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Abstract—A novel Kalman filtering/smoothing algorithm is
presented for efficient and accurate estimation of vocal tract reso-
nances or formants, which are natural frequencies and bandwidths
of the resonator from larynx to lips, in fluent speech. The algorithm
uses a hidden dynamic model, with a state-space formulation,
where the resonance frequency and bandwidth values are treated
as continuous-valued hidden state variables. The observation
equation of the model is constructed by an analytical predictive
function from the resonance frequencies and bandwidths to LPC
cepstra as the observation vectors. This nonlinear function is
adaptively linearized, and a residual or bias term, which is adap-
tively trained, is added to the nonlinear function to represent the
iteratively reduced piecewise linear approximation error. Details
of the piecewise linearization design process are described. An
iterative tracking algorithm is presented, which embeds both
the adaptive residual training and piecewise linearization design
in the Kalman filtering/smoothing framework. Experiments on
estimating resonances in Switchboard speech data show accurate
estimation results. In particular, the effectiveness of the adaptive
residual training is demonstrated. Our approach provides a solu-
tion to the traditional “hidden formant problem,” and produces
meaningful results even during consonantal closures when the
supra-laryngeal source may cause no spectral prominences in
speech acoustics.

Index Terms—Adaptive piecewise linearization, adaptive
residual parameter learning, continuous dynamics, formant
analysis, hidden dynamic model, nonlinear prediction, speech
processing, state-space model, vocal tract resonance.

I. INTRODUCTION

DEVELOPMENT of accurate, efficient, and compact rep-
resentations of the speech signal and its dynamic behavior

has been actively pursued by many speech researchers. The
representations investigated include articulatory or pseudo-ar-
ticulatory variables [2], [12], [19], [22], [25], [28], vocal tract
shapes [4], [5], [11], [26] formants and vocal tract resonances
[1], [8], [10], [13], [15], [27], [31]. In recent years, we have
focused this area of our research on vocal tract resonances
(VTRs) as a compact representation for hidden time-varying
characteristics of speech, in the context of hidden dynamic
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modeling for speech recognition. VTRs share some common,
desirable temporal properties with articulatory variables but
they have much lower dimensionality. (Examples of these
temporal properties are smoothness, and the tendency for each
VTR component to move toward the respective spatial “target”
point within each phonetic segment.1) VTRs also have more
intuitive acoustic interpretations in terms of spectral promi-
nences in speech acoustics, commonly known as formants,
when there are no narrow local constrictions and no side
acoustic branches in the vocal tract (i.e., for non-nasal vowels
and sonorant consonants). In the recent work reported in [7],
[10], a technique for VTR tracking was developed based on
a version of the hidden dynamic model where the hidden
VTR variables are quantized. This discrete-valued model has
inherent quantization errors which are difficult to quantify. And
additional errors are introduced by the approximations needed
to reduce the otherwise prohibitive amount of computation
due to the combinatorics which would result from a very
large number of quantization levels. The continuous-valued
hidden dynamic model presented in this paper is free from
both of these problems due to its elimination of VTR quan-
tization. The difference between the discrete-valued model in
[7], [10] and the continuous-valued model described in this
paper is analogous to that of the discrete-output HMM and
continuous-observation-density HMM elaborated in [21].

Although VTRs may not correspond to spectral prominences
where zeros in the vocal tract transfer function exist in fricatives,
stops, and nasals, they largely coincide with the spectral promi-
nences or formants for non-nasalized vowels and semivowels.
In these speech sounds, no vocal tract side branches and no
supra-glottal excitation sources are involved in speech produc-
tion in general. Almost all the existing formant tracking tech-
niques (e.g., [16], [18], [29], [30], [32]) rely, directly or in-
directly, on the spectral prominence information from speech
acoustics only. The new technique presented in this paper ex-
ploits additional dynamic prior information, in the form of VTR
hidden dynamics, to speech acoustics. This prior information
captures general time-varying properties of VTR trajectories
during speech production even if supra-glottal excitation may
eliminate acoustic spectral prominences (such as during frica-
tives and stops). The joint use of the dynamic VTR prior and
speech acoustics, as well as of the explicit relationship between
the two domains, enables the hidden dynamic model to accu-
rately track VTR trajectories at all times and for all manner and
voicing classes of speech.

1We call this tendency a “target-directed” property.
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When the prior information about continuous-valued hidden
VTR dynamics is expressed in a recursive form (i.e., state equa-
tion), which we have used in the current work, and the rela-
tionship between the VTR vector and the acoustic observation
vector is represented in a memoryless fashion (i.e., observa-
tion equation), a state-space formulation of the hidden dynamic
model is established. This formulation allows the powerful and
efficient Kalman filtering/smoothing algorithm to apply to the
VTR tracking problem. To enable this application, we carry out
adaptive piecewise linearization for the nonlinear observation
equation. In the past, Kalman filter with linearization has also
been used for tracking formants or resonances [20], [23], [24].
The work presented in this paper differs from the previous work
in at least three significant ways. First, all the previous work
used LPC coefficients as the output vector, resulting in much
more complicated nonlinear observation equations than our ob-
servation equation with LPC cepstra as the output vector (as
a function of the state vector of VTR frequencies and band-
widths). Second, due to the availability of the analytical form
of our observation equation, which was lacking in all previous
Kalman filtering techniques for formant tracking, we are able to
perform direct analysis of the nonlinear observation equation.
This allows us to partition the nonlinear function, having lin-
earization of each partitioned region with high approximation
accuracy and in an adaptive manner. In contrast, the use of an
extended Kalman filter in the past, exemplified in the work of
[23], was based on first-order Taylor series approximation and
gave unknown approximation accuracy for the linearization of
the observation equation.2 Third, in addition to using carefully
designed piecewise linearization to reduce approximation errors
in the observation equation, we further introduce an iteratively
and adaptively learned residual term to minimize approximation
errors in the observation equation as well as VTR tracking er-
rors. None of the earlier formant tracking work based on Kalman
filtering used this adaptive mechanism, whose effectiveness will
be demonstrated in this paper.

The remainder of this paper is organized as follows. In
Section II, we outline the general form of the continuous-valued
hidden dynamic model and one of its specific forms for use in
VTR tracking as the focus of this paper. We devote Section III
to a detailed description of the design process that provides
accurate piecewise linearized approximation to the nonlinear
observation equation in the hidden dynamic model that maps
from the hidden VTR vector to the acoustic observation vector
in the form of LPC cepstra. A simplified case is presented
first, where only VTR frequencies are partitioned in the design
process. This is followed by the general case where both
VTR frequencies and bandwidths are subject to partitioning
and functional linearization. Given piecewise linearization
of the hidden dynamic model, a novel adaptive Kalman fil-
tering/smoothing algorithm is developed and described in
Section IV for hidden state estimation; i.e., VTR tracking. Both
the region in the piecewise linearization and the cepstrum-pre-

2While this weakness was recently overcome by the use of particle filtering
[31], greater computation was incurred and lower estimation accuracy was ob-
served from the spectrographic displays (overlaying with the estimation results)
compared with our approach presented with the same displays as shown in this
paper.

diction residual parameters (mean and variance) are adaptively
learned in an iterative procedure. Finally, experimental results
on VTR tracking are presented in Section V, demonstrating the
effectiveness of the new VTR tracking technique.

II. CONTINUOUS-VALUED HIDDEN DYNAMIC MODEL

In a general form, the hidden dynamic model, where no quan-
tization is applied to any variables, is a time-varying nonlinear
dynamic system with carefully designed prediction functions in
both the state (1) and observation (2)

(1)

(2)

where is the speech unit or discrete state at time frame ,
the prediction functions and are time varying according
to the changes in the unit . is the hidden state
vector representing internal speech dynamics at time .

is the corresponding acoustic observation vector.
is called the target vector, representing the phonetic correlate of
the speech unit (denoted by , being phones or phonological fea-
tures). and are temporally uncorrelated Gaussian
noises with covariances and

, respectively.
Two key design issues for adopting the above generic struc-

ture as a generative speech model are: 1) to parameterize the
time-varying function so that the temporal evolution of the
hidden state vector reflects realistic aspects of (hidden)
speech articulation; and 2) to design so that it properly char-
acterizes the “forward” predictive mapping relation from the
hidden vector to the acoustic observation vector . A
specific design of the model for the VTR tracking application in
the remainder of this paper is presented below.

A. Prior Model of Hidden Dynamics

The recursive prediction function in (1) is parameterized by
the phone-dependent “target” vector and “system” ma-
trix , resulting in the following first-order, target-directed
linear state equation

(3)

The target-directed property: as under zero
process noise is readily verified from (3), as is the smoothness
property (both across and within speech units). The hidden dy-
namic vector is taken to be the VTR, consisting of resonance fre-
quencies and bandwidths corresponding to the lowest poles
(i.e., dimensionality equals )

(4)

For VTR tracking applications, in order to remove the re-
quirement of knowing the phonetic sequence (as well as seg-
mentation) underlying the utterance, we further simplify (3) into

(5)
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by removing parameter dependencies on the speech unit. This
gives a weaker prior model than (3) since, for example, the
phone-specific VTR targets are no longer provided as the prior
information. That is, the simplified prior model (5) reduces the
phone-specific prior information on VTR to the phone-indepen-
dent prior distribution for individual components of the VTR
vector. This simplification permits the use the conventional
Kalman filter/smoother for efficient state estimation; otherwise,
much more costly algorithms would be needed [17].

In our implementation of model (5), we choose the eight-
dimensional values (i.e., ) of the VTR target frequencies
and bandwidths of

Hz Hz Hz Hz

Hz Hz Hz Hz (6)

Although no phone-specific targets are provided, (6) gives a
useful constraint in VTR tracking that the mean values of the
VTR target frequencies and bandwidths are around the above
nominal values. Note that the common continuity constraint

in formant or VTR tracking (e.g., [1], [31]) was a special case
of (5) and did not provide prior nominal values for the formant
frequencies. The work of [10] also used this highly simplified
VTR dynamic prior model, and in addition, it quantized the
VTR vector into discrete values to facilitate the search for
optimal VTR values in absence of the Kalman filtering frame-
work.

B. Observation Model

In the current work, LPC cepstra are chosen as the acoustic
observation vector, , in (2). Then, as detailed in [7], the
prediction function of (2) can be shown to be phone independent
and have a relatively simple analytical nonlinear form based on
an all-pole speech model. In this function, the -order LPC
cepstrum (up to the highest order of ) is expressed as

(7)

where is the sampling frequency, and is the pole order of
the VTR up to the highest order of . To account for the pre-
dictive modeling error due to zeros and additional poles be-
yond which are not incorporated in (7), we introduce the
residual vector , also phone independent, in addition to the
use of zero-mean noise in (2). This gives rise to the fol-
lowing form of the nonlinear observation equation, which we
use throughout this work:

(8)

In summary, (5) and (8) constitute a version of the contin-
uous-valued nonlinear hidden dynamic model, based on which

Fig. 1. Plot of one term (2=i)e cos(2�i(f=f )) in (7) as a function
of VTR frequency f (with fixed bandwidth b = 500 Hz) for i = 1; . . . ; 15.

a novel VTR tracking algorithm within the Kalman filtering and
smoothing framework is developed and evaluated, as will be
presented in Sections IV and V. The algorithm does not require
information of phone labels and segmentations due to model
parameter tying across phones (i.e., speech-unit independent).
Note that in contrast to the earlier approach in [7], [10] where
the VTR vector in (4) was discretized, in the current ap-
proach is continuously valued.

III. PARTITIONING AND LINEARIZATION

OF THE OBSERVATION MODEL

The adaptive Kalman filter-based algorithm for VTR tracking
using the model given by (5) and (8) without state-variable
quantization requires linearization of the nonlinear observation
(8). One key advantage of using the LPC cepstra as the acoustic
observation vector is the straightforward design of high-ac-
curacy piecewise linear approximation to the well-behaved
nonlinear function (7). This design starts with partitioning the
input VTR vector space on a component-by-component basis.
The partitioning depends on the desired accuracy of linear
approximation to (7) for each partition or region.

To illustrate the general property of the nonlinear function
(7), we show in Fig. 1 one of the terms (for ) in (7)
as a function of the VTR frequency, with the fixed bandwidth
of Hz and fixed sampling frequency of Hz.
Each of the curves is sinusoidal, with an amplitude inversely
proportional to the cepstral order. This smooth, well-behaved
nonlinearity makes it possible to achieve a piecewise-linear ap-
proximation with precontrolled and arbitrarily high accuracy.

In our specific implementation of piecewise linearization, we
divide each cycle in the sinusoid, shown in Fig. 1, in each of
the terms of (7) into ten non-uniform regions over the
frequency axis. For example, for the first-order cepstrum con-
sisting of only half a cycle of a sinusoid, five regions are prede-
fined, and as many as 75 regions are used for the highest-order
cepstrum. Fewer regions are used for the cepstra of lower or-
ders, since they are less cyclic and hence the partitioning can be
made coarser with the same level of approximation accuracy. In
the remainder of this section, for simplicity in description, we
first derive the piecewise linearized observation equation when
only the VTR frequencies are included as the state vector (with
a dimension of ) which are subject to partitioning, lin-
earization, and estimation; that is, we assume the bandwidths
are fixed and are thus not part of the state vector. We then de-
scribe the more complicated case when both VTR frequencies
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and bandwidths are included as the state vector (with a dimen-
sion of ) for partitioning, linearization, and estimation.

A. Piecewise Linearized Observation Equation I: Partitioning
Frequencies Only

In this simplified case, we have the following single-reso-
nance cepstral function expressed in terms of a sinusoidal func-
tion for partitioning and piecewise linearization:

(9)

We partition the frequency axis into regions:
, where is 75 for cepstrum with order

, and is gradually reduced to 5 for cepstrum with order
. For each pair of the partitioned region boundaries ,

in VTR frequencies, we have the corresponding cepstral
values and as determined by (9). Within each region,
we fit the following linear curve ( versus ) passing through
the two points :

From this, we obtain the slope and intercept for the lin-
earized region according to

Then, for each cepstral order , we have the following linearized
cepstral function (with terms corresponding to resonances)
for any VTR frequency value inside the region’s boundaries:

(10)
where

In a matrix form, (10) becomes the following linear function
(conditioned on region ):

(11)

where

...
...

...
...

(12)

...
and ...

(13)

This then gives rise to the piecewise linearized observation
equation

(14)

where the state vector is .

B. Piecewise Linearized Observation Equation II: Partitioning
Both Frequencies and Bandwidths

In this general case, we need to partition and then linearize
both the sinusoidal and exponential functions in the following
single-resonance cepstral expression

(15)

For each of the VTR bandwidths, we partition its axis
uniformly from 0 Hz to 500 Hz with an increment of 50 Hz;
that is, , where the total number of regions is

. Given a fixed region , we carry out the same lin-
earization process as before, except now for both the sinusoidal
and exponential functions (omit region index and resonance
index for brevity)

(16)

This gives a (piecewise) linear approximation to the single-res-
onance th-order cepstrum:

(17)

(18)

(19)
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In (17), we used and where
and are the VTR frequency and bandwidth at the left-side
boundary of the partitioned region. And in (18), the higher-order
term was ignored.

Given (19), the general expression for the -resonance cep-
strum, with order , now has the following form
of piecewise linear approximation (region denoted by ):

(20)

where

In a matrix form, (20) becomes the region- dependent linear
function

(21)

where [see (22) at the bottom of the page], and

...

...

and ...
(23)

The final result for the piecewise linearized observation equa-
tion becomes

(24)

where the state vector is .
Note that the “slope” matrix and “intercept” vector

have no free parameters. They are obtained from the
above piecewise linearization procedure based on the known
analytical function of (7). All errors, due to the piecewise
linearization approximation, as well as the approximation of
(7) to real speech cepstral data, are absorbed to the trainable
prediction residual parameter in (14) and (24). The “region”
index (i.e., which “piece” in piecewise linearization) in (14)
and (24) is selected based on the approximate value of the state
vector . In our specific implementation, is determined from
the prediction step of a “linearized” Kalman filter which we
will describe in Section IV.

We have described in this section two ways of linearizing
the observation equation in the hidden dynamic model—one

Fig. 2. Illustration of approximations to (one term of) the analytical nonlinear
function of (7) with predesigned input regions for VTR frequencies and band-
widths. Each region represents a separate linear approximation to the nonlinear
function, giving rise to the overall piecewise linear approximation. See text
for details of the four subplots. (a) Exact nonlinear mapping. (b) Linearization
points. (c) Piecewise linear mapping. (d) Error surface.

deterministically fixing the VTR bandwidth and the other
treating the VTR bandwidth as the random vector. Fixing
the bandwidth values makes the estimation algorithm and
implementation much simpler, and it has the state vector with
a lower dimension. However, since the fixed bandwidth values
may be inaccurate (they are empirically chosen as shown
in Section II-A used in our experiments), the resulting esti-
mates may be affected by this inaccuracy. In contrast, when
the VTR bandwidths are included as part of the state vector,
they are simultaneously estimated with the VTR frequencies.
Although this implementation as detailed in Section III-B is
more complex, it does not suffer from the empirical choice of
the bandwidth values. Because there is no standard database
available with correctly annotated VTR values, we have not
been able to systematically assess these two implementations
experimentally. Visual inspection of the estimation results indi-
cates that the latter implementation including the bandwidth in
the state vector is slightly superior to former implementation.

C. Illustration of Piecewise Linearization

Predesign of the input regions for piecewise linear approx-
imation to the observation equation in the state-space based
hidden dynamic model is the most significant aspect of our new
approach. Fig. 2(a)–(d) provides an example of the result of this
design process. The example is taken for the 5th order cepstrum,
where the exact nonlinear mapping for a single-resonance term
in (7) is shown in (a) and the predesigned linearization regions
are shown in (b). The VTR frequency is plotted which ranges
from 0 to 4000 Hz, and the bandwidth from 0 to 500 Hz, cov-
ering the typical resonances in speech sounds. The piecewise
linearized function using the predesigned regions is given in
(c), which can be seen to be virtually the same as the original
function (a). The very small errors due to the approximation are
plotted in (d); note the enlarged scale in the plot in order to show
the errors.

...
...

...
...

...
...

...
...

(22)
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IV. ADAPTIVE KALMAN FILTER AND SMOOTHER EMBEDDING

PREDICTION-RESIDUAL TRAINING

After the piecewise linearized hidden dynamic model, con-
sisting of (5) and (14) [or (24)], is established, highly efficient
adaptive Kalman filtering and smoothing algorithm can be ap-
plied to track VTRs as this problem has now been reduced to
a special case of the well-known problem of minimal-mean-
square-error state estimation (e.g., Chapter 5 in [6]). The novel
aspect of adaptive learning in the algorithm developed here con-
sists of two key elements. First, the choice of the linearized re-
gion, , which determines the model parameters in the linearized
observation (14) ( and ) or (24) ( and ), is learned
adaptively based on the predictor stage of the Kalman filter.
Second, the prediction-residual parameters, and , in the
linearized observation (14) and (24) are adaptively learned after
each iteration of the VTR tracking sweep is complete with the
new VTR estimates available. The improved observation equa-
tions with updated parameters of and are then used to
further improve VTR tracking. Detailed steps of this adaptive
algorithm are provided below.

Adaptive VTR racking algorithm

Step 1) Fix model parameters , , and ;
Step 2) Initialize and ;
Step 3) Kalman filtering (forward pass): For all frames

• Run Kalman predictor to obtain ;
• Choose region based on ;
• Choose and in (24) based on .
• Compute Kalman gain and correction to

obtain ;
Step 4) Kalman smoothing (backward pass): For frames

, , compute ;
Step 5) Adapt residual parameters in observation

equation:
• Compute predicted cepstra using (7)

with as input for all frames;
• Compute residual vectors: ;
• K-mean clustering (using Euclidean distance)

of all residual frames for the utterance into
classes and index each frame with the

associated class ;
• Compute the sample means and variances for

each cluster and use them to update sets
of and , and assign each frame
with the updated mean and variance based on
the indexed class;

Step 6) Go to Step 2 using the updated frame-dependent
mean and variance parameters until
convergence or a fixed number of iterations is
reached. The output of the algorithm is
at the final iteration.

In the above, an assumption is made that the cepstral predic-
tion residual from VTR follows a mixture-of-Gaussian distri-
bution. In Step 2 above, for all mixture components, the mean

vectors are initialized to be zero and the diagonal covariance
matrices are initialized identically according to sample variance
computation.3 After each iteration with the updated residual’s

-component mixture’s means and variances, for each frame,
we select one of the sets of the residual means and vari-
ances, according to the minimum cepstral prediction error. (This
selection is easily carried out after indexing each frame with
the class label in the K-mean clustering procedure.) The se-
lected, frame-dependent residual means and variances are used
in Kalman filter and smoother in Steps 3 and 4 for the next iter-
ation.4 We now provide detailed computation for these Steps 3
and 4 below:

Kalman filter using piecewise linearized hidden dynamic
model (Step 3)

For , and for the given adaptively selected
region and residual parameters,

Kalman Prediction

Kalman Gain

Kalman Correction

Kalman smoother using piecewise linearized hidden
dynamic model (Step 4)

Given the Kalman filter results , ,
, and , the smoothed VTR estimate

defined as is computed for
recursively by

where .

3The sample variances are based on a small set of training data and from the
cepstral prediction errors computed using (7) with the VTR tracker developed
in [10].

4The use of the frame-dependent residual means and variances makes the
algorithm efficient, requiring only one instead ofM times of running Steps 3
and 4 (Kalman filter/smoother) for the next iteration. A more rigorous method
would be to run Kalman filter/smootherM times in the next iteration, one for
each of theM frame-independent Gaussian residual parameter sets. This may
give higher accuracy but is much more expensive in computation.
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Fig. 3. Tracking VTR frequency (f to f ) trajectories for a typical Switchboard utterance after two iterations of adaptive training of the prediction-residual
parameters with M = 10 Gaussian mixture components.

In our diagnostic experiments, we found that empirical ini-
tialization of parameters of , , and worked satisfactorily
well, and hence they were not subject to training in order to re-
duce computation. However, initialization of (based on
the sample residual variance) and of does not work
well until after the adaptive training is carried out. Details of
VTR tracking experiments are presented next.

V. EXPERIMENTS AND RESULTS

The adaptive Kalman filtering and smoothing algorithm pre-
sented in Section IV has been implemented in Matlab and ap-
plied to 249,226 utterances of the Switchboard speech data 5

to obtain the estimates of VTR to (as well as to )
sequences in these data. We have eye-checked several dozens
of random utterances among them and found no gross VTR
tracking errors based on overlaid plots of the computed VTR
tracks with high-quality spectrogram displays. We have also
compared our results with the formant tracks from a standard
formant tracking technique in WaveSurfer, and found qualitative
improvement in unvoiced sounds and in closures. Fig. 3 shows a
typical example of the estimated VTR frequency tracks (band-
widths not shown to avoid clutter) with the use of
Gaussian mixture components and of two iterations of the five-
step algorithm described in Section IV. Note that the estimated

typically stays at the normal, low frequency range of the reso-
nance, even if the acoustic spectrum alone does not show promi-
nences in this range.

To examine the degree to which the tracked VTRs can accu-
rately provide a compact representation for speech dynamics,
we use the VTR results in Fig. 3 to predict the acoustic spec-
tral trajectory based on the observation equation of the hidden
dynamic model. The prediction is carried out using observation
(14), but excluding the unpredictable noise or error term .
The original speech spectrogram, smoothed by cepstra, is shown
in the top panel of Fig. 4, and the predicted spectrogram is shown

5This data set is used as the training data for a speech recognizer.

in the second panel. The predicted spectrogram (log magnitude
as plotted) is obtained by performing inverse Fourier transform
on the sum of the residual mean vector and the output of (14)
using the tracked VTR frequencies and bandwidths as the input.
Excellent match to the data spectrogram is observed, and the
spectrogram corresponding to the unpredictable noise of ,
is shown in the third panel of Fig. 4. The magnitude of the pre-
diction error is very low (note the same scaling in plotting the
above spectrograms), verifying the strong predictability of the
model for the speech data. In the final panel of Fig. 4, we re-
duce the scaling in order to zoom into the structure of the un-
predictable noise. It is clear that not only the unpredictable com-
ponent of the model is small in magnitude, it also has a more
random structure in time and in frequency compared with the
original speech signal. Both of these are desirable properties of
model prediction.

To examine the role of the adaptive prediction-residual
training, we show in Fig. 5 the same plots as in Fig. 4 except
Steps 5 and 6 in the VTR tracking algorithm of Section IV are
eliminated in producing the VTR tracks and in the subsequent
prediction of speech acoustics; that is, the residual mean vector

is set to zero in initialization and not subsequently adapted.
Comparing the two upper panels of Fig. 5, we observe that
the difference between the data spectrogram and the predicted
spectrogram is considerably larger than that in Fig. 4. This
results in greater and less random prediction errors shown at
the bottom two panels of Fig. 5.

To further quantify the effects of adaptive prediction-residual
training, we compute the cepstral prediction error as the sum of
squared differences between the original and predicted cepstra
over time and over cepstral order. The errors as a function of the
number of algorithm iterations, with the fixed three Gaussian
components for the prediction residual , are shown in
Table I, where zero-iteration denotes no training of the predic-
tion residual. Dramatic error reduction is seen in the first iter-
ation, and the algorithm quickly converges upon two to three
iterations.
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Fig. 4. From top to bottom: cepstral-smoothed spectrogram of the original speech data; predicted spectrogram from the model; spectrograms of the unpredictable
noise plotted with two different scales. Two adaptive training iterations are used to track the VTR frequencies that are used for predicting the cepstral sequence
and then spectrogram by inverse fourier transformation.

Fig. 5. Same as Fig. 4 but with no adaptive prediction-residual training.

TABLE I
CEPSTRAL PREDICTION ERRORS AS A FUNCTION OF THE NUMBER OF

ALGORITHM ITERATIONS FOR ADAPTIVE TRAINING OF THE PREDICTION

RESIDUAL PARAMETERS (MEANS AND VARIANCES)

The prediction errors as a function of the number of Gaussian
components for the prediction residual, after applying two itera-
tions of the algorithm, are shown in Table II. Gradual reduction
of the prediction error is observed as more components are used.
However, the error reduction due to the increase of the number
of mixture components is more dramatic when the number is

TABLE II
CEPSTRAL PREDICTION ERRORS AS A FUNCTION OF THE NUMBER OF

MIXTURE COMPONENTSM FOR THE PREDICTION RESIDUAL

low (e.g., from to ) than when the number be-
comes high (e.g., from to ).

The findings reported above in this section are consistent
among all the utterances that we have examined. We present a
further example utterance here in Fig. 6 for the VTR frequency
tracking results with the number of mixture components
being set at 10 in the prediction residual and with the iterative
algorithm being run at convergence. As a contrast, we show
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Fig. 6. VTR frequency (f to f ) tracking results for another switchboard utterance with adaptive training at convergence and with M = 10.

Fig. 7. VTR frequency (f to f ) tracking results for the same utterance at in Fig. 6 but with no adaptive training applied to the prediction residual parameters.

in Fig. 7 the VTR frequency tracking results with no adaptive
training applied (i.e., which is not split and updated). As
can be seen, several fast moving resonance frequencies, such
as those clearly visible for (e.g., around frames 220, 370,
410, and 430), are not tracked accurately. The mis-tracking
of VTRs of such a type accounts for large cepstral prediction
errors since the wrong input to the prediction function (7)
necessarily creates the output cepstra that are far away from the
true cepstra in the data. In general, as illustrated in this example,
we have found that the adaptive training of prediction residual
parameters is more effective when the utterance contains the
VTRs with a faster rate of movement and with a wider range
of local changes.

For all the speech utterances we have experimented and ex-
amined, the reported tracking algorithm provides meaningful re-
sults even during consonantal closures when the supra-laryngeal

source may cause no spectral prominences in speech acoustics.
The tracked VTRs correspond ideally to the underlying reso-
nances in the vocal tract with or without direct acoustic evi-
dence. But in absence of the true resonance data that would
need to be computed from the speaker’s vocal tract shapes, in-
direct evidence supporting such ideal correspondence can be
gleaned from the results shown in Fig. 3 and Fig. 6. For ex-
ample, realistic transitions in the tracked VTR frequencies in
Fig. 6 are visible from the consonantal closure or constriction
regions into and out of the adjacent vocalic sounds where spec-
tral prominences in speech acoustics are evident (e.g., between
frames 140 to 180 for ). In traditional formant tracking ap-
proaches, however, since the closure regions have little acoustic
energy around resonance frequencies, the tracking algorithms
usually give random or no estimates (e.g., [16], [18]). Such a
“hidden formant problem” is eliminated in our approach, where
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the tracked VTRs are provided throughout the entire utterances
as shown in the examples provided above.

VI. SUMMARY AND DISCUSSION

In this paper, we present a novel algorithm for high-accu-
racy tracking of VTRs in natural, fluent speech, which coincide
with formants or spectral prominences for non-nasalized vowels
and sonorant consonants but they may differ for other types
of speech sounds. The main novelty is in the use of an adap-
tive Kalman filter algorithm, which is enabled by linearizing
the nonlinear component of the continuous-valued hidden dy-
namic model. The algorithm is based on the state-space model
comprising a target-directed dynamic structure of speech and
a physically motivated nonlinear predictive function for speech
acoustics.

One key innovation of the work presented in this paper is
the elaborate design of piecewise linearization on the param-
eter-free, analytical nonlinear function in (7) in a new adap-
tive Kalman filtering and smoothing framework. While this non-
linear function has been used for formant tracking in the past,
our work generalizes earlier work in significant ways. The work
of [3] was inspired by the same relationship between the VTR
variables and the LPC cepstra as we have reported in this paper,
but it used one single linear function to (very crudely) approxi-
mate the nonlinearity. This approximation was improved by the
later work reported in [14], where a piecewise linear model was
used which divides the entire frequency range of each formant
into four bands. This gave a 4-piece piecewise linear approxi-
mation. The success of this extension adds support to the impor-
tance of dealing with nonlinearity in the analytical relationship
between the formants and cepstra. Our work presented in this
paper can be considered as a further generalization of the work
of [3], [14] by using cepstrum-order dependent linearization.
The number of linear “pieces” in the functional approximation
varies from five to 75, designed according to detailed properties
of the nonlinear function. In addition, the new, powerful compu-
tational framework of adaptive Kalman filtering and smoothing
is used as the basis for the estimation, with direct incorporation
of the hidden speech dynamics as the prior information. Such
prior information was missing in all the earlier work.

Moreover, in many aspects, the new algorithm presented in
this paper is also superior to our earlier algorithm [7], [10] de-
signed based on discrete-valued hidden dynamics. Because of
the elimination of a large number of VTR discretization levels,
the new algorithm is more efficient in computation, and it is also
generally more accurate as observed in empirical comparisons.

It is worth discussing some key properties of the hidden
dynamic model presented in Section II-B which underlies our
tracking technique. Since (7) is derived based on a low-order
all-pole or auto-regressive (AR) model of the speech waveform,
many consonants which have large and varied non-AR effects
will create model inadequacy. Examples of such non-AR effects
are pole-zero cancellation during fricatives and stop bursts,
cancellation of F1 during aspiration, the changed relationship
between the VTR bandwidth and amplitude caused by nasal
zeros (as well as formant splits), and the extra spectral tilt
caused by breathy voice during /h/. Our model assumes that
all these non-AR effects are represented by a mean vector and

zero-mean Gaussian noise, which seems implausible. We have
empirically fixed this inadequate representation by using the
adaptive mean vector as described in Section IV. Preliminary
evaluation as shown in Table II demonstrates the effectiveness
of this ad-hoc technique, and confirms that a reasonably large
number of vectors are needed to represent the non-AR effects.
An alternative proposal in [31] for dealing with the non-AR
effects is to use an empirical scaling constant in the exponent of
the AR model (exponentially weighted AR model). While this
treatment of the relationship between cepstra and VTR is more
desirable than our observation equation, the tracking results
shown in [31] appear to be less accurate than our results based
on spectrogram inspection. (It is not clear whether this differ-
ence in the results is due to the much simplified state equation
in [31] or due to the approximations used to implement the
tracking algorithm.) In any case, how to adequately represent
the non-AR effectives in the type of the model presented in this
paper is an interesting research direction.

Our current research involves expanding the current opti-
mization over the VTR dimension alone to joint optimization
over both the VTR and speech-unit dimensions in a true spirit of
structured speech modeling for speech recognition applications.
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