).
The class member features check if the current word is part ofan entry in the lexicon of a

syntactic or semantic class:

fSC
C,j (yt−1, yt, x, t) = δ (C . [x, t]) δ (yt = j) (1.53)

whereC is a class,C . [x, t] indicates that a member ofC is a substring ofx that covers
xt. j is a model state. Here the member ofC can be defined by either a phrase list, a finite
state machine (equivalently a regular expression) or a context free grammar. For example,
fSC

TIME,DTIME (yt−1, yt, x, t) = 1 when x = “I need to fly to Boston three o’clock in the
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1999dec.onchicagotodenverfromfly... 10th

1999dec.onchicagotodenverfrom... 10threturn ...

...

DEPART.MONTH

RETURN.MONTH

Figure 1.21 Example of long distance dependency in Air Travel data: the interpretation of “dec.”
depends on the word (pointed to by the arrows) beyond the range covered by the local features.
(Courtesy of Minwoo Jeong & Gary Geunbae Lee).

afternoon,” “three o’clock in the afternoon” is recognizedas a TIME expression,t ∈ [7, 11]
and the model is assigning the state DTIME to positiont.

In (Raymond and Riccardi 2007), this approach is compared with the SFST generative
model, using the same feature set – in this case, the transition feature depends not only
on the adjacent states but also on the words that the states are assigned to. It is found that
SFST is more robust when data is sparse and inconsistently labeled, while CRFs surpassed
SFST when more labeled data are available. However, directly porting the topology and
features of a generative SFST to a conditional model may not be the most useful thing to try.
Although it takes advantage of the discriminative nature ofthe model, the model’s capability
to incorporate interdependent, overlapping features are not leveraged. Jeong and Lee (2008)
shows a good example of such features introduced to improve the SLU accuracy. It noticed
that long distance dependency is an important issue in SLU, as illustrated by Figure 1.21.

To overcome this problem, Jeong and Lee (2008) introduces trigger features3. An element
a is atrigger for another elementb (a → b) if a is significantly correlated tob, andb is called
thetrigged element. Here an element can be a word, an attribute associated with aword (e.g.,
the part-of-speech tag of a word), or a model state.a andb forms atrigger pair. For example,
the trigger pair “return→ dec.” indicates that the currently observed word is “dec.” and there
is a word “return” in the observation that is at least two words away (long distance) before
the current word. The trigged element can be null (ε) when the identity of the current word
is not important. For example, “return→ ε” states that there is a word “return” that is long
distance away from the current word.

Given a trigger paira → b, a CRF feature function can be define on the pair:

fTRI
a→b,j,k(yt−1, yt, x, t) = δ(xt ∼ b)δ(∃t′<t−2xt′ ∼ a)δ(yt−1 = j)δ(yt = k) (1.54)

wherex ∼ a means that thex is consistent with the elementa – if a is a word, it means that
w = a. If a is an attribute like a POS tag, it means thatw is assigned the part-of-speecha.
x ∼ ε is always true. For the state variables,yi = ε is also always true – it means that the
feature does not care about the identity of a state.

Note that although by definition a trigger pair can be a pair ofmodel states separated by
a long distance, they can not be incorporated in a linear chain CRF because it breaks the
Markov assumption. Since the entire observation is known ina conditional model, this is not
a problem when the trigger pair is defined on the observation.

3Similar idea has been investigated in language modeling (Rosenfeld 1996).
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An example can illustrate the power of the trigger features.The feature

fTRI
return→ε,ε,RETURN.MONTH(yt−1, yt, x, t) (1.55)

is activated (has value 1) whent is at the position of the word “dec.” in Figure 1.21 and
the hypothesized state for the position is “RETURN.MONTH.”If this feature has occurred
in the training data, namely there is at least one training sample where a word labeled as
RETURN.MONTH is preceded by “return” long distance away, this feature will likely be
associated with a positive weight and help generalizing into other cases where the word
“return” precedes a month name, as in the example in Figure 1.21.

However, the use of the trigger features introduces anotherproblem. There are too many
potential trigger pairs that are observed in the training data – most of them may not satisfy the
requirement of strong correlation. If all those potential pairs are introduced into the model,
it will not only slow down the training speed, but also make the model easy to over-fit
the training data. Therefore a feature selection mechanismis necessary in this case. Jeong
and Lee (2008) uses a feature selection algorithm adopted and modified from the one in
(McCallum 2003). It is basically a greedy hill-climbing algorithm that iteratively tries each
possible individual feature, check how much gain it brings to the objective function of the
CRF when it is added to the model, and select the one that results in the most gain. This
is, again, a very expensive procedure since it needs to retrain the CRF for each addition of
features. However, the procedure can be approximated in several different ways to speed up
significantly. Detailed descriptions of the feature selection algorithms is beyond the scope
of this introductory book. Interested readers can find the relevant information in (McCallum
2003) and (Jeong and Lee 2008).

Figure 1.22 compares the recall-precision curve of the models with or without long
distance features with different types of inputs to the SLU components. It demonstrates
significant improvement on both text and speech (one-best ASR and n-best ASR) inputs.
The paper also compared the conditional models with the HVS generative model. Both CRFs
models with or without the long distance features outperformed the generative model.

Motivated by the success of the HMM/CFG composite model, Wang et al. (2006)
investigated the unified CFG/CRF model. To model the long distance dependency, it
introduces links between non-adjacent nodes in the graphical model, as illustrated by
Figure 1.23.

Note that the nodes are fully connected to each other in Figure 1.23. Exact model inference
via dynamic programming will no longer be possible if there is no additional constraint. CFG
comes to the rescue by introducing the additional constraint that such a long distance link is
only allowed between the random variablesyj andyk when they have the values representing
the same slot, and there is a CFG ruleR ∈ R(y), such thatR

∗
⇒ xj , . . . xk. HereR(y)

stands for the set of grammar rules that is compatible to the label y (e.g., “PreciseTime”
is compatible to the label “StartTime”). This is equivalentto introducing a feature of “no
compatible CFG rules (NCR)” to the model in Figure 1.23 whichalways has the weight
−∞:

fNCR
R,j (y, y′, x, j, k) = δ

(

S(y) 6= S(y′) ∨ @R ∈ R(y) : R
∗
⇒ xj , . . . , xk

)

(1.56)

where S(y) stands for the slot that the labely represents. This constraint of CFG rule
matching enables dynamic programming for model training/inference when the observation
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Figure 1.22 The recall-precision curves on Air Travel data used by the Communicator system
(Courtesy of Minwoo Jeong & Gary Geunbae Lee).
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Figure 1.23 The graphic model representation of the unified CFG/CRF model. The nodes are
interconnected to each other according to the spans of CFG rule coverage.

I twoneed tickets to washington dc

Number

Time State

City City

City

Figure 1.24 The observation includes a word sequence and the subsequences covered by CFG non-
terminals.

is chunk parsed into a lattice like the one in Figure 1.24, which consists of not only a word
sequencewτ

1 but also a list of CFG non-terminals (NT) that span differentsegments ofwτ
1 .

The task of SLU becomes to select a path from the lattice and assign a semantic label to a
segment – the label has to be consistent with a CFG nonterminal covering that segment. To
do so, the model must be able to resolve several kinds of ambiguities:
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Figure 1.25 Test set slot error rates (in %) at different training iterations. The top curve is for the flat
start initialization, the bottom for the generative model initialization.

1. Filler/non-filler ambiguity, e.g., “two” can either fill aNum-of-tickets slot, or its
homonym “to” can form part of the preamble of an ACity slot.

2. CFG ambiguity, e.g., “Washington” can be either a City or aState.

3. Segmentation ambiguity, e.g., [Washington] [D.C.] vs. [Washington D.C].

4. Semantic label ambiguity, e.g., “Washington D.C.” can beeither an ACity or a DCity.

In one setting, the same model topology and features of the HMM/CFG composite model
were directly ported into the CFG/CRF model. Because the state assignment for the non-slot
filler words were unknown (e.g., as shown in Figure 1.17, the word “on” could be assigned
either the PostDCity state (postamble of the departure cityslot) or PreDate state (preamble
of the Date slot)), HCRF was used for this model.

To model the popularity of different top level semantic frames in the air travel domain
like “ShowFlight,”, “GroundTransportation,” etc., the model also included theFrame prior
feature typefPR in addition to the commonly used transition and n-gram features introduced
earlier:

fPR
c (yt−1, y(t), x, t) = δ(t = 0)δ(Frame(y0) = c) (1.57)

hereFrame(y) stands for the frame of which the statey is a part. The conditionδ(t = 0)
ensures that the frame prior feature is only activated once for each utterance.

Figure 1.25 shows the test set slot error rates (SER) at different training iterations. With the
flat start initialization that set every parameter to 0 initially (top curve), the error rate never
comes close to the 5% baseline error rate of the HMM/CFG model. With the generative
model initialization that imported the model parameters ofa generative model to initialize
the conditional model parameters, the error rate is reducedto 4.8% at the second iteration,
but the model quickly gets over-trained afterward.

The failure of the direct porting of the generative model to the conditional model can be
attributed to the following reasons:

1. The conditional log-likelihood function is no longer a convex function due to the
summation over hidden variables. This makes the model highly likely to settle on a
local optimum. The fact that the flat start initialization failed to achieve the accuracy
of the generative model initialization is a clear indication of the problem.
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departing from boston on christmas eve
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Figure 1.26 The preamble-only labeling scheme: once the slots are marked in the simplified model
topology, the state sequence is fully marked, leaving no hidden variables.

2. In order to account for the words in the test data, the n-grams in the generative model
are properly smoothed with back-offs to the uniform distribution over the vocabulary.
This results in a huge number of parameters, many of which cannot be estimated
reliably in the conditional model, given that model regularization is not as well studied
as in n-grams.

3. The hidden variables make parameter estimation less reliable, given only a small
amount of training data.

An important lesson here is that we should never think generatively when applying the
conditional models. While it is important to find cues that help identify the slots, there is no
need to exhaustively model the generation of every word fromdifferent states in a sentence.
Language model smoothing may not be necessary since the taskof the model is no long to
assign a likelihood to an observation – it is unnecessary to waste the model’s capacity to
predict unseen observation events. The worst consequence of an unseen test n-gram is the
n-gram feature will not be used, while the model may still be able to make the right decision
based on the other available features. The distinction of preambles and postambles, which
was designed to sharpen the distribution of the generative model to improve the likelihood
(perplexity) of the observation, may also be unnecessary. Every word that appears between
two slots can be labeled as the preamble state of the second slot, as illustrated by Figure 1.26,
or all the null state, as illustrated in Figure 1.20. This labeling scheme effectively removes
the hidden variables and simplifies the model. It not only expedites model training, but also
prevents parameters from settling at a local optimum, because the objective function is convex
now.

To fully take advantage of the conditional models’ capability in discriminative training
and in incorporating interdependent overlapping features, the following types of features are
included in the model:

1. The first feature type,chunk coverage for preamble words, aims at correcting the
confusion between a slot filler state and a slot preamble state – it may be a side effect
of not modeling the generation of every word in a sentence. Suppose a preamble state
has never occurred in a position that is confusable with a slot states in the training
data, and a word that is part of the string covered by the CFG rule for the filler
of s is unseen in the training data. Then, the unigram feature of the word for that
preamble state has weight 0, and there is thus no penalty for mislabeling the word
as the preamble. The chunk coverage features detect the potential occurrence of this
confusion and informing the model thatxt, which is a potential slot filler, has been
labeled as a preamble.

fCC
NT (yt−1, yt, x, t) = δ(NT . [x, t])δ(IsPreamble(yt)) (1.58)
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2. The previous-slot contextfeature type tries to capture some of the long distance
dependency. This is based on the observation that the phrase“at two PM” in “ flight
from Seattle to Boston at two PM” and in “flight departing from Seattle arriving in
Boston at two PM.” has different interpretations, which depends on the identities of
the words (“to” versus “arriving at”) in the preamble of the ACity slots (“Boston”)
preceding the time expression4. Since the starting position of the previous slot is
unknown given then Markov assumption of the linear chain CRF, its preamble words
are approximated by the words in a window preceding the longest segment covered by
the CFG rules modeling the filler of the previous slot:

fPC
s1,s2,w ( yt−1, yt, x, t) =

δ(yt−1 = s1)δ(yt = s2)δ(w ∈ x
arg mini(NT (s1)→xt−1

i )−1

arg mini(NT (s1)→xt−1

i )−K
) (1.59)

hereK is a window size,NT (s) stands for the CFG rule name for the filler of the slot
represented by the states, xj

i = xi, . . . , xj , andargmini(NT → xj
i ) represents the

minimum index (the leftmost position) such that the substring from this position toj
is covered by the CFG ruleNT .

Compared to the trigger features, this feature’s capability of modeling long distance
dependency is limited to the previous slot’s context only. However, since there are
only a small set of words for the previous slots’ preambles from the training data, there
is no need for the expensive feature selection procedure.

3. Thechunk coverage for slot boundaryfeature type is introduced to penalize erroneous
segmentation, such as segmenting “Washington D.C.” into two separate “City” slots
(or a “State” followed by a “City”). It is activated when a slot boundary is covered by
a CFG non-terminalNT, i.e., when words in two consecutive slots (“Washington” and
“D.C.”) can also be covered by one single CFG nonterminal:

fSB
NT (yt−1, yt, x, t) = δ(NT → . . . xt−1xt . . .)δ(yt−1 is filler end)

δ(yt is filler start) (1.60)

In Wang et al. (2006), this feature type is tired with thechunk coverage features for
preamble words, and does not introduce any new parameters.

Table 1.2 1 shows the number of new parameters and the slot error rate (SER) on the test
data, after each new feature type has been cumulatively added to the model. The new features
improve the prediction of slot identities and reduce the SERby 21%, relative to the generative
HMM/CFG composite model. The additional features, again, are critical in reducing the slot
error rate.

While CRF is often characterized as a sequential labeling model, it is important to note
that such a model can perform semantic frame classification (picking the correct frame for an
utterance) and slot filling simultanoutly. In the unified CFG/CRF model, this is achieved by

4Note that the preceding slot is ACity in both cases, hence thetransition feature is not able to differentiate these
two cases.
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Table 1.2 Number of additional parameters and the slot error rate after each
new feature type has been added to the model cumulatively.

Feature Type Number of Parameters SER

Frame Prior 6
+State Transition +1377 18.68%
+Unigrams +14433 7.29%
+Bigrams +58191 7.23%
+Chunk Coverage of Preamble Word +156 6.87%
+Previous-Slot Context +290 5.46%
+Chunk Coverage of Slot Boundaries +0 3.94%

y1 yn

x

y2 yn-1...

z

y1 yn

x

y2 yn-1...

z

(a)                                           (b)

Figure 1.27 Graphical model representation of the joint model for frameclassification and slot filling
with CRFs. (a) The model used in the unified CFG/CRF model and (b) a general “triangular chain
CRF” model.

using frame-specfic slot labels and the introduction of the frame prior feature in Eq. (1.57),
which effectively results in the graphic model illustratedby Figure 1.27(a)5, which can be
viewed as a special factorization of the more general model depicted by Figure 1.27(b). Jeong
and Geunbae Lee (2008) named Figure 1.27(b) the “triangularchain CRF”, and introduced a
couple of other factorizations of it for the frame-based SLU.

In fact, this type of conditional model for joint classification/sequential labeling
is a common practice in many other speech processing applications. For example,
Gunawardanaand et al. (2005) used HCRF for phone classification, where hidden states are
aligned (tagged) to acoustic frames, while a class label is assigned to the entire input in the
mean time.

1.3.5 Frame-based SLU in Context

Up till now we have only discussed the understanding of an utterance out of its context. In
practical speech applications, however, users seldom specify all the important information in
a single utterance. They are often engaged in a dialog with the system such that important
pieces of information (slots) can be provided to the system at different dialog turns. The

5For the sake of simplicity, the long distance dependency introduced by the unified CFG/CRF model is not shown
here
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USER1: Show me the flights from Seattle to San Francisco next Wednesday.
SYS1: <Displays a list of flights, including flight AS 220>
USER2: I also need a return flight from San Francisco to Seattle.
SYS2: What’s the date for the flight?
USER3: The Monday after.
SYS3: <Displays a list of flights>
USER4: Display details of AS 220.
SYS4: <Displays the detailed information of the outbounding flightAS 220>

Figure 1.28 The effect of constraints on inheriting semantic information from the discourse.

pieces need to be assembled incrementally to form the semantic representation, such that
the dialog system can take appropriate actions according tothe information gathered up to
the current dialog turn. Without the capability of understanding in context, a dialog system
cannot interact with users proficiently. In the specific example of the ATIS corpora, there are
class D utterances that cannot be correctly interpreted without taking into consideration the
context inforamtion.

For that purpose, a discourse structureD is used to record the information till the current
dialog turn when the user uttersU . D may contain multiple partially instantiated semantic
frames. The context agnostic SLU algorithms/models that wehave introduced can be applied
to obtain the context independent meaningMu of u. FromD andMu, a context dependent
meaningMD can be constructed.

ConstructingMD from D andMu is much more complicated than simply adding together
the pieces of information inD andMu. The information inD often cannot be inherited by
MD. Using ATIS as an example, the mention of a new departure and arrival city often implies
that the infomation inD cannot be carried over toMD because it signals that the user has
switched to another task of finding a different flight. Similarly, if the user mentions a specific
flight number, the focus has been reset and all the slot information need to be replaced by
the corresponding information of that particular flight. The exemplar dialog in Figure 1.28
shows the effect of these two constraints. There are many constraints like these two in the
ATIS domain, which were often modeled by handcrafted rules (Seneff et al. 1991), with the
exception of the statistical discourse model in (Miller et al. 1996), for which we discuss now.

The statistical discourse model representsMD with a vectorY , where each element
contains the value of a specific slot. Another vectorX of the same dimension asY is used to
represent a combination ofMu andMp, the latest instantiation of the same frame asMu in D.
The elements inX specify one of the five relations between the fillers of the corresponding
slots inMu andMp (excerpted from (Miller et al. 1996)):

INITIAL Slot filled in Mu but not inMp

TACIT Slot filled in Mp but not inMu

REITERATE Slot filled in bothMp andMu, with the same value
CHANGE Slot filled in bothMp andMu, with different values
IRRELEVANT Slot not filled in eitherMp or Mu

Then
P (MD | D, Mu) ≈ P (Y | X) =

∏

i

Pslot (Yi | X ; Y1, . . . , Yi−1) (1.61)
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WhenXi 6= TACIT, Pslot(Yi | X ; Y1, . . . , Yi−1) = 1 if Yi = Mui, theith slot ofMu. When
Xi = TACIT, a binary statistical classifier is trained for each slot to determine ifMpi should
be copied toMD. Miller et al. (1996) employed the decision trees for classification.

Putting it in a broad picture, Eq. (1.61) can be embeded in thefollowing decision rule for
utterance understanding in context:

M̂ = argmax
MD

P (MD | U, D) = arg max
MD

∑

Mu

P (MD | Mu, U, D)P (Mu |U, D)

≈ argmax
MD

max
Mu

P (MD | Mu, D)P (Mu |U)

= argmax
MD

max
Mu

P (MD | Mu, D)P (U | Mu)P (Mu) (1.62)

whereD represents the context,P (MD | Mu, D) is the discourse model,P (U | Mu) is the
lexicalization model, andP (Mu) is the semantic prior model.

1.4 Summary

This chapter has introduced the problem of the semantic frame based spoken language
understanding, a common SLU problem that has been faced in many research and
commercial applications. It has covered some important solutions to the problem, ranging
from knowledge-based to data-driven, statistical learning approaches. In the knowledge
based solutions, manually developed grammars are coupled with robust parsing technologies.
There are two major camps in grammar design, one favors the reuse of domain-independent
syntactic grammars across different domains and augmenting the grammars with domain-
specific semantic information; the other advocates the direct modeling of semantics with
a domain dependent semantic grammar. For the data-driven approaches, both generative
models and conditional models for the frame-based SLU are reviewed. The generative model
framework has two major component, thesemantic prior modeland thelexicalization model.
Several seminal generative models are reviewed in details in terms of these two component
models. The conditional models have the advantages of discriminative learning and the
capability of incorporating many interdependent, overlapping features that are difficult to
be included in a generative framework. Hence it is powerful in designing specific features to
address some difficult problems, such as long distance dependency. It has also been shown not
a good practice to directly port a generative model’s topology and features into a conditional
model. Rather the design of a conditional model should focuson taking full advantage of its
capabilities.

While it is necessary to have some real usage data for reference in the process of grammar
development, the knowledge-based approach in general requires less training data to build
a model (grammar), and the data do not have to be labeled. Withexpert’s involvement, it is
agile to quickly adapt to the topic/trend shifts that may happen frequently in practical spoken
dialog applications. However, it needs a combination of application and linguistic expertise,
and the robustness does not come from the model directly. Instead, it has to depend on a robust
parsing mechanism. The statistical models, on the other hand, are robust to noisy, error-prone
inputs by design. It does not need linguistic expertise for grammar development. However, its
performance is greatly affected by the availability of the labeled training data. In this chapter,
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we have also shown the advantage of combining statistical models with the knowledge-
based solutions by integrating CFG rules in both generativeand conditional models. This
has greatly reduce the dependency on a large amount of labeled training data.
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Lefèvre F 2007 Dynamic Bayesian networks and discriminative classifiers for multi-stage semantic interpretation.

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 13–16.
IEEE.

Macherey K, Och FJ and Ney H 2001 Natural language understanding using statistical machine translation.
Proceedings of the Eurospeech Conference.

McCallum A 2003 Efficiently inducing features of conditional random fields.Proceedings of the 19th Conference
on Uncertainty in Artificial Intelligence (UAI03), Acapulco, Mexico.
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Voice Search

Ye-Yi Wang, Dong Yu, Yun-Cheng Ju and Alex Acero

Microsoft Research

Voice search is one of the most actively investigated speechunderstanding technologies
currently. It is the technology underlying many commercialspoken dialog systems (SDSs)
that provide users with the information they request with a spoken query. The information
normally exists in a large database, and the query has to be compared with a field in the
database to obtain the relevant information. The contents of the field, such as business
or product names, are often unstructured text. For example,directory assistance (DA)
(Bacchiani et al. 2008; Yu et al. 2007) is one of the most popular voice search applications,
in which users issue a spoken query and an automated system returns the phone number and
address information of a business or an individual. The applications include both telephone
only services and multi-modal services on mobile devices. Other voice search applications
include music/video management (Mann et al. 2007; Song et al. 2009), business and product
reviews (Zweig et al. 2007), stock price quote, and conference information systems (Andreani
et al. 2006; Bohus et al. 2007). Recently the task has been extended to using voice queries
for Web search from mobile devices, as manifested by the commercial systems from Google
and Yahoo.

2.1 Background

Figure 2.1 shows the typical architecture of a voice search system, where a user’s utterance
is first recognized with an automatic speech recognizer (ASR) that utilizes an acoustic model
(AM), a pronunciation model (PM) and a language model (LM). The m-best results from
the ASR are passed to a search component to obtain the n-best semantic interpretations, i.e.,
a list of up ton entries in the database. The interpretations are passed to adialog manager
(DM) subsequently. The DM utilizes confidence measures, which indicate the certainty of the
interpretations, to decide how to present the n-best results. If the system has high confidence
on a few entries, it directly presents them to the user. Otherwise, a disambiguation module is
exploited to interact with the user to understand what he actually needs. their true intent.
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Figure 2.1 Architecture of a typical voice search system.

2.1.1 Voice Search Compared to the Other Spoken Dialog Technologies

For automated human-machine interaction, we have reviewedthe problem of the frame-
based SLU and call-routing. Compared to them, the problem ofvoice search has its unique
characteristics and needs to be addressed separately. The frame-based SLU are used to gather
the attribute values of an entity that users are interested in, like the originating and destination
cities of a flight. In such systems, users often have to use canned expressions within a small
domain. In a directed dialog system, a user’s utterances arelimited to answers to what the
system has prompted for, which often contain a single piece of semantic information; while
in a mixed-initiative system, users are allowed to volunteer more semantic information in a
single utterance – we call this type of semantic understanding high-resolutionin the sense
that multiple slots need to be identified. The call-routing applications remove the constraints
on what a user can say, so one can speak naturally. This is accomplished at the expense
of limiting the target semantic space: the understanding ofnatural language inputs is often
achieved with statistical classifiers, which map a user’s input to a destination semantic class
(intent) in a predefined set of limited size. The classifiers can hardly perform high resolution
understanding with many slots, or scale up with a huge number(e.g., thousands to millions)
of destination classes. Voice search applications differ from the frame-based applications in
their lack of detailed, high resolution semantic analysis.They are similar to the call-routing
applications with respect to the naturalness of user inputsand the huge input space. However,
they differ from the call-routing applications in the sensethat their semantic space, or in
the terminology of the call-routing applications, the inventory of the “destination classes,”
is enormous – sometimes in the range of millions of entries. Data are seldom sufficient to
train a statistical classifier. Instead, information retrieval techniques based on some similarity
measures between a query and a candidate entry are used to select the entry that best matches
the query. Hence in general there is no need of labeled training data. Table 2.1 compares the
three types of technologies.
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Table 2.1 Comparison of the frame-based SLU, call-routing and voice search spoken language
understanding with respect to the characteristics of the input utterance space and the output semantic
space.

SLU Task User input utterances Target semantic representation
Naturalness Input space Resolution Semantic space

Frame-based/directed dialog low small low small
Frame-based/mixed-initiative Low-medium small high small
Call routing high large low small
Voice search Medium-high large low medium-large

2.1.2 History of Voice Search

Early work on voice search focused on directory assistance (DA). Institutions on both sides
of the Atlantic have deployed experimental systems during mid-late 90’s. The early studies
focused mainly on residential DA (Billi et al. 1998; Kamm et al. 1995; Lennig et al. 1994),
and speech recognition was the major topic of research – as long as personal names were
correctly recognized, the search could be a simple databaselookup. As a result, the dialog
strategies centered on limiting the scope (hence perplexity) of the target listing space for
ASR and the confidence measures mostly relied on features from the ASR. Related work
includes enterprise level auto-attendant (a.k.a. name dialing) services from Phonetic Systems
(acquired by ScanSoft, then merged with Nuance), AT&T (Buntschuh et al. 1998), IBM
(Gao et al. 2001), and Microsoft (Ollason et al. 2004). Whileautomating residential DA
is important in reducing the operational cost, it is only a small portion (19%) of the total
received calls compared to the 61% of business DA calls (Billi et al. 1998). Therefore there
have been increasing interests in business DA recently, with the commercial deployments
from Tellme (acquired by Microsoft), Jingle Networks, AT&T, Google (Bacchiani et al.
2008), Verizon and Cingular (merged with AT&T Wireless now)and Microsoft (Yu et al.
2007). Because the level of linguistic variance is much higher in business DA queries,
SLU/search aiming at correctly interpreting user’s intentbecomes an important research
topic. The linguistic variance increases the ambiguity anduncertainty in the interpretation
of a user’s intent. As a result, dialog research focuses on the disambiguation strategy, as
well as the confidence measures that look into features from different system components to
accurately predict the end-to-end performance in interpreting a spoken query.

Other voice search applications include the stock quote system from Tellme and a
product/business rating system from Microsoft (Zweig et al. 2007). Separate efforts have
been made on conference information systems by Carnegie Mellon University (Bohus et
al. 2007) and by the collaboration among AT&T, ICSI, Edinburgh University and Speech
Village (Andreani et al. 2006), where users can request information about thousands of
papers published in a conference. In entertainment, Daimler has investigated digital music
management in automobiles (Mann et al. 2007), and Ford and Microsoft have introduced
the commercial dashboard device Ford SYNC that allows in-car music search. Like the
business DA applications, many new voice search applications call for research activities
in search/SLU and dialog management in addition to speech recognition.

With the broad adoption of mobile devices and the availability of wireless access to the
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internet, many companies are actively engaged in the space of voice search on mobile or in-
car devices (Mann et al. 2007). Google has introduced speechrecognition for Google Apps on
iPhone, which allows users to use speech input for business or general Web search. Yahoo has
similar offering with Yahoo! Search App. Microsoft has justreleased a voice-enabled Bing
Mobile Search. AT&T is currently working on a voice enabled local search for iPhone (Feng
et al. 2009). In additional to the industrial efforts, academia is also studying the problem of
voice-enabled general Web search (Vertanen and Kristensson 2009) Ford SYNC can connect
to a user’s mobile device (mobile phones, mp3 players, etc.)and use voice to control the
device, including a media search with voice input. New research challenges include multi-
modal (GUI with touch screen and speech) user interfaces (Acero et al. 2008; Mann et al.
2007) and efficient and scalable client-server architectures.

2.1.3 Technical Challenges

Voice search poses new challenges to the spoken dialog technology in the following areas:

1. Speech Recognition:The state-of-the-art ASR systems have high error rates on voice
search tasks. The vocabulary size of a voice search system can be much larger than
a typical frame-based or a call routing application – sometimes reaching millions of
lexical entries. Many lexical entries in international individual or business names are
out of vocabulary and lack the reliable pronunciation information. Calls are often made
from different noisy environments. In addition, the constraints from language models
are often weaker than other ASR tasks – the perplexity of a language model is often
high (e.g., 400˜500 bits for business DA) for voice search.

2. Spoken Language Understanding (SLU)/Search:One big problem in SLU is the
enormous semantic space – a DA system can easily contain hundreds of thousands (if
not millions) of listings in a city. There is also a high levelof linguistic variance in the
input space. For example, users may not use the official name of a business in a DA or
a business rating system. They would typically say, for instance, “Sears” instead of the
listed official name, “Sears Roebuck & Co.” In addition, the SLU/search component
must be robust to ASR errors.

3. Dialog Management: The difficulties in ASR and SLU cause much confusability
and uncertainty. Dialog manager has to effectively narrow down the scope of what
a user may say to reduce the confusability and uncertainty. Search results often contain
multiple entries. Disambiguation strategy is crucial in obtaining sufficient information
for the correct understanding of users’ intents with as few dialog turns as possible.
Confidence measures are important for the dialog manager to take the appropriate
action with each of the hypothesized interpretations, suchthat the dialog can recover
gracefully from ASR and SLU errors.

4. Feedback loop:No systems can be perfectly built at the initial deployment.Dialog
system tuning is often performed painstakingly by spoken dialog experts, starting from
error analysis from the logged interaction data to find the flaws in dialog and prompt
design, language/understanding model development, system implementation, etc. An
interesting research topic is the automatic or semi-automatic discovery and remedy of
design/implementation flaws.
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Like other SLU tasks, the grand challenge in voice search application is robustness. The
CSELT’s study on Telecom Italia’s DA system (Billi et al. 1998) showed that even though
the automation rate was 92% in a laboratory study, the actualfield trial automation rate was
only 30% due to unexpected behavior of novice users and environment noise.

2.1.4 Data Sets

Unlike the research activities in the frame-based SLU, which are sponsored by public
fundings and participated by multiple institutions from both academia and industry, the
activities in voice search are largely conducted by software or telecommunication companies,
each works with their own proprietary data collected from the services they provide. Out of
the concerns about their users’ privacy, it is almost impossible for them to share the data
with the research community – there are several failed attempts from the researchers in these
organizations. Due to this unfortunate situation, there iscurrently no common data set for
voice search research. Researchers from academia have to collect their own data to conduct
relevant research (Vertanen and Kristensson 2009).

2.1.5 Evaluation Metrics

Many evaluation metrics can be found in voice search relatedpublications, some of them are
used to assess the performance of a component like speech recognition or language models.
Here we focus only on the metrics for an end-to-end evaluation of a voice search system.
Many of them, not surprisingly, are commonly used by the information retrieval community.
Note that there can be more than one listings that are the “correct” answers to a query
(imagine a user search for “Starbucks in Seattle”, where youmay find two or three Starbucks
coffee shops within a block, and also a towing company with the same name). Hence the
metrics are designed to reflect a system’s capability to find the correct answers and to reject
the incorrect ones. A listing returned from a search engine can be either a true positive (TP ,
correct answer) or a false positive (FP , incorrect answer); a listing in the database that is
not returned by the search engine can be a true negative (TN , correct rejection) or a false
negative (FN , incorrect rejection).

1. Precision, Recall and F1-score:Precisionis the percentage of correct answers among
all the answers from the voice search system:

PR =
N(TP )

N(TP ) + N(FP )
(2.1)

Precision reflects a system’s capability in rejecting incorrect answers. It does not
measure its capability in finding as many correct answers as possible. So recall is
introduced for that purpose:

RE =
N(TP )

N(TP ) + N(FN)
(2.2)

F1-scoreis the harmonic mean of precision and recall:

F1 =
2 ∗ PR ∗ RE

PR + RE
(2.3)
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A system may have multiple operating points (often set by different thresholds to
accept a hypothesis), at which different precision and recall scores can be observed.
A recall-precision curveplots the different precision scores in relation to the
corresponding recall scores at the same operating point. Similarly, areceiver operating
characteristic (ROC) curveplots the true positive rates (recall) in relation to the
corresponding false positive rates (N(FP )/ [N(FP ) + N(TN)]).

2. Mean Reciprocal Rank (MRR): The precision and recall does not reflect the ranking
power of a voice search system – if two results are returned, one is correct and the other
is not, different placement of the results will not alter thevalue of precision/recall/F1-
score. Ideally, placing a relevant answer at a higher rank should be favored by
the evaluation metric. Thereciprocal rankof the search results for a query is the
multiplicative inverse of the rank of the first correct answer. Themean reciprocal rank
is the reciprocal ranks averaged over a set of test queries:

MRR =
1

N

N
∑

i=1

1

ri

(2.4)

whereN is the number of test queries, andri is the rank of the first correct answer for
thei-th query.

3. Mean Average Precision (MAP): The mean reciprocal rank metric does not take
precision or recall into consideration. Themean average precisionis proposed to fix
this problem. Theaverage precision(AP) is the average of precisions computed at
different cut-off points in the result list:

AP =

∑N(TP )+N(FP )
r=1 PR(r) ∗ COR(r)

N(TP ) + N(FN)
(2.5)

wherer is the rank of a result (smaller number indicates higher rankin a result list),
COR(r) is a binary function that has value 1 only when the result at rank r is a correct
answer to the query.PR(r) is the precision of the topr search results.

Mean average precision(MAP) is the mean of the individual precision scores over a
test set of queries.

MAP =
1

N

N
∑

i=1

APi (2.6)

whereAPi is the average precision of the results for thei-th query.

4. Normalized Discounted Cumulative Gain (NDCG): The binary judgment of
correctness of a search result may not be enough to distinguish the quality of different
results. A relevance rating with more grades is more suitable in some cases. For
example, the product search results for the query “black iPod player” may include
a perfect result of an iPod player that is black, and another result without color
information. It does not make sense to label the second result as incorrect, since it
is still more relevant than a result of an MP3 player of a different brand. A 5-grade
relevance ranking (“poor”, “fair”, “good”, “excellent” and “perfect”) is ofter used,
corresponding to the numeric value 1-5.
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The relevance of a result is discounted by a factor accordingto its rank in the search
results. The discounting factor penalizes presenting a relevant results at a lower rank.
Thediscounted cumulative gain (DCG) at kis the sum of the discounted relevance at
topk different ranks. A logarithm discounting factor is often used:

DCG(k) =

k
∑

r=1

2relr − 1

log2(r + 1)
(2.7)

whererelr is the relevance rating for ther-th search result.

The DCGs of the search results are not directly comparable across different queries,
since they may result in different number of results. For each query, an oracle
maximum DCGmDCG(k) can be calculated by arranging thek most relevant results
according to their relevancy, such that the more relevant results are always presented
before the less relevant one. Thenormalized discounted cumulative gain (NDCG) at
rank kover a test set ofN queries is

NDCG(k) =
1

N

N
∑

i=1

DCGi(k)

mDCGi(k)
(2.8)

5. M-best Search Accuracy:M-best Search AccuracyACCM is the percentage of the
correct answers among the topM answers:

ACCM =
1

N ∗ M

N
∑

i=1

M
∑

r=1

CORi(r) (2.9)

whereCORi(r) is a binary function that has value 1 only when the result at rank r is
a correct answer to thei-th query in the test set.

When a voice search system has limited capacity to present multiple search results, as
in a telephony system, one-best and two-best search accuracy become more important
and are popularly used.

2.2 Technology Review

In this section we review the technology that addresses the challenges in voice search
applications, with a focus on the sub-problems of SLU/search and language modeling. Not
surprisingly, much of the technology is developed with the DA systems because they are the
most popular voice search applications so far. However, thetechnology is often applicable
to other applications as well. For example, the product/business rating systems (Zweig et al.
2007) directly used the technology developed in a DA application (Yu et al. 2007).

2.2.1 Speech Recognition

A detailed error analysis for proper name recognition was reported in an auto-attendant
system (Gao et al. 2001). Figure 2.2 shows the distribution of different causes of errors
– besides 35% of common recognition errors, 31% were noise related and 22% were
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Figure 2.2 Distribution of different causes of ASR errors, from the error analysis of an auto-attendant
system in (Gao et al. 2001).

pronunciation related. Many of the calls were made in a noisyenvironment over different
noise channels. Therefore, noise-robustness is crucial toimprove the ASR accuracy. On
the other hand, there were many foreign names that are difficult to pronounce in an auto-
attendant/DA system. In fact, pronunciation is a pervasiveproblem that poses challenge in
many other voice search applications as well. For example, users may specify a multilingual
query“Petit Bonheurby Salvatore Adamo” in music search. Hence pronunciation modeling
is another important topic in ASR for voice search. In addition, better acoustic and language
models are always important to reduce the ASR error rate.

Acoustic Modeling

IBM’s auto-attendant system applied speaker clustering inits acoustic model (Gao et al.
2001). Simple HMMs that have one Gaussian per context independent phone state were
trained first for each speaker. Then the vectors of the means of these models were clustered
with the k-means algorithm. For each test utterance, the cluster model that yielded the highest
likelihood was selected. In doing so, different channel andnoise conditions can be more
precisely modeled by different cluster models, so noise-related problems are alleviated. In
addition to speaker clustering, speaker adaptation is effective to bring the performance of
a speaker-independent system closer to that of a speaker-dependent system. Unlike normal
speaker adaptation, the adaptation in (Gao et al. 2001) wasmassivein the sense that the
adaptation data was obtained from a pool of recent callers rather than a single speaker.
The massive adaptation is helpful due to the fact that a caller often calls the same set of
individuals, and that a caller may try a name repeatedly whena recognition error occurs.
While massive adaptation is helpful to bring down the error rate for frequent callers,
unsupervised utterance adaptation aims at improving the accuracy from an unknown speaker.
In this adaptation scheme, the test utterance itself was used for adaptation with a two
pass decoding. In the first pass, a speaker independent system or the system after massive
adaptation was used to obtain the automatic transcript. Then a forward-backward algorithm
was applied to obtain the adaptation statistics. After adapting the acoustic models using the
collected statistics, the caller’s utterance was decoded in a second pass with the adapted
model – this second pass may adversely increase the latency of a voice search system.
Overall, with all these acoustic model enhancements and an unsupervised derivation of
pronunciations (to be described below), a 28% error reduction was observed.
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Pronunciation Modeling

One approach to improved pronunciation model is via augmenting the dictionary with
pronunciation variants. Data-driven algorithms are commonly applied, which typically
include four steps: generating phonetic transcriptions with a recognizer; aligning the auto
transcriptions with manually created canonical pronunciations; deriving rules mapping from
the canonical pronunciations to the variants; and pruning the rules. One limitation of this
approach is that the canonical reference pronunciations must be available.

The IBM auto-attendant system (Gao et al. 2001) adopted an acoustics-only based
pronunciation generation approach (Ramabhadran et al. 1998). The advantage of this
approach is that no canonical pronunciation is required. This makes it more practical in
voice search applications since many words do not exist in a pronunciation dictionary.
With this approach, a trellis of sub-phone units was constructed from an utterance. The
transition probabilities in the trellis were derived by weighting the transition probabilities
of all the context-dependent realizations of the sub-phoneunits in a HMM acoustic model. A
Viterbi search was performed to obtain the best sub-phone sequences from the trellis and a
pronunciation was subsequently derived from the sequence.Experiments in (Gao et al. 2001)
showed a 17% relative error reduction when the test set and training set had overlapping
unseen words.

Trade-offs often have to be made in adding pronunciation variants to a dictionary. The
additional pronunciations, on the one hand, make the word models match the actual acoustic
signal more precisely; on the other hand, give rise to a largenumber of highly confusable
word models. Instead of augmenting an existing pronunciation dictionary with variants, a
pronunciation distortion model was introduced in (Béchetet al. 2002) to rescore the n-best
hypotheses generated from a first recognition pass. The distortion model incorporates the
“knowledge source” about the common distortions observed in a specific spoken language.
For example, only insertions were considered in the distortion model for French in (Béchet et
al. 2002) because it is frequently observed that silence segments are often inserted between
certain pairs of consonants like [m][n], and a schwa is often inserted after a consonant at the
end of an utterance. Formally, letA andW denote the acoustic signal and the text of a caller’s
utterance, andτw a phone sequence that may be distorted from the canonical pronunciation
of W , then a hypothesiŝW can be selected from the first pass n-best recognitions according
to the following decision rule:

Ŵ = arg max
W

P (W | A) = arg max
W

∑

τw

P (W, τw | A)

≈ arg max
W,τw

P (W, τw | A) ≈ arg max
W,τw

P (τw)P (A | τw)P (W | τw) (2.10)

The last approximation in the equation includes an application of the Bayes rule and an
assumption of independence betweenA andW given τw. The prior of a distorted phone
sequence,τw, can be written in terms ofηw, which is the the canonical pronunciation ofW ;
andδw, which is the difference betweenτw andηw:

P (τw) = P (ηw | δw) = P (δw | ηw)P (ηw) (2.11)
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In theory,P (δw , ηw) andP (ηw) can be estimated from data. In (Béchet et al. 2002), a
uniform distribution over all plausible insertions was used instead forP (δw | ηw) due to the
lack of data.P (A | τw) in the decision rule of Eq. (2.10) can be obtained from the acoustic
model with all possible alignments betweenA andτw. Since only insertion is considered
in (Béchet et al. 2002),P (W | τw) was obtained by multiplying the probabilities of all
successful insertions. Experiment results showed that therescoring had improved the one-
best ASR accuracy from 50% to 59.8%.

Language Modeling

Early DA systems compiled directory entries into a finite-state grammar as the language
model for ASR. This rule-based language model does not scaleup well with directory size
due to the increased perplexity. It was found that the ASR accuracy decreases linearly with
logarithmic increases in directory size (Kamm et al. 1995).On the other hand, it was noticed
that the distribution of the requested listings followed the Zipf’s law. 10% (20%) of call
volumes were covered by only 245 (870) listings. So in (Kamm et al. 1995; Natarajan et
al. 2002), a semi-automated DA system was built that only covered the frequently requested
listings and relayed the remaining requests to human operators.

One problem of the rule-based LMs constructed from the database listings is their poor
coverage. Callers seldom say a business name exactly as it appears in the database – just
consider the earlier example of “Sears Roebuck & Co” versus “Sears.” It was mentioned in
(Béchet et al. 2000) that variant expressions for businessnames could be semi-automatically
derived from data. Although it did not report how this was achieved, a straightforward
method would compare a caller’s utterance (e.g., “Kung-Ho Chinese Restaurant”) with the
actual listing released to the caller (e.g. “Kung-Ho Cuisine of China”) by operators and learn
that “Chinese Restaurant” is a synonym of “Cuisine of China.” This “synonym” rule-based
approach is usually expensive; the rule coverage is highly restricted by the data available;
and the rules may be over-generalized without careful crafting.

The problem was tackled without using the data from the callers in (Jan et al. 2003). A
method was proposed to automatically construct a finite state signature LM from a business
directory database alone, which would accept different query variants. Here asignatureis a
subsequence of the words in a listing that uniquely identifies the listing. For example, with
the listings “3-L Hair World on North 3rd Street” and “Suzie’s Hair World on Main Street,”
“3-L”, “Hair 3rd”, and “Hair Main” are signatures because they occur in only one listing. On
the contrary, the subsequences “Hair World” and “World on” are not signatures because they
appear in both listings. Based on the signatures, a finite state transducer can be constructed
as follows (the example is taken from (Jan et al. 2003)):

S := 3-L Hair World? On? North? 3rd ? Street? : 1|
3-L Hair? World? On? North 3rd ? Street? : 1|
3-L Hair? World on? North? 3rd ? Street? : 1|
3-L? Hair World? On? North 3rd ? Street? : 1|
Suzie’s? Hair World? On? Main Street? : 2|
Suzie’s Hair World? On? Main? Street? :2|
Suzie’s Hair? World on? Main? Street? :2|
Suzie’s? Hair? World on? Main Street? :2
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where each entry in the grammar corresponds to a signature. The terms in a signature
are obligatory, whereas the terms in a listing but not in the signature are optional (marked
by ‘?’.) The numbers after ‘:’ is the semantic output from thetransducer that represents
the ID of a listing in the database. In doing so, every utterance matched by a rule can be
uniquely associated with a listing. Because the non-essential words are optional, this makes
the grammar more robust to utterances that omit these words.When the directory gets larger,
an entry may bear no signature because each of its subsequences can be a subsequence of
another entry. This problem was handled with the “confusionsets” in (Jan et al. 2003).

The rationale behind the signature grammar is that any term in an entry is droppable as
long as the drop does not cause the confusion with another entry. While this is very practical
in reducing the search ambiguity, it may be risky in modelinghuman language – speakers
are very likely to drop terms that would lead to ambiguity. For example, they often say
“Calabria” instead of “Calabria Restaurant” even though the former may cause confusions
with “Calabria Electric” and “Calabria Jack J Do.”

Another approach to improved the robustness is via statistical n-gram models (Bacchiani
et al. 2008; Natarajan et al. 2002; Yu et al. 2007). An n-gram model is more robust because
it does not require a user’s utterance to match a rule exactly; because it provides a statistical
framework for fair comparison between different hypotheses; and because it has well-studied
smoothing algorithms to estimate the likelihood of unseen events more accurately. Ideally, a
statistical n-gram model should be built from the transcripts of real calls, which demonstrate
not only the different ways callers refer to businesses but also the probability of each such
ways. Unfortunately, it is not realistic to collect enough calls to provide a good coverage for
a large listing set, especially during the early stage of development. An interpolated LM was
proposed to estimate the n-gram probability in (Yu et al. 2007):

P (w) = λPt (w) + (1 − λ)Pl (w) , (2.12)

wherePt (w) is the LM built using the transcripts of real calls,Pl(w) is the LM built using
a listing database, andλ is the interpolation weight, which was tuned with a cross-validation
set collected under real usage scenario. HerePt (w) can be constructed from the transcribed
data straightforwardly. BuildingPl (w), on the other hand, takes more considerations because
the database entries may not reflect the actual ways that callers refer to them. A statistical
variation model was introduced to account for the common differences between the database
listings and the actual callers’ queries. The model was based on the rationale similar to that
of the signature model, namely callers are more likely to saythe words that distinguish
one listing from others. However, instead of making risky binary decisions, it modeled the
importance of a word statistically according to its discriminative capability and its positions
in a listing (based on the observations that callers are morelikely to say the initial words
in a listing). Here, the discriminative capability of a wordwas determined by its inverse
document frequency (see Section 2.2.2), and a position importance weightwi

l , (0 < wi
l ≤ 1)

was associated to each word position. A word was droppable with a probability inversely
proportional to its importance. In addition, the model tookinto account the business category
information for smoothing – each word had a probability to befollowed by the category
words (e.g., “restaurant.”) This probability correlated to the importance and the category-
indication capability (a mutual-information based measure) of a word. Furthermore, an
efficient interpolation with a large vocabulary backgroundLM (Yu et al. 2006) had provided
additional robustness. The internal investigation in Microsoft has revealed that the statistical
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Figure 2.3 ROC curves of the voice search performance for business listings with language models
trained with different training materials. The bottom (businessdb.roc) is the curve for the language
model trained with the listing data alone; the top (combo.roc) is the curve for the language model trained
with the listing data and the usage data from transcribed voice queries and logged Web queries. The
curves in the middle show the contributions from the transcribed voice search usage data (speech.roc)
and the Web search queries (webqueries.roc). The big gaps between the bottom curve and the rest
show the style mismatch between the listing data and the actual queries issued by the users (Courtesy
of Michiel Bacchiani).

language model, together with the vector space model for listing search (see Section 2.2.2),
has greatly outperformed the signature-based approach – atthe same precision level, the
recall has been almost doubled.

Similarly, Bacchiani et al. (2008) uses a large amount of text from different sources to
train an n-gram language model. The data sources include business listings, transcribed voice
search queries and the text queries logged by a local search engine. Systematic studies show
that the latter two types of queries significantly improve the search performance, as illustrated
by Figure 2.3.

In (Li et al. 2008), a machine-translation based approach was used to enrich the language
model training data in a directory assistance application.It aimed at modeling the linguistic
variations – users may refer to a listing in a different way asthe original form it appears in
the database; and there are often multiple paraphrases for the same listing. For example, the
listing Kung Ho Cuisine of Chinacan be expressed asKung Ho, Kung Ho Chinese Restaurant,
or Kung Ho Restaurant. In this case, the LM trained using listing in the original form in the
database may not best predict what users will actually say.

Li et al. (2008) used transcribed queries to search for the listing database. If the listing
of the top search result was close enough to the corresponding query according to some
distance measure ((Li et al. 2008) used the Tf-Idf weighted vector space model, which we
will discussed in Section 2.2.2), the listing/query pairs are used as the training examples for
a machine translation system. The trained translation model is applied to the listings in a
database to obtain a new data set that contains the listings in the original form and up to
3-best translations (paraphrases). The new data set, together with the transcribed queries,
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Table 2.2 Perplexity comparison between the language models
trained with the query augmented listings (QAL) and the query
and translation augmented listings (QTAL).

# of queries in training 1k 3k 7k 10k 14k

QAL 1534 1414 1404 1054 888
QTAL 409 314 229 217 190

Relative Reduction % 73.4 77.8 79.3 80.4 78.5

forms a set of query and translation augmented listings (QTAL). QTAL was used to train a
language model. Its perplexity, measured on a held-out transcribed query set, was compared
with the language model trained with a set of query augmentedlistings (QAL) – the QTAL set
minus the paraphrases from the machine translation component. Table 2.2 shows significant
perplexity reduction by applying this approach.

2.2.2 Spoken Language Understanding/Search

The task of spoken language understanding is to map a user’s utterance to the corresponding
semantics. In voice search, the semantics is the intended entry in a database. Hence the SLU
becomes a search problem.

Traditionally, SLU is only an optional component for voice search. In early voice search
applications like residential DA, SLU was not an issue, since there was not much expression
variance in saying a person’s name. Search was basically a database lookup, with careful
considerations of initials, titles and homophones. If a finite state based LM is used for ASR,
each rule is uniquely associated with a listing or a confusion set, there is no need of a separate
search component either. However, due to the deficiency of the listing data based finite-state
LM in modeling the actual language usage in queries, n-gram LMs are often adopted in
recent more advanced voice search applications. In such a case, recognitions are no longer
associated with a specific database listing. Hence a separate search step is necessary.

A majority of recent commercial products related to mobile local/Web search use a text-
based Web search engine as the search component, and ASR is used as an interface to
voice-enable the search engine. While this is a practical solution, it is sub-optimal because
the search algorithms were developed without the consideration of robustness to ASR errors,
and the voice search application has to adopt the same user interface as text search, which
prohibits the system from taking full advantage of a spoken dialog system.

As voice search applications are getting more popular, SLU in voice search is becoming
an important issue. Many applications in a special verticalmay not have an existing text
search engine, such as the task of music/video search on a local device. Some voice search
applications based on the existing text search engines alsointroduced a separate SLU
component (Feng et al. 2009). It is important for the SLU component to address the following
problems:

1. Improving the robustness to linguistic variance of spoken language. An important
difference between a spoken language only directory assistance dialog system and a
speech-enabled local search on a mobile device lies in the characteristics of the input
to the systems. In speech-enabled mobile search, users are directed to speak into a
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specific search input box, hence their utterance are more likely to be similar to their text
counterparts. In telephony directory assistance, users’ speech may be more casual and
contain “carrier phrases”, for example, “I need the number ofpizza hut in downtown.”
It is important to treat the carrier phrases differently from the name of a business listing
during search.

2. Handling the search from structured data. Many backends of voice search
applications have structured databases that contain multiple fields (columns). For
example, product search may have a backend database with thebrand, model, product
name, category fields, etc. Music search may have a database with the artist, composer,
title, and genre fields. Users may issue queries that specifyinformation for more than
one fields, like “Yellow Submarine by the Beatles.” Local search may have the locality,
business name, business category, opening hours, etc. Mostexisting text search engines
adopt a bag-of-words approach that ignores the structural information.

3. Improving the robustness to recognition errors. Speech recognition is far from
perfect. Directly feeding the one-best ASR results to a search engine is a suboptimal
solution. A SLU component can bridge the information from the voice search
semantic space (listings) and the information from the recognizer about the competing
hypotheses, such that the ASR results that make more sense semantically can be chosen
to improve the overall voice search performance.

Robustness to Linguistic Variance in Spoken Language

To improve the robustness to linguistic variance in spoken language, BBN adopted a channel
model (Natarajan et al. 2002). Given a localityC1 and a queryQ recognized from a user’s
utterance, it looks for the listinĝL according to the following decision rule:

L̂ = arg max
L

P (L | C, Q) = arg max
L

P (C, Q | L)P (L)

≈ arg max
L

P (C | L)P (Q | L)P (L) (2.13)

In (Natarajan et al. 2002), the prior distributionP (L) and the locality distribution
P (C | L) were estimated from the training data. The training data were the transcripts of
real users’ utterances augmented with database listings. The query distributionsP (Q | L)
were modeled with a two-state Hidden Markov Model (HMM) illustrated by Figure 2.4. In
this model, a wordw in Q is generated from either the General English (GE) state for carrier
phrases or the state corresponding to a listingl, which is a value of the random variableL.
With this model,

P (Q | L) =
∏

w∈Q

(a0P (w | GE) + a1P (w | L)). (2.14)

Here the transition weightsa0 anda1 were tied across the HMMs for all values ofL. The
transition and emission probabilities were estimated fromtraining data. This model is robust
due to the inclusion of the GE state, which captures carrier phrases like “I need the number

1DA dialogs often start by asking users for the city and state information. See Section 2.2.3 for details.
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Figure 2.4 An HMM model is used to separate the listing terms from the general English terms
(carrier phrases). The model is trained with a combination of users’ queries and listing data (Reproduced
from (Natarajan et al. 2002)).

of” or ASR errors. The combination of the real user data and the database listings facilitates
high accuracy on frequently requested listings and simultaneously enables broad coverage of
less frequently requested listings.

The HMM based listing selection requires training data, which is only realistic for a
subset of listings that are most popularly sought for. Yu et al. (2007) applied the Tf-Idf
(term frequency – inversed document frequency) weighted vector space model (VSM) to
business listing and product name search. The Tf-Idf weighted vector space model is broadly
used in information retrieval (IR). It represents a query (document) with a vectorq (d). The
relevance (or similarity) of the document to the query is measured as the cosine between the
two vectors:

cos (q, d) =
q · d

‖q‖ ‖d‖
(2.15)

For a documentd, each element in its vector is a weight that represents the importance of
a term (e.g., a word or a bigram) in the document. Intuitively, the importance should increase
proportionally to the number of times the term appears ind and decreases when the term
appears in many different documents. Theterm frequency(TF) tfi (d) is the frequency of the
termi in d, and theinverse document frequency(IDF) is the logarithm of the total number of
documents divided by the number of documents containingi:

tfi (d) =
ni(d)

∑

k nk(d)
idfi = log

|D|

|{d : i ∈ d}|
(2.16)

whereni(d) is the number of occurrences of termi in d, andD is the entire document
collection. The weight for termi in the vector is the product of its TF and IDF scores. The
vector for a query can be defined similarly. There are other alternatives to define the TF
and IDF scores, but the gist of the metrics are the same – TF measures the relevance of a
term to a query/document, while IDF discounts the relevanceif the term occurs in too many
documents. The vectors for queries may sometime omit the IDFscores, since they are already
taken into consideration by the IDFs in the document vectors. A survey of the vector space
model can be found in (Greengrass 2001).
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For voice search, each listing is treated as a “document” andrepresented by a vector. The
standard VSM has been enhanced for voice search in (Yu et al. 2007) in the following two
aspects:

1. Special treatment of duplicate words in listings and queries. In traditional IR,
documents and queries are generally long. The term frequency resembles the true
distribution underlying a document/query. Listings and queries in voice search, on the
other hand, are short in general, so the surface term frequency may not be a reliable
estimate of the true underlying distribution. A small noisein the surface form is more
likely to bring quite different search results. For example, the query “Big 5,” intended
for “Big 5 Sporting Goods”, results in the listing “5 star 5” –the additional 5 in the
listing brings it closer to the query. Since the term frequency is not reliable for search
among short listings, each term gets a unit count in voice search. A duplicate word is
treated as a different term, e.g., by replacing the second 5 in the example with 52nd.
This effectively adds another dimension to the vector space. Since the Idf of this new
dimension is much higher, it plays a more important role in query matching. A query
without duplicate words like “Big 5” will have a larger anglefrom a listing with the
duplicate “5”. The angle will be significantly reduced if thequery does contain the 2nd
term. So “5 5” will match “5 star 5” better.

2. Inclusion of category information in the listing vectorsin addition to the listing names.
Callers often voluntarily provide category information (like restaurant, hospital, etc.)
in their queries. These category words can be identified according to the mutual
information between them and the categories in a database. If category information
is detected in a user’s query, the category information about a listing in the database
can be appended to the listing’s vector so it can be compared with the query’s category
directly by the vector space model. With this enhancement, the VSM would rank the
listing “Calabria Ristorante Italiano”higher than “Calabria Electric” for the query
“Calabria Restaurant”.

Search for Structured Data

In mobile local search, the problem related to the structured data search is often alleviated
by directly speech enable two separate input boxes, one for the location term2 and the other
for the search term. However, this solution does not fully take advantage of a spoken dialog
system – as shown in (Feng et al. 2009), the separation of the two terms may add extra
burden to the users – the distinction of the two terms is not always clear, as manifested by
user’s query like “restaurants near Manhattan” as the search term and “New York City” as
the location term. In addition, the solution may not be sufficient to separate a searchsubject
(often business names or categories) from theconstraints, as in the exemplar query “night
clubs open Christmas day.”

AT&T’s Speak4It (Feng et al. 2009) allows users to include both the search term and the
location term in a single utterance, and uses the frame-based SLU described in Chapter 1 to
separate them from the utterance. More specifically, it usesn-gram model as the semantic
prior model, and slot specific n-gram models as the lexicalization model – the same model
used by CHRONUS.

2Same as the “locality” in the previously mentioned BBN’s HMMmodel for voice search
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1

2

3

All rise, I guess, from Blues 

Sarah, in the arms of an angel 

Play legally blonde soundtrack 

Glenn Miller, jazz. 

Anton Bruckner, 7th Symphony,  

Leonard Bernstein 

Figure 2.5 Left: distribution of queries containing 1, 2, and 3 fields. Right: examples of queries
specifying information for multiple fields.

To separate the search subjects from the constraints, it assigns a probabilityPsubject(s)
to a segments for being a search subject based on the observation that the queries with a
specific constraints occurs far fewer than the queries without any constraints (e.g., “night
club” is more popular than “night club open Christmas day.”). A corpusC of likely subjects
is constructed to include the simple local search queries and the listing names. Here a simple
query is one with no more than five words and containing no constraint indicators like the
word “with” or “that.” Psubject(s) can be estimated fromC:

Psubject(s) =

(

λ ∗
Freq(s ∈ C)

|C|
+ (1 − λ) ∗

1

|C|

)γ

(2.17)

In (Song et al. 2009), HMM based models were introduced to handle search from
structured music meta-data, where a query may contains multiple fields. It observed that
more than half of users’ queries had contained the specification for more than one fields
(Figure 2.5.) An HMM can model the field-specific informationin a query. Formally, given
a queryQ = w1, . . . , wn, we need to find the entrŷE from the database, such that

Ê = arg max
E

P (E | Q) = argmax
E

P (Q | E)P (E)

≈ arg max
E

P (Q | E) = argmax
E

∑

F

P (Q, F | E) (2.18)

hereF is the segmentation ofQ into multiple fields,Fi represents the field that the word
wi belongs to. WhileP (E) can be modeled with the music popularity statistics, an uniform
distribution is used in Eq. (2.18) instead.P (Q, F | E) is a distribution that is specific to the
entryE, which is modeled by an HMM:

P (Q, F | E) ≈

n
∏

i=1

P (wi | Fi; E)P (Fi | Fi−1; E) (2.19)

Unlike the HMMs used by BBN for information retrieval, the HMMs here do not need any
training data. The emission probabilities for a field are estimated with the database content
of the field:

P (w | F, E) = λfPMLE(w | F, E) + λePMLE(w | E) + λcPMLE(w) (2.20)
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whereλf + λe + λc = 1. In other words, the emission probability is the linear interpolation
of the maximum likelihood estimate of the field dependent unigram, the entry dependent
unigram and the entry-independent unigram probability. While the interpolation weights can
be set using held-out data, it is found that the search performance is not very sensitive to their
values as long as none of the weights is set too close to 0.

The transition probability is assigned as follows to penalize frequent field hopping:

P (Fi | Fi−1; E) =

{

γ if Fi = Fi−1

(1 − γ) × P (Fi | E) otherwise
(2.21)

whereγ is a parameter related to the likelihood that a query will stay at the specification of
one field of a structured entry. A large value for the parameter will effectively avoid frequent
field jumping. Its value can be tuned with a held-out set.P (F | E) is the field popularity
probability, which is the field prior probabilityP (F ) normalized according to the existence
of the fields in the database for the entryE:

P (F = x | E) =

{

P (F=x)
1.0−

∑

∀y /∈E P (F=y) if x ∈ E

0 otherwise
(2.22)

whereP (E) can be either a uniform distribution or a distribution determined based on the
domain knowledge about the popularity of the fields in users’queries.

In (Song et al. 2009), it has shown that the HMM sequential rescoring model has reduced
the end-to-end search error rate by 28% relatively on text queries and up to 23% relatively on
spoken queries compared to the baseline system that used language model IR on the database
with the contents of different fields collapsed into a singlebag of words. In addition, the paper
has introduced an error model for HMM emissions based on phonetic confusability, which
has further improved the end-to-end search accuracy consistently across different levels of
speech recognition accuracy.

Robustness to Speech Recognition Errors

To improve the robustness to ASR errors, Wang et al. (2008) used character n-gram
unigrams/bigrams instead of word unigrams/bigrams as terms in the vector space model.
The rationale is that the acoustically confusable words mayhave shared sub-word units
orthographically. For example, the listing “Lime Wire” is rewritten as a sequence of character
4-grams – $Lim Lime imeme W e Wi Wir Wire ire$, where “$” indicates the start and the
end of the listing and “” indicates separation of words. If a caller’s query “Lime Wire”
is incorrectly recognized as “Dime Wired”, there is no word overlapping but still much
character n-gram overlapping between the ASR output and theintended listing.

Feng et al. (2009) used the listing information to select an ASR path in the word
confusion network, a compact representation of the recognition lattice. Figure 2.6 shows an
example of the word confusion network, where each position in an utterance is associated
a set of confusable words with their negative log posterior probabilities obtained from the
speech recognizer. Although the one-best path from the network, “Gary Crites Springfield
Missouri,” has the listing names “Dairy Queen” mis-recognized as “Gary Crites,” The correct
information is buried in the word confusion network. The knowledge from listing in the
semantic space can help unearth the correct recognition – “Dairy Queen” is more like to be a
valid listing name than “Gary Crites.”
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0 1

gary/0.323

cherry/4.104

dairy/1.442

jerry/3.956

2

crites/0.652

christ/2.857

creek/3.872

queen/1.439

kreep/4.540

kersten/2.045

3
springfield/0.303

in/1.346
4

springfield/1.367

_epsilon/0.294
5/1

missouri/7.021

Figure 2.6 A word confusion network is a compact representation of recognition lattice that lists a
set of words for each position (Courtesy of Junlan Feng).

Feng et al. (2009) segments the one-best ASR to find the searchterm, gets the alternative
phrasess of the search term in the confusion networks, and rescore them with the subject
likelihood:

P (s) = PWCN (s)Psubject(s)
λ, (2.23)

wherePWCN (s) =
∏

w∈s Pwcn(w) is the posterior probability of the segments according to
the word confusion network,Psubject(s) has been introduced earlier for subjects/constraints
separation.

Similar idea was investigated with a flat direct model for speech recognition in (Heigold
et al. 2009). It is basically a Maximum Entropy (MaxEnt) model used to rescore the n-best
search results. MaxEnt is a condition modelP (y | x) defined with respect to a set of features
F = {fk(x, y)}, with the constraints that the expected value of a feature predicted according
to the conditional distribution equals to the empirical value of the feature observed in the
training data:

EP̃ (x)P (y | x)fk(x, y) =
∑

x,y

P̃ (x)P (y | x)fk(x, y)

= EP̃ (x,y)fk(x, y) =
∑

x,y

P̃ (x, y)fk(x, y), ∀fk(x, y) ∈ F (2.24)

whereP̃ stands for empirical distributions over a training set. There can be many possible
distributionsP (y | x) that satisfies Eq. (2.24). The maximum entropy principle states that the
target distribution should have the maximum entropy subject to the condition of Eq. (2.24).
In other words, the model should make no more assumptions other than the expected feature
values according to the empirical distribution from the training data.

It has been proven that the maximum entropy distribution subject to the condition of
Eq. (2.24) have the following exponential (log-linear) form (Berger et al. 1996):

P (y | x; Λ) =
1

Z(x; Λ)
exp

{

∑

k

λkfk (y, x)

}

(2.25)

As in CRFs,Λ = {λk} is a set of parameters. The value ofλk determines the impact of
the featurefk(y,x) on the conditional probability, and can be estimated with numerical
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Figure 2.7 A typical dialog flow of a voice search application.

algorithms by maximizing the conditional probability of the training data
∑

x,y P (y | x).
Z(x; Λ) =

∑

y exp {
∑

k λkfk (y, x)} in Eq. (2.25) is a partition function that normalizes the
distribution. The difference between MaxEnt and CRFs lies in the form of the labely. In the
CRFs,y is a sequence of random variables that may be inter-dependent, while in the MaxEnt
model,y is a single random variable, which make the model simpler in terms of learning and
inference.

Heigold et al. (2009) used a rich set of features extracted from the candidate listingy
and from the speech inputx, wherex was consists of not only the MFCC features but also
the n-best results from the recognizer. The feature set included character and/or word n-
grams, the posterior probability of word n-grams spotted inx with a dynamic time warping
(DTW) algorithm, etc. It found that the direct flat model had reduced the error rate of a HMM
recognition baseline from 17.4% to around 13%.

2.2.3 Dialog Management

Figure 2.7 shows the common dialog strategy in voice search applications. The dialog starts
with prompting a user for the category information about theitem they are looking for
to narrow down the downstream LM and search spaces. The category can be the locality
information in a DA system (Bacchiani et al. 2008; Yu et al. 2007); the business/product
separation (national business, local business or product)in a voice rating system (Zweig
et al. 2007), or a “search-by” attribute of the music meta-data (e.g., title, album, genre,
artist, etc) in a music search dialog system (Mann et al. 2007). A category-specific LM is
subsequently used to recognize the user’s query containingthe listing information, and the
search component looks for the listing in a category-specific database. If multiple listings are
found, a disambiguation sub-dialog is engaged; otherwise the dialog system either directly
sends the user the listing information or asks for user’s confirmation if the confidence score
is low.
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Figure 2.8 Search result summarization and disambiguation.

Many voice search applications adopt some task-specific dialog strategies. For example,
based on the finding that the accuracy on spelled names is muchhigher than that on spoken
names, the residential DA in (Schramm et al. 2000) exploiteda multi-stage dialog strategy to
improve the accuracy of proper name recognition. A listing was identified by first recognizing
its spelling from a caller. The spelling word graph greatly reduced the listing space for
subsequent recognition of names and addresses.

Disambiguation

Most voice search dialog systems adopt an application-specific disambiguation strategy. In
residential DA, people with the same name are disambiguatedwith their addresses (Schramm
et al. 2000). In business DA, business categories are used for disambiguation (Yu et al. 2007)
– from the set of businesses returned by the search component, a list of possible categories is
compiled. For example, the query “Calabria” results in multiple search results, “Calabria
Ristorante Italiano” in category “Restaurants”, “ Calabria Jack J Do” in “ Doctors and
Clinics” and “Calabria Electric” in “Electric Contractors.” These categories are read to the
user for selection. All the matching listing names in the selected category are subsequently
read to the user, until one is selected or the list is exhausted. Similar disambiguation strategy
is used in a multi-modal voice search application (Mann et al. 2007), where multiple music
titles are displayed in a graphical user interface (GUI) forusers’ selection when they belong
to the same category, or the different categories are displayed first for disambiguation. The
GUI allows users to scan the information visually, which makes the multi-modal interaction
more effective.

One problem of the hard wired disambiguation strategy is itsinefficiency with long
category/entry lists in a speech only interface. It has beensuggested that spoken dialog
strategies such as summaries are a verbal equivalent of the visual scanning behavior that
makes GUIs effective (Polifroni and Walker 2006). Hence summarization can be used
when the search component returns a big ambiguous set. Figure 2.8 shows an exemplar
dialog taken from (Polifroni and Walker 2006). Here the ambiguous listings are summarized
along common attributes like price ranges and cuisines, which guide users to provide the
most effective information for disambiguation. In contrast to the hard wired disambiguation
strategy, the attributes were selected automatically by using a decision theoretic user model
and using the association rules derived from the database subset in the dialog focus (Polifroni
and Walker 2006).
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Confidence Measure

Confidence measures are used to determine what to do with the search results for a
spoken query. The results will be played to callers if the confidences are high, otherwise a
confirmation/disambiguation sub-dialog will be invoked. Confidence measures are also used
to determine when to elevate an automated service conversation to a live agent in an early
dialog stage if the confidence on the key information (e.g., an individual’s last name in a
residential DA system) is too low (Schramm et al. 2000).

ASR only confidence measures were used in many early residential DA systems because
search was not a significant source of uncertainty. A well studied confidence measure is the
word or sentence posterior probability that can be calculated from an ASR lattice, which
was shown to be more effective than some other heuristics (Wessel et al. 2001). A sentence
posterior probability obtained from an n-best list was usedin (Schramm et al. 2000) for DA.
Another confidence measure originally proposed for utterance verification (Lee 1997) was
applied in (Béchet et al. 2000). It is based on hypothesis testing that leads to a measure of
likelihood ratio.

In late voice search applications where statistical searchis applied for robustness,
confidence measures that take into account of uncertaintiesfrom different system components
are more adequate. BBN’s DA system applied a Generalized Linear Model classifier to
compute confidence score from a set of features extracted from spoken queries and listings
(Natarajan et al. 2002). The feature set included word confidences, ASR n-best frequency,
etc. Among them, the two most important features were the required and allowable word
sets. Much like IBM’s signatures, the required word set for alisting is a set of word tuples,
at least one of which must be present in a recognized query in order to associate the listing
with the query. The allowable word set is a list of words that are allowable in a query to be
associated with the listing.

A confidence model based on a maximum entropy classifier was introduced for the
Microsoft Research’s experimental business DA system (Wang et al. 2007). Unlike the
required and allowable set features in (Natarajan et al. 2002), it takes into consideration
the importance of words in a listing with features based on the automatically acquired Idf
statistics of the word. The classifier takes multiple features drawn from the ASR, the search
component and the dialog manager, and the combined featuresextracted from multiple
components. For example, thesearch related featuresfor a hypothesized listingL and a
recognized queryQ include the VSM similarity betweenL andQ; the ratio between the
maximum Idf value among the words existing in bothL andQ and the maximum Idf value
among all the words inL. Thecombined featuresattempt to model the dependency among
features across different components of voice search. One such feature is the ASR confidence
on the word that also exists inL and has the highest Idf value, i.e. the ASR confidence on
the word that contributes the most to the search result. The effectiveness of the features were
studied with statistical significance tests, which gave rise to several application-independent
features for confidence measures in the general voice searchframework (Wang et al. 2007).

2.2.4 Closing the Feedback Loop

Every spoken dialog system needs to be tuned, often through multiple iterations, for improved
performance. This involves a painstaking process of error analysis from logged data. An
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automatic or semi-automatic tuning tool is one of the most wanted items by many dialog
experts. Due to the extreme difficulty of the problem, littlework has been seen on automatic
remedy for design/implementation flaws in the feedback loop. Most research work focused
on automatic flaw discovery from logged data.

In (Popovici et al. 2002), an unsupervised learning algorithm was proposed to obtain the
linguistic variants of listings that were not modeled in theTelecom Italia’s DA system. A
phone-looped model was exploited to obtain the phonetic transcriptions for the utterances
that failed the automated service and got routed to the operators. The phonetic transcriptions
were clustered with a furthest neighbor hierarchical clustering algorithm, where two clusters
with the shortest distance were merged in iterative steps. The distance between two clusters
was defined as the furthest distance between two instance phonetic transcriptions in the
clusters, and the distance between two phonetic transcriptions was obtained with the Viterbi
alignment using the log-probability for phone insertion, deletion and substitution, where
the probabilities were trained using a set of field data by aligning each decoded phonetic
sequence with its corresponding manual transcription. A cluster in the hierarchy was selected
according to the following criteria – the number of instances in the cluster must exceed a
threshold and the dispersion of the cluster must be smaller than another threshold. The central
element of a selected cluster was presented to a spoken dialog expert as a candidate variant
of a business listing.

A similar algorithm was proposed in (Li et al. 2005) to discover the semantic intents that
were not covered by an auto-attendant spoken dialog system in Microsoft (Ollason et al.
2004). The system was originally designed to connect a caller to a Microsoft employee
with name dialing. It was later found that in addition to namedialing an employee,
callers often ask for connections to an office, such as “security” or “ shuttle service.” To
discover these uncovered intents, a language model based acoustic clustering algorithm was
proposed. Unlike the algorithm in (Popovici et al. 2002) that clusters the one-best phonetic
transcriptions, it treats theword transcription and the cluster they belong to as hidden
variables, and optimizes the parameters associated with them with respect to an objective
function. Specifically, given a fixed number of clusters, it builds a cluster-specific language
modelP (w | c) and a cluster prior modelP (c) to maximizeP (x) =

∑

c,w P (x, w, c) =
∑

c,w P (x | w)P (w | c)P (c), the likelihood of the observed acoustic signalx. In practice,
recognition was decoupled from cluster training – a task independent large vocabulary ASR
was used to obtain the hypothesesw and their posterior probabilitiesP (w | x). Sincew andc
are hidden variables, the Expectation-Maximization (EM) algorithm was used to estimate the
probabilityP (c) andP (w | c) by maximizing the objective function. Here the EM algorithm
took as input the hypothesesw andP (w | x) obtained from the task-independent ASR. In (Li
et al. 2005), unigram language models were used forP (w | c). With these cluster-specific
distributions, a KL-divergence based distance measure wasused in hierarchical clustering.
The EM algorithm was subsequently applied for several iterations to re-estimate the model
parameters after merging two clusters. The cluster priors obtained from the EM algorithm
was used to rank the clusters for presentation to spoken dialog experts.

2.3 Summary

This chapter reviews the problem of voice search, which is one of the most actively
investigated technology underlying many practical applications. We have compared voice
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search with other spoken language understanding technologies for human-computer
interaction, discussed the challenges in developing voicesearch applications, and reviewed
some important research work targeting at these problems. As in other SLU applications,
robustness is the central issue in voice search. The technology in acoustic modeling aims
at improved robustness to environment noise, different channel conditions and speaker
variance; the pronunciation research addresses the problem of unseen word pronunciation
and pronunciation variance; the language model research focuses on linguistic variance;
the studies in SLU/search give rise to improved robustness to linguistic variance and ASR
errors; the dialog management research enables graceful recovery from confusions and
understanding errors; and the learning in the feedback loopspeeds up system tuning for
more robust performance.

While tremendous achievements have been accomplished in the past decade on voice
search, big challenges remain. Many voice search dialog systems have automation rates
around or below 50% in field trials. This provides a fertile ground and great opportunities
for future research.
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