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Abstract

Measuring the similarity between two
texts is a fundamental problem in many
NLP and IR applications. Among the ex-
isting approaches, the cosine measure of
the term vectors representing the origi-
nal texts has been widely used, where the
score of each term is often determined
by a TFIDF formula. Despite its sim-
plicity, the quality of such cosine similar-
ity measure is usually domain dependent
and decided by the choice of the term-
weighting function. In this paper, we pro-
pose a novel framework that learns the
term-weighting function. Given the la-
beled pairs of texts as training data, the
learning procedure tunes the model pa-
rameters by minimizing the specified loss
function of the similarity score. Com-
pared to traditional TFIDF term-weighting
schemes, our approach shows a significant
improvement on tasks such as judging the
quality of query suggestions and filtering
irrelevant ads for online advertising.

Introduction

Among these similarity measures proposed in
various applications, the vector-based methods are
arguably the most widely used. In this approach,
the text being compared with is first represented
by a term vector, where each term is associated
with a weight that indicates its importance. The
similarity function could be cosine (i.e., the inner
product of two normalized unit term vectors, or
equivalently a linear kernel), or other kernel func-
tions such as the Gaussian kernel.

There are essentially two main factors that de-
cide the quality of a vector-based similarity mea-
sure. One is thegector operatiorthat takes as in-
put the term vectors and computes the final simi-
larity score (e.g., cosine). The other is how these
term vectors are constructed, including the term
selection process and how the weights are deter-
mined. For instance, a TFIDF scheme for mea-
suring document similarity may follow the bag-of-
words strategy to include all the words in the doc-
ument when constructing the term vectors. The
weight of each term is simply the product of its
term frequency (i.e., the number of occurrences
in the document) and inverse document frequency
(i.e., the number of documents in a collection that
contain this term).

Despite its simplicity and reasonable perfor-

Measuring the semantic similarity between twomance, such approach suffers from several weak-
texts is an important problem that has many usenesses. For instance, the similarity measure is not
ful applications in both NLP and IR communi- domain-dependent and cannot be easily adjusted
ties. For example, Lin (1998) defined a similar-to better fit the final objective, such as being a
ity measure for automatic thesaurus creation frommetric value used for clustering or providing better
a corpus. Mihalcea et al. (2006) developed sevranking results. Researchers often need to experi-
eral corpus-based and knowledge-based word simment with variants of TFIDF formulas and differ-
ilarity measures and applied them to a paraphrasent term selection strategies (e.g., removing stop-
recognition task. In the domain of web search, dif-words or stemming) to achieve acceptable perfor-
ferent methods of measuring similarity betweenmance (Manning et al., 2008). In addition, when
short text segments have recently been proposedore information is available, such as the position
for solving problems like query suggestion and al-of a term in the document or whether a term is part
ternation (Jones et al., 2006; Sahami and Heilmargf an anchor text, incorporating it in the similarity
2006; Metzler et al., 2007; Yih and Meek, 2007). measure in a principled manner may not be easy.



In this paper, we propose a gener@m- function. In contrast, WEAK effectively learns
weighting karning framewok, TwEeEAK, that a new similarity measure by tuning the term-
learns the term-weighting function for the vector-weighting function and can potentially be comple-
based similarity measures. Instead of using anentary to the model combination approach.
fixed formula to decide the weight of each term, As will be demonstrated in our experiments, in
TWEAK uses a parametric function of features ofapplications such as judging the relevance of dif-
each term, where the model parameters are learndéerent query suggestions and determining whether
from labeled data. Although the weight of eacha paid-search ad is related to the user query,
term conceptually represents its importance witiTWEAK can incorporate various kinds of term—
respect to the document, tuning the model paramdocument information and learn a term-weighting
eters to optimize for such objectives may not befunction that significantly outperforms the tradi-
the best strategy due to two reasons. While théional TFIDF scheme in several evaluation met-
label of whether a pair of texts is similar is not dif- rics, when using the same vector operation (i.e.,
ficult to collect from human annotatdrghe label  cosine) and the same set of terms.
of whether a term in a document is important is We organize the rest of the paper as follows.
often very ambiguous and hard to decide. Evergec. 2 first gives a high-level view of our term-
if such annotation issue can be resolved, aligningveighting learning framework. We then formally
the term weights with theue importance of each define our model and present the loss functions
term may not necessarily lead to our real objecthat can be optimized for in Sec. 3. Experiments
tive — deriving a better similarity measure for the on target applications are presented in Sec. 4. Fi-
target application. Therefore, our learning frame-nally, we compare our approach with some related
work, TWEAK, assumes that we are given only thework in Sec. 5 and conclude the paper in Sec. 6.
labels of the pairs of texts being compared, such
as whether the two texts are considered similar by Problem Statement
human subjects.

k ] ) ) ) To simplify the description, assume that the texts
TWEAK is flexible in choosing various loss

_ > "~°2 we are comparing are two documents. A general
functions that are close to the true objectivesy chitacture of vector-based similarity measures
while still maintaining the simplicity of the vector- can be formally described as follows. Given two

based similarity measures. For example, a SySte@ocumentst andD,, a similarity function maps
that implements the TFIDF cosine measure Caam to a real-valued number. where a higher

easily replace the original term-weighting Scores 5 e indicates these two documents are seman-
with the ones output by WEAK without changing ey more related, considered by the measure.
other portions of the algorithm. WEAK is also Suppose a pre-defined vocabulary 3et —
novel compared to other existing learning meth-{tl’tQ’ .., 1,} consists of all possible terms (e.g.,

ods for similarity measures. For instance, we do[okens, words) that may occur in the documents.

not learn the scores of all the terms in the vocabEaCh documenb, is represented by a term vector
ulary directly, which is one of the methods pro- of lengthn: v _p(sl s2,---,s"), wheres € R
P T pr=p? ! p

X ’7p
posed by Bilenko and Mooney (2003). Becausgg ihe weight of ternt;, and is determined by the

the vqcabulary size i_s typically_large i_n the teXtterm—Weighting functionw that depends on the
domain (e.g., all possible words in English), Iearn-,[erm and the document (i.esi = tw(t;, D,))
. p - (3] p .

ing directly the term-_we_ighting scores may sufferThe similarity between documents, and D,
from the data sparsity issue and cannot generals than computed by a vector operation function
ize well in practice. Instead, we focus on Iearnlngf m : (V, vg) — R, illustrated in Fig. 1.
the model parameters for features that each termszgeterr?’iniqng the épecific functiong,, andtuw

m

may have, which results in a much smaller fea-pge ctively decides the final similarity measure.

ture ;page. WEAK also differs from t.he mode For example, the functions that construct the tra-
combination approach proposed by Yih and MeeKyjiiona| TFIDF cosine similarity can be:
(2007), where the output scores of different simi-
larity measures are combined via a learned linear Faiml Vp - Vq
stm

- A" ||V

'As argued in (Sheng et al., 2008), low-cost labels may [Vl - [[vqll
nowadays be provided by outsourcing systems such as Ama- ) _ ] .
zon's Mechanical Turk or online ESP games. tw(t;, Dp) = tft, DP) log

(1)

Vp, Vg)




Figure 1: A general architecture of vector-base
similarity measures
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C13.1 Learning Similarity Metric

In this setting, we assume that the learning al-
gorithm is given a set of document pairs. Each
of them is associated with a label that indicates
whether these two documents are similar (e.g., a
binary label where 1 means similar and O oth-
erwise) or the degree of similarity (e.g., a real-
valued label ranges from 0 to 1), considered by the
human subjects. A training set of examples can

be denoted a§(y1, (Dp,, Dq,)), (Y2, (Dps, Dg, ),

-y (Ym, (Dp,, Dg,))}, Wherey;, is the label
and(D,,, Dy, ) is the pair of documents to com-
pare. Following the vector construction described
in Eq. 3, letv,,, vy, -+, Vp,,, Vg, e the corre-

whereN is the size of the document collection for sponding term vectors of these documents.

deriving document frequenciesf anddf are the

We consider two commonly used loss functions,

functions computing the term frequency and doc-sum-of-squares erraaindlog loss:

ument frequency, respectively.
In contrast, WEAK also takes a specified vec-

tor function f,;,, but assumes a parametric term-

weighting functiontw,,. Given the training data,
it learns the model parametessthat optimize for
the designated loss function.

3 Modd

As a specific instantiation of our learning frame-
work, the term-weighting function used in this pa-

per is a linear combination of features extracte

Lgse(W) = Z(yk - fsim(vpquk))Q (4)
k

DN | =

m

Lo (w) = Z —Yk Log(fsim (Vpk ) V%))
k

—(1 = yk) log(1 — fsim(Vpy, Vg,,)) 5)

Eq. 4 and Eqg. 5 can further be regularized by
adding %||w]||? in the loss function, which may
dmprove the performance empirically and also

from the input term and document. In particular,constrain the range of the final term-weighting

the weight of ternt; with respect to documet?,
is

S; = tww(ti, Dp) = Z wj¢j (ti, Dp), (3)
J

whereg; is thej-th feature function and; is the
corresponding model parameter.

As for the vector operation functiofiy;,,, we

scores. Learning the model parameters for min-
imizing these loss functions can be done us-
ing standard gradient-based optimization methods.
We choose the L-BFGS (Nocedal and Wright,
2006) method in our experiments for its guaran-
tee to find a local minimum and fast convergence.
The derivation of gradients is fairly straightfor-
ward, which we skip here.

Notice that other loss functions can also be used

use the same cosine function (Eq. 1). Notice thath this framework. Interested readers can refer to,

we choose these functional forms for their sim

_say, (Bishop, 1995), for other loss functions and

plicity and good empirical performance shown intheir theoretical justifications.
preliminary experiments. However, other smooth?)_2 L earning Preference Ordering

functions can certainly be used.
The choice of loss function for training model

In many applications where the similarity measure

parameters depends on the true objective in th® applied, the goal is to obtainrankedlist of the

target application. In this work, we consider two
different learning settings: learning directly the

similarity metric and learning theoreference or-

dering and compare several loss functions exper:

imentally.

candidate elements. For example, in the task of

2Although in theory the cosine function may return a neg-
ative value and make the log-loss uncomputable, this can
be easily avoided in practice by selecting appropriate ini-
fial model parameters and by constraining the term-weighting
scores to be non-negative.



filtering irrelevant ads, a good similarity measure4.1 Similarity for Short Text Segments

is expected to rank appropriate ads higher tha'.]udging the similarity between two short text seg-

the .|r_releva'nt ones. A desired trade-off of fals‘e'ments is a crucial problem for many search and on-
positive (mistakenly filtered good ads) and false-

negative (unfiltered bad ads) can be achieved bIIne advertising applications. For instancgiery

: . Yeformulationor query substitutiomeeds to mea-
selecting a decision threshold. The exact value guery

A L ; Sure the similarity between two queries. A prod-
of the similarity measure, in this case, is not cru- .
il For th lications. it is more important ifuct keyword recommendation system needs to de-
cial. For these applications, 1t 1S more Important iy, yine \yhether the given product name and the
the model parameters can better predictjhe-

. . .. suggested keyword is related.
wise preference Learning preference ordering is Because the lenath of the text seament is tvoi-
also motivated by the observation that preference g 9 yp

annotations are generally more reliable than cat(-:"’lIIy short, ranging from a single word to a dozen

egorical similarity labels (Carterette et al., 2008)w0rds, naively applying methods based on word

gverlapping such as the Jaccard coefficient leads
and has been advocated recently by researchers . : e

to poor results (Sahami and Heilman, 2006; Yih
(e.g., Burges et al. (2005)).

, k . and Meek, 2007). To overcome this difficulty, Sa-
In the setting of learning preference ordering,

. =~ _hami and Heilman (2006) proposes a Web-kernel
we assume that each training example consis . . .
. : . unction, which first expands the short text seg-
of two pairs of documents, associated with a Ia—ment by issuing it to a search engine as the quer
bel indicating which pair of documents is consid- y g 9 query,

L and then collectes the snippets of the top results to

ered more preferable. A training setaf exam-
construct a pseudo-document. TFIDF term vectors

ples can be formally denoted &&y1, (xa,, xp,)),

of the pseudo-documents are used to represent the
(va(xazvbe))’ T (ym’(zam’xbm,))}7 where (P ;

original short text segments and the cosine score
Tap = (Dp,, > Dao, ) @y, = (D, , Dg, ) are

two pairs of documents ang, € {0, 1} indicates of these two vectors is used as the similarity mea-

the pairwise order preference, whéreneansz,, sure. hi . | hi
should be ranked higher thap, and0 otherwise. In this sectlon,_ we apply WEAK to .t 'Sf
We use a loss function that is very similar to problem by replacing the TFIDF _term-welghtl'ng
the one proposed by Dekel et al. (2004) for IabeFCheme with the_ learned term-weighting function,
ranking. LetA; be the difference of the similarity when constructing the vectors from the pseudo-

scores of these two document pairs. Namely, documents. Our target applicationdgsery sug-
gestion— automatically presenting queries that are

Ak = fsim(Vpa, + Vaa,) = Jsim(Vpy Ve, ) related to the one issued by th_e user. In particu-
lar, we would like to use our similarity measure
The loss functior’., which can be shown to upper as a filter to determine whether queries suggested
bound the pairwise accuracy (i.e., the 0-1 loss oby various algorithms and heuristics are indeed
the pairwise predictions), is: closely related to the target query.

L(w) = 3 log(1-texp(—p-Ap—(1—yp)-(~Ay))) H1H Tesk & baa |

k=1 Our query suggestion dataset has been previously

(6)  usedin (Metzler et al., 2007; Yih and Meek, 2007)

Similarly, Eq. 6 can be regularized by addingangd is collected in the following way. From the
$|lwl|* in the loss function. search logs of a commercial search engine, a ran-
dom sample of 363 thousand queries from the top
1 million most frequent queries in late 2005 were
We demonstrate how to apply our term-weightingfirst taken as the query and suggestion candidates.
learning framework, WEAK, to measuring sim- Among them, 122 queries were chosen randomly
ilarity for short text segments and to judging as our target queries; each of them had up to 100
the relevance of an ad landing page given amueries used as suggestions, generated by various
query. In addition, we compare experimentally thequery suggestion mechanisms.
performance of using different training settings, Given these pairs of query and suggestions, hu-
loss functions and features against the traditionamnan annotators judged the level of similarity using
TFIDF term-weighting scheme. a 4-point scale Excellent Good Fair andBad,

4 Experiments



where Excellent and Good suggestions are consid- ¢ QF: The search engine query log reflects the
ered clearly related to the query intent, while the distribution of the words/phrases in which
other two categories mean the suggestions are ei- people are interested (Goodman and Car-
ther too general or totally unrelated. In the end, valho, 2005; Yih et al., 2006). We took a log
4,852 query/suggestion pairs that had effective an-  file with the most frequent 7.5 million queries
notations were collected. The distribution of the and usedog(qf + 1) as feature, wheref is
four labels is: Excellent - 5%, Good - 12%, Fair - the query frequency.

44% and Bad - 39%.

For the simplicity of both presentation and im-
plementation, query/suggestion pairs labeled as
Excellent or Good are treated as positive examples
and the rest as negative ones. Notice thaERK
is not restricted in using only binary labels. For
instance, the pairwise preference learning setting e Loc & Len: The beginning of a regular doc-
only needs to know which pair of objects being ument often contains a summary with impor-
compared is more preferred. The model and algo-  tant words. In the pseudo-documents cre-
rithm do not have to change regardless of whether  ated using search snippets, words that occur
the label reflects the degree of similarity (e.g, the in the beginning come from the top results,
original 4-scale labels) or binary categories. For which are potentially more relevant to the
the metric learning setting, an ordinal regression original query/suggestion. We created two
approach (e.g, (Herbrich et al., 2000)) can be ap-  specific features using this location informa-
plied for multi-category labels. tion. Letloc be the word position of the target

We used the same query expansion method as term anden be the total number of words of
described in (Sahami and Heilman, 2006). Each  this pseudo-document. The logarithmic value
query/suggestion was first issued to a commercial  log(loc + 1) and the ratidoc/len were both
search engine. The result page with up to 200  used as features. In order for the learning pro-
snippets (i.e., titles and summaries) was used as cedure to adjust the scaling, the logarithmic
the pseudo-document to create the term vector that  value of the document lengthpg(len + 1),
represents the original query/suggestion. As de- was also used.
scribed earlier in Eqg. 3, the weight of each term
is a linear function of a set of predefined features,4'1'3 Results

e Cap: A capitalized word may indicate being
part of a proper noun or being more impor-
tant. When the term is capitalized in at least
one occurrence in the pseudo-document, the
value of this feature is 1; otherwise, it is O.

which are described next. We conducted the experiments using 10-fold
cross-validation. The whole query/suggestion
412 Features pairs were first split into 10 subsets of roughly

Because the pseudo-documents are construct&gual sizes. Pairs with the same target query were

using the search result snippets instead of reguldtut In the same subset. In each round, one subset
web documents, special formatting or link infor- Was used for testing. 95% of the remaining data

mation provided by HTML is not very meaning- @S used for training the model and 5% was used
ful. Therefore, we focused on using features thafS the development set. We trained six models

are available for plain-text documents, including: With different values of the regularization hyper-
parametery € {0.003,0.01,0.03,0.1,0.3,1} and

e Bias: 1 for all examples. determined which model to use based on its per-
formance on the development set, although the re-
e TF: We usedlog(tf + 1) as theterm fre- sult actually did not vary a lot as changed.
quencyfeature, where f is the number of ~ We compared three learning configurations
times the term occurs in the original pseudo— metric learning with sum-of-squares error
document. (Metricss) and log loss (Metrig,) and the
pairwise preference learning (Preference). The
e DF: We usedlog(df + 1) as thedocument learned term-weighting functions were used to
frequencyfeature, wherelf is the number of compare with the Web-kernel similarity function,
documents in our collection that contain thiswhich implemented the TFIDF term-weighting
term. scheme using Eq. 2.



Table 1: The AUC scores, mean averaged precfets in our cross-validation setting and report their
mean value.

sion and precision at 3 of similarity measures us- i

ing different term-weighting functions. The num- A_‘S shown m_TabIe 1, all three I'eqrne.:d term-

bers with thet sign are statistically significantly weighting functions lead to better S|m|Ia_1r|ty mea-

better compared to the Web-kernel method. sures compared to the TFIDF scheme in terms of
the AUC and MAP scores, where the preference

| Method | AUC | MAP | Prec@3| order learning setting performs the best. However,
Web-kernel| 0.732 | 0.540 | 0.556 for the precision at 3 metric, only the preference
Metric,se | 0.775 | 0.590 | 0.553 learning setting has a higher score than the TFIDF
Metric;oq 0.781 | 0.585 | 0.545 scheme, but the difference is not statistically sig-
Preference| 0.782f | 0.5977 | 0.570 nifican€. This is somewhat understandable since

the design of our loss function focuses on the over-

We evaluated these models using three diﬁererﬁ;lpqu;ilg dl nj;?gﬂ?; only the performance of the

evaluation metrics: the AUC score, precision at
k and MAP (mean averaged precision). The are
under the ROC curve (AUC) is typically used to
judge the overall quality of a ranking function. It Measuring whether a page is relevant to a given
has been shown equivalent to the averaged acc@Uery is the main problem in information retrieval
racy of the pairwise preference predictions of alland has been studied extensively. Instead of re-
possible element pairs in the sequence, and can @eving web pages that are relevant to the query
calculated by the the following Wilcoxon-Mann- according to the similarity measure, our goal is
Whitney statistic (Cortes and Mohri, 2004): to implement a paid-search ad filter for commer-
cial search engines. In this scenario, textual ads
A(fix,y) = Z If(zibf(%)+%If(wi):f($]_)’ with bid keywords that match the query can en-
iy ter the auction and have a chance to be shown on
_ o _ the search result page. However, as the advertisers
where f is the similarity measurex is the se- 3y bid on keywords that are not related to their
quence of compared elements ants the labels.  5qyertisements, itis important for the system to fil-
~ Another metric thatis commonly used in arank-ter jrrelevant ads to ensure that users only receive
ing scenario isprecision atk, which computes sefy| information. For this purpose, we measure
the accuracy of the top-rankédelements and ig- the similarity between the query and the ad land-
nores the rest. We uséd= 3 in our task, which ing page (i.e., the page pointed by the ad) and re-
means that for each target query, we selected thrggove the ad when the score of its landing page is
suggestions with the highest similarity scores ang)e|ow a pre-selected threshbld
computed the averaged accuracy. Given a pair of query and ad landing page,
One issue of precision at is that it does not \ije the queryterm vector is constructed using
provide an overall quality measure of the ranklng,[he same query expansion technique described in
function. Therefore, we also present MAP (meang, . 4.1, thepageterm vector can be created di-
averaged precision), which is a single number thaltectly from the web page since it is a regular doc-
summarizes the performance of the ranking funcyment that contains enough content. As usual,
tion by considering both precision and recall, and, . 464 is to produce a better similarity measure

has been shown reliable in evaluating various iny,, 1aaming the term-weighting functions for these
formation retrieval tasks (Manning et al., 2008)'two types of vectors jointly.

Suppose there arex relevant elements in a se-

guence, whereq,r9,---, 7, are their locations. %We conducted a paired-t test on the 10 individual
The averaged precision is then: scores from the cross-validation results of each learned term-
weighting function versus the Web-kernel method. The re-
1 sults are considered statistically significant when the p-value
AP = — Z Prec(rj), is Iawer than 0.05. _ o
m = One may argue that the filter should measure the simi-
J larity between the query and ad-text. However, an ad will
. .. not provide useful information to the user if the final destina-
wherePrec(r;) is the precision at;. We com- o page is not relevant to the query, even if its ad-text looks
puted the averaged precision values of the 10 tesppealing.

Query/Page Similarity



4'2'1_ Data _ Table 2: The AUC scores, true-positive rates at
We first collected a random sample of queries angg|se-positive rates 0.1 and 0.2 of the ad filter
paid-search ads shown on a commercial search egased on different term-weighting functions. The
gine during 2008, as well as the ad landing pagesjjfference between any pair of numbers of the

Judged by several human annotators, each pag@me evaluation metric is statistically significant.
was labeled as relevant or not compared to the ISf Method | AUC [ TPRus—0.1 | TPRur—02 |

sued query. After removing some pairs where th TEIDE | 0.794 0527 0658
query intent was not clear or the landing page wa TEGDE 0-806 0'430 0-639
no longer avalle_lble, \{ve ma_naged to collect 13,341 Plain-text | 0.832 0503 0.704
query/page pairs with reliable labels. Among HTML | 0.855 0.568 0.750

them, 8,309 were considered relevant and 5,032
were labeled irrelevant.

Because the term vector that represents the
query is created from the pseudo-document (i.e., a

In this experiment, we test_ed the eff(_ect of USir'gcollection of search snippets), the values of these
different features and experimented with three feaHTML—specific features are all 0 for the query

ture s_ets:TF&DF, Plain-textandHTML. TF&D_F term vector. This set of features are only useful for
contains onlflog(tf +1), log(df +1) and the bias deciding the weights of the terms in a page term
feature. The goal of using this feature set is 1Qector.

test whether we can learn a better term-weighting

function given thesameamount of information as 4.2.3 Results

the_TFIDF schgme has. The second feat_ure S_‘e\t/\/e split our data into 10 subsets and conducted
Plain-text consists of all the features described in,, experiments using the same 10-fold cross-
Sec. 4.1.2. As mentioned earlier, this set of fea-

t b df lar text d s th validation setting described in Sec. 4.1.3, includ-
res can be used 1r reguar fext documents tahg how we used the development set to select the
do not have special formatting information. Fi-

) regularization hyper-parameter The pairs that
nally, feature _seHTML is composed of all the have the same target query were again put in the
features used |ﬁ>_la|n-textpll_Js features extracted same subsets. We used only the preference or-
from some special properties of web documentsdering learning setting for its good performance
including: shown in the previous set of experiments. Models

e Hypertext: The anchor text in an HTML compared here were learned from the three _dif-
document usually provides important infor- ferent sets of features, as well as the same fixed

mation. If there is at least one occurrence of! FIDF term-weighting formula (i.e., Eq. 2) used

the term that appears in some anchor text, thé) Sec. 4.1. Table 2 reports the averaged results
value of this feature is 1- otherwise. itis 0. Of the 10 testing sets in AUC, as well as the true-

positive rates at two low false-positive rate points
e URL: A web document has a uniquely useful (FPR=0.1 and FPR=0.2). The difference between
property — the name of the document, whichany pair of numbers of the same evaluation metric
is its URL. If the term is a substring of the is statistically significart
URL, then the value of this feature is 1; oth-  As we can see from the table, having more fea-
erwise, itis 0. tures does lead to a better term-weighting func-
tion. With all features (i.e.HTML), the model
achieves the highest AUC score among all con-
figurations. Features available in plain-text doc-
e Meta: Besides Title, several meta tags used!Ments (i.e.Plain-tex otherthar_l t_erm frequency
in the HTML header explicitly show the im- and documgnt_f.requency can still improve the per-
portant words selected by the page authorf_ormance S|gn|f|(?antly. When only the TF aqd DF
Specifically, whether the term is part of afeatu_res are available, the learned term-weighting
meta-keyword is used as a binary featurefunction still outperforms the TFIDF scheme, al-
Whether the term is in the meta-description SWe conduct paired-t tests as described in Sec. 4.1.3. All
segment is also used. the p-values after Bonferroni correction are less than 0.01.

4.2.2 Features

e Title: The value of this feature is 1 when the
term is part of the title; otherwise, itis 0.



can be extremely large (i.e., the size of the vocab-
ulary), a similarity measure based on vector differ-

ence can easily be affected by terms that do not oc-
ROC Curves cur in both documents, even when the co-occurred

Figure 2: ROC Curves of the ad filters using dif-
ferent term-weighting functions

o 1 ' ' ' AR p— terms have very large weights.

S osf ]

2 o6l e | Learning similarity measures for text has also

TS been proposed by several researchers. For in-

£ 04f . stance, Bilenko and Mooney (2003) applied SVMs

g ozl TT:@BE — to directly learn the weights of co-occurred words

=T Plain-text - i in two text records, which are then used for
ol HTML - measuring similarity for duplicate detection. Al-

0 01 02 03 04 05 0.6 though this approach worked moderately well in
False Positive Rate the database domain, it may not be suitable to han-
dle general text similarity problems for two rea-
though the improvement gain is much smallersons. First, the vocabulary size is typically large,
compared to the other two settings. which results in a very high dimensional feature
Notice that the behaviors of these models at difspace for the learning problem. It is very likely
ferent false-positive regions varies from the tra-that some rarely used and yet important terms oc-
ditional TFIDF scheme. At a low false-positive cur in the testing documents but not in the training
point (e.g., FPR=10%), only the model that useglata. The weights of those terms may not be reli-
all features performs better than TFIDF. This phe-able or even be learned. Second, this learning ap-
nomenon can be clearly observed from the RO@roach can only learn the importance of the terms
curves plotted in Fig. 2, where the models werdrom the labels of whether two texts are considered
trained using half of the data and applied to thesimilar, how to incorporate the basic information
other half to generate the similarity scores. If onlyof these terms such as the position or query log
the performance at a very low false-positive ratefrequency is not clear.
matters, WEAK can still be easily adjusted by

modifying the loss function using techniques such a4 giternative learning approach is to combine
as training with utility (Domingos, 1999; Morik et mjtiple similarity measures with learned coeffi-
al., 1999). cients (Yih and Meek, 2007), or to apply the tech-
5 Reated Work nique oﬂfe.rnel alignmen(Cristianini gt al., 2002)

to combining a set of kernel functions for tun-
Our term-weighting learning framework can being a more appropriate kernel based on labeled
analogous to the “Siamese” architecture for learndata. This type of approaches can be viewed
ing jointly two neural networks that share the sameas constructing an ensemble of different existing
set of model weights (Bromley et al., 1993). Forsimilarity measures without modifying the term
instance, a term vector can be viewed as a verweighting function, and may not generate math-
large single-layer neural network, where each ternrematically equivalent similarity functions as de-
in the vocabulary is a node that takes as input theived by Tweak. Although learning in this ap-
features and outputs the learned term-weightingroach is usually very fast due to the model form
score. Previous applications of this learning maand the small number of parameters to learn, its
chine are typically problems in image processingmprovement is limited by the quality of the in-
or computer vision. For example, Chopra et al.dividual similarity measures. In spite of the fun-
(2005) designed an algorithm to learn a similar-damental difference between our approach and
ity metric for face verification, which is based on this combination method, it is worth noticing that
the difference between two vectors. In our earlietthese two approaches are in fact complementary
experiments (not reported in this paper) of usingo each other. Having a newly learned term-
vector difference instead of cosine, we did not obweighting function effectively provides a new sim-
serve positive outcomes. We hypothesize that belarity measure and therefore can be combined
cause the length of the term vector in our problenwith other measures.
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