

Optimizing Background Email Sync on Smartphones

Fengyuan Xu1,3, Yunxin Liu1, Thomas Moscibroda1, Ranveer Chandra2, Long Jin1,4,
Yongguang Zhang1, Qun Li3

1
Microsoft Research Asia, Beijing, China

2
Microsoft Research, Redmond, WA, USA

3
College of William and Mary, Williamsburg, VA, USA

4
Tsinghua University, Beijing, China

Abstract
Email is a key application used on smartphones. Even when

the phone is in stand-by mode, users expect the phone to

continue syncing with an email server to receive new mes-

sages. Each such sync operation wakes up the smartphone

for data reception and processing. In this paper, we show

that this “cost of email sync” in stand-by mode constitutes a

significant source of energy consumption, and thus reduces

battery life. We quantify the power performance of different

existing email clients on two smartphone platforms, An-

droid and Windows Phone, and study the impact of system

parameters such as email size, inbox size, and pull vs. push.

Our results show that existing email clients do not handle

email sync in an energy efficient way. This is because the

underlying protocols and architectures are not designed for

the specific needs of operating in stand-by mode. Based on

our findings, we derive general design principles for energy-

efficient event handling on smartphones, and apply these

principles to the case of email sync and implement our tech-

niques on commercial smartphones. Experimental results

show that our techniques are able to significantly reduce

energy cost of email sync by 49.9% on average with our

experiment settings.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network

Protocols - Applications

General Terms
Experimentation, Measurement, Performance

Keywords
Energy Efficiency, Smartphone, Email, Cellular Network

1. Introduction

Standby time, a battery’s life in standby mode, is important

for smartphones to provide good power performance to us-

ers. Even though many smartphones claim a standby time of

more than 10 days in their technical specifications, in prac-

tice their standby times are often much shorter, e.g., only

two or three days or even less. The main reason for such a

big gap is that when a smartphone remains in standby mode,

it stays connected to the Internet through its cellular data

interface (e.g., 3G), waiting for various incoming events,

such as emails, short messages, instant messages, notifica-

tions of social applications (e.g., Twitter and Facebook), and

many other push notifications.

This connected standby state, in which the screen is off

while the network connectivity stays active, is of fundamen-

tal importance for mobile devices. Most users keep their

phone in connected standby for a large fraction of time dur-

ing the day. In this state, the reception of an incoming event

(email, instant message…) wakes up the cellular data inter-

face as well as the phone’s operating system (OS), to re-

ceive the set of packets over the network and process re-

ceived data. Collectively, these operations consume a signif-

icant amount of power. For example, our measurements

show that the energy cost of receiving a small email on an

Android smartphone is more than 14,000mJ, which is as

high as the energy consumed by a typical smartphone in

standby mode for 10 minutes. In other words, the reception

of a single email reduces the standby time of a smartphone

by 10 minutes. Assuming the phone has a standby time of

10 days without receiving any events, its standby time will

be reduced to less than 6 days (a reduction of more than

40%), if it receives 100 emails per day. This is despite the

screen being off during the entire duration, and without any

user interaction.

In this paper, we study the power performance of email sync

in connected standby on smartphones. Email is a killer ap-

plication on smartphones for most users, who expect their

email clients to keep synchronized with one or more email

servers even when the phone is in standby mode. We meas-

ure the energy consumption of existing email clients on two

major smartphone platforms: Android and Windows Phone

(WP). Our results show that email sync is indeed a major

drain on existing platforms, and we observe that existing

mobile email clients do not handle incoming emails in an

energy-efficient way. The reason is that the underlying pro-

tocols, and the overall design of today’s mobile email cli-

ents do not take into account the specific characteristics and

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MobiSys’13, June 25–28, 2013, Taipei, Taiwan.

Copyright © ACM 978-1-4503-1672-9/13/06...$15.00.

needs of operation in connected standby mode: data pro-

cessing is not sufficiently de-coupled from network com-

munication (thus preventing the 3G interface from quickly

going to sleep), memory management and storage in-

put/output (I/O) are un-optimized, and network protocols

and interface operations are tailored for operations other

than event reception.

Based on our findings, we formulate new design principles

for energy-efficient event handling (and specifically email

sync) on smartphones in connected standby. Applying these

principles to the case of email sync, we develop 5 new tech-

niques, each one addressing one of the shortcomings we

have identified in existing systems.

 In current systems, long 3G tail times keep the 3G inter-

face on for longer than is necessary. We advocate fast

dormancy and adaptive 3G tail times based on email arri-

val patterns, to reduce the energy cost of the 3G tail.

 In current email clients, data transmission and data pro-

cessing are coupled together, e.g., a final ACK packet is

sent to the email server once the received email has been

completely processed. Depending on the amount of pro-

cessing time required to handle an incoming email, this

coupling can prevent the 3G interface from going to sleep

for a long time. We propose decoupling the data trans-

mission from data processing to improve energy efficien-

cy.

 In some email clients, the amount of data processing and

memory/storage I/O required to handle an incoming

email depends on the size of the inbox, leading to a par-

ticularly high energy cost for receiving emails when there

are many of them in the email client’s inbox. We mitigate

this problem by using a small cache for incoming emails,

to enable fast email processing.

 Flash storage operations on smartphones are slow, which

leads to long data processing times, thus keeping the OS

awake longer. We show that in connected standby, it

therefore makes sense as a design principle to perform

email reception entirely in-memory.

 Finally, in some clients, a new secure network connection

is established for receiving every new incoming email,

resulting in repeated TCP and SSL handshakes and a

waste of energy. We solve this problem by reusing net-

work connections across the reception of multiple emails.

Collectively, these techniques achieve significant reductions

in the energy cost of email syncing. Specifically, we have

implemented them by modifying an existing email client on

commercial smartphones. Experimental results show that

our revised email client is able to significantly improve

email sync’s energy efficiency, reducing the average energy

cost by 49.9% and up to 77.9% if we put the 3G interface

into sleep immediately after an email is received.

In summary, the main contributions of this paper are:

 We show that email sync in a connected standby state is a

major source of energy consumption in today’s

smartphones, and that existing email clients are not opti-

mized for operation in this mode.

 We derive design principles for energy-efficient event

handling in connected standby, and propose techniques

for reducing the energy required per email sync.

 We implement a new email client on smartphones and

show that it is significantly more energy efficient.

The paper is organized as follows. Section 2 gives back-

ground information on email sync in smartphones. In Sec-

tion 3, we present a measurement study on the email-sync

energy cost of existing smartphone email clients, and derive

general guidelines to make event reception energy-efficient

in connected standby. Section 4 describes our novel tech-

niques. We describe our implementation and evaluation

results in Sections 5 and 6, respectively. In Section 7, we

demonstrate that our techniques can also be used to improve

energy efficiency when receiving events in other event-

triggered applications. Section 8 surveys related work be-

fore we conclude in Section 9.

2. Background on Email Sync

Similar to desktop or laptop PCs, smartphones usually use a

client application to sync email from a server. Typically

email sync can be done in one of two ways: polling or push-

ing. In polling, a client proactively connects to a server to

check for new emails. The client can be configured to auto-

matically poll the server periodically (e.g., every 10

minutes), or the user can manually start a polling operation.

Polling has two disadvantages. First, it wastes energy if a

server does not have any new emails, particularly if polling

is too frequent. Second, because a new email may arrive

before a client polls its server, polling causes a delay in re-

ceiving the email, in the worst case as long as the polling

time interval. As a result, users may find it hard to set a

proper polling time interval to balance the energy cost and

email receiving delay. For these reasons, push email is

widely used on smartphones. Most popular email services,

such as Microsoft Exchange, Gmail and Hotmail, support

push email. The Gmail application on Android supports

push email, but not poll email.

In push email, instead of polling from a client, emails are

received by pushing from a server. Once a server receives a

new email for a client, it pushes the new email to the client

through a previously established TCP connection. Conse-

quently, the client is able to immediately receive new emails

as soon as they arrive. Push email not only has minimal de-

lay but in some cases also saves energy since a client does

not need to poll a server when there is no new email. As

smartphones are usually behind a Network Address Transla-

tor (NAT) and a firewall, they often use a private IP address

rather than a public one. As a result, an email server cannot

Figure 1: Power trace of receiving a push email on Android

using Exchange email service

4V

100

200

300

400

500

mA

350 355 360 365 370 sec

initialize a TCP connection to a smartphone. Therefore,

push email requires a persistent TCP connection between a

client and a server so that the server can send new emails to

the client over the persistent TCP connection. For example,

Microsoft Exchange supports push email by Direct Push [1].

A client first connects to a server using TCP. To receive

push emails, the client uses a long-standing HTTP POST

(the protocol used by smartphones to talk to a Microsoft

Exchange server is called Exchange ActiveSync [2] which

is on top of HTTP) request to ask the server to respond

within a time period, e.g., 15 minutes. Then the smartphone

can go to sleep or standby mode. If the server has new

emails within the 15 minutes, it pushes the emails to the

client. Otherwise, the server will send a HTTP 200 OK mes-

sage to the client who then sends another long-standing

HTTP POST to the server.

Push email usually works only on cellular networks (e.g.,

3G) but not on Wi-Fi. This is because the coverage of cellu-

lar networks is pervasive, and the cellular module of a

smartphone can work independently from the smartphone’s

Operating System. When the OS is in sleep mode, the cellu-

lar module remains connected and can receive data from the

cellular network. After receiving a data packet from an

email server (or any other servers), the cellular module will

generate an interrupt to wake up the OS. The execution of

the email client is resumed, and the email can be pushed

from the server. In contrast, Wi-Fi networks usually have a

small amount of coverage and roaming between different

Wi-Fi networks breaks the persistent connection required by

push email. Furthermore, on some smartphones, the Wi-Fi

interface is usually turned off when the OS is asleep, and

hence the Wi-Fi interface cannot receive any data. There-

fore, in this paper, we focus on studying email sync on cel-

lular networks. Even on a cellular network, the carrier oper-

ator may tear down a TCP connection if it is idle for too

long (a common timeout threshold is 10 minutes), to release

the resources allocated for the TCP connection in the NAT

and firewall. Email clients on smartphones handle this issue

by sending a keep-alive message to the server before the

timeout is reached, e.g., a PING message used in Direct

Push [1].

3. Profiling Energy Cost of Email Sync

In this section we measure and analyze the power perfor-

mance of existing email clients on smartphones. We first

describe the experimental setup and then report the results

and findings.

3.1 Experimental Setup

We have studied email sync behaviors on two smartphone

platforms: Windows Phone and Android. For the WP plat-

form, we used a Samsung Omnia 7 smartphone running

Windows Phone 7.5. We used the built-in email client pro-

vided by WP. For the Android platform, we used a Samsung

Nexus S smartphone running Android ICS 4.0.4. We also

used the built-in email client provided by Android. Both

email clients support different email services.

Our study uses two popular email services: Microsoft Ex-

change and Google’s Gmail, examining both push email and

poll email. All experiments were conducted in Beijing, Chi-

na, using the 3G network of China Unicom. Monsoon Pow-

er Monitor [3] was utilized to measure the power consump-

tion of smartphones. We focused on the power consumption

of the connected standby mode. That is, we measured the

energy cost of receiving emails without any user interaction

and the screens of the smartphones were off while receiving

email. The disruption from other concurrent operations is

rare in this situation, so we do not consider it in this work.

3.2 Measurement Results

3.2.1 Stages of receiving an email

We measured the power traces of receiving an email on the

two platforms. Figure 1 shows the power trace of receiving

a small-push email using the Exchange email service on

Android. This email consisted of 2 KB random text content

and the total data received was 10 KB including all headers

and metadata. We can see there are several major stages in

receiving this email. At the beginning, the smartphone was

in sleep mode with little power consumption (about 30

mW). When the server pushed the email to the smartphone

over the 3G network, the 3G interface and operating system

of the smartphone woke up. We call this the Wakeup stage.

Then the email client received and processed this email,

which is called the Receive stage. The last stage was 3G tail

time when the 3G interface stayed in a high power state but

no network traffic was occurring. We call this the Tail stage.

After the Tail stage, the 3G interface and the operating sys-

tem went back to sleep. The total time duration of receiving

the email is 18.42 seconds.

The 3G tail time is controlled by the cellular module using a

timer. When there is no data packet transmission, the timer

starts to count down. If the network remains idle after the

timer expires (e.g., after 10 seconds), the 3G interface goes

to sleep. If there is a data packet that is sent or received, the

timer is reset. The 3G tail time is designed to reduce net-

Table 1: Average energy cost of receiving a small email

with various configurations

Configuration Energy Cost (mJ)

Android + Exchange + Push 14,976

Android + Exchange + Poll 14,674

Android + Gmail + Push N/A

Android + Gmail + Poll 20,750

WP + Exchange + Push 5,429

WP + Exchange + Poll 5,659

WP + Gmail + Push 6,235

WP + Gmail + Poll 7,027

Android + Gmail App (Push) 12,931

work latency. From Figure 1, we can see that it takes about

two seconds for the 3G interface to wake up from sleep

mode. During the 3G tail time, the 3G interface can keep

active for continuous network traffic, avoiding wakeup la-

tency.

We also measured the power trace in receiving the same

email on Android through polling. The overall procedure is

very similar to the pushing case and consists of the same

three major stages (i.e., Wakeup, Receive and Tail). The

difference is that, in the polling case, the operating system

first wakes up itself (via a timer based on the email polling

interval) and then proactively wakes up the 3G interface for

querying the email server instead of being interrupted by the

3G interface passively. The total time duration of receiving

the email is 18.54 seconds, similar to the push email scenar-

io.

We further measured the power trace when receiving the

same email on WP through pushing. Again it consists of the

same three major stages. However, compared to the Android

cases, the total time for receiving the email on the WP de-

vice is much shorter, taking only 7.24 seconds. One reason

is that the WP smartphone we used has a much shorter 3G

tail time than the Android smartphone. To confirm this, we

conducted experiments to measure the 3G tail time on the

two smartphones. We found that the WP smartphone has a

3G tail time of about 5 seconds but the Android smartphone

has a 3G tail time of 10 seconds. This shows that the WP

smartphone enables fast dormancy (see more details in Sec-

tion 4), a technique to shorten 3G tail time, but the Android

smartphone does not.

We also measured power traces of other combinations for

receiving email. For example, using Gmail email service

and pulling on WP, we observed the same three major stag-

es in all the other power trace curves. We conclude that it is

a common pattern of receiving an email.

Note that the stage markers in Figure 1 are just for illustra-

tion purposes, used instead of showing the exact duration of

each stage. In particular the Tail stage and the Receive stage

may be overlapped. For example, the 3G tail time may start

immediately after all data transmissions are finished but

before the data processing is done. In addition, in all the

above experiments, when the email was received, the email

clients on both Android and WP had already stored 200 oth-

er emails. Later in this Section we will see that the energy

cost of receiving an email may depend on inbox size, partic-

ularly with WP.

3.2.2 Energy cost of receiving an email

To study the email receiving performance of different con-

figurations, we measured the energy cost of receiving the

same 10 KB email using various combinations of the two

platforms (WP and Android), two email services (Microsoft

Exchange and Google Gmail) and two email receiving ap-

proaches (push and poll), with an inbox of 200 messages.

Table 1 shows the average results.

Our first observation was that we can see that the energy

cost on Android is much higher than the one on WP. Aside

from hardware differences, one reason is that the WP

smartphone has a shorter 3G tail time than the Android

smartphone as aforementioned. The 3G tail time is five sec-

onds shorter on WP, leading to about 2,736 mJ energy sav-

ing. In addition, as we will show later, WP has low energy

cost of email receiving when the inbox size is small.

Second, we could see that push email and poll email have

very similar energy costs given the same email service and

platform. On Android, the difference between push and poll

is only 2% for the Exchange service, while this difference is

less than 4% on WP. For Gmail, the difference on WP is

13%. This is reasonable because push email and poll email

are fundamentally very similar: they receive the same

emails and do the same data processing work. On Android,

the default email client does not support push email for

Gmail service and thus we do not have the number in Table

1.

We also found that the energy costs of two email services

are similar on the same platform, although the Exchange

service always consumes less. For example, polling-based

Gmail on Android takes 20,750mJ energy, but Exchange

service with polling consumes 14,674 mJ. On WP, push-

based Gmail service takes 6,235mJ energy but the same

service of Exchange requires 5,429 mJ energy. Despite this,

different email services might be different in implementa-

tion details; they are expected to have similar patterns due to

the nature of the email service. In fact, Microsoft Exchange

ActiveSync (EAS) protocol has been widely used for the

synchronization of emails, contacts, calendar, tasks and

notes from a messaging server to a mobile device. Many

companies, including Google [11] and Apple [12], have

licensed and adopted EAS in their own email services for

mail sync on mobile devices.

We also evaluated the Gmail application that is specifically

designed for the Gmail service by Google on Android,

which only supports push email. The last row of Table 1

shows the result. We can see that it requires less energy,

Figure 3: Energy cost of receiving an email with various

email sizes (five trials per experiment)

 14,981 15,978 16,335

 20,256
 22,227

0

5,000

10,000

15,000

20,000

25,000

30,000

10KB 50KB 100KB 500KB 1MB

En
e

rg
y

C
o

st
 (

m
J)

Email Size

Figure 2: Energy cost of receiving a push email of 10 KB using Exchange service with different inbox sizes (five trials per exper-

iment)

 5,155 5,458
 6,523

 11,016

 15,552 14,964 14,981 15,391 15,940 16,683

0

4,000

8,000

12,000

16,000

20,000

20 200 1000 4000 10000

En
e

rg
y

C
o

st
 (

m
J)

Inbox Size (number of emails)

Windows Phone Android

compared to the default email client on Android. This sug-

gests that Google does some Gmail specific optimizations,

probably on both the client side and the server side. Howev-

er, we do not know the technical details because the Gmail

application is not open source.

Due to the similarity of push email and poll email, and the

similarity of Exchange service and Gmail service, in the rest

of this section, we focus more on Exchange push email.

3.2.3 Energy cost vs. inbox size

We measured the energy cost of receiving the same email in

different inbox sizes. Inbox size is measured in terms of the

number of emails already received in the inbox on a

smartphone. We used the same small email of 10 KB that

we used in the aforementioned experiments.

Figure 2 shows the results using Exchange push email. In-

terestingly, we can see that the energy cost of receiving the

same email on WP highly depends on the inbox size. When

the inbox size is small, the energy cost is small and increas-

es with the inbox size significantly. For example, the energy

cost when the inbox has 10,000 emails is more than three

times the energy cost when the inbox is as small as 20

emails. This is probably found by updating the metadata of

the inbox database. For example, to support “conversation

view”, the email client needs to group all the emails of a

conversation thread together.

Compared to WP, Android has a much flatter energy cost in

different inbox sizes. However, when the inbox size is

small, the energy cost on Android is much higher than WP.

For example, when the inbox size is 20 emails, Android

consumes 190% more energy than WP. Even if we exclude

the extra energy cost (2,736 mJ) of the long 3G tail time on

Android, Android still needs 137% more energy than WP.

For large inbox size like 10,000 emails, Android and WP

have similar energy cost, with a small difference of 7%.

One may argue that 10,000 emails are too many for

smartphones as many users only download a small part of

their whole inbox onto their smartphones, e.g., only the re-

cent emails in the last few weeks. However, with an infor-

mal survey, we found that some people do download a large

number of emails or even all their emails onto their

smartphones. The main reason is that they can easily search

emails on smartphones, particularly when their smartphones

do not have a data connection. Furthermore, email clients on

smartphones usually store only email headers and limited

text content of email bodies (e.g., up to 5 KB bytes text). By

default, attachments or embedded images are excluded.

Thus, today’s smartphones have enough storage space to

store a large number of emails.

3.2.4 Energy cost vs. email size

We measured the energy cost of receiving an email with

different email sizes. As previously mentioned, smartphone

email clients usually download the email header and a lim-

ited amount of the email body for a new email. Users cannot

specify the amount of data to be downloaded in both built-in

email clients on the two platforms. Based on our observa-

tion, the email client on WP receives very limited email

data, about only 10 KB including all email headers. The

email client on Android can receive up-to several hundred

Figure 4: Network packets transmitted in receiving a push

email using Exchange service on WP

Ti
m

e

Push notification from the server

Email sync request to the server

.

.

.

Receive email data from the server

PING message to the server

Network idle

Figure 5: Network packets transmitted in receiving a push

email using Exchange service (the same one used for Fig. 4)

on Android

Ti
m

e

Push notification from the server

Email sync request to the server

.

.

.

Receive email data from the server

PING message to the server

Network idle

New TCP connection request to the server

TCP/SSL handshakes

.

.

.

Network idle

KB of data (see more details in Section 3.2.6), more suitable

for testing. Consequently, we only measured the energy cost

of receiving an email with different sizes on Android.

Figure 3 shows the results with an inbox of 200 emails. The

email size is defined as the total received data size if the

email is completely received, including email content, head-

ers and metadata. We decided the size of an email using

Outlook email client on a PC. Outlook email client can

download all the email data and show the received data size.

We can see that the energy cost increases as the email size

gets larger but the difference is small, not proportional to the

difference in email sizes. For example, when the email size

is changed from 11KB to 107KB, an increase of 873%, the

increase in energy cost is only 31%. This is for two reasons.

First, the email size mainly contributes to the energy cost of

receiving and processing the data, which is only a small part

of the total energy consumption. Second, for large emails

the Android email client does not receive all the email data.

For instance, an email with a size of 500 KB and an email

with a size of 1,000 KB have similar amounts of data writ-

ten to the flash storage (336 KB vs. 340 KB).

3.2.5 Network activities in receiving an email

To find out what happened behind the energy cost, we pro-

filed the network activities of the email clients when receiv-

ing an email. To do that, we captured the network data

packets received and sent by the email clients. On Android,

we used Tcpdump [4] to save all the network packets for

offline analysis. For WP, we did not have a tool to capture

packets. Thus, instead of using 3G, we conducted experi-

ments on receiving emails over Wi-Fi. To make push email

work over Wi-Fi, we kept the smartphone on at all times so

that it could receive emails pushed from the email server.

Then we used Wireshark [5] on a laptop to capture all net-

work packets of the smartphone transmitted in the air.

Figure 4 shows the packets (excluding TCP ACKs) trans-

mitted in receiving the small email sized 10KB on WP

pushed from the Exchange server. Basically, the email client

first received notification of the new incoming email from

the server over the previously established TCP connection.

Then it started to fetch the email from the server and pro-

cessed it. After that, the client sent out a PING message

packet to the server to wait for the next incoming new

email.

We can see that there is a network-idle time period between

the PING packet and the prior burst data transmission. Dur-

ing this time period, the email client is processing the re-

ceived email. We found that this processing time increases

with inbox size. As shown in Table 2, with an inbox size of

200 emails, it was 0.5 seconds but increased to 10 seconds

when the inbox had 10,000 emails.

Figure 5 shows the network packets transmitted on Android

when receiving the same push email from the same Ex-

change server. Compared to WP, the network activities on

Android are different as follows. First, instead of using the

same TCP connection to fetch a new email, after receiving a

notification over the existing TCP connection, the Android

email client establishes a new TCP connection to the email

server to receive the new email. Doing so introduces some

overhead on TCP and SSL handshakes between the client

and the server, where 12data packets (6.9KB in total) are

transmitted. Second, on Android there are two network-idle

time periods. One is between the email sync request sent

from the client to the server and the server’s reply. The oth-

er one is after receiving the burst event data and before the

final PING message sent from the client to the server. How-

ever, unlike WP, the network-idle time periods do not de-

pend on inbox size. Table 2 also shows the total network-

idle time on Android. It bears no obvious relationship to the

inbox size, ranging from 3 seconds to 4.6 seconds (3.6 sec-

onds on average).

Figure 6: Energy distribution among the three stages in

receiving an email with different inbox sizes. Top: on WP.

Bottom: on Android.

0

2,000

4,000

6,000

8,000

10,000

12,000

20 200 1000 4000 10000

En
e

rg
y

C
o

st
 (

m
J)

Inbox Size (number of emails)

Wakeup stage

Receive stage

Tail stage

0

2,000

4,000

6,000

8,000

10,000

12,000

20 200 1000 4000 10000

En
e

rg
y

C
o

st
 (

m
J)

Inbox Size (number of emails)

Wakeup stage

Receive stage

Tail stage

Table 2: Network idle time during email receiving

Inbox size (num-

ber of emails)

Network idle time (seconds)

WP Android

20 0.4 3.5

200 0.5 4.6

1,000 0.9 3.0

4,000 3.5 3.4

10,000 10.0 3.5

Table 3: Data size written to flash in email receiving

Email size (KB) 10 50 100 500 1,000

Data size (KB) 139 156 188 336 340

3.2.6 Storage activities in receiving an email

Besides the network activities, we also profiled the storage

activities in receiving an email. For Android, we developed

a tool to intercept the storage access APIs (e.g., file reading

and writing) to capture all the flash-storage operations of the

email client. For WP, we couldn’t develop such a tool due to

the limited programmability offered by Windows Phone.

Therefore, we only conducted the flash-storage experiments

on Android.

Table 3 shows the total amount of data written to flash stor-

age for different incoming email sizes. We can see that the

amount of data written to flash storage increases with email

size. This is because the email client needs to write the re-

ceived email data into the inbox database. Thus, more data

were written to flash storage for larger email. However,

when the email is very large, the data amount written to

flash storage does not increase any more. This is because the

Android email client limits the maximum data received for

emails. Unfortunately it does not provide an option for users

to configure such a behavior.

The results show that the Android email client immediately

writes received email data onto flash storage. All flash oper-

ations in receiving an email were distributed in a time peri-

od of one to two seconds, each writing a small amount of

data. As we will show in Section 4.3, small flash writes are

time and energy expensive and should be avoided in receiv-

ing emails.

3.2.7 Energy distribution

Finally we studied how the total energy cost of receiving an

email is distributed in the three stages of the power curves:

Wakeup stage for the 3G interface and operating system to

wake up, Receive stage for the email receiving and pro-

cessing, and Tail stage for the 3G tail time. We denote the

time duration of the Wakeup stage as the time period be-

tween the time when the smartphone wakes up and the time

before receiving the notification packet from the server. We

define the time duration of the Tail stage as the time period

between the time when the last packet is transmitted and the

time when the smartphone goes to sleep again. We treat the

rest of time as the time duration of the Receive stage.

Figure 6 shows the results. We can see that the Wakeup

stage takes stable and fixed energy costs on both WP (907-

936 mJ) and Android (979-1,022 mJ) no matter how big the

inbox is. The energy cost of the Tail stage is also quite sta-

ble on the two platforms. On WP, the Tail stage takes 2,419-

3,427 mJ (2,866 mJ on average) of energy but on Android

it takes 5,832-6,307 mJ (5,962 mJ on average) of energy,

due to the difference of 3G tail time on the two platforms.

Different from the Wakeup stage and the Tail stage, the

energy cost of Receive stage depends on the inbox size.

Particularly for WP, the energy cost increases significantly

with the inbox size, from only 144mJwhen the inbox size is

20 to 10,944 mJ when the inbox size is 10,000. For An-

droid, the numbers are relatively flat: 7,387 mJ for inbox of

20 and 11,002 mJ for inbox of 10,000.

In addition, we can see that the Receive stage and Tail stage

take more energy than the Wakeup stage. The Receive stage

takes 30% - 71% (49% on average) of the total energy cost

on WP, and takes 52% - 61% (57% on average) of the total

energy cost on Android. For the Tail stage, it takes 22% -

51% (38% on average) of the total energy on WP, and takes

33% - 42% (37% on average) of the total energy cost on

Android. Therefore, to reduce the energy cost of receiving

emails, we should focus on optimizing these two stages.

3.3 Summary of Findings

Based on above measurement results in Section 3.2, we can

see that the existing smartphone email clients are not energy

efficient in following aspects.

First, the 3G tail time takes a large part of the total time of

receiving an email. The 3G tail time is designed to reduce

the network latency for burst data transmissions. However,

the inter-arrival time of incoming events is not short in the

connected standby mode. Occasional transmissions make

the 3G tail time unnecessary in most cases. Therefore, the

energy is wasted on the 3G interface.

Second, the data transmission and processing are coupled

together, leading to more wasted energy. Receiving an email

is composed of the following steps: first is communicating

with the server to receive some data, processing the received

data locally, and then communicating with the server again.

The second step of the communication resets the 3G tail

timer, causing the 3G interface on for longer time and thus

wasting energy.

Third, the email clients write data onto the flash storage

when receiving an email. As we will show in Section 4.3,

flash operations are energy-expensive and should be batched

together to save energy.

Fourth, when the inbox size is large, receiving an email

costs more energy than small inbox case. It is desirable to

reduce the energy cost for a large inbox size.

Finally, on Android, the email client always initializes a

new TCP connection to the server to receive an email. Do-

ing so wastes energy due to the duplicated TCP and SSL

handshakes.

Next in Section 4 we propose techniques to address above

energy inefficiency and reduce the energy cost of receiving

email. Those techniques can also be used as general design

guidelines to improve power performance of other applica-

tions on smartphones.

4. Reducing Energy Cost of Email Sync

From Figure 1, we can see that the baseline power, when the

system is active but idle (e.g., during the 3G tail time), can

reach over 200 mW. This means that once the 3G interface

and the OS wake up, the smartphone will consume a large

amount of energy even without doing any tasks. Therefore,

to reduce the energy cost of receiving an email, one effec-

tive way is to shorten the total time period of email receiv-

ing as much as possible. In this section we show how we

achieve it with five techniques, each of them addressing one

energy inefficiency issue we observed in Section 3.

4.1 Reducing 3G Tail Time

The 3G tail time causes a lot of energy to be wasted in re-

ceiving emails. After a new email is received and processed,

the 3G interface enters the tail state in which the whole

smartphone does nothing but consume energy. While the 3G

tail is designed to save energy and reduce latency in contin-

uous network data transmissions, it is not suitable for the

connected standby mode. In the connected standby mode,

the events received by a smartphone are pretty sparse, often

arriving at a time period much longer than 3G tail time.

Thus, it is likely that the 3G tail time cannot cover multiple

events. To verify it, we measured the inter-arrival time of

the emails of four researchers at Microsoft Research Asia.

In total 31,303 emails, only 1.3% emails come within a ten-

second time frame of previous one. Therefore, a 3G tail time

of ten seconds rarely covers more than one incoming emails

and thus wastes a considerable amount of energy.

The problem of wasted energy caused by the 3G tail time

has already been identified recently. To solve the problem, a

technique called fast dormancy [7] has been proposed to

force the 3G interface to quickly sleep faster than before,

e.g., five seconds rather than ten seconds. However, rapid

dormancy increases the signaling overhead of cellular net-

works if the sleep timers are too short. In fact, in the early

days of fast dormancy, some popular smartphones using

aggressive timers have led to severe signaling channel con-

gestions [25]. Later the network-controlled fast dormancy

was adopted by 3GPP in Release 8 [16] to reduce the signal-

ing overhead caused by the fast dormancy. Researchers have

proposed to adaptively use the fast dormancy based on ap-

plication traffic patterns [8, 9, 14, 18]. For example, in [8]

the authors proposed a tail optimization protocol based on

fast dormancy. In [9] a system has been built to predict the

end of communication to invoke the fast dormancy without

increasing the network signaling load.

We advocate for the fast dormancy to be used in connected

standby. As shown by our measurement results in Section 3,

the WP smartphone we used enables fast dormancy and thus

has a shorter 3G tail time than the Android smartphone. We

also agree with the authors in [8] and [9] for adaptive 3G

tail time based on application traffic patterns.

In particular, because that network events are very sparse in

the connected standby, 3G tail time still wastes energy even

if fast dormancy is enabled. In an ideal case, the 3G inter-

face should go to sleep immediately after the event receiv-

ing is finished. However, to avoid interference with other

applications, individual applications must not directly con-

trol the 3G tail time. Instead, we propose that the OS should

provide a global service that collects the network usage in-

formation of all the applications running in connected

standby, decides the shortest length of 3G tail time, and col-

laborates with the cellular network to put the 3G interface

into sleep mode as quickly as possible, minimizing the en-

ergy waste of 3G tail time. Due to the long inter-arrival time

Table 4: Energy and time cost of databasewriting
 Energy cost per email (mJ) Time cost per email (ms)

Database in memory Database on flash Database in memory Database on flash

Individual writes 1 32 1 55

Batch writes 0.59 0.64 0.58 0.65

of network events in the connected standby, the signaling

overhead is small.

4.2 Decoupling Data Transmission from Data

Processing

Due to the 3G tail effect, data transmission should be de-

coupled from data processing to save energy. In an ideal

case, an email client should first finish all network commu-

nication with a server and then process the received data, so

that the 3G interface is able to go to sleep as soon as possi-

ble. In receiving a push email, there are three steps: 1) fetch-

ing the email content from the server, 2) processing the re-

ceived email locally (e.g., updating the inbox database), and

3) telling the server that it is ready to receive the next push

email and then go to sleep. As we show in Section 3, in such

a “transmission-processing-transmission” process, existing

email clients do the second transmission part after the pro-

cessing part is finished, which seems a natural design choice

due to the sequential nature but is not energy efficient. Dur-

ing the data processing part, the 3G interface stays awake

unnecessarily and the second data transmission resets the

3G tail timer, wasting energy. For example, assume that the

data processing needs two seconds and the power is 200

mW, 400 mJ energy will be wasted. Therefore, to save en-

ergy, an email client should batch all its data transmissions

together. It should first fetch new email content and imme-

diately tell the server that it is ready to receive the next push

email before waiting for the email processing to be finished.

Batching all data transmissions together may be difficult if a

network protocol depends on the result of data processing.

For example, if an email server requires an email client to

tell whether the email processing is successful or not, the

email client cannot start the second data transmission part

before the data processing part is finished. We propose to

solve this problem using speculative execution [6]. That is,

we predict the result of the data processing part and send the

predicted result to the server without waiting for the data

processing part to be finished. If we find that the predicted

result is wrong after the data processing part is finished, we

can re-sync with the server. If we can correctly predict the

data processing results with a high probability, we can still

batch data transmissions together to reduce the 3G tail ef-

fect. To determine feasibility, we conducted an experiment

to measure the failure rate of receiving and processing

10,000 emails. We found that all the 10,000 emails were

successfully processed without any error. This indicates that

the email receiving is reliable and we can correctly predict

the email processing results with a high probability. There-

fore, it is possible to leverage speculative execution to save

energy. Furthermore, for Microsoft Exchange and Gmail

services on smartphones, they do not depend on the email

processing results. Thus, we can easily batch data transmis-

sions and decouple them from data processing.

4.3 In-Memory Data Processing

Writing data to flash storage is slower than writing data to

memory, particularly for small, random data writes [13, 14,

19]. We conducted experiments to measure the performance

difference of the flash storage and memory. We used a Nex-

us S smartphone running Android 4.0.4. We inserted an

email of 270 bytes into a SQLite database for 1,000 times

and measured averaged energy and time cost of inserting

one email. We used the SQLite database because the Gmail

client and the default email client on Android use SQLite to

store emails. The SQLite library provides two types of APIs

to write data into a database: individual writes and batching

multiple writes together as a transaction. Thus, we measured

the performance of writing the 1,000 emails one by one and

batching the 1,000 email writes together.

Table 4 shows the results. For individual writing, when the

entire database was loaded in memory, the average energy

and time cost per email was just 1 mJ and 1 ms. When the

database was stored on the flash storage, the corresponding

energy and time costs increased to 32 mJ and 55 ms. For

batching writes, when the database was loaded in memory,

the average energy and time costs were 0.59 mJ and 0.58

ms. When the database was stored on flash storage, the cor-

responding figures were 0.64 mJ and 0.65 ms. Those results

show that for small writes, flash storage costs much more

energy (32 times) and takes much more time (55 times) than

memory. However, for writing a large amount of data to-

gether, the flash storage and memory have similar perfor-

mance in terms of the energy and time costs.

Therefore, to reduce the energy and time cost in email re-

ceiving, an email client should not issue many small flash

writes. Instead, it should batch multiple small writes togeth-

er and commit them to flash in a batch. As mentioned be-

fore, email clients on smartphones only download email

headers and up to several kilobytes of email bodies. Thus,

the data received for a new email is small. However, as we

show in Section 3, existing email clients write received data

of every email to the flash storage immediately, which is not

energy efficient. Therefore, when an email client receives a

new email, it should cache the received data in memory

rather than writing them to flash immediately. Once the cli-

ent has received a sufficient number of emails (e.g., 10

Figure 7: Implementation architecture

Database
Manager

Email
Processor

PING
Engine

Email App Process Exchange App Process

User Interface

Android Operating System

Flash Storage

Persistent Inbox
Database

3G Interface

In-memory
Cache Inbox Email Protocol Handler

RPC

emails) or the cached data are larger than a threshold, it can

flush all the data to flash storage together. Furthermore, the

client may also piggyback data writes with other activities.

For example, when the user turns on the smartphone to

check emails or use other applications, the client can write

its cached data to flash. As those flash writes share the same

baseline power with other activities of the user, they will not

introduce much extra energy or time overhead.

Delaying flash writes may cause data loss if the email client

or the smartphone crashes before the cached data are written

to flash storage. However, modern smartphone operating

systems including Windows Phone, Android and iOS all run

each application in a separate protection domain (i.e., the so

called “application based security model”). Failures of one

application will not affect other running applications. As a

result, today’s smartphones are more reliable and crash less

than before. Even when running out of battery, the operating

system will terminate applications gracefully, to give them

chance to save data onto flash. Smartphone email clients are

also pretty reliable. We measured the default email client on

Android by receiving 10,000 emails and did not observe any

failure or crash. In addition, even if the email client crashes

before writing the cached data to flash storage, it can re-

sync the emails with the server. Therefore, in-memory data

processing is able to reduce the energy cost of email receiv-

ing.

4.4 Reusing Existing Network Connections

In receiving emails, email clients should reuse existing net-

work connections rather than making new ones. In particular,

for the push email, because an email client already main-

tains a persistent network connection with a server to re-

ceive notification of new incoming emails, it should receive

a new email over the continuous network connection to save

energy. Even for a poll email, when an email client does a

second polling before the network connection of the last

polling times out, it should also reuse the previous network

connection.

While it may be easy and natural to make a new network

connection to receive every new email, the energy cost may

not be negligible. As most email services require a secure

network connection, making a new network connection in-

cludes not only TCP layer handshakes but also SSL layer

handshakes to negotiate the encryption method and ex-

change security keys. As shown in our experiments on An-

droid in Section 3, the overhead of making a secure TCP

connection is not negligible. Without transmitting any ap-

plication data packets, it consumed 1,757 mJ energy to

make a TCP/SSL connection. In total 6.9 KB data were

transmitted between the client and server. WP is more ener-

gy efficient. It always reuses the same TCP connection to

receive new emails.

4.5 Data Structure Partitioning

One interesting finding on WP is that the energy cost of

receiving the same email increases significantly when the

inbox size is large. On Android, the energy cost also in-

creases with inbox size but the increase is not as significant

as WP. The possible reason is that when storing a new email

into the database of an inbox, it takes more time to update

the metadata. For example, the email client needs to search

the whole inbox to associate the new email with the right

conversation thread. The cost of doing so depends on the

inbox size. In addition, when the inbox is too large to be

loaded into the memory of the email client, searching the

inbox takes more energy and time due to the frequent flash

operations.

To solve this problem and reduce the energy cost of receiv-

ing an email, we propose partitioning a large inbox into two

parts: one small inbox with recently received emails (e.g.,

emails received in last two weeks) and one large inbox con-

taining all remaining emails. The email client only uses the

small inbox to handling email receiving. That is, when re-

ceiving an email, the client only inserts it into the small in-

box and updates the metadata without using the large inbox.

Thus, the energy cost of receiving emails is reduced even if

a smartphone stores many emails. This approach is based on

a key observation: most of the time users only need to check

recent emails on their smartphones. Therefore, it is not nec-

essary to touch all the emails already stored in a smartphone

in receiving new emails. When a user does need to access

all the emails, e.g., in searching the whole inbox, the client

can search both the small inbox and the large one to return

the combined results. As searching a whole inbox happens

much more rarely than receiving emails, inbox partitioning

is able to save energy.

5. Implementation

Implementing the techniques proposed in Section 4 only

requires modifications on the email client side. Since the

Gmail application on Android and the built-in email client

Figure 8: Energy saving with different email sizes Figure 9: Energy saving with different inbox sizes

0

5000

10000

15000

20000

25000

30000

10 50 100 500 1000

En
e

rg
y

C
o

st
 (

m
J)

Incoming Email Size (KB)

Original
Our Method

0

4000

8000

12000

16000

20000

20 200 1000 4000 10000

En
e

rg
y

C
o

st
 (

m
J)

Inbox Size (number of emails)

Original
Our Method

Figure 10: Anatomy of total energy saving

 922

 806

 1,757

 1,757

 2,448

0 1,000 2,000 3,000

Small Cache Inbox

In-memory Processing

TCP Reuse

Decoupling

3G Tail Reduction

Energy Saving (mJ)

on WP are not open source, implementation is done on the

built-in email client of Android, which is accessible and

widely used. The source code we used is vanilla Android

4.0.4 with kernel 3.0.8.

Figure 7 illustrates the architecture of our implementation,

focusing on email syncing and processing. On Android the

built-in email client consists of two parts, each running in a

separate process. The first part is the network communica-

tion part which implements the email protocol and handles

all the communication details with the email server to re-

ceive and send emails. For Exchange email service, this part

runs as an app named “Exchange”. It runs in the background

without a UI. The other part is the data processing which

processes received emails and provides user interfaces to

handle all the interaction details with users including read-

ing emails and composing emails to send out. It also deals

with email storage, saving emails to and loading emails

from the SQLite database. This part runs as an app named

“Email”. The Email app process and the Exchange app pro-

cess exchange data through Remote Procedure Calls

(RPCs).

To decouple data transmission from data processing, we

revised the Email Protocol Handler in the Exchange applica-

tion to do all data transmissions without waiting for the

Email Processor to finish processing a received email. Spe-

cifically, PING messages are sent via the PING Engine in

Figure 7. In the original client, the PING Engine checks up

in a two-second interval whether the Email Protocol Han-

dler allows it to resume PING messaging after an email-

receiving event ends. So there is a delay between the com-

pletion of receiving an email and the start of PING. The

energy is wasted because the cellular module has to delay its

sleep mode. We improved the signaling between the Email

Protocol Hander and the PING Engine so that a PING mes-

sage can be sent out immediately. Thus, all data transmis-

sions are batched together to save energy. We also revised

the Email Processor to report an error if anything is wrong

in processing an email so that the Email Protocol Handler

can re-sync with the email server. In addition, we revised

the Email Protocol Handler to receive emails by re-using the

existing TCP connection rather than making a new one,

avoiding energy waste of TCP/SSL handshakes.

In the Email application, we added a new Database Manager,

loading a small cache inbox into the memory to implement

in-memory email receiving. On the flash storage, all the

emails are stored in a big database. The Database Manager

manages the data sync between the in-memory cache inbox

and the persistent one on the flash storage. When the user

interacts with the smartphone or we receive more than a

customized number of emails, the Database Manager com-

mits the new email data onto the flash storage.

Android does not provide an API for fast dormancy and we

cannot control the 3G tail time on the fly. We have managed

to enable fast dormancy on the Nexus S smartphone by

flashing a new baseband firmware.

6. Evaluation

We evaluate our implementation by measuring the total en-

ergy saved in receiving an email and the individual ones

contributed by each technique we proposed and implement-

Figure 11: Energy saving of decoupling data transmission

from data processing in different email sizes

 1,771 1,627
 1,296

 3,960
 4,334

0

1,000

2,000

3,000

4,000

5,000

10 50 100 500 1000

En
e

rg
y

Sa
vi

n
g

(m
J)

Incoming Email Size (KB)

Figure 12: Energy saving of in-memory data processing in

different email sizes

 792 821

 1,224

 1,627
 1,886

0

500

1,000

1,500

2,000

10 50 100 500 1000

En
e

rg
y

Sa
vi

n
g

(m
J)

Incoming Email Size (KB)

Figure 13: Energy saving of using a small cache inbox for

email receiving with different total inbox sizes

0

 922
 605

 1,642

 2,750

0

500

1,000

1,500

2,000

2,500

3,000

20 200 1000 4000 10000

En
e

rg
y

Sa
vi

n
g

(m
J)

Total Inbox Size (number of emails)

ed. For all the experiments, we used Exchange push email

service with the original built-in email client provided by

Android and our revised one on a Nexus S smartphone. For

each experiment, we repeated for the procedure five times

and report the average results with standard deviations.

Total energy saving. Figure 8 shows the total energy sav-

ing of our revised email client, compared to the original one

when the inbox size is 200 emails but the new incoming

email has different sizes. On average the total energy saving

is 44.3%, with a narrow range from 41.2% to 46.9%. These

results demonstrate that our proposed techniques are able to

significantly reduce the energy cost of email receiving. The

energy savings mainly come from the shortened email re-

ceiving time. On average our revised email client reduces

the time period of receiving the emails by 47.6%, compared

to the original one.

Figure 9 shows the total energy savings of our revised email

client in receiving a small email of 10 KB with different

inbox sizes. Similar to Figure 8, we can see that our revised

email client is able to effectively reduce the total energy

cost of email receiving no matter how many emails the in-

box has. The average energy saving is 45.8%, also with a

small range from 39.9% to 51.3%. Compared to Figure 8,

the average energy saving is higher because when the email

is large, the received data volume becomes large and more

energy will be saved by our proposed techniques, as shown

later in this Section.

Energy saving of each technique. Figure 10 shows the

anatomy of the total energy saving in receiving the 10 KB

email with an inbox of 200 emails. For the total energy sav-

ings of 7,690 mJ, the largest part comes from reducing 3G

tail time which saves 2,448 mJ (32%) energy. Decoupling

data transmission from data processing part and reusing

TCP connections also save a significant energy cost, each

with 1,757 mJ (23%). The in-memory processing part and

using small cache inbox part reduce relatively less energy,

saving 806 mJ (10%) and 922 mJ (12%)energy, respective-

ly.

Reducing the 3G tail time and reusing the TCP connections

have fixed energy savings, independent from incoming

email size and inbox size. However, the energy saving of

other techniques may depend on the email size or inbox

size. Figure 11 shows how much energy can be saved by

decoupling data transmission from data processing for dif-

ferent email sizes. We can see that generally the energy sav-

ing increases when the email size becomes large. The de-

coupling technique tries to batch all data transmissions to-

gether. When the email is large, more data is transmitted

over the network and thus the energy saved by batching

becomes large.

Similarly, Figure 12 shows how much energy can be saved

by in-memory processing for different email sizes. We can

see that the energy saving is high for large emails. This is

because the processing cost (e.g., writing operation) heavily

depends on email size. Thus, when the email size is large,

processing the email entirely with memory operations will

save more energy.

Figure 13 shows the benefit of using a small cache inbox for

email receiving when the total inbox size is different. The

size of the small cache inbox we used is 20. Thus, the bene-

fit for the inbox size of 20 in Figure 13 is zero. For a larger

inbox size, we can see that the extra energy saving caused

by using the small cache inbox increase as the total inbox

size becomes large. For the total inbox size of 10,000

emails, the extra energy saving is 2,750 mJ. These results

demonstrate the effectiveness of using the small cache in-

box.

Note that in all the above experiments, we measured the

energy cost of receiving individual emails without counting

the energy saving of batch writing multiple emails onto

flash. In our implementation we batch 20 emails together for

writing their data onto flash. By doing so, we can further

save 634 mJ energy per email. On average this increases the

total energy saving of receiving a 10 KB email to 49.9% in

different inbox sizes.

Furthermore, we also calculate how much extra energy can

be saved if we can put 3G interface into sleep immediately

after the end of receiving an email. Doing so we can further

save 2,448 mJ of energy. For receiving a 10 KB email with

an inbox size of 200, this will increase the total energy sav-

ing by 77.9%.

7. Event Receiving in Other Applications

Despite this paper focusing only on email receiving, the

techniques we proposed may also be applied to other appli-

cations. Example applications include various social net-

work applications such as Facebook and Twitter, locations

based applications which receive notifications upon location

changes, and many other applications which receive push

notifications when new updates or new in-application con-

tent are available. Similar to email, when in standby mode,

those applications maintain their own persistent connection

or use a separate push notification service like Google client

notification service [15] to keep connected to a server for

receiving various events or poll changes from a server. Such

event receiving is very similar to email receiving and fol-

lows the “transmission-processing-transmission” pattern.

Each event receiving also wakes up the 3G interface and a

smartphone’s entire operating system for a small amount of

data transmission and processing. Due to the similarity be-

tween receiving emails and receiving other events, those

applications may also have the issues with energy ineffi-

ciency we found in email receiving, such as sparse data

transmissions resetting 3G tail timer, frequent small flash

writes, and making new network connections unnecessarily.

Therefore, our proposed techniques can be used as general

design guidelines for those applications rather than specific

techniques designed for email receiving only.

We plan to investigate more applications to further study

how the techniques we proposed in this paper may be used

to reduce the energy cost of receiving events in connected

standby. In addition, recent tablet devices and other types of

mobile devices have started to function like smartphones,

keeping connected in standby mode to receive various net-

work events including emails. For example, Windows 8

introduces a new connected standby power mode [17] to

provide such support. We also plan to study the power per-

formance of applications on those devices and look for po-

tential improvements.

8. Related Work

System power management. Power management is im-

portant to mobile devices including smartphones due to the

limited power supply of batteries. All smartphone operating

systems come with components to leverage hardware capa-

bilities and manage system activities to save power, e.g.,

adjusting screen backlight levels, running CPU at low fre-

quency, putting network interfaces into sleep or killing

power-hungry applications in low battery mode. Various

techniques have been proposed to reduce the power con-

sumption of each key component of a smartphone such as

the screen [22], CPU [24] and network communication [20,

23]. However, even with good system-level and component-

level power management, applications that are not well de-

signed can still cause high energy consumption.

Finding energy bugs of applications. Recently researchers

have started to study how to improve the power perfor-

mance of mobile applications by finding energy bugs. Ener-

gy bugs are not real program bugs causing failures but they

lead to unnecessarily high energy consumption. For exam-

ple, in [10] the authors proposed techniques for automatical-

ly finding non-sleep energy bugs in applications. However,

such a tool depends on pre-configured program patterns to

find energy problems, e.g., requiring a Wakelock to prevent

the system from sleeping without releasing it, and only

works for serious non-sleep bugs. Authors in [21] built tools

for developers to estimate the energy consumption of their

applications and find potential energy inefficiency issues.

Our work focuses on finding energy inefficiency when re-

ceiving email by measuring the energy performance of ex-

isting email clients. The techniques we proposed are com-

plimentary with existing work and can be used as general

design guidelines for other applications.

Fast dormancy. The problem of the cellular data network

tail has drawn a lot of attention. Smartphone manufacturers

have developed their own and inconsistent ways to reduce

the energy cost of a cellular tail, which results in the stand-

ard approach called network-controlled fast dormancy in

3GPP [7, 8]. Researcher also proposed schemes to reduce

the power consumption of applications by using fast dor-

mancy adaptively [8, 9]. We believe that fast dormancy

should be used in connected standby. However, even with

fast dormancy, there is still wasted energy in the event re-

ceiving during the connected standby due to very sparse

network activities. We propose that the OS should provide a

global service to collect the network usage information of

all the applications running in the connected standby. When

all the applications finish their event receiving, the service

works with the cellular network to immediately put the 3G

interface into sleep mode and thus minimizes the energy

waste of the 3G tail time in connected standby.

9. Conclusions

In this paper we have studied the power performance of

email sync on the Windows Phone and Android operating

systems. We conducted experiments to measure the energy

cost of email receiving in existing email clients, using both

push and poll emails, with different email services, email

sizes and inbox sizes. Together with our analysis of the net-

work and flash storage activities, the measured results indi-

cate that existing email clients are not energy-efficient in

several aspects. Besides 3G tail time, the main source of

inefficiency stems from the coupling of the data transmis-

sion and data processing, which is a bad design choice in

connected standby mode. Frequent storage access, making

new TCP connections to receive new emails and updating a

large inbox are further components that increase the time

duration of email sync and lead to energy waste.

Based on the experiment, we advocate that the fast dorman-

cy should be used in the connected standby and propose

other techniques to address the energy inefficiency of exist-

ing email clients, including the decoupling of data transmis-

sion from data processing, in-memory processing, reusing

existing network connections and using a small cache inbox

to handle the email sync. We have implemented these tech-

niques and evaluation results show that average energy sav-

ings reach 49.9%. If we can put the 3G interface into sleep

mode immediately after receiving an email, the total energy

savings can be increased to 77.9%.

Acknowledgement

We thank our shepherd, Mahadev Satyanarayanan, and

anonymous reviewers for their valuable comments and in-

sightful feedback. This project was supported in part by US

National Science Foundation grants CNS-1117412 and CA-

REER Award CNS-0747108.

References

[1] Microsoft Direct Push.http://technet.microsoft.com/en-

us/library/cc539119.aspx.

[2] Microsoft ActiveSync Command Reference Protocol

Specification.http://msdn.microsoft.com/en-

us/library/dd299441(v=exchg.80).aspx.

[3] Monsoon Power Monitor.

http://www.msoon.com/LabEquipment/PowerMonitor/.

[4] Tcpdump. http://www.tcpdump.org/.

[5] Wireshark.http://www.wireshark.org/.

[6] B. W. Lampson. Lazy and Speculative Execution, talk at

OPODIS, 2006.

[7] UE “Fast Dormancy” behavior. 3GPP discussion and deci-

sion note RP-090960, 2009.

[8] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen and O.

Spatscheck. TOP: Tail Optimization Protocol for Cellular

Radio Resource Allocation, In ICNP, 2010.

[9] P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R.

Ramjee, D Arora, V. N. Padmanabhan and G. Varghese.

RadioJockey: Mining Program Execution to Optimize Cel-

lular Radio Usage. In Mobicom, 2012.

[10] A. Pathak, A. Jindal, Y. C. Hu and S. P. Midkiff. What is

keeping my phone awake? Characterizing and Detecting

No-Sleep Energy Bugs in Smartphone Apps. In MobiSys,

2012.

[11] Google adopts Microsoft sync protocol,

http://www.windowsfordevices.com/c/a/News/Google-

adopts-Microsoft-sync-protocol/.

[12] Apple finally acknowledges iPhone's Exchange support,

http://www.zdnet.com/blog/microsoft/apple-finally-

acknowledges-iphones-exchange-support/1246.

[13] A. Carroll and G. Heiser. An Analysis of Power Consump-

tion in a Smartphone. In Usenix ATC, 2010.

[14] S. Deng and H. Balakrishnan. Traffic-Aware Techniques

to Reduce 3G/LTE Energy Consumption. In CoNEXT,

2012.
[15] A. Adya, G. Cooper, D. Myers and M. Piatek. Thialfi: A

Client Notification Service for Internet-Scale Applications.

In SOSP, 2011.

[16] 3GPP Release 8, http://www.3gpp.org/Release-8.

[17] P. Stemen and S. Berard. Understanding Connected

Standby.Microsoft Build conference talk, 2011.

[18] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen and O.

Spatscheck. Profiling Resource Usage for Mobile Applica-

tions: A Cross-layer Approach. In Mobisys, 2011.
[19] H. Kim, N. Agrawal and C. Ungureanu. Revisiting Storage

for Smartphones. In FAST, 2012.
[20] H. Han, Y. Liu, G. Shen, Y. Zhang and Q. Li. DozyAP:

Power-Efficient Wi-Fi Tethering. In MobiSys, 2012.
[21] R. Mittal, A. Kansal, and R. Chandra. Empoweringdevel-

opers to estimate app energy consumption. InMobiCom,

2012.
[22] M. Dong and L. Zhong. Chameleon: a color-adaptiveweb

browser for mobile oled displays. InMobiSys, 2011.
[23] F. Dogar, P. Steenkiste and K. Papagiannaki. Catnap: Ex-

ploit High Bandwidth Wireless Interfaces to Save Energy

for Mobile Devices. In Mobisys, 2010.

[24] M. Ra, B. Priyantha, A. Kansal and J. Liu. Improving

Energy Efficiency of Personal Sensing Applications

with Heterogeneous Multi-Processors. In UbiComp,

2012.

[25] How smartphones are bogging down some wireless

carriers. http://arstechnica.com/gadgets/2010/02/how-

smartphones-are-bogging-down-some-wireless-

carriers/.

