A Type Discipline for Authorization in Distributed Systems

Cédric Fournet
Microsoft Research

Abstract

We consider the problem of statically verifying the con-
formance of the code of a system to an explicit authoriza-
tion policy. In a distributed setting, some part of the sys-
tem may be compromised, that is, some nodes of the sys-
tem and their security credentials may be under the control
of an attacker. To help predict and bound the impact of
such partial compromise, we advocate logic-based policies
that explicitly record dependencies between principals. We
propose a conformance criterion, safety despite compro-
mised principals, such that an invalid authorization deci-
sion at an uncompromised node can arise only when nodes
on which the decision logically depends are compromised.
We formalize this criterion in the setting of a process cal-
culus, and present a verification technique based on a type
system. Hence, we can verify policy conformance of code
that uses a wide range of the security mechanisms found in
distributed systems, ranging from secure channels down to
cryptographic primitives, including encryption and public-
key signatures.

1 Introduction

We are given implementation code for a distributed sys-
tem, with security relevant events suitably annotated. We
are given a target authorization policy, expressed in a suit-
able logic. How can we check statically whether the code
correctly implements the policy?

Our approach, begun in a previous paper [23], is to rep-
resent code in a process calculus, and to develop a type
system such that successful typechecking implies that code
conforms to the policy. We treat policies for authoriza-
tion (access control) and their formulation as a parameter—
developing appropriate languages and tools for policies is
a separate issue [6, 16, 42, 22, 7, 34, 33, 11, 19, 45, 35, 8,
20, 9, 10, 32]. This paper adds a range of features needed
for modelling systems where trust is decentralized. These
features include: a more comprehensive range of crypto-
graphic primitives; a connection between the logical treat-
ments of principals (people, computers, services), using the
modality a says C, and their representations as formal pro-
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cesses; and a study of the meaning of policy conformance
in the presence of principal compromise. An aim is to dis-
cover a unified logical treatment of both authorization and
authentication mechanisms built on top of secure channels
and cryptography.

An Example Toillustrate our approach, consider a simple
distributed system consisting of code running on behalf of
three principals: an online music store, a user wishing to
download music, and a proxy device with which the user is
registered.

We assume a logical policy governing authorization de-
cisions (expressed in a logic defined in Section 2): a song
can be downloaded to a user if the user has ordered the song
and the user is registered at the proxy:

Vu,s.((proxy says Registered(u) A\ u says Order(s))
— CanDownload(u, s)) (1)

We assume that each piece of code reacting to a security-
related event is annotated with a logical formula represent-
ing the event. For example, the point at which the code
acting for user receives an instruction to download song is
annotated with:

user says Order(song) 2)

Similarly, the point in the code for proxy where it regis-
ters user is marked with:

proxy says Registered(user) 3)

We also assume that each piece of code guarding a sensi-
tive action is annotated with an expectation, a formula that
should hold in any run. For example, we annotate the point
at which the authorization decision has been made, and the
store is about to start the transfer of a song to user, with the
expectation:

store says CanDownload(user,song) )

Let an implementation be robustly safe if and only if all
its expectations hold in every run of the system, even in the
presence of an active adversary [40, 21].

In our example, suppose we implement the following
protocol, where k,, is a symmetric key shared between user
and proxy, and k), is the private signing key of proxy.



Message | user — proxy : senc(song,kyp)

Message 2 proxy — store : sign((user,store), k)

Assuming neither k,, nor k, is known to the attacker, we
can show this implementation is robustly safe. In the con-
text of the policy (1), the invariant that formula (4) holds in
every run assures us that, every time a song is downloaded
to a user, a registered user has indeed asked for it. (For the
sake of a simple example, we omit any measures to prevent
replay attacks.)

This formulation of policy conformance as robust safety
generalizes specifications of authentication protocols. In
particular, our use of events and expectations generalizes
the begin- and end-events introduced by Woo and Lam [48],
or the running- and commit-events of Lowe [36]. An end-
event labelled with the parameters of a run of a protocol
(initiator, responder, session key, and so on) can be under-
stood as an invariant stating that a begin-event with the same
label has previously occurred.

Policy Conformance Despite Partial Compromise We
say a principal is compromised to mean that its privileges
can be exercised by the attacker. (Alternative terminology
from the literature includes saying such principals are “dis-
honest” or “non-compliant”.) A realistic threat model for
a distributed system must include partial compromise, the
possibility that some of the principals in the system are
compromised. Since privileges are often exercised using
knowledge of secrets such as passwords, shared encryption
keys, and private keys, we assume all such secrets known to
a compromised principal are disclosed to the attacker. Par-
tial compromise covers deliberate insider attacks as well as
external attackers taking ownership of insiders’ assets.
Robust safety essentially requires that no invalid autho-
rization decisions arise. This is too demanding in the pres-
ence of partial compromise. Instead, for an implementation
to conform to a logical authorization policy, in the presence
of partial compromise, we propose the following principle:

An invalid authorization decision by an uncom-
promised principal can only arise if principals on
which the decision logically depends are compro-
mised.

Hence, the logical policy can be scrutinized indepen-
dently of the implementation to understand the impact of
partial compromise. Our principle requires the policy to
record all dependencies between principals in the imple-
mentation. It may require the policy to be augmented with
explicit rules to manifest previously hidden dependencies.

Partial Compromise for the Example Consider the sit-
uation where user is pre-registered with the proxy, but
the code running on behalf of user receives no instruc-
tion to order a song, so that (3) holds but not (2). Par-
tial compromise can lead to the two following attacks.

In both, after receiving Message 2, the store incorrectly
deduces user says Order(song) and hence that store says
CanDownload(user,song), thus making an invalid autho-
rization decision.

e If user but not proxy is compromised, the attacker
knows k,, and can use it to fake Message 1, which
causes proxy to send Message 2.

e If proxy but not user is compromised, the attacker
knows both k,, and k, and can use k, to fake Mes-
sage 2 directly.

Unavoidably, if a system is partially compromised, an
authorization decision may be invalid if by policy it depends
on a compromised principal. The first attack is an example:
the incorrect deduction user says Order(song) clearly de-
pends on user. Our principle discounts such attacks; the
best we can do in such cases is document the possibility,
and consider the consequences in security reviews.

On the other hand, an implementation is faulty if it
reaches invalid conclusions that do not logically depend on
compromised principals. The second attack is an example:
the incorrect deduction user says Order(song) does not de-
pend on proxy. To comply with our principle, either the im-
plementation should be corrected to avoid this dependency,
or the policy should be augmented to record it.

Safety Despite Compromised Principals To formalize
our principle we consider that all propositions hold at a
compromised principal: if b is compromised we assume
b says C for every C. Let an implementation be safe despite
compromised principals if and only if, for every choice b of
compromised principals, the system is robustly safe when
for every b € {b},

(1) the principal b is compromised, that is, the attacker
knows the secrets of b, and

(2) we augment our policy to allow all propositions at b,
that is, we include the formula VX .b says X .

In our example, the case b = user corresponds to the
first attack above, which we discount: the implementation
is robustly safe even though the attacker knows k,,, pro-
vided we allow VX.user says X. On the other hand, the case
b = proxy corresponds to the second attack above, which
violates our principle: the implementation is not robustly
safe if the attacker knows k,, and k,, even if we allow
VX .proxy says X.

The case b = proxy uncovers a dependency on proxy
absent from policy (1). Let a controls C be short for
(a says C) — C. The following formula asserts that, as far
as store is concerned, the proxy has authority over the pred-
icate u says Order(s) for all u and s.

Yu, s.store says (proxy controls (u says Order(s))) (5)



This logical policy clearly documents the implementation
dependency. Indeed, our implementation is safe despite
compromised principals if the policy consists of both (1)
and (5).

Our Contributions  Our previous work [23] presents a
type system for checking the robust safety of implementa-
tions in a process calculus. We address two significant lim-
itations in our previous work: that it does not consider the
problem of partial compromise, and that it supports only se-
cure channels and symmetric cryptography. Our main con-
tributions are as follows:

e A systematic study of safety properties despite com-
promise (in Section 4), including a formulation of
safety despite compromised principals. Although we
phrase our definitions in a process calculus, they could
easily be adapted to other formalisms.

e A type system for proving safety despite compromised
principals. As previously [23], our type system is
phrased in terms of an arbitrary authorization logic.
The presentation of our type system is parametric in
the choice of constructor and selector operations; the
version in this paper includes both public key and sym-
metric key operations. Typing is largely driven by
the reduction rules for cryptography, independently of
rules for concurrency.

We emphasise the generality of these definitions, and es-
pecially that neither depends on a primitive syntax for prin-
cipals within the process calculus.

Our main technical results are as follows. Theorem 1
and Theorem 2 are safety and robust safety properties for
the type system, generalizing previous results [23]; the no-
tions of safety and robust safety, and these theorems, apply
to any choice of authorization logic. Theorem 3 and Theo-
rem 4, with no counterparts in our previous paper or related
work [31], explain how we can apply our type system to
prove safety despite compromised principals; our notions
of safety despite compromise, and these theorems, apply to
the example logic of Section 2, and should also apply to any
authorization logic with the a says C modality [6].

Contents of the Paper Section 2 recalls our notion of au-
thorization logics, and introduces an example. Section 3
recalls a variant of the applied pi calculus, our language
for distributed implementations. Section 4 gives a direct,
general definition of safety despite compromised principals,
and illustrates the definition via a series of examples. Sec-
tion 5 defines our type system and states its main properties.
Section 6 establishes some principles for proving safety de-
spite compromised principals, by typing. Section 7 dis-
cusses related work, and Section 8 concludes.

An extended version of this paper, with full proofs, is
available as a technical report [24].

2 Review: Authorization Logics

Our process calculus and type system rely on a formal
logic, but are largely independent of the exact choice of
logic. For the sake of generality, as in earlier work [23], we
parameterize our development on a notion of authorization
logic. This is defined in terms of the names and messages
of our process calculus, which is defined in Section 3. The
set of messages includes a set of atomic names, as well as a
(disjoint) set of variables.

Variables, Messages:
I 1

X, 9,2 (message) variable
M,N message, principal
L

Authorization Logic: (€, fn,fv,F)

An authorization logic (€ ,fn,fv,F) is a set of formulas C el
% closed by substitutions ¢ of messages for variables, with
finite sets of free names fn(C) and free variables fv(C) such
that Co = C if dom(c) Nfv(C) = @ and A(Co) C (f(C) \
dom(o)) Ufv(o); and with an entailment relation S+ C,
between sets of formulas S C ¢ and formulas C,C’' € €,
such that S-C= SU{C'}-Cand S+C= Sot+ Co and
SECASU{C}HC = SHC,

We present an example authorization logic consisting of
CDD [2] augmented with primitive predicates and message
quantification. CDD is a cut-down version of Abadi’s read-
ing of the Dependency Core Calculus (DCC) [3] as a con-
structive logic of access control, with constructs for describ-
ing principals, access requests, and delegations of authority.
These logics include formulas of the form M says C, mean-
ing intuitively that principal M has caused formula C to have
been said, as in early logical calculi of access control [6].
Garg and Pfenning [25] describe a related constructive au-
thorization logic; in fact, constructivity is incidental to our
present purposes. CDD is cut-down in the sense that the
principals are a set, while in DCC, they are a lattice. Hence,
fewer theorems are provable; for instance, M says N says C
implies N says M says C in DCC but not in CDD. In our
logic, we take the set of principals to be the set of messages
of our process calculus. The expected usage is that a prin-
cipal is either a name or a variable.

Our logic includes formulas of propositional logic, but
not negation. The formula X is a propositional variable. The
formula VX .C is propositional quantification. The formula
Vx.C is message quantification, where x is a variable rang-
ing over messages. The formula p(M,...,M,) is a prim-
itive predicate, parameterized by the messages My, ..., M,,
where p is a predicate symbol. This logic can encode Data-
log, the example of our previous work [23].



Syntax of the Example Logic:
I

C:= formula
true true constant
(C—C) implication
(CAC) conjunction
(cva) disjunction
(M says C) says modality
X propositional variable
(VX.C) propositional quantification
(Vx.C) message quantification
p(My,....M,) primitive predicate
Su={C,...,C,} set of formulas
|

We rely on some common abbreviations. We can define
falsity via propositional quantification; let false be short for
VX.X. The “controls” predicate [6] expresses one form of
delegation: let M controls C be short for (M says C) — C.

Throughout the paper, we identify any phrase of syntax ¢
up to consistent renaming of bound names and variables.
We write fin(¢) and fv(¢) for the sets of names and variables
occurring free in ¢. We write finfv(¢) for fu(¢) Ufv(9). We
write ¢{¢’/x} for the outcome of a capture-avoiding sub-
stitution of ¢’ for each free occurrence of x in ¢. We say ¢
is closed when it has no free variables.

We define the entailment relation S - C for our logic by
the rules below. We write - C when @ - C is derivable.

Entailment Relation of the Example Logic: S+ C
I

ces
SHC S F true

SU{Cl}}—Cz Sl—(C1—>C2) SEC
SHE(C— G) SHC
SEC, SHEG S"(C]/\Cz) Sl—(Cl/\Cz)
S}—(Cl/\CQ) SEC; SEC
SHC SHEC
N (Cl \/Cz) St (C] \/Cz)
SE(CVG) SU{C}HC SU{G}HC
SHEC
SEC SHMsaysC SU{C}+ M saysC’
S+ M says C S+ M says C'
SEC ) SFVX.C
— o (Xnotfreein§) ——— ———
SEVX.C SEC{C'/X}
SEC . SFVx.C
——(xnotfreeinS) ———
SEvx.C StC{M/x}

For instance, we have the following logical entailments:

FC— MsaysC

I false — C

F (M says M says C) — (M says C)
F M says false — M says C

The structure (€ ,fn,fv,t), where € is the set of formu-
las, is an example authorization logic; we can easily estab-
lish the properties (Mon), (Subst), and (Cut).

3 Review: An Applied Pi Calculus

We now define our implementation language, as a variant
of the applied pi calculus. Processes are augmented with
statements and expectations of logical formulas, whereas
messages, in addition to names, can contain a selection of
cryptographic functions, a symbolic model of cryptographic
primitives [21].

Messages The set of messages is the free algebra built
from variables, names and constructors applied to argu-
ments. Usual pi calculus names are, in the technical de-
velopment, considered as nullary constructors. The ok to-
ken is a constant used to propagate logical assumptions,
by means of the exercise destructor. Pairs are modelled
by the binary constructor pair and the two destructors fst
and snd. To this core, we add a selection of cryptographic
operations. The language can be easily extended to in-
clude others. Signature checking is modelled by a destruc-
tor verify(sign(msg,k),vk(k)) which, applied to the signa-
ture of msg under k and to the correct verification key for k,
yields the message msg. Symmetric encryption is mod-
elled by a destructor sdec(senc(msg,k),k) which, applied
to the encryption of msg under & and to the symmetric key k,
yields the message msg.

Syntax for Messages:

I

a,b,ck,... name

f ::= ok, pair, vk, sign,senc  constructor

g ::= exercise, fst, snd, verify, destructor
sdec, check, eq

M,N ::= message, principal
X variable
a name
f(My,....,My) constructor f applied

toMy,....M,

Convention: u,v range over names and variables.
| |

The evaluation of destructors is defined by an extensible
set of symbolic rules. If it exists, we write mgu(M = N)
for the substitution that is the most general unifier between



the messages M and N. The relation g(M) — M gives base
revgite rules on messages with variables, while the relation
g(M) |} M is its instantiation.

Most General Unifier: mgu(M = N)
Imgu(M,M = N,N) = omgu(Mc = No)
where 0 = mgu(M = N)
mgu(f(M) = f(N)) = mgu(M = N)
mgu(x = N) =mgu(N = x) = {N/x} where x ¢fv(N)

Rules for Evaluation: g(M) — M, g(M) | M

I

fst(pair(x;,x2)) — x;

snd(pair(x;,x;)) — x
verify(sign(x;,x;),vk(x2)) — x;
sdec(senc(xy,x2),x2) — x|

eq(x,x) — x

exercise(x) — x

g(M) —MANG =mgu(M = N) = g(N) | Mo

Processes Our language is essentially the process calcu-
lus of Abadi and Blanchet [5], augmented with statements
and expectations of logical formulas. A statement is sim-
ply a formula C that marks a security-related event, such
as the instruction to download a song, or the registration
of a user, formulas (2) and (3) in Section 1. An expec-
tation expect C asserts that the formula C should hold in
every run. The expectation of formula (4) is the process
expect store says CanDownload(user, song).

To help typechecking, each restricted name is annotated
with a type T'; the syntax of types is in Section 5.

Syntax for Processes:

I
PO,R::=

process
out M(N);P output of N to channel M
in M(x); P input of x from channel M
lin M(x); P replicated input
new a:T; P name restriction
P|Q parallel composition
0 B inactivity
let x = g(M) in P else Q destructor evaluation
C statement of C
expect C expectation that C holds

Notations: new 5:T;Pénew a;:1y;...new a,:T,; P
Let S={Cy,...,C,}. Wewrite S|P forCy | ... | G, | P.
L

In the processes in M (x); P and !in M(x); P and let x =
g(M) in P else Q, variable x is bound with scope P. In the
restriction new a:7T'; P, name a is bound with scope P.

In examples, we use (Mj,...M,) as a shorthand for
pair(M,,...,pair(M,,ok)...). The pattern-matching nota-
tion let (xj,...,x,) = M in P is short for a process that uses

the destructors fst, snd, and exercise to unpack the compo-
nents of the tuple M into the variables x, ..., x,.

Evaluation Contexts: K;7[—|

I
K;7[P) 2 new a:T; (P | P") for some P'.
L

We make the bound names a and their types T explicit,
in order to constrain the process we put in the hole.

Semantics Next, we present the operational semantics of
our calculus via standard structural equivalence (P = Q) and
reduction (P — Q) relations. Structural equivalence states
what processes should be considered equivalent up to syn-
tactic re-arrangement. It is the smallest equivalence relation
closed under evaluation contexts such that the set of pro-
cesses with parallel composition and 0 constitutes a com-
mutative monoid, satisfying the axioms given below.

Axioms for Structural Equivalence: P = Q

I

new a:T;(P| Q) =P |new a:T;Q ifaé¢fn(P)
new a;:Ti;new ay:1>; P = new a,:T>;new a;:1y; P

ifa) # ax,a1 & f(Th),ax & fn(Th)

Reduction is the smallest relation on closed processes
which is closed under structural equivalence and evaluation
contexts. Statements and expectations are inert processes;
they have no particular rules for reduction or equivalence
(although they are affected by other rules).

Axioms for Reduction: P — P’

outa(M);P |ina(x);0 — P | O{M/x}

outa(M);P | lina(x);Q — P | Q{M/x} | lin a(x); 0
let x = g(M) in P else Q — P{M/x} (if g(M) | M)
letx = g(M)in Pelse Q — Q (if g(M) }f M)

Notation: P —% P'isP=P orP —*P'.
L |

4 Safety Properties Despite Compromise

Safety We recall standard notions of safety and robust
safety for processes. Informally, a process is safe when
any expectation that may occur in evaluation context fol-
lows from statements also in evaluation context; a process
is robustly safe when its composition with any process (rep-
resenting any active adversary) is safe.

Definition 1 (Safety) A closed process P is safe if and only
if whenever

P —Z* new a:T; (expect C | P')

we have P' = K;.;7[S] with S+ C and fn(C) N b} =o.



Definition 2 (Opponent) A process O is Un-typed if and
only if every type occurring in O is Un. A process O is
expect-free if and only if there is no expect in O. A process
O is an opponent if and only if it is Un-typed and expect-
free.

In the definition, Un-typability is a technicality, ex-
plained in the next section, and the absence of expects re-
flects that we are only concerned about the safety of our
process, not of the opponent. For any process, there is an
equivalent Un-typed process obtained by rewriting the type
annotations for bound names and erasing all expects.

Definition 3 (Robust Safety) A process P is robustly safe
if and only if P | O is safe for all opponents O.

As usual in the pi calculus, in a process P | O, the op-
ponent O gets access to every free name of P, and can
thus interact with P using communications and cryptogra-
phy based on these names. In addition, we may want to
give the opponent access to some messages that include
restricted names, for instance to the public key associated
with a private signing key. To this end, we may export
those messages as outputs on free names. In case P is
of the form Kz7[Q] and the opponent initially has access
to the messages Mi,...,M, within the scope of the re-
stricted names ¢, one thus considers the robust safety of
Kz7[0 | TI out e;(M;)] for some fresh names ey,...,e,.

Modelling Partial Compromise We first give a general
definition of compromise in systems, then we specialize it
to a calculus with explicit trust boundaries for principals.

Definition 4 (Safety Despite Compromise) A process of
the form P = Kz7[Q] is safe despite compromise of Q if
and only if there exist Q' and & such that:

(1) 0= Qo withfn(Q')N{c} = @ and

(2) Kz7|0'0] | O is safe for all opponents O and O' such
that fn(0'YN{c} = @.

Formally, safety despite compromise is a property of the
pair (Kz7[—],Q). The definition requires that one identi-
fies a subprocess, Q, representing the part of the system that
may be compromised. The free names of Q may include
those of P, as well as those bound in the evaluation context
Kz7]|—]. The messages of Q that include the names ¢ rep-
resent the additional capabilities released to the opponent
as the result of the compromise. Thus, any substitution ¢
that meets Condition (1) safely collects all such messages,
and Condition (2) captures the intuition that Q may then be
replaced by arbitrary code with access to the same capabil-
1ties.

In simple cases, we can let o export all the names in ¢,
but usually this is too demanding. Hence, we request the
existence of any o that still enables Q to be expressed under
the scope restriction, to account for any partial knowledge
QO may have of the restricted names, and we give access to
the range of . For instance, if ¢ is a single name s and Q
includes only the verification key vk(s) associated with s,
we may apply the definition either for o = {s/x} or 6 =
{vk(s)/x}, but the latter choice makes it easier to satisfy
Condition (2).

As an example, consider a process of the form P =
new s; (Ps | Py | Py2) where Ps is a process that signs mes-
sages using the signing key s, and Py and Py, are processes
that verify messages with the verification key vk(s). Sup-
pose we define our subprocesses as follows:

Ps = lin ¢/ (x); (Good(x) | out c(sign(x,s)))
Py1 = Pyp = lin ¢(sig);let x = verify(sig, vk(s)) in
expect Good(x)

The process P is robustly safe, and is also safe despite com-
promise of Py (taking o = {vk(s)/x}). Intuitively, this
confirms that safety based on signature verification in Py is
not affected by compromise of Py. Further, we may retain
that P is safe despite compromise of P},; obtained from Py
after receiving a few well-signed signatures. For instance,
after two reductions P | out ¢’ (u) —— P’ where

P' = new s; (Ps | Good(u) | P, | Py2)
P, = Py1 | let x = verify(sign(u,s),vKk(s)) in
expect Good(x)

the resulting process P’ is safe despite compromise of P,
(using now the substitution o = {vk(s)/x}{sign(u,s)/y}).
Conversely, P is not safe despite compromise of an active
signer such as P (it can only be that o = {s/x}), and P’
without Good(u) is not even safe.

The next proposition is an alternative characterization of
safety despite compromise in terms of robust safety. This
characterization is more specific to the pi calculus. It es-
tablishes a proof technique for showing safety despite com-
promise once ¢ has been identified. Intuitively, it uses a
particular inner opponent O’ =[], dom(c) 0ut ex(x) that
publishes all its knowledge on public channels {e, | x €
dom(o)}.

Proposition 1 A process of the form Kz7[Q] is safe despite
compromise of Q if and only if there exist Q', o, and fresh
names {e, | x € dom(o)} such that

(1) Q=0 o withfn(Q')N{c} =@ and
2) KE:T[erdom(a) out e, (x0)] is robustly safe.

The proof is by a direct argument based on traces.



Distributed Configurations of Principals We now set
a particular syntax for distributed process configurations,
or worlds. Our configurations consist of named locations
that may share bindings and policies. Each location has a
name a, interpreted as a principal.

Syntax for Worlds:
I
W,V = world
alP) process P controlled by principal a

new c:T; W fresh generation of name ¢ in W
export x = M;W global binding of variable x to M

WV parallel composition of W and V
S global policy
0 inactivity

By convention, we assume that principals are not re-
stricted. We let W|[—] range over world contexts.

We treat worlds as syntactic sugar for pi processes, as
follows. When translating a world, we assume that the vari-
ables X and the names ¢ are pairwise distinct, and that the
names e, are fresh and pairwise distinct.

e We define a process [[P], to represent the process P
running on behalf of principal a, with the translation
rules [C], £ gsays C and [expect C], < expect a says
C plus trivial structural rules for the other cases.

e We define a process [W] to represent a world W, with

the translation rules [[a[P]] = [P]l. and [[export x =

M;W] £ (W] | out ex(x)){M/x} where x ¢ fu(M)
plus trivial structural rules for the other cases.

Logically, the translation prefixes all formulas within
a[P] with a says. Intuitively, this restricts the statements
made by a, irrespective of P. We have, for instance, that
a says false | [[P], is trivially robustly safe.

We intend to treat principals as simple units of compro-
mise: following the additional syntax of worlds, we can
determine compromised code (Q in Definition 4) from the
subset of principals that are deemed compromised:

Definition 5 (Safety Despite Compromised Principals)
Consider a world of the form W[Q| where Q = [1,c;b[Ps)-
Its translation is of the form [W[Q]]] = Kz7[[Q]|c]. Let
Sh = N\pcj b says false. _

The world W[Q)] is safe despite b when S, | Kz7[[Q] O]
is safe despite compromise of [Q] o.

A world is safe despite compromised principals when it
is safe despite b, for all subsets {b} of its principals.

In the definition, ¢ accounts for the substitution of mes-
sages for variables bound in exports. Each additional for-
mula b says false in Sj safely approximates that b is com-
promised, so that b may say anything. (This formula is

equivalent to VX.b says X.) Without such an assumption,
we would not expect W to be safe despite bad principals,
because expectations that follow from b says ... in the re-
maining principals may break safety.

Definition 4 leaves open the choice of the parameters ¢
and Q'. Taking advantage of the structure of worlds, Defini-
tion 5 provides guidance for selecting Q’. One can then eas-
ily select o from @', for instance as the most specific substi-
tution that introduces subterms containing the names ¢, or
simply a substitution from variables to {¢} Nfr(Q).

Example: Ordering a Song via a Proxy We are now
ready to analyze distributed implementations of the exam-
ple policy discussed in Section 1. For brevity, we name our
three principals by their initial letters: a user u, a proxy p,
and a store s. We consider configurations with the following
processes acting for these three principals.

0, = Order(georgiaOnMyMind) |
out net(senc((georgiaOnMyMind),k,))
Q, = in net(cipher);
let (song) = sdec(cipher,k,p) in
out request(sign((u,song),kp))
O, = lin request(sig);
let (user,song) = verify(sig,v,) in
expect CanDownload(user, song)

The user code Q,, asserts its intent to order a song (event (2)
in Section 1) then uses public channel net to contact the
proxy and shared key k,, to authenticate the song order by
encryption. The proxy code Q) receives this ciphertext,
decrypts (and thus authenticates) the requested song, then
uses a public channel request to forward the request to the
store, and endorses it by signing the pair u,song. The store
code Q; finally receives the request, verifies its signature,
then would trigger the actual song download, guarded by
the expectation (4) of Section 1.

Hence, Q) knows in advance about u, but Q; does not.
Informally, the store is delegating user identification and
authentication to proxies. (We may have additional copies
of Q, running in parallel for any number of other users.)

We use the following world context to represent our as-
sumptions on the secrets shared by these principals:

Kk ky [] =new k,,:Key (song:Un)
{u says Order(song)};
new k,:SK (u:Un, song:Un)
{u says Order(song), p says Registered(u)};
export v, = vk(k,);

[]



(The type annotations are explained in the next section; for
now they can be read as the expected events that should hold
when using these names.)

Finally, consider the world

W =Ky, &, [1[Qu] | PIQp]| | 510s]]

and the policy S = (1) A (3), as defined in Section 1. We
have the following security properties:

e The system S | W is robustly safe.

Intuitively, this confirms that an outsider, given ac-
cess to the channels net and request and to the proxy’s
signature-verification key vk(k,) but not to the keys
used by the user and proxy, cannot cause the store
to enable any download not authorized by the user
and the proxy, as prescribed in S. (Robust safety
would clearly collapse without the name restrictions
of Kku pkp )

e The system S | W is safe despite u.

Intuitively, if the user gets compromised, then then any
fact u says C may hold.

e The system S | W is not safe despite p.

Intuitively, the store delegates to the proxy any user
authentication, so a rogue proxy may as well send
requests not initiated by u, or requests on behalf
of any fake principal, using for instance the code
Q), = out request(sign((user,song),k,)) for any pair
user, song.

e The system (SA(5)) | W is safe despite the compro-
mise of any or all of the principals.

Instead of (5), we may as well include other variants as
long as they imply the delegation from store to proxy
embedded in our implementation.

e Alternatively, we may keep the policy and strengthen
the protocol, for instance by having the user authen-
ticate its order using a signature verified by the store
rather than encryption. Although this is more secure,
this may be deemed less efficient, as it forces the store
to manage user credentials.

The proofs of the positive statements above are by typing,
as detailed in Section 6.

5 A Type System for Authorization

We present a dependent type system for statically check-
ing implementations of authorization policies. Our imme-
diate starting point is our type system for centralized autho-
rization policies [23], and earlier work [30] on subtyping,

and public and tainted types, for handling public-key cryp-
tography. The present system features two major improve-
ments. First, it is parametric in the set of constructors and
destructors present in the language, and can therefore easily
be generalized to new cryptographic operations. In the fu-
ture, we plan to make this parametricity explicit, by stating
sufficient conditions for the acceptability of arbitrary typed
evaluation rules for new destructors. Second, we use sub-
typing to inject in the type system information about the
strength of the logical policy present in a typing environ-
ment, and hence available as an assumption during the ver-
ification pass. Thus, when certain formulas are derivable
from the environment, we can relax the logical demands on
the effects of cryptographic objects or secure channels.

5.1 Types

We begin with the syntax of types.

Syntax for Types:
I 1
T.U ::= type

ChT channel for messages of type T

Ok S ok to assume the formulas S

Pair(x:7,U) dependent pair (scope of x is U)

SKT signing key for 7 message

Signed T signature on 7 message

VKT verification key for Signed 7" message
Key T symmetric key for T plaintext

EncT ciphertext obtained from 7 plaintext

U is generative iff U is Ch T, Key T, or SK T.
Notation: Un 2 Ch Ok &
L

The first three types Ch T, Ok S, and Pair(x:7,U) form
a core type system, independent of any cryptographic op-
erations; the subsequent types are for typing cryptography.
The type Ok S [28] is populated only if all the formulas in S
hold; we can regard S as being a logical representation of
a computational effect; hence, our type system is a logical
generalization of type and effect systems [26].

The restriction operator new a:T;P, generates fresh
names of type T, and is well-typed only if T is one of the
generative types. The derived type Un represents messages
that can flow to or from the attacker; it is a type of public,
untrusted data.

Derived Tuple Notations Recall our use of (M,...M,)
as a shorthand for pair(Mj,...,pair(M,,o0k)...). In our
type system, this message is of the type (x; : Ti,...,%, :
T,,)S, a shorthand for Pair(x;:73, ... Pair(x,:7,,0k S)...),
where each M; has type 7; and the ok carries the for-
mula S{M;/x;}...{M,/x,}, which must hold for the tu-
ple to be well-typed. The pattern-matching notation



let (x;,...,x,) = M in P is short for a process that uses the
destructors fst, snd, and exercise to unpack the components
of the tuple M of type (x1:T1,...,x,:T,)S into the variables
X1, ..., Xn. At the type level, the formula S can be assumed
when typing the continuation P.

Derived Notations for Tuples with Effects:

(My,...,.M,) épair(Ml,...,pair(M,,,ok)...) O £ ok
(1:Th, . x:T)S = Pair(xp: Ty, ... Pair(x,:T,, Ok S))
()S=0kS

let (xy41,...,x1) = Din P else 0=

let x,+; = fst(D) in
let (x,,...,x;) = snd(D) in P else O
let () = DinPelse Q=

let z = exercise(D) in P else O z fresh
| |

5.2 Core Type System

Our type system consists of a set of inductively defined
judgments. Each judgment includes an environment, which
defines the types of names and variables in scope, together
with assumed formulas.

Syntax for Environments:
I

E .= environment
1] empty
E,uT u has type T
E.C C is a valid formula

Notation: E(u) =T if E=E',w:T,E".

E=a:Th,...,a,T, is generative iff each T; is generative.
L 1

We assume standard notions of fi,fv, fufv,dom for envi-
ronments. We define a function formulas(E) which returns
the formulas appearing at top level in E.

Functions: fin(E), dom(E) and formulas(E)

Jfo(E,C) =l E) Ufifv(C)

Jfv(E,w:T) = fafv(E) Ufnfu(T) - fufv(2) =
dom(E,C) =dom(E) dom(E,u:T)=dom(E)U{u}
dom(2) = &

formulas(E,C) = formulas(E) U{C}
formulas(E,u:T) = formulas(E) formulas(&) = @

We define a function env(P) on processes which returns
an environment containing the restrictions and clauses ap-
pearing at the top level in P.

Environment of Processes: env(P)
I
env(0)? = o

=a:T,env(P)* ({a}Nfu(P) =
(P | Q)”b = env(P)77 env(Q)?  (a,b}nm(P| Q) = 2)
env(expect C)

(
(

(
nv(C)2 =
(
(in
(

env(new a:T; P)*?

Q

Q

env(lin M(x ) P)? =
env(in M(x); P)? = @
env(out M(N);P)” = @
env(let x = g(M) in P else Q)7 =

Convention: env(P) = env(P)? for some distinct @ such
that env(P)? is defined.

|

Judgments of the Type System:
I

Eto environment E is well-formed
E - T:Public inenvironment E, type T has kind public
E+-T:Tainted in environment E, type T has kind tainted

EF-T<U in environment E, T is a subtype of U
E-M:T in environment £, message M has type T
E-P in environment E, process P is well-typed
|

An environment is well-formed when all the names and
variables being declared are distinct, and when all its free
names and free variables are declared.

Rule for Environments: E - ¢
I 1

Jafv(E) € dom(E)
if E=E" ,wT,E", then u ¢ (dom(E',E")Ufv(T))

Eto

The kinding judgments T:Public and T:Tainted de-
scribe whether values of type T can flow to and from the
opponent, respectively. They contribute to generate the sub-
typing judgment.

Kinding Rules: E -T:Public,E T :Tainted
I E +T:Public EFT:Tainted
E +Ch T:Public
E FT:Public EFT:Tainted
E =Ch T:Tainted
EFo  fufv(S) C dom(E)
E FOK S:Public
Ero fufv(S) Cdom(E) formulas(E)-C VYCe€S
E FOKk S:Tainted
E FT:Public E,x:T \ T':Public
E FPair(x:T,T'):Public
E FT:Tainted E,x:T -T':Tainted
E FPair(x:T,T'):Tainted




The subtyping judgment E - T<:U is not generally
needed to type well-behaved processes, but is useful to type
partially compromised processes. The subtyping rules de-
pend on the kinding judgments and on logical entailment.

Subtyping Rules: E - T<:U
INotation: EFT<>Umeans EFT<UANEFRFU<T.
E - T:Public EVF U:Tainted
EFT<U
EFTi<U E,xT\+FTh<U
E \ Pair(x:Ty, T») <Pair(x:U;,Uz)
ffv(S) Cdom(E) formulas(E)USHC VCeS
Et+ Ok S<Ok &
EFT<>U
| EFChT<ChU

The rules for the typing judgment for messages E M : T
are mostly standard. The rule for typing constructors relies
on a type signature f : (Ty,...,T,) — T, relating the type
of a term with the type of its argument, described in the
next section. The rule for ok tokens, which are supposed
to convey the logical effects annotated in the type, requires
that the environment contains enough formulas to guarantee
that those effects hold.

Typing Rules for Messages: E-M : T
I
EF-FM:U ERU<T EFo uecdom(E)

E-M:T Etru:E(u)
EFM:: T, Yiclan f:(Ti,....T,)—T
EF f(Mi,...,My): T

E-M:Ty EFM,:Th{M,/x}

E - pair(M,,M,) : Pair(x:T1,T>)
Eto fufv(S) Cdom(E) formulas(E)-C VYCe€S
Etok:O0kS

In particular, we can check that Un 2ChOkgisa type
for values that can be freely used by the opponent: we have
EF M :Unif and only E - M:Public and E - M:Tainted.

The rules for the typing judgment for processes E - P
are inspired by those in our previous work [23]. From that
work, there are three rules of particular interest. The rule
for expectations expect C requires that C is entailed by the
current environment. The rule for statements allows any
statement C, provided its names are in scope. The rule for
parallel composition allows P | Q, provided that P and Q
are well-typed given the top-level statements of Q and P,
respectively.

10

Typing Rules for Processes: £ - P
I EFo E,a:T+P T generative

EHO E+new a:T;P

E,emv(Q)FP E,env(P)FQ fufv(P| Q) C dom(E)

EFP|Q
E.Cko  formulas(E)FC
E + expect C
ErinM(x);P E-M:ChT ExTHP
E '+ lin M(x); P Ein M(x);P
E-M:ChT EFN:T EFP
E + out M(N); P

YUFg(N)—N:(T)—T,S

if mgu(M N) exists, then
EFM: (E,y: U SFP{N/x})(mgu(M N)))

Etletx = g(M)in P else Q

EClko
EFC

EFQ

The rule for destructor evaluations is a novelty of this
type system. It relies on the typed evaluation for destruc-
tors y:U - g(N) — N : (T) — T, S, relating input and output
types ((T) — T) with the types of free variables U and the
effects S. These rules, defined below, extend the ones for
evaluation given in Section 3. (The rules for cryptographic
operations are given in Section 5.3.)

TypedEvaluatlon EFgM)y—M: (T)—T,S;g(M) |} M

xlle,xZ:Tg F fst(pair(x;,x2)) — xp :
(Pair(xlle,Tg)) — 11,9

x1:T1,x2: 1 - snd(pair(x;,x;)) — x5
(Pair(x:T1,T3)) — T, @

xTreq(x,x)—x:(T,U)—T,o

x:0k S exercise(x) — x: (Ok S) — Ok S,S

XUFg(N)—N:(T)—T,S o=mgu(M =N)
g(M) | No

Going back to the rule for destructor evaluation, if there
is a most general unifier o for the parameters of g, M and N,
the rule requires that the continuation process P{N/x},
where the symbolic result of destructing g is bound to x,
is well-typed in an environment enriched with the defini-
tion of the fresh variables y and the effects S introduced by
the typed evaluation rule, taking into account ©.

As an example, let us specialize the typing rule for
the destructor g = eq, by eliminating the typed evaluation
xU Feq(x,x) — x: (U,U) — U;,2. After simplifica-
tion, we obtain the derived typing rule



EFQ

if mgu(M, = M) exists, then
E|—M11U1 El—Minz

(E - P{My/x})mgu(My = M>)

Elletx = eq(M;,M;) in P else Q

5.3 Typing Cryptographic Operations

We augment our core type system with additional rules
for signatures and encryption. We could accommodate fur-
ther cryptographic operations by including additional sets
of rules, in this style. Each cryptographic operation requires
new types, constructors, a destructor, rules for kinding, sub-
typing, typing, and typed evaluation.

Signatures A private signature key k for plaintexts of
type T is a name of the generative type SK T. A signature
for a plaintext ¢ of type T under key k is the term sign(z, k)
of type Signed T'. Its type signature is sign : (7,SK T) —
Signed T'. The public verification key for a signature key k
for plaintexts of type 7 is the term vk(k) of type VK T'. Its
type signature is vk : (SK 7') — VK T. The typed evalu-
ation rule for signatures, which brings this information to-
gether, is:

x1:T,x2:SK T F verify(sign(x,x2), vk(x2)) — x7 :
(Signed T, VK T) — T,

Kinding and Subtyping Rules for Signing:
I 1

E - T:Public E - T:Public
E - T:Tainted E - T:Tainted

E FSK T:Public E FSK T:Tainted

E +T:Public E +T:Tainted
E VK T:Public E FVK T:Tainted
E FT:Public Eto fufv(T) C dom(E)
E -Signed T:Public E Signed T:Tainted
EFT<>U EFT<U
EFSKT<SKU EFVKT<VKU
EFT<>U

E - Signed T <:Signed U
|

Symmetric Encryption A symmetric encryption key k
for plaintexts of type T is a name of the generative type
Key T. A symmetric encryption for a plaintext ¢ of type T’
under key £ is the term senc(z, k) of type Enc 7. Its type sig-
nature is senc : (7,Key T) — Enc T. The typed evaluation
rule for symmetric decryption is:
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x1:T,xy:Key T F sdec(senc(x,x2),x2) — xj :
(EncT,Key T)— T,2

Kinding and Subtyping Rules for Encryption:
I

E FT:Public E T Public
E FT:Tainted E bT:Tainted

E - Key T:Public E - Key T:Tainted

Ero Eto

fufv(T) C dom(E) ffv(T) C dom(E)

E FEnc T:Public E FEnc T:Tainted
EFT<>U EFT<>U

E +Key T<:Key U Et Enc T<Enc U

5.4 Results

Our first theorem is that well-typed processes are safe; to
prove it, we rely on a lemma that both structural congruence
and reduction preserve the process typing judgment.

Lemma 1 (Type Preservation) If E + P, P is closed and
either P=P or P —* P then E+- P

Theorem 1 (Safety) IfE - P and E is generative, then P is
safe.

Our second theorem is that well-typed processes whose
free names can be considered both public and tainted, that
is, of type Un, are robustly safe. It follows from the first via
an auxiliary lemma that any opponent process can be typed
by assuming its free names are typable Un.

Lemma 2 (Opponent Typability) If E - o and fufv(O) =
uand E & u:Un then E & O, for all opponents O.

Theorem 2 (Robust Safety) If E - P and E is generative
and E env(P) \- a : Un for all a € dom(E), then P robustly
safe.

For generic reasons, the converse of this theorem is false,
that is, the type system is incomplete. For example, we can-
not type a process that contains expectation of an unstated
fact, even if the expectation is unreachable.

6 Applying the Type System

We now provide sufficient typed-based conditions for es-
tablishing safety despite compromise. Using typing, as well
as the conditions for robust safety, we essentially have to
show that the variables in the domain of ¢ can be Un-typed.

Theorem 3 (Safety Despite Compromise, by Typing)
A process of the form Kz7[Q] is safe despite compromise of
Q if there exist Q', E, ¢ such that



(1) Q= Q'c with fn(Q') N {¢} = 2;

(2) EF Kz7[0] with E,env(Kz7[0]) - a : Un for every a €
dom(E);

(3) E,env(Kz7[0]) - xo : Un for every x € dom(o); and
(4) E is generative.

The proof is by appeal to Proposition 1 and Theorem 2.
The environment E only binds free names a; condition (2)
requires that they are Un-typed, possibly by “logical” sub-
typing.

Similarly, we can rely on typing for establishing safety
properties for configurations of partly-compromised princi-
pals, as follows:

Theorem 4 (Safety Despite Compromised Principals,
by Typing) Consider a world of the form

W =S | new 'c“:ﬁ;expo?t_\z/: MZ;HQa
aca
where, for simplicity, S collects all the logical statements

of W in evaluation context. Let E be the environment that
maps fn(W) to Un.

o W is robustly safe if

() E,S, c/vTc F M, : Un for each exported variable z;

(2) E,Sc:T;,zUnk [Qu]la
for each principal a of W.

e For some principals bCa, let 0 =Tlpep Qb and S =
Npcp b says false. Suppose there are Q' and G such
that (i) Q = Q'o and (ii) fn(Q')N{c} = @.

W is safe despite b if, moreover,
3) E,S, C/'ﬁi,SE,ZTﬁ;‘I Fxo : Un for each x € dom(o)

Although the proof technique still requires identifying o,
its choice is usually routine. For instance, we may sim-
ply let o substitute the names ¢ € {¢} Nfu(Q) for a dis-
tinct fresh variable. Then, condition (3) simply becomes
E,S,c:T,,S; b ¢ : Un for each name ¢ € {¢} Nfin(Q).

Also, note that we only need to establish conditions (1)
and (2) once for all b. In particular, each local code Q,
is typed only once. The additional requirements focus on
(a safe approximation of) the terms leaked by the compro-
mised principals b.

Ordering a Song via a Proxy: the Typed Story We are
now ready to verify by typing the properties claimed for our
example implementation of Section 4. Using the notations
and numbering of Theorem 4, the partial environment c:T;
binds two names:

kup : Key (song:Un){u says Order(song)}
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kp : SK (u:Un, song:Un)
{u says Order(song), p says Registered(u)}

Let E map the free names of W to Un. Let § = (1) A(3). Let
E'=E,ScT.,.

(1) For our single exported term, we have E' - vk(k,) :
Un.

In more detail, let S’ = {u says Order(song), p says
Registered(u)}. By (Sub Ok) and (Sub Pair), we have
E't (u:Un, song:Un)S’'<:(u:Un, song:Un) & <:Un.

By (Msg Msg) for vk, we have E’ I vk(k,) :
VK (u:Un, song:Un)S’.

By (Sub VK), E’ - vk(k,) : VK Un and, by kinding of
VK, E'F vk(k,) : Un.

(2) We type our local processes, as follows:

e For the user, we have E/,v,:Un F [Q,]]...
In  more  detail, Q. = 8 |
out net(senc((georgiaOnMyMind),k,,)) where
S" = {u says Order(georgiaOnMyMind)} and
we have:
E'S' b (georgiaOnMyMind):T where T =
(song){u says Order(song)}, by (Msg Ok) and
(Msg Pair).
E',S' I senc((georgiaOnMyMind),k,p) : Enc T
by (Msg Msg) for senc.
E',S' - senc((georgiaOnMyMind),k,p) : Un by
kinding of senc.
E’',S' - net : Un hence E’,S' + net : Ch Un by
(Sub Ext) and (Sub Ch).
E',S'F out net(senc((georgiaOnMyMind) . k,,))
by (Proc Output).
E'+ S| out net(senc((georgiaOnMyMind)  ky,))
by (Proc Par).

e For the proxy, we have E',v,:Un | [Q,],. In
particular, we use both policy (3) and the effect
u says Order(song) from successful decryption
with &, in order to type the message signing.

e For the store, we have E’,v,:Un I [Q,]|;. In par-
ticular, we use policy (1) to type expect s says (4)
in the process translation.

This establishes that S | W of Section 4 is robustly safe.

(3) Moreover, we obtain safety despite subsets of {u, p,s}
as follows:

e Safety despite {s}: we simply use an empty o.



e Safety despite {u}: we have E’ u says false -
kyp : Un, using u says false to show that u says
Order(song). Thus, we obtain Property (3) for
o = {kup/x} and Q;, = Q,{kyp/x}. We similarly
obtain safety despite {u,s}.

e Conversely, we cannot derive kj, : Un, even when
p says false, as indeed S | W is not safe despite p.

With the addition of the explicit delegation policy (5), we
can complete our proof of safety despite compromised prin-
cipals by showing that:

E',(5), p says false -k, : Un
E',(5), p says false -k, : Un

and verifying safety despite all subsets of {u, p,s}, includ-
ing those that contain p.

7 Related Work

There is an extensive literature [6, 16, 42, 22, 7, 34, 33,
11, 19, 45, 35, 8, 20, 9, 10, 32] on logics for access con-
trol and authorization. Often, as in the earliest logic-based
implementations of access control [47, 16], the intention is
that a logical policy be evaluated directly at run time. In
contrast, we view a logical policy as a specification for au-
thorization decisions, and establish type-based techniques
for showing that the code of a system conforms to this speci-
fication. As we have shown in a previous paper [23], we can
represent and typecheck a range of implementation strate-
gies including, but not limited to, direct evaluation of policy
clauses at run time.

Another contrast with prior work on authorization log-
ics is that our embedding of policies, principals, and au-
thorization decisions within a process calculus allows us to
consider formally the impact of partial compromise of im-
plementation code. We are not aware of any prior formal
studies of the impact of partial compromise on the validity
of authorization decisions at uncompromised nodes.

On the other hand, partial compromise is certainly con-
sidered in most formal models of cryptographic protocols.
For example, Lowe [36] assumes the attacker is itself a
recognised principal of the system. In Paulson’s inductive
method [41], the attacker knows the long term keys cor-
responding to a set of “bad” principals. Often, invariants
need to be individually adjusted to account for partial com-
promise; in our notation, we might weaken our expectation
to something like

expect (store says CanDownload(user, song)) vV
Bad(user) V Bad(proxy)

where Bad(a) holds in case principal @ is compromised. In-
stead, our notions of safety despite compromise and safety
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despite compromised principals are systematic generaliza-
tions of such representations of bad principals; invariants
are left as intended, and any adjustment needed to account
for implementation dependencies is an explicit weakening
of the global policy. We leave to future work a formal com-
parison between our definition and those used for crypto-
graphic protocols.

Our work builds on techniques from some of the prior
type systems for proving secrecy [1, 4, 5] and authenticity
properties [29, 28, 30] of cryptographic protocols expressed
in process calculi. A precursor of our work [31] considers
certain conditional secrecy properties within a pi calculus
in the presence of partial compromise; as well as authoriza-
tion properties, the additional features in the present paper
include our systematic notion of safety despite compromise,
and the generic treatment of multiple constructors and de-
structors in our type system. (For the sake of space, this
paper only treats authentication and authorization proper-
ties, but we conjecture that conditional secrecy could easily
be added.) Bugliesi, Focardi, and Maffei [17] check secu-
rity properties in the presence of a fixed set of compromised
hosts, but assume this set is known statically.

The decentralized label model (DLM) of Myers and
Liskov [39] is the basis of the JFlow and Jif languages in
which security types track the ownership of data. Secure
program partitioning [49] is an implementation technique
for Jif that takes partial compromise into account. Chothia,
Duggan, and Vitek [18] propose a type system combining
cryptography with DLM, in the setting of a process calcu-
lus, but do not consider partial compromise.

Declassification occurs when previously sensitive data is
deliberately leaked by a system to its environment. Our for-
mulation of partial compromise is a form of declassification
in which all the data currently held by a principal is leaked.
There is a large literature [44] on establishing confidential-
ity, formalized as various liberalizations of information flow
properties [43], in the presence of declassification. It would
be instructive to find formal connections between these lib-
eralizations and our logic-based notions of safety despite
compromise.

8 Conclusions

We have embedded a logic within a process calculus so
as to annotate implementation code with events and invari-
ants reflecting authorization decisions in the code. For each
principal a, logical formulas a says C represent intended in-
variants in the process code a[P] acting for a. We advo-
cate logical policies as a specification for an implementa-
tion, and present a notion of conformance between an im-
plementation and a policy that, unlike prior work, system-
atically accounts for the possibility that some principals are
compromised. We can prove policy conformance via a type



system that supports a wide range of cryptographic primi-
tives.

Two criticisms of our work are that we develop a theory
and type system for a pi calculus rather than for a conven-
tional programming language, and that we have typed only
a small set of examples (those in this paper and its precur-
sor [23], such as various recursive routines to check cer-
tificate chains). In fact, the pi calculus and its variants are
an effective setting for developing security foundations, and
various tools [15, 27, 37] exist to analyze security proper-
ties of processes. Moreover, although superficially dissimi-
lar to typical code, pi calculi can represent the semantics of
a range of programming languages [38, 46]. Via such rep-
resentations, security tools for pi calculi have been applied
to analyze executable code [12, 14]. In future, we intend to
add a typechecker, based on the foundations in this paper,
to an existing tool [14] for checking security properties of
distributed code, and to assess the typechecker against an
existing codebase [13].
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published paper [2].
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