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Abstract

Stereo matching algorithms conventionally match over a
range of disparities sufficient to encompass all visible 3D
scene points. Human vision however does not do this. It
works over a narrow band of disparities — Panum’s fu-
sional band — whose typical range may be as little as 1/20
of the full range of disparities for visible points. Points in-
side the band are fused visually and the remainder of points
are seen as “diplopic” — that is with double vision. The
Panum band restriction is important also in machine vision,
both with active (pan/tilt) cameras, and with high resolution
cameras and digital pan/tilt.

A probabilistic approach is presented for dense stereo
matching under the Panum band restriction. First it is
shown that existing dense stereo algorithms are inadequate
in this problem setting. Secondly it is shown that the main
problem is segmentation, separating the (left) image into
the areas that fall respectively inside and outside the band.
Thirdly, an approximation is derived that makes up for miss-
ing out-of-band information with a “proxy” based on image
autocorrelation. Lastly it is shown that the Panum Proxy
algorithm achieves accuracy close to what can be obtained
when the full disparity band is available.

1. Introduction

In attentional stereo vision, the viewer steers avolume
of interestaround the scene. This is a problem that has re-
ceived a good deal of attention in the realms of oculomotor
control [5, 8] and sparse stereoe.g.[14]. In the area of dense
stereo howevere.g.[12, 6, 2, 3, 10, 15] the issue of restrict-
ing attention to a volume, with a limited range of depth or
equivalently disparity, has not been addressed. It is of con-
siderable importance from the point of view of efficiency,
particularly with high resolution or head-mounted cameras,
in restricting computation to a volume of interest which may
be only a small fraction of the visible volume. In principle
also, it is most unsatisfying that conventional stereo algo-
rithms need to explore an irrelevant background, simply in

order to establish significiant properties of the foreground
— a form of the celebrated “frame” problem of Artificial
Intelligence.

1.1. The Panum band

The geometry of the situation is illustrated in figure 1.
For a particular field of view of each camera, potential
matches between left and right images form a diamond-
shaped region in each epipolar plane. In human vision
[13] the space of possible matches is restricted further to
the “Panum band” (see figure). This is typically around 5
mrad wide, and cuts down the number of possible foveal
matches by around an order of magnitude. High quality
stereo cameras with narrow fields of view can also benefit
from a Panum band restriction in a similar way.

The motivation for studying Panum band stereo is then
threefold.
1. It is conceptually appealing to develop a stereo algo-
rithm which focuses on a volume of interest, in the manner
known to prevail in human vision. Why should a stereo al-
gorithm expend needless attention to the entire background
of a scene?
2. Computational cost for stereo matching grows linearly
(or faster) with volume of interest. This is true both for both
main components of stereo matching: cost computation and
global optimization (whether by graph-cut (GC), dynamic
programming (DP) or belief propagation (BP)). Restricting
the size of the matching volume is therefore critical for ef-
ficiency. For stereo geometry similar to human vision, the
saving in computational cost is at least an order of magni-
tude, due to the reduced range ofdepth(disparity). Usually
there is a further factor of saving, due to the concomitant
restriction in imageareaover which matching occurs. The
best stereo algorithms (GC, DP or BP [15]) do not currently
come close to real time. This is not going to be solved any
time soon by Moore’s law because camera resolution is in-
creasing faster than processing power.
3. Computational cost, we have argued, necessitates the re-
striction of stereo matching to a Panum volume. However,
existing dense stereo algorithms are not capable of satisfac-
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Figure 1.The space of possible matches restricted to a Panum
band. a) View from above of rays in a single epipolar plane, form-
ing a diamond-shaped match space; the Panum band forms a rib-
bon across the diamond and thus cuts down the set of possible
matches. b) The match-space represents the situation in (a) in a
standardised diagram, in which the diamond-shaped match-space
becomes a square, whose sides are respectively a left and right
epipolar line, and restricted to the Panum band as shown. A possi-
ble matching path is shown dashed.

tory operation over a Panum band, as this paper will show.
A new algorithm is needed.

1.2. The Panum Proxy algorithm

The principle of the Panum Proxy stereo algorithm is
therefore as follows.
1. Compute match scores or likelihoods for disparities
within the Panum band.
2. Aggregate those scores to compute a total likelihood, at
each point, that there is a within-band (foreground) match.
3. The same cannot be done for the background likelihood,
as that would require match scores outside the band.
However, it is shown that an autocorrelation-like measure
can be used to estimate the background likelihood.
4. Use the true foreground likelihood and the estimated
background likelihood, in a graph cut algorithm, to achieve
a segmentation.
5. Once segmentation is complete, perform conventional

stereo matchinge.g.[3], but restrictedto the image regions
that have been labelled as in-band.

Note that the restriction to the Panum band in the seg-
mentation step4 is indeed essential, because the complex-
ity of segmentation is dominated by the cost of computing
stereo match scores, and this is linear in match volume.

The resulting stereo disparity map can be used, for ex-
ample, to synthesise a new view, as in figure 2, in which

Figure 2. Fusion and diplopia with the Panum Proxy algo-
rithm. Results of the Panum Proxy algorithm are illustrated here
for a frame from one of the six Microsoft stereo datasets. The
matched stereogram shows fusion within the Panum band but
diplopia — double vision — elsewhere.

case the view is fused within the Panum band, but diplopic
outside it, just as in human stereo vision.

2. Probabilistic framework for stereo matching

First we outline the notation for probabilistic stereo
matching. Pixels in the rectified left and right images are
L = {Lm} andR = {Rn} respectively, and jointly we
denote the two imagesz = (L,R). Left and right pix-
els are associated by any particular matching path (fig. 1).
Frequently in stereo matching the so-called “ordering con-
straint” is imposed, and this means that each move in figure
1b) is allowed only in the positive quadrant [1, 12]. Stereo
“disparity” is d = {dm, m = 0, . . . , N} and disparity is
simply related to image coordinates asdm = m− n.

In algorithms that deal explicitly with occlusion [10, 7]
an arrayx of state variablesx = {xm}, takes values
xm ∈ {M,O} according to whether the pixel is matched
or occluded.

This sets up the notation for a path in epipolar match-
space which is a sequence((d1, x1), (d2, x2), . . .) of dis-
parities and states. A Gibbs energyE(z,d,x; Θ,Φ) can
be defined for the posterior over all epipolar paths taken
together and notated(d,x), given the image dataz. Para-
metersΦ andΘ relate respectively to prior and likelihood
terms in the posterior. Then the Gibbs energy can be glob-
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ally minimised to obtain a segmentationx and disparities
d.

2.1. Prior distribution over matching paths

A Bayesian model for the posterior distribution
p(x,d | z) is set up as a product of prior and likelihood:

p(x,d | z) ∝ p(x,d)p(z | x,d). (1)

The prior distributionp(x,d) ∝ exp−λE0(x,d) is fre-
quently decomposed, in the interests of tractability, as a
Markov model. An MRF (Markov Random Field) prior for
(x,d) is specified as a product of clique potentialsVm,m′

over all pixel pairs(m,m′) ∈ N deemed to be neigh-
bouring in the left image. The potentials are chosen to
favour matches over occlusions, to impose limits on dispar-
ity change along an epipolar line, and to favour figural con-
tinuity between matching paths in adjacent epipolar line-
pairs.

2.2. Stereo matching likelihood

The stereo likelihood is:

p(z | x,d) ∝
∏
m

exp−UM
m (xm, dm) (2)

where the pixelwise negative log-likelihoodratio, for match
vs. non-match, is

UM
m (xm, dm) =

{
M(LP

m, RP
n) if xm = M

M0 if xm = O,
(3)

whereM(. . .) is a suitable measure of goodness of match
between two patches, often based on normalised sum-
squared difference (SSD) or correlation scores [15].

3. Restricting conventional stereo matching to
a Panum band

We looked at two dense stereo matching algorithms
which are considered competitive [15], one referred to as
BVZ [4] that uses graph-cut optimization; the otherKZ also
using graph-cut but also with explicit allowance for occlu-
sion [10]. The question is whether these algorithms can be
applied to the Panum problem simply by reducing the dis-
parity range available for matching. Following conventions
for stereo testing, we took the four image pairsTsukuba,
sawtooth, venusandmapon the Middlebury database1, to-
gether with supplied ground truth, and calculated error mea-
sures. Over foreground, an error is counted wherever com-
puted disparity is in error by more than 1 pixel. For back-
ground regions, the true disparity is of course out of range,
so an incorrect disparity is considered to be as follows:

1http://cat.middlebury.edu/stereo

Figure 3.Stereo matching error rates for the KZ algorithm
constrained to the Panum band.The error rate data show that
background error is greatly magnified when the Panum band con-
straint is imposed, while foreground error barely changes.

BVZ : not at the endstop of the Panum band;

KZ : wherever the state is not occluded:xm 6= O, and the
disparity is not at the endstop of the Panum band.

In each case we used the operating parameters recom-
mended for the algorithms: forBVZ , disparity gradient
penalty [3]λ = 20, and forKZ , λ = 10 with occlusion
penalty [10]K = 50.

Results for theKZ algorithm are shown in figure 3.
Results for the (simpler)BVZ algorithm are similar, but
omitted here. In both cases, disparity error over foreground
regions is not much affected by the Panum band restriction
(in fact improved slightly because of the added constraint).
Over background regions, error for both algorithms rises
substantially. The conventional stereo algorithms simply
fail over the background, generating many random dispari-
ties.

The conclusion from this experiment is that the con-
ventional algorithms, when restricted to the Panum band,
work perfectly well over foreground regions. All that is
required to make the algorithms usable, is reliable iden-
tification of those pixels whose disparities fall within the
band. In other words, successful Panum-band stereo could
be achieved if only segmentation into foreground (within
band) and background could be achieved reliably. There-
fore the remainder of the paper considers the problem
of foreground/background segmentation under the Panum
band constraint.

3.1. Can graph-cut stereo be adapted for segmenta-
tion?

One possibility, for a more subtle adaptation of the exist-
ing KZ algorithm, is that its ability to label occlusions could
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Figure 4. Segmentation error from conventional graph-cut
stereo. The KZ algorithm is tuned here to use its occlusion la-
bels to indicate background, but error rates are very high compared
with what is attainable using LGC segmentation with the full range
of disparities.

be extended to label background points. This is reasonable
because, given the restricted Panum band, both occlusions
and background points represent failures to obtain a stereo
match. In order to give theKZ algorithm every chance
of success, parameter valueK was explored to minimise
labelling error rate and this yielded parametersλ = 10,
K = 10, quite different from the optimal operating point
for regular use ofKZ for stereo matching. Results are given
in figure 4, showing segmentation error for each of the six
test videos in the Microsoft stereo-segmentation database2.
Labelling error-rates (equal error-rate) for the 6 datasets
vary between 7% and 41%, and are in all cases many times
worse than are obtainable from full, unconstrained stereo
segmentation, in the form of LGC (Layered Graph Cut) [9].
Since the aim, with Panum-band stereo, is to approach the
quality of full, unconstrained stereo, the performance ofKZ
in this mode is far from acceptable.

3.2. Segmentation of the in-band image region

Given the results and discussion so far, the aim of the
remainder of the paper is to develop a segmentation algo-
rithm, to label all “foreground” points with an accuracy ap-
proaching full LGC, but without any computation out of the
Panum band. Segmentation could be done in one of two
ways. Either it could proceed simultaneously with com-
putation of disparity; or in a separate pass, preceding the
computation of disparity. Simultaneous segmentation and
disparity determination perhaps has the attraction of greater
elegance. On the other hand, separate segmentation could
be achieved by marginalising the stereo likelihood over dis-
paritiesd, and then performing energy minimisation with
respect to labelsx only. A separate labelling pass should

2research.microsoft.com/vision/cambridge/i2i

surely be more efficient, since full consideration of dispar-
ity need then only occur within the foreground region.

4. Stereo segmentation

First we summarise the full LGC (Layered Graph Cut)
algorithm [9] for segmentation by marginalisation of stereo
likelihoods. Then in the next section the full LGC energy
function is approximated to stay within the Panum band re-
striction.

For LGC, the matched stateM is further subdivided into
foreground matchF and background matchB. LGC deter-
mines segmentationx as the minimum of an energy func-
tion E(z,x; Θ), in which stereo disparityd does not appear
explicitly. Instead, the stereo match likelihood (2) in sec-
tion 2.2 is marginalised over disparity, aggregating support
from each putative match, to give a likelihoodp(L | x,R)
for each of the three label-types occurring inx: fore-
ground, background and occlusion (F,B,O). Segmentation
is therefore a ternary problem, and it can be solved (approx-
imately) by iterative application of a binary graph-cut al-
gorithm, augmented for a multi-label problem by so-called
α-expansion [4]. The energy function for LGC is composed
of two terms:

E(z,x; Θ,Φ) = V (z,x; Θ) + US(z,x,Φ) (4)

representing energies for spatial coherence/contrast and
stereo likelihood.

4.1. Encouraging coherence

The coherence energyV (z,x; Θ) is a sum, over cliques,
of pairwise energies with potential coefficientsFm,m′ now
defined as follows. Cliques consist of horizontal, verti-
cal and diagonal neighbours on the square grid of pixels.
For vertical and diagonal cliques it acts as a switch ac-
tive across a transition in or out of the foreground state:
Fm,m′ [x, x′] = γ if exactly one of the variablesx, x′ equals
F, andFm,m′ [x, x′] = 0 otherwise. Horizontal cliques,
along epipolar lines, inherit the same cost structure, ex-
cept that certain transitions are disallowed on geometric
grounds. These constraints are imposed via infinite cost
penalties:

Fm,m′ [x = F, x′ = O] = ∞; Fm,m′ [x = O, x′ = B] = ∞.

where [9]γ = log(2
√

WMWO) and parametersWM and
WO are the mean widths (in pixels) of matched and oc-
cluded regions respectively.

4.2. Encouraging boundaries where contrast is high

A tendency for segmentation boundaries in images to
align with contours of high contrast is achieved by defin-
ing prior penaltiesFk,k′ which are suppressed where image
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contrast is high [3, 4, 11], multiplying them by a discount
factorC∗

m,m′(Lm, Lm′) which suppresses the penalty by a
factorε/(1 + ε) wherever the contrast across(Lm, Lm′) is
high — see [9] for details. Previously, maximal discount-
ing has been obtained [3] by settingε = 0. Here, as in
stereo segmentation [10],ε = 1 tends to give the best re-
sults, though sensitivity to the precise value ofε is relatively
mild.

4.3. Foreground likelihood

The remaining term in (4) isUS(z,x) which captures the
influence of stereo matching likelihood on the probability of
a particular segmentation. It is defined to be

US(z,x) =
∑
m

US
m(xm) (5)

where US
m(xm) = − log p(Lm | xm = F,R). (6)

Now, marginalising out disparity, foreground likelihood is

p(Lm|xm = F,R) =
∑

d

p(Lm|dm = d,R)p(dm = d|xm = F)

(7)
where, from (2),

p(Lm | dm = d,R) ∝ f(L, d,R) = exp−UM
m (xm, dm),

(8)
using the log-likelihood ratio defined in (3). As a shorthand,
we write:

p(L | F) =
∑

d

p(L | d,R)p(d | F) (9)

and, as before, in terms of likelihood ratios, this becomes:

L(L | F) ≡ p(L | F)
p(L | O)

=
∑

d

f(L, d,R)p(d | F) (10)

wheref(L, d,R) is the match/non-match likelihood ratio
as above.

4.4. Background likelihood

Since the distributionp(dm = d | xm = F) is defined to
be zero outside the Panum fusional area, it is perfectly pos-
sible, under the Panum assumptions, to computeL(L | F)
in (10). However, the same cannot be said for

L(L | B) ≡ p(L | B)
p(L | O)

=
∑

d

L(L | d)p(d | B) (11)

since the corresponding summation is entirelyoutsidethe
Panum bandDF of disparities, in thatp(d | B) is non-zero
only outside the Panum band. Each pixelLm would there-
fore have to be compared with pixels in the right imageR
that are unreachable because they are outside the band.

Figure 5.Segmentation error using a simple threshold in place
of background likelihood. Error curves are shown as a func-
tion of thresholdθ for six subjects from the Microsoft database.
(Error-rates are total foreground and background error, averaged
over each sequence.) Horizontal dashed lines show corresponding
error rates for full (non-Panum) LGC segmentation, as a bench-
mark. The substantial shortfall suggests that it should be possible
to improve considerably on simple thresholding.

4.5. A simple threshold as proxy for the background
likelihood?

Before going to some trouble to approximate the back-
ground likelihood, it is worth looking at the simplest possi-
ble approach, and treating the problem as novelty detection.
In that view, we have a modelL(L |F) for the positive class,
and no model of the background class. Then the likelihood
ratio classifierL(L |F) > L(L |B) is simplified to a thresh-
old rule, replacing the background likelihood by a constant
L(L | B) = θ. Segmentation under this model, for variable
thresholdθ, is exhibited in figure 5. It appears that a con-
stant thresholdθ = 1 yields close to the best error for each
of the 6 datasets, so there would be no need for an adaptive
algorithm. However, the best error rate achieved is between
2 and 8 times higher than the error achieved (dashed lines)
by full LGC. Again, therefore, there is strong motivation
to look for a model and an algorithm that performs better
under the Panum-band restriction.

5. The Panum Proxy algorithm

In the previous section, it was shown that the Panum-
band constraint means that information required for com-
puting background likelihoodL(L|B) is missing, and that
replacingL(L|B) with a simple threshold constant gives
poor results. Therefore in this section an approximation for
L(L|B) is developed.

5.1. Deriving the approximate likelihood

We assume thatp(d | F) is uniform over the Panum band
so thatp(d | F) = 1/|DF| and similarly, for the background,
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Figure 6.Using the left image as a proxy for the right, to approximate likelihoods.Upper: likelihood functionf(L, d,R) for three
sample image points; Panum band is30 ≤ d ≤ 60. Lower: “autocorrelation-like” proxyf(L, d,L) for the same three sample points. In
the first two examples a,b), the proxy satisfactorily mimics the shape of the true likelihood. In c) the sample happens to fall on a textureless
area, with consequent stereo ambiguity, and the proxy fails, in thatf(L, d,L) has a dominant peak whereas there is none inf(L, d,R). A
test will be developed for this case.

p(d | B) = 1/|DB|. Then, definingD = DB ∪ DF, we can
write

S(L) ≡
∑
d∈D

f(L, d,R) (12)

= |DF|L(L | F) + |DB|L(L | B), (13)

from (10) and (11). IfS(L) were known, then it would be
possible, having computedL(L | F) as in (10), to compute
L(L | B) from the constraint (12). Of courseS in (12) can-
not be computed exactly, because the summation extends
outside the Panum band. However, and this is the key idea
of the Panum Proxy, we can approximate it by using the
left imageL as aproxy for the right imageR in the match
likelihood ratio:

S̃(L) =
dS∑

d=−dS

f(L, d,L) (14)

— see figure 6 for diagrams illustrating how this works. The
approximation rests on the assumption that each match is a
good one, since it is matching the left image with itself.
Note that the value off(L, d,L) atd = 0 is an upper bound
on the value off(L, d,R) at the true match value ofd, since
the match of the left image directly onto itself is of course
perfect;dS has to be chosen just big enough to capture the
peak of the match-likelihood, but it is reasonably assumed
that dS � |DF| so that the additional work in computing
(14) is smaller than the amount of matching work done al-
ready in the Panum band. Note that a factor of 2 can be

saved in computing (14) by exploiting the symmetry of au-
tocorrelation, that is thatf(Lm, d,L) = f(Lm+d,−d,L).
Finally, having estimatedS(L), we can estimate the back-
ground likelihood-ratio from the approximate constraint

S̃(L) = |DF|L(L | F) + |DB|L(L | B). (15)

giving L(L | B) =
(
S̃(L)− |DF|L(L | F)

)
/|DB|. (16)

5.2. Complementary likelihood

Now given the weakness of evidence, resulting from
the Panum band restriction, for distinguishing background
match from occlusion, we do not attempt to distinguish the
hypothesesB andO. Therefore we lump them together as
the complementary hypothesisF = B ∪O, so that

p(L | F)p(F) = p(L | B)p(B) + p(L | O)p(O), (17)

and again dividing byp(L | O):

L(L | F)p(F) = L(L | B)p(B) + p(O). (18)

and this is expressed as

L(L | F) = (1− ν)L(L | B)p(B) + ν, (19)

whereν = p(O)/(1 − p(F)), for which a typical value
would beν = 0.1, reflecting the empirical fact that nor-
mally a small proportion of background points are occluded.
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5.3. Kurtosis test

Earlier in figure 6, we saw that althoughf(L, d,L) is of-
ten a good predictor of the shape off(L, d,R), as in figure
6a,b), it can fail where there is no clear peak inf(L, d,L),
as in figure 6c). The kurtosisk = k(L,L), of f(L, d,L) as
a function ofd, is computed as a diagnostic. Figure 7 shows
that high kurtosis is associated with low error in the proxy.
Therefore the likelihood estimate is predicted to be reliable
if k > k0.

Figure 7.Kurtosis of f(L, d,L) as an indication of proxy ac-
curacy. High kurtosisk is associated with reduced magnitude of
errorS̃ − S, suggesting a validity check based on kurtosis.

In fact low kurtosis occurs in practice over relatively tex-
tureless image areas, just the situation that gives rise to am-
biguous disparity, as in figure 6c). A threshold value of
k0 = 2.5 has proved effective, catching 86% of points on
the tails of the error distribution (defined to be those outside
1 standard deviation). Then the definition ofS̃ from (14) is
replaced by

S̃(L) = r(k)
dS∑

d=−dS

f(L, d,L) + (1− r(k)) |D| L(L|F ),

(20)
where r(k) is soft threshold function, taking the value
r(k) = 1 whenk � 0 andr(k) = 0 whenk � 0. In
this way, the estimated complementary likelihoodL(L|F)
(19) is unchanged in the reliable caser(k) = 1. In the
unreliable caser(k) = 0, S̃(L) = |D| L(L|F ), and
L(L | B) = L(L | F) from (16), and then (19) defaults
towards the no-information conditionL(L|F) = L(L|F) as
r(k) → 0.

5.4. Positivity check

The other condition that must be dealt with is the possi-
ble negativity of the estimatedL(L|B) (16). In the case of
negativity, we simply replace (16) with

L(L|B) = L(L|F)/η (21)
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Figure 8. Segmentation error for Panum Proxy approaches
that of full stereo. The Panum Proxy (LGC PP) algorithm
achieves error rates that approach very nearly the level achieved by
LGC segmentation with the full range of disparities (LGC full ), at
considerably reduced computational cost. For one test set (MS)
the error rate for (LGC PP) is relatively high, though this is re-
stored by adding in colour information.

and use this to evaluate the complementary hypothesis (19).
The value ofη is set using the statistics ofL(L|F)/L(L|B)
in the negativity condition, collected from a variety of im-
ages, and this gives a working value ofη = 3.

6. Results

First we show mean error rates, averaged over the en-
tire stereo video sequence for each of the six subjects from
the Microsoft database. These are extensive tests, repre-
senting measurements taken from several hundred stereo
pairs. Figure 8 shows that error for the Panum Proxy algo-
rithm approaches quite closely that for full Layered Graph
Cut (LGC), with unrestricted stereo disparity. Note that er-
ror rates are mostly an order of magnitude better than for
the conventional graph cut stereo algorithmKZ (figure 4).
Compared with the naive thresholding scheme (figure 5),
in which background likelihood is replaced by a constant,
error rates for the Panum Proxy algorithm are lower by fac-
tors ranging from1.5 to7 across the six subjects. Error rates
fall even further when colour information is used in the seg-
mentation following the paradigm, used in LGC [9]. These
results can be examined in more detail along their timelines,
and we show this here just for theVK dataset, in figures 9
and 10.

Discussion We have shown that stereo within a Panum-
band can be solved effectively using a conventional stereo
algorithm, together with a pre-segmentation step that selects
those pixels that are within the band. This allows stereo to
operate within a volume of interest, fusing over that volume,
and with diplopic vision elsewhere, as in figure 2. Results
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Figure 9. Segmentation error for Panum Proxy, over time,
for one subject (VK). The Panum Proxy (LGC PP) algorithm
achieves error rates close to those achieved by LGC segmenta-
tion with the full range of disparities (LGC full ), especially when
colour information is fused in with stereo. See also figure 10.

Best case: frame 120 Worst case: frame 90
DatasetVK

Figure 10.Some examples of segmentation.Segmentations are
shown for the frames with lowest and highest error, for the dataset
of fig 9. Results are forLGC PP plus colour.

of the Panum Proxy algorithm are close in quality to what
is obtainable under unconstrained conditions, using the full
range of available disparity. It remains for future work to
test the algorithm under more stringent circumstances, with
greater ranges of disparity in the scenes.
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