
Multi-Document Summarization by Maximizing Informative Content-Wor ds

Wen-tau Yih Joshua Goodman Lucy Vanderwende Hisami Suzuki
Microsoft Research

Redmond, WA 98052, USA
{scottyih, joshuago, lucyv, hisamis}@microsoft.com

Abstract

We show that a simple procedure based on max-
imizing the number of informative content-words
can produce some of the best reported results for
multi-document summarization. We first assign a
score to each term in the document cluster, using
only frequency and position information, and then
we find the set of sentences in the document cluster
that maximizes the sum of these scores, subject to
length constraints. Our overall results are the best
reported on the DUC-2004 summarization task for
the ROUGE-1 score, and are the best, but not sta-
tistically significantly different from the best sys-
tem in MSE-2005. Our system is also substantially
simpler than the previous best system.

1 Introduction
In this paper, we show that a very simple approach to generic
multi-document summarization can lead to some of the best
reported results on this task. Our system has two components:
one component uses machine learning to compute scores for
each word in the set of documents to be summarized (which
is called the “document cluster”); the other component uses
a search algorithm to find the best set of sentences from the
document cluster for maximizing the scores. Despite the sim-
plicity of the techniques, our results are among the best ever
reported for multi-document summarization.

Multi-document summarization is an increasingly impor-
tant task: as document collections grow larger, there is a
greater need to summarize these documents to help users
quickly find either the most important information over-
all (generic summarization) or the most relevant informa-
tion to the user (topic-focused summarization). Examples
where multi-document summarization might be helpful in-
clude news, email threads, blogs, reviews, and search results.

The design of our system is motivated by SumBa-
sic [Nenkova and Vanderwende, 2005; Nenkovaet al., 2006].
SumBasic is extremely simple, but its performance is within
statistical noise of the best system of DUC-2004 and the sec-
ond best system of MSE-2005, using the ROUGE-1 measure.
SumBasic first computes the probability of each content-
word (i.e., verbs, nouns, adjectives and numbers) by simply
counting its frequency in the document set. Each sentence

is scored as the average of the probabilities of the words in
it. The summary is then generated through a simple greedy
search algorithm: it iteratively selects the sentence withthe
highest-scoring content-word, breaking ties by using the aver-
age score of the sentences. This continues until the maximum
summary length has been reached. In order not to select the
same or similar sentence multiple times, SumBasic updates
probabilities of the words in the selected sentence by squar-
ing them, modeling the likelihood of a word occurring twice
in a summary.

Our system improves on SumBasic in three ways. First,
in contrast to SumBasic which only uses frequency informa-
tion, our approach also uses position information. Second,
we introduce a discriminative, machine-learning based algo-
rithm to combine these information sources. Third, instead
of applying the heuristic greedy search of SumBasic, we for-
malize the content selection process as an optimization prob-
lem. Specifically, we use a stack-decoding algorithm to find
the summary that maximize the total scores of the content-
words it has, subject to the summary length constraint. Each
of these three improvements is empirically shown to lead to
better summaries. This system achieves the best reported
ROUGE-1 results for the DUC-2004 summarization task as
well as for MSE-2005, although the difference is statistically
significant only for DUC 2004. (Another recent system[Wan
and Yang, 2006] also reports excellent results on the DUC-
2004 task, but uses a different version of the Rouge software,
making comparisons difficult.)

The rest of this paper is organized as follows. In Section 2
we describe how we determined the importance of position
information, and then we describe several term scoring mech-
anisms. Next, in Section 3, we give details of our optimiza-
tion technique, including the stack decoder. In Section 4,
we give experimental results showing that both our new scor-
ing method and our optimization technique lead to improve-
ments, and that the combined system outperforms the best
previous system on the ROUGE-1 metric. We then compare
our system to related work in Section 5, and finally Section 6
concludes the paper.

2 Scoring
In this section, we describe our techniques for scoring words.
Our starting point, SumBasic, scores words purely using fre-
quency information. In Section 2.1, we investigate additional



possible features by looking for mismatches between human
and machine-generated summaries. We identify position in-
formation as a key additional feature. Then, in Section 2.2,
we examine two different ways to combine position infor-
mation with frequency information, one of which can be de-
scribed asgenerative, and the other of which asdiscrimina-
tive.

2.1 Position and Frequency Features
As mentioned previously, exclusively using word frequency
information, SumBasic can produce quite competitive multi-
document summaries[Nenkovaet al., 2006]. They focused
on frequency information after comparing machine to human
generated summaries, and finding that machine-generated
summaries contained fewer frequent words than human gen-
erated ones. We wanted to build on this work by identify-
ing other information sources that could be useful for a sum-
marization system, in addition to word frequencies. In par-
ticular, we examined the summaries generated by SumBasic
and human summaries written for the same document set, and
checked whether these two types of summaries had different
properties. For example, if the number of capitalized words
was substantially higher (or lower) in human summaries than
in machine generated summaries, we would expect that capi-
talization information could help improve the automatic sys-
tem. We looked at a number of different properties, including
capitalization, word length, sentence length, and others.We
found that the human and machine summaries had compara-
ble values for all properties except one – the word positions.

Position information has been used quite frequently in
single-document summarization. Indeed, a simple baseline
system that takes the firstl sentences as the summary out-
performs most summarization systems in the annual DUC
evaluation[Barzilay and Lee, 2004] (and see also[Zajic et
al., 2002] for use of position in scoring candidate summary
sentences). For multi-document summarization in DUC,
position information has also been used as part of simple
baseline systems: two baselines were constructed for multi-
document summarization, both informed by position. One
system took the firstn words of the most recent news docu-
ment in the collection as the baseline, while the other system
was constructed by appending the first sentences of subse-
quent articles in the document cluster until the length limit
was reached.

In mutli-document summarization, various systems have
used sentence position as a feature in scoring candidate sen-
tences (e.g.,[Radevet al., 2001; Zajicet al., 2005]), but word
position has not been explored thus far. At the level of words,
some systems have used as a feature the number of words
in the candidate sentence that are found to besignature to-
kens, i.e., words found to be frequent near the beginning of
an article and therefore likely to be highly informative[Lin
and Hovy, 2000; McKeownet al., 2001; Schiffman, 2002;
Conroy et al., 2004]. However, these signature tokens are
computed based on a large corpus of news articles, not based
on the word position in a small cluster of articles.

To check for the importance of word position information
in a given cluster of documents, we first needed to define a
position measure. Our procedure was as follows: for each

word occurrence in a document cluster, we computed its po-
sition relative to the beginning of its document, e.g. 0 for the
first word and 1 for the last. For each word, we then com-
puted the average of its occurrences throughout the document
cluster. We call this the average position of the word. A very
frequent word occurring randomly throughout the documents
would have an average position of about 0.5, but words that
occur disproportionately at the beginnings of documents have
an average position below 0.5.

In particular, we compute the average position in the orig-
inal document cluster for the terms in the summary. For hu-
man summaries, the value is about 0.42. For term frequency-
based summaries generated by SumBasic, the value is around
0.46. Compared to the value computed from the document
cluster, which is 0.5, this fact re-confirms the importance of
position. Of course, a difference of .04 may or may not be
important in practice: later, in Section 4, we will give experi-
mental results showing that our inclusion of this information
does indeed lead to statistically significant improvements.

2.2 Scoring the terms
Knowing that frequency and location are important, the next
question is how to incorporate them together to create a good
scoring function for each term. In this section, we explore
two different approaches:generative anddiscriminative.

Generative Scoring
The term scoring method used in SumBasic can be thought
of as a generative model based on frequency alone. In this
model, we assume that summaries are generated at random
from the document cluster according to the following process.
We select a term at random from the document cluster, with
a probability proportional to the frequency of the word in the
cluster. We add this term to the summary, and then delete
all occurrences of the term from the cluster. We repeat this
process until we have generated a summary of the required
length. Of course, a random set of words would be a horrible
summary. In practice, the output summary consists of sen-
tences with the highest probability according to the model,
selected from the document cluster. In Section 3, we describe
in detail how we use these scores to create summaries.

In addition to the above model based only on frequency, we
also propose a generative model that favors words from the
beginnings of documents. We tried additional experiments in
which, instead of selecting words at random from the whole
document, we select terms only from the very beginning of
the document. For our experiments with DUC-2004, we used
the first 100 words; for MSE-2005, where many of the articles
were very short, we used the first 50 words.

Our final generative model combines the above two mod-
els, allowing a tradeoff between overall frequency, and fre-
quency at the beginning of documents. This model assumes
that the first step is to flip a biased coin. Based on the bi-
ased coin flip, we either select our terms at random from the
whole document cluster, or only from the beginnings of the
document clusters. The effective probability value is there-
fore a linear interpolation of the values used in the two base
models. After trying different bias terms, we found that set-
ting it to 0.5 worked best empirically.



Discriminative Scoring
Often, it has been found that for probabilistic approaches to
natural language processing, discriminative approaches work
better than generative ones. We train our discriminative
model using the data for the DUC-2003 multi-document sum-
marization task. That is, welearn the probability that a given
term in the document will be in the summary. For each con-
tent word in a document cluster, we assign label 1 to it if it
appears in the given human summary; otherwise, the label is
0. We then try to learn the probability that the term has label
1, given its features.

The learning algorithm we chose is logistic regression, for
two reasons. First, logistic regression predicts probabilities
directly (in contrast to, say, perceptron or SVMs). Second,lo-
gistic regression works well even with inconsistent labels(in
contrast, to, say, large margin approaches like SVMs which
can find such data difficult to train on). This is important since
we have four different human summaries for each document
cluster. When a term in the document cluster only appears in,
say, three summaries, the training data will have four identi-
cal feature vectors representing this term. Three of them will
be labeled 1 and the other one will be labeled 0.

We created 7 basic features using the frequency and po-
sition information. They are: #occr (the number of the oc-
currences in the document cluster), occrRatio (#occr divided
by the number of the content-words in the document cluster),
avgOccrRatio (calculate occrRatio for each document in the
cluster, and average them), minPos (find the position (starting
from 0) where the content-word appears first in each docu-
ment in the cluster, and use the smallest), avgMinPos (sim-
ilar to minPos, but use the average instead; if the content-
word does not appear in a document, the position is the to-
tal number of content-words in this document), minRelPos
(compute the relative first position, which is the minPos di-
vided by the number of content-words in the document, and
return the smallest of the cluster), and avgRelPos (similarto
minRelPos, but use the avearge instead).

For each of the basic features, we also create a correspond-
ing log feature. Suppose the basic feature isx; then the cor-
responding log feature islog(1 + x). We then expand the
feature space by introducing conjunction features. For each
pair of the above features, we use the product of the values as
a new feature, which has a similar effect to using a degree-2
polynomial kernel.

3 Optimization Method
One relatively novel aspect of our system is that we have
moved from an algorithmic description common in most sys-
tems, to a scoring description: potential summaries are given
an overall score based on the scores of the included content
words, and the goal is to find the summary with the best over-
all score. We first explain how we decide the overall score
of a summary in Section 3.1. Then, in Section 3.2, we de-
scribe the optimization procedure that searches for the best
summary. Finally, in Sec 3.3, we describe a variation that
does sentence simplification, to allow the system to use either
full sentences, or sentences with certain less useful phrases
removed.

3.1 Scoring the summary
We considered two different methods for combining scores of
words to get an overall score: a product-based method, and
a sum-based method. Consider the generative model of Sec-
tion 2.2. For a given summary, we could multiply together the
probabilities from this model. Finding the summary with the
highest product of probabilities would give us the summary
with the highest probability of being exactly correct, accord-
ing to the generative model.

On the other hand, in automatic evaluation metrics such as
the ROUGE scores, we favor summaries that have the most
words that also appear in the reference (i.e., human) sum-
maries. If the score of a content word represents the prob-
ability that the word appears in the human summary, then
the summation of these scores can be thought of as the ex-
pected number of “correct” content words. We compared the
sum and product methods, and we found that the sum method
consistently worked better.

Our summary scoring principle is somewhat different from
SumBasic in that we directly compute the score based on the
words, while SumBasic weights sentences first and tries to
select sentences which have a better total score.

3.2 Finding thebest summary
The iterative algorithm used in SumBasic can be thought of
as a simple greedy algorithm that tries to find the best sum-
mary. However, this greedy algorithm rarely finds the best
summary, even in the sense of optimizing the expected score.
In addition, since it does not explicitly consider the max-
length cut-off threshold, which causes the end of the last sen-
tence not to be used for scoring, the score of the final sum-
mary may be further impacted. We thus developed a more
complex algorithm that could explicitly search for the best
combination of sentences. Our algorithm is based on a stack
decoder[Jelinek, 1969]. One typical problem of stack de-
coders is that they have trouble comparing hypotheses of dif-
ferent lengths. Although it is sometimes solved with an A*
search[Paul, 1991], this requires finding an admissible cost
function, which does not always exist. Instead of using an A*
search, we chose to use multiple stacks, with each stack rep-
resenting hypotheses of different lengths[Magerman, 1994].

Our stack decoder method is shown in Algorithm 1, which
takes as input the set of all sentences from the document clus-
ter, as well as thescore array used to weight the sentences.
The method usesmaxlength stacks: one for each length, up
to the maximum length of the summary. Each stack contains
our best summaries so far, of exactly that length. (The last
stack,stack[maxlength], may contain summaries longer than
maxlength – but words past sizemaxlength are not consid-
ered as part of the scoring). There will be at moststacksize
different hypotheses on any given stack.

The algorithm proceeds by examining a particular stack.
It looks at every solution on that stack (a solution is a set of
sentences). It then tries to extend that solution with every
sentence from the document cluster. These extensions are
then placed on the stack of the appropriate length. In order
to avoid an exponential blowup in the number of solutions on
any given stack, we use a priority queue, and only keep the
top stacksize highest scoring solutions on any given stack.



Algorithm 1 Stack Decoder for Multi-Document Summa-
rization
1: INPUT: An array ofSentences[] and scores for each term

in theSentences[]
2: INPUT: A maximum lengthmaxlength
3: INPUT: A maximumstacksize
4: TYPEDEFSolution = A variable length array of sentence

IDs
5: Let stack[0..maxlength] be a priority queue ofSolutions;

each queue has at moststacksize Solutions.
6: stack[0] = theSolution of length 0;
7: for i = 0 tomaxlength − 1 do
8: for all sol ∈ Stack[i] do
9: for all s ∈ Sentences do

10: newlen = min(i+length(s),maxlength)
11: newsol = sol ∪ {s}
12: score = score ofnewsol counting each word once,

and at mostmaxlength words
13: Insert newsol, score into queue stack[newlen],

pruning if necessary
14: end for
15: end for
16: end for
17: Return best scoring solution instack[maxlength]

Notice that if we did not penalize words that occur more
than once, and if we did not truncate the very last sentence
as part of the scoring procedure, then this problem would be
equivalent to the Knapsack Problem: how large a score can
we pack into amaxlength word summary. Without the no-
duplication limitation and last sentence truncation, and when
using a stack size of 1, Algorithm 1 devolves to the standard
exact solution using dynamic programming for the Knapsack
Problem.

In Section 4 we will compare the greedy algorithm in Sum-
Basic to the stack decoder algorithm, and show that the stack
decoder leads to reasonably large gains. Note that this algo-
rithm is fast: about 11 seconds per document cluster with a
stack size of 30 on a standard PC.

3.3 Summarization with simplified sentences
The goal of a summarization system is to produce summaries
with as much content as possible given the length limit.
Therefore, if we cansimplify sentences in the summary, re-
moving phrases that have little or no expected value, we can
make room for additional sentences that provide more value.

For each sentence in the document cluster, our sentence
simplification procedure eliminates various syntactic units
based on predefined heuristic templates, such as remov-
ing noun appositives, gerundive clauses, nonrestrictive rel-
ative clauses, or intra-sentential attributions. Unlike previ-
ous approaches that deterministically shorten sentences be-
fore or after sentence selection (e.g.,[Conroy et al., 2005;
Siddharthanet al., 2004; Dauḿe III and Marcu, 2005]), the
simplified sentence in our approach does not replace the orig-
inal sentence but is instead added to the sentence pool for the
summarizer to choose from. The choice among the sentence
alternatives provided by the simplification procedure is left

entirely to the summarization component. A detailed descrip-
tion of our approach to sentence simplification can be found
in [Vanderwendeet al., 2006].

4 Experiments

In order to evaluate the performance of our systems, we use
two data sets that have been used in recent multi-document
summarization shared tasks: multi-document summarization
(task 2) in DUC-2004 and the multilingual multi-document
summarization task in MSE-2005. We first show the results
of the purely extractive system on each of these tasks, and
also show the effects of variations of the systems. Next, we
perform experiments using the sentence simplification sys-
tem, showing additional improvements.

DUC 2004
In the multi-document summarization task in DUC-2004,
participants are given 50 document clusters, where each clus-
ter has 10 news articles discussing the same topic, and are
asked to generate summaries of at most 100 words for each
cluster. Since the same task was also held in DUC-2003, but
with different documents, we take the 2003 data for develop-
ment, especially for training the probabilities.

We present the results of our system and SumBasic us-
ing different term scoring methods in Table 1. In addition,
we also compare them with the best system (peer65) and the
baseline system (greedyline) in DUC-2004. As mentioned
previously,greedyline simply takes the first 100 words of the
most recent news article in the document cluster as the sum-
mary. For the evaluation, we use the ROUGE-1 metric (with
stemming and stop-words removed), which has been shown
to correlate well with human judgments[Lin and Hovy, 2003;
Lin, 2004] and which was found to have one of the best corre-
lations with human judgments on the DUC-2004 data[Over
and Yen, 2004]. In addition, we also report the performance
on ROUGE-2 (bigram overlap) and ROUGE-SU4 (skip bi-
gram) metrics1.

In the table, thestack systems use our stack decoder algo-
rithm, while thebasic systems use SumBasic’s iterative algo-
rithm. The suffixes of the system names indicate the types of
term scoring methods used. Discriminative training is repre-
sented by-train; using frequencies only is denoted as-freq;
using frequencies in the first 100 words is-pos; and finally,
-inter means the score is the average of full document fre-
quencies and frequencies in the first 100 words.

We performed paired t-tests comparing our systems to
peer65 (the previous best performing system) and to Sum-
Basic (basic-freq in our terminology). The top three sys-
tems (stack-train, stack-inter, andbasic-inter) were all sig-
nificantly better on ROUGE-1 than peer65 (p < .05). On
ROUGE-2 and ROUGE-SU4, these three systems were just
slightly worse than peer-65, but the differences were not sig-
nificant. The top four systems were all significantly better
than basic-freq (p < .01). We have thus improved on both
our baseline system and on the best previous system.

1ROUGE version 1.5.5, with arguments -a -n 4 -w 1.2 -m -2 4 -u
-c 95 -r 1000 -f A -p 0.5 -t 0



SYSTEM ROUGE-1 ROUGE-2 ROUGE-SU4
stack-train 0.327 0.086 0.129
stack-inter 0.322 0.086 0.129
basic-inter 0.322 0.088 0.132
basic-train 0.320 0.084 0.128
stack-freq 0.311 0.076 0.119
stack-pos 0.310 0.082 0.126
basic-pos 0.306 0.082 0.126

peer 65 0.305 0.090 0.131
basic-freq 0.303 0.077 0.121
greedyline 0.202 0.061 0.099

Table 1: DUC-04: ROUGE-1 (stop-words removed and
stemmed), ROUGE-2 and ROUGE-SU4 (stemmed) scores

SYSTEM ROUGE-1 ROUGE-2 ROUGE-SU4
stack-inter 0.378 0.140 0.173
stack-pos 0.375 0.134 0.166

basic-train 0.374 0.136 0.173
stack-freq 0.374 0.129 0.166
stack-train 0.369 0.133 0.167
basic-inter 0.367 0.133 0.161

peer 28 0.365 0.160 0.186
basic-pos 0.362 0.131 0.163
basic-freq 0.352 0.103 0.161

Table 2: MSE-05: ROUGE-1 (stop-words removed and
stemmed), ROUGE-2 and ROUGE-SU4 (stemmed) scores

We also looked at the component improvements. In every
case, stack decoding was better than basic (greedy) decod-
ing, but the differences were not statistically significant. Dif-
ferences between a pure frequency approach and the trained
approach (stack-train versusstack-freq and basic-train ver-
susbasic-freq) were both highly significant (p < .01). The
difference betweenbasic-inter andbasic-freq was highly sig-
nificant (p < .01), showing that using position information
does indeed lead to improvement.

MSE 2005
In 2005, a different multi-document summarization task was
conducted as part of the Machine Translation and Summa-
rization Workshop at ACL. Participating systems produced
a 100-word summary from a document cluster, which was
a mixture of English and Arabic news articles on the same
topic, where the Arabic documents are translated into Eng-
lish by automatic machine translation systems. In additionto
this major difference, the news articles are generally shorter
than those used in DUC-2004. Ignoring the potential mis-
takes introduced by the machine translator, we ran our sys-
tems without specific modifications for this unusual setting,
except counting the frequencies of the first 50 words instead
of 100 in our position-based generative models (-pos and
-inter).

As shown in Table 2, on this data set, the mean ROUGE-
1 score of our best system,stack-inter, is better than the
best participating system (peer 28) and the original version
of SumBasic. On ROUGE-2 and ROUGE-SU4, the scores of
our systems are slightly lower. However, in all three metrics,
all of the systems have no statistically significant difference.

We notice that the our stack-decoding summarizer with

SYSTEM ROUGE-1 ROUGE-2 ROUGE-SU4
stack-train-sim 0.339 (+0.012) 0.086 0.129
basic-train-sim 0.328 (+0.008) 0.084 0.130
stack-freq-sim 0.320 (+0.009) 0.077 0.120
basic-freq-sim 0.312 (+0.009) 0.075 0.121

stack-train 0.327 0.086 0.129
basic-train 0.320 0.084 0.128
stack-freq 0.311 0.076 0.119
basic-freq 0.303 0.077 0.121

Table 3: DUC-04: ROUGE-1, ROUGE-2 and ROUGE-SU4
scores, with sentence simplification

the discriminatively trained term scores does not perform the
best. This may be due to the fact the model is trained on the
DUC-2003 data, which may be quite different from the data
in MSE-2005.

Sentence simplification for DUC 2004 and MSE 2005
Next, we look at the effects of sentence simplification. Ta-
ble 3 shows the performance of different configurations of
our summarizer with sentence simplification (-sim), and with-
out; the number in parentheses for the ROUGE-1 score is the
amount of improvement. Comparing the four pairs of config-
urations (e.g.stack-train-sim versusstack-train, etc.), we see
that sentence simplification consistently raises the ROUGE-
1 score by about .01, while having essentially no impact on
ROUGE-2 or ROUGE-SU4. The difference in ROUGE-1
score was largest forstack-train-sim versusstack-train, and
the difference was statistically significant (p < .05) for both
this pair, andstack-freq-sim versusstack-freq. There appears
to be a synergy to using our stack decoder with sentence sim-
plification: the stack decoder allows the system to do a better
job of choosing among the many candidate sentences, which
include both all of the original sentences, and simplified ver-
sions of many sentences.

5 Related Work
In this section, we compare our work to related work on a
number of aspects, such as scoring method, search method,
etc.

Both SumBasic and our system focus on scoring individual
words. In contrast, most existing system are sentence-based.
These sentence-based systems use a variety of features, in-
cluding: sentence position in the document, sentence length,
sentence similarity to previously extracted sentences (usu-
ally using the maximal marginal relevance (MMR) frame-
work [Carbonell and Goldstein, 1998]), an explicit redun-
dancy score[Dauḿe III and Marcu, 2005], and sentence sim-
ilarity to the document centroid. In the cases where individ-
ual words are considered during sentence selection, impor-
tant words are identified through graph-based analysis where
the nodes in the graph represent words[Mani and Bloedorn,
1997; Erkan and Radev, 2004], rather than through proba-
bilistic measures such as those used in this work. In contrast
to these complex systems, the only features we use are fre-
quency and position-based.

We combine the position and frequency information us-
ing either a simple generative or simple discriminative



model. Other summarization systems use heuristic methods
for combining multiple features, or, as in[Dauḿe III and
Marcu, 2005], have trained parameters directly using various
ROUGE metrics as an objective function.

Almost all previous multi-document summarization sys-
tems, including SumBasic, have used greedy or heuristic
searches to choose which sentences to use, even when they
had an explicit scoring function. In this paper, we formalize
summarization as an optimization problem and present an ex-
plicit search algorithm, namely a stack decoder, to search for
the best combination of sentences.

A complete survey of summarization systems is beyond
the scope of this paper, but it’s worth describing in more
detail the CLASSY summarization system, which was the
previous best system on the ROUGE-1 metric for the DUC-
2004 task (peer 65), and is now tied for best for the MSE-
2005 task (peer 28). The CLASSY[Conroy et al., 2004;
2005] summarization system consists of two core compo-
nents – a Hidden Markov Model for selecting sentences from
each document and a pivoted QR algorithm for generating a
multi-document summary. The HMM has two kinds of states,
which correspond to summary and non-summary sentences in
a single document. The model uses just one feature, which is
the number of signature terms in each sentence. These terms
are decided by the log-likelihood statistic suggested by Lin
and Hovy[2000], derived based on a large set of documents
in advance. In addition, the best number of the HMM states
needs to be determined based on empirical testing, and the
HMM model needs to be learned using training data. After
applying the HMM, the top scoring sentences of each docu-
ment form a weighted token-sentence matrix. A pivoted QR
algorithm is then used for scoring and selecting sentences to
form the output summary. In addition to these two core com-
ponents, CLASSY also incorporates a linguistic component
as a preprocessing stage to provide the summarization engine
simplified (shortened) sentences as input.

Very recently, Wan and Yang (2006) proposed an approach
to multi-document summarization based on affinity graphs.
Their method tried to identify semantic relationships between
sentences and used a graph rank algorithm to compute the
amount of information a subset of sentences contain. The
best subset of sentences were then selected as the output sum-
mary using a greedy algorithm. Their system was also very
competitive and outperformed the best result in DUC-2004.
However, because of the different ROUGE versions and para-
meter settings, we are not able to compare directly with their
results.

6 Conclusion
Our results are the best reported on the DUC-2004 and MSE-
05 multi-document summarization tasks for the ROUGE-1
score, although only for the DUC-2004 task is the difference
statistically significant, and we could not compare to Wan and
Yang (2006) because of the different ROUGE versions used.
On ROUGE-2 and ROUGE-SU4, our system is second best,
although the differences are not statistically significant. We
have achieved these excellent results using a system that is
substantially simpler than the previous best system, CLASSY.

In particular, our system used about 200 lines of code for the
stack decoder, and less than 400 lines for the score computa-
tions, as well as pre-existing libraries for logistic regression
and for finding content words.

We achieved these results by enhancing an already fairly
competitive summarization system, SumBasic, in several as-
pects. First, we showed that position information was not
already sufficiently captured by SumBasic. Second, we pro-
posed different word scoring methods that combine the po-
sition information with frequency information. We gave a
very easy-to-implement generative model that produces ex-
cellent results, and we described a somewhat more com-
plex, but still straightforward, discriminatively-trained ver-
sion that works even better. While a few other systems have
explicitly optimized parameters[Dauḿe III and Marcu, 2005;
Erkan and Radev, 2004], we are not aware of any previous
work optimizing for word scores. Third, we described a sim-
ple search procedure using a stack decoder that can find the
best sentences to form a summary, given the word scores.
In contrast to more common approaches using heuristic or
greedy methods, such as the iterative algorithm of SumBasic,
the explicit search method is not only more principled and
with a clear objective function, but also better empirically.

As for future research, we would like to apply our method
also in single-document summarization. Given that position
plays an even more important role in this task, we believe
our system should be able to perform reasonably well and
unify single-document and multi-document summarization
tasks seamlessly. While frequency may be less informative
given that there is less repetition, our discriminative model
provides a way to incorporate other information that can be
helpful in judging word importance, especially in the single-
document summarization setting. Another area we would like
to explore is to enhance the readability of the summary, an
important issues existing in almost all purely extractive sum-
marization systems. While the summary generated by our
system is very informative, the coherence between sentences
in the summary may be further enhanced by adjusting the or-
der better or applying some semantic analysis to reconstruct
the summary. Finally, we would like to adapt our system to
task-focused summarization problems, such as web search re-
sult snippets.

Acknowledgments

We thank Arul Menezes, who helped us on the initial setting
of the experiments. We are also grateful to anonymous re-
viewers for their valuable comments.

References

[Barzilay and Lee, 2004] R. Barzilay and L. Lee. Catching
the drift: Probabilistic content models, with applications
to generation and summarization. InHLT-NAACL, 2004.

[Carbonell and Goldstein, 1998] J. Carbonell and J. Gold-
stein. The use of MMR, diversity-based reranking for re-
ordering documents and producing summaries. InSIGIR,
1998.



[Conroyet al., 2004] J. Conroy, J. Schlesinger, J. Goldstein,
and D. O’Leary. Left-brain/right-brain multi-document
summarization. InProc. of DUC, 2004.

[Conroyet al., 2005] J. Conroy, J. Schlesinger, and J. Gold-
stein. Three classy ways to perform arabic and english
multi-document summarization. InProc. of MSE, 2005.

[Dauḿe III and Marcu, 2005] H. Dauḿe III and D. Marcu.
Bayesian multi-document summarization at MSE. InProc.
of MSE, 2005.

[Erkan and Radev, 2004] G. Erkan and D. Radev. Lex-
PageRank: Prestige in multi-document text summariza-
tion. In Proc. of EMNLP, 2004.

[Jelinek, 1969] F. Jelinek. Fast sequential decoding algo-
rithm using a stack.IBM Journal of Research and De-
velopment, 1969.

[Lin and Hovy, 2000] C. Lin and E. Hovy. The automatic
acquistion of topic signatures for text summarization. In
Proc. of COLING, 2000.

[Lin and Hovy, 2003] C. Lin and E. Hovy. Automatic eval-
uation of summaries using n-gram co-occurance statistics.
In Proc. of HLT-NAACL, 2003.

[Lin, 2004] C. Lin. ROUGE: a package for automatic eval-
uation of summaries. InProc. of the Workshop in Text
Summarization, ACL 2004, 2004.

[Magerman, 1994] David Magerman. Natural Language
Parsing as Statistical Pattern Recognition. PhD thesis,
Stanford University University, February 1994.

[Mani and Bloedorn, 1997] I. Mani and E. Bloedorn. Multi-
document summarization by graph search and matching.
In Proc. of AAAI, 1997.

[McKeownet al., 2001] K. McKeown, R. Barzilay,
D. Evans, V. Hatzivassiloglou, M-Y. Kan, B. Schmiffman,
and S. Teufel. Columbia multi-document summarization:
Approach and evaluation. InProc. of DUC, 2001.

[Nenkova and Vanderwende, 2005] A. Nenkova and L. Van-
derwende. The impact of frequency on summarization.
Technical report, MSR-TR-2005-101, 2005.

[Nenkovaet al., 2006] A. Nenkova, L. Vanderwende, and
K. McKeown. A compositional context sensitive multi-
document summarizer. InProc. of SIGIR, 2006.

[Over and Yen, 2004] P. Over and J. Yen. An introduction to
DUC 2004 intrinsic evaluation of generic news text sum-
marization systems. InProc. of DUC, 2004.

[Paul, 1991] D. Paul. An efficient A∗ stack decoder algo-
rithm for continuous speech recognition with a stochastic
language model. InICASSP, 1991.

[Radevet al., 2001] D. Radev, S. Blair-Goldensohn, and
Z. Zhang. Experiments in single and multi-document sum-
marization using MEAD. InProc. of DUC, 2001.

[Schiffman, 2002] B. Schiffman. Building a resource for
evaluating the importance of sentences. InProc. of LREC,
2002.

[Siddharthanet al., 2004] A. Siddharthan, A. Nenkova, and
K. McKeown. Syntactic simplification for improving con-
tent selection in multi-document summarization. InProc.
of COLING, 2004.

[Vanderwendeet al., 2006] L. Vanderwende, H. Suzuki, and
C. Brockett. Microsoft Research at DUC2006: Task-
focused summarization with sentence simplification and
lexical expansion. InProc. of DUC, 2006.

[Wan and Yang, 2006] X. Wan and J. Yang. Improved affin-
ity graph based multi-document summarization. InPro-
ceedings of HLT-NAACL, Companion Volume: Short Pa-
pers, pages 181–184, 2006.

[Zajic et al., 2002] D. Zajic, B. Dorr, and R. Schwartz. Auto-
matic headline generation for newspaper stories. InProc.
of DUC, 2002.

[Zajic et al., 2005] D. Zajic, B. Dorr, J. Lin, C. Monz, and
R. Schwartz. A sentence-trimming approach to multi-
document summarization. InProc. of DUC, 2005.


