
Strong-Diameter Decompositions of Minor Free Graphs

Ittai Abraham
Hebrew University of Jerusalem
ittaia@cs.huji.ac.il

Cyril Gavoille∗

University of Bordeaux
gavoille@labri.fr

Dahlia Malkhi
Microsoft Research, Silicon Valley Center

dalia@microsoft.com

Udi Wieder
Microsoft Research, Silicon Valley Center

uwieder@microsoft.com

March 27, 2007

Abstract

We provide the first sparse covers and probabilistic partitions for graphs excluding a fixed minor that
have strong diameter bounds; i.e. each set of the cover/partition has a small diameter as an induced
sub-graph. Using these results we provide improved distributed name-independent routing schemes.
Specifically, given a graph excluding a minor on r vertices and a parameter ρ > 0 we obtain the flowing
results: (1) a polynomial algorithm that constructs a set of clusters such that each cluster has a strong-
diameter of O(r2ρ) and each vertex belongs to 2O(r)r! clusters; (2) a name-independent routing scheme
with a stretch of O(r2) and tables of size 2O(r)r! log4 n bits; (3) a randomized algorithm that partitions
the graph such that each cluster has strong-diameter O(r6rρ) and the probability an edge (u, v) is cut is
O(r d(u, v)/ρ).

1 Introduction

As networks grow large and complex, a key approach in managing information and constructing algorithms
is to decompose the network into locality-preserving clusters. Then, information and/or management can
be divided between the clusters, such that every node is responsible only for clusters for which it belongs.
Such decompositions into locality sensitive clusters have become key tools in network and graph theory and
span a large body of literature.

Consider an undirected weighted graph G = (V,E, ω), i.e., E ⊆ V × V and ω : E → R+. Let
dG(u, v) be the cost of a minimum cost path between u and v where the cost of a path is the sum of weights
of its edges. Let diam(G) = maxu,v dG(u, v). Given U ⊆ V , let G[U] be the induced subgraph whose
nodes are U and whose edges are the edges in G whose endpoints both belong to U . Let BG(u, ρ) =
{v | dG(u, v) ≤ ρ}. For A ⊆ V and v ∈ V let dG(A, v) = minu∈A dG(u, v). When G is clear from the
context we omit the subscript and write d(u, v).

A sparse cover is a set of subsets (clusters) of graph nodes introduced by Awerbuch and Peleg in [8]
with the following properties.

Definition 1. A (k, τ, ρ) sparse cover is a set of clusters C ⊂ 2V with the following properties:

∗Supported by the projects “GeoComp” and “Alpage”of the ACI Masses de Données.

1

1. [Cover]: ∀v ∈ V , ∃C ∈ C such that B(v, ρ) ⊆ C.
2. [Small strong-diameter]: ∀C ∈ C, diam(G[C]) ≤ kρ.
3. [Sparsity]: ∀u ∈ V , | {C ∈ C | u ∈ C} | ≤ τ .

When a (k, τ, ρ) sparse covers exists for any ρ we say that the graphs admits a (k, τ) sparse cover
scheme.

Sparse covers are used as a building block for a variety of applications. These include distance coordi-
nates, routing with succinct routing tables [8, 3], mobile user tracking [8], resource allocation [6], synchro-
nization in distributed algorithms [7], and others.

For general graphs, the seminal construction in [8] provides a (2k − 1, 2k · n1/k) sparse cover scheme
for any integer k ≥ 1. This result asymptotically matches known lower bound that arise from dense graphs
with high girth [18]. For certain restricted families of graphs, better covers are known to exist. For example,
if the graph is α doubling1 then (1 + ε, (1 + 1/ε)O(log(α))) sparse cover scheme can be constructed for any
ε > 0.

Minor-free graphs

The contraction of an edge e = (u, v) is the replacement of nodes u, v with a new vertex whose incident
edges are the edges other than e that were incident to u or v. A graph H is a minor of G if H is a subgraph
of a graph obtained by a series of edge contractions of G. A celebrated theorem of Robertson and Seymour
states that every (possibly infinite) set of graphs G that is closed under edge contractions and edge removals
could be characterized by a finite set of graphs called its obstruction set, where a graph G is in the set G if
and only if none of its minors is contained in the obstruction set.

For example it is well known that planar graphs are exactly all the graphs whose set of minors exclude
K3,3

2 and K5. It is natural is ask whether graphs that exclude some fixed minor have better sparse covers
than general graphs.

A (k, τ) weak-diameter sparse cover scheme is defined as above with one important change: the diam-
eter bound is now imposed on distances in the original graph. That is, a short path between cluster nodes
may contain nodes which are outside the cluster. Previous work had shown that graphs excluding a fixed
minor have an improved weak-diameter sparse covers. By iteratively applying the partitions of Klein et al
[15] (KPR for short) one can obtain a (O(r2), O(2r)) weak-diameter sparse cover scheme, where r is the
maximal number of vertices in the set of excluded minors. In fact, there are simple planar graphs in which
the KPR construction yields clusters with arbitrarily high diameter (see Section 2 below). The challenge
of providing minor-free graph decompositions whose clusters have strong-diameter bounds remained open,
and is addressed by the present work. Our first result is stated in the following theorem:

Theorem 1. Every weighted graph excluding a Kr,r minor has a (O(r2), 2O(r)r!) sparse cover scheme
constructible in polynomial time.

During the preparation of this note it has been brought to our knowledge that independent work in
progress [10] has achieved a (4, O(log n)) sparse cover scheme for graphs excluding a fixed minor, and a
(O(1), O(1)) sparse cover scheme for planar graphs.

1A graph is α doubling (or of doubling dimension log α) if every ball of radius r can be covered by at most α balls of radius
r/2.

2Let Kr,r be the complete bipartite graph with r nodes in each set.

2

Compact Routing

As mentioned above, many applications of sparse covers are known. We highlight one in particular in
this paper: the classical problem of compact, loop-free routing. In this problem we consider a distributed
network of nodes connected via a network in which each node has an arbitrary network identifier. A routing
scheme assigns a routing table to each node such that any source node can route messages to any destination
node, given the destination’s network identifier. The fundamental trade-off in compact routing schemes is
between the space used to store the routing table on each node and the stretch factor of the routing scheme.
The stretch factor is defined as the maximum ratio over all pairs between the length of the route induced by
the scheme and the length of a shortest-path between the same pair.

In this paper we assume a network with arbitrary node names. This model is referred as the name-
independent model because the designer of the routing scheme has no control over node names and thus
node names cannot encode any topological information. A model which allows the network designer to
choose node names is called the labeled routing model. In this version of the problem, the designer of a
solution may pick node names that contain (polylogarithmic size) information about their location in the
network, like for instance the X,Y -coordinates in a geographic network. Labeled routing is useful in many
aspects of network theory, but less so in practice. Knowledge of the labels needs to be disseminated to all
potential senders, as these labels are not the addresses by which nodes of an existing network, e.g. an IP
network, are known. Furthermore, if the network may admit new joining nodes, all the labels might need to
be re-computed and distributed to any potential sender. Finally, various recent applications pose constraints
on nodes addresses that cannot be satisfied by existing labeled routing schemes. E.g., Distributed Hash
Tables (DHTs) require nodes names in the range [1, n], or ones that form a binary prefix.

Abraham et al. provide in [3] the following result. For every n-node unweighted graph excluding a fixed
Kr,r minor, there exists a polynomial time constructible name-independent routing scheme with constant
stretch factor, in which every node v requires routing tables of polylog(n) bits and O(log2 n/ log log n)-bit
headers. Thorup [17] addressed the problem of labeled routing schemes in planar graphs. He shows the
existence of a polylog(n) memory 1+ε stretch labeled routing scheme. Abraham et al [1] extend this result
to any minor free family. These results cannot be extended to the name-independent domain since in that
case it is known that a stretch of 3 is required for trees if less than Ω(n log n) bits are used [5].

Our next contribution is stated in the following theorem.

Theorem 2. For every n-node unweighted graph of diameter D excluding a Kr,r minor, there is a polyno-
mial time constructible name-independent routing scheme, in the fixed port model3, with stretch O(r2) and
using O(log n)-bit headers, in which every node requires tables of 2O(r)r! · logD · log3 n/ log log n bits.

Probabilistic Sparse Partitions

Another approach for decomposing a graph is to partition it to disjoint clusters by removing a small number
of edges. More precisely, we have the following definitions. A strong-diameter ρ bounded partition of G is
a partition of V into disjoint clusters C1, C2, . . . such that for each cluster Ci, diam(G[Ci]) ≤ ρ. Given a
partition P and a node u, let P (u) be the unique cluster that contains u.

Definition 2. A (k, η, ρ) probabilistic sparse partition is a distribution P on partitions with the following
properties:

3I.e., the port number around each node u is an arbitrary permutation of {1, . . . , deg(u)} that, as well as the node names, cannot
be changed during the design of the routing scheme.

3

1. [Small diameter]: ∀P ∈ P, P is a strong-diameter kρ bounded partition of G.
2. [Small probability of cutting an edge]: ∀u, v ∈ V ,

Pr
P∼P

[P (u) 6= P (v)] ≤ η d(u, v)/ρ .

When a (k, η, ρ) probabilistic sparse partition exists for any ρ we say that the graphs admits a (k, η)
probabilistic sparse partition scheme. If the partitions produced has only a weak-diameter bound we say
that the resulting scheme is a weak-diameter probabilistic sparse partition scheme.

Sparse partitions play a key role in approximation algorithms, such as multi-commodity flow optimiza-
tion problems [15]. Klein et al. provide a (O(r3), O(r)) weak-diameter probabilistic sparse partition scheme
for graphs excluding a Kr,r minor. Fakcharoenphol and Talwar improve in [13] to a (O(r2), O(r)) weak-
diameter probabilistic sparse partition scheme.

Our improvement is to provide a strong-diameter bound, as follows.

Theorem 3. For every weighted graph excluding a Kr,r minor there exists a polynomial time sampleable
(O(r6r), O(r)) strong-diameter probabilistic sparse partition scheme.

Furthermore, for any ρ > 0, it is possible to find in polynomial time a partition with strong-diameter
O(r6rρ), where the total weight of edges crossing the partition is O(

∑
(u,v)∈E dG(u, v)/ρ).

We envision that this result may play an important role in further optimization problems and graph
embeddings into dominating trees.

1.1 Summary of Contributions

In summary, the paper provides the following results for any Kr,r-minor-free graph.

• There is a sparse cover of the radius-ρ balls around every node, for every ρ > 0, such that each cluster
in the cover has strong-diameter O(r2ρ), and every node belongs to 2O(r)r! clusters.

• There is a name-independent routing scheme withO(r2) stretch and tables of size less than 2O(r)r! log4 n
bits.

• There is a sparse partition where, for every ρ > 0, the probability an edge (u, v) is cut isO(r d(u, v)/ρ)
and the strong-diameter of each cluster O(r6rρ).

All the schemes are polynomially constructible, and do not assume that r is known is advance.

2 Large Diameter KPR Clusters

In this section, we briefly review the KPR [15] algorithm, and exemplify its unbounded diameter.
For planar graphs, KPR performs three recursive tree cuts into stripes of height ρ. Each tree is a breadth-

first search tree (BFS) of a connected component that is left from the previous cut.
More precisely, initially start with G1, the whole graph. Select an offset h1 ∈ [0, ρ − 1] uniformly at

random. Build a BFS tree T1 on G1, rooted at an arbitrary node τ1. Slice T1 into stripes of height ρ: The
i-th stripe contains nodes whose BFS distance from the root of T1 is between h1 + iρ and h1 +(i+1)ρ− 1.
Recurse on any connected component G2 contained within any stripe. The recursion continues for r phases.

4

G2 cut

G1 cut

p2

p4τ4

p1

p3τ3

G3 cut

τ1

τ2

Figure 1: Example graph in which KPR partition has arbitrarily large diameter.

Figure 1 depicts a simple outerplanar graph (so excluding K2,3 and K4) in which the KPR cut for r = 3
results in a final cluster containing nodes τ4 and p4 whose strong-diameter is arbitrarily large. This example
also shows that adding more iterations of KPR-cuts, say an arbitrary r > 3, does not remedy the situation
even in the planar case.

For arbitrary r < ρ iterations, the graph is composed of r+1 paths τ1 → p1, τ2 → p2, . . . , τr+1 → pr+1

of length respectively hi + kρ− 1 where k ≥ 1 is an arbitrary large integer, and hi ∈ [0, ρ− 1] is an offset.
In addition there edges are between pi and each node of the path τi+1 → pi+1, i ∈ [1, r]. We now explain
the example in detail.

In the original graph G1, the BFS tree T1 is rooted at τ1. We note that node p1 has distance less than
ρ to all the nodes below the cut line marked ‘G1 cut’. The distance in G1 from τ1 to p1 is dG1(τ1, p1) =
h1 + kρ − 1. Hence, choosing an offset of h1, the k-th stripe of T1 may consists of all nodes under the G1

cut, which forms a connected component G2 induced by the nodes of G1 \ (τ1 → p1).
Note that, despite the fact that nodes τ2 and p2 have distance two inG1 (going through p1), their distance

in G2 is arbitrarily large (dG2(τ2, p2) = h2 + kρ− 1).
Continuing on, we build the next steps in a similar manner. The tree cut of T2 rooted at τ2 in G2 might

perform the cut marked as ‘G2 cut’ by choosing the offset h2, leaving all nodes below it as the connected
componentG3. And so on. Finally, the distance inGr+1 between the nodes of the bottom path τr+1 → pr+1

(τ4 → p4 on the picture) have arbitrarily large distance: All the nodes p1, . . . , pr that shorten the distance
from τr+1 to pr+1 have been cut away from the cluster.

Observe that the unbounded strong-diameter of the KPR decomposition occurs for a specific choice of
offsets h1, . . . , hr. However we can consolidate the counter-example by rebuilding the previous graph for
every offset sequences, and by identifying all the nodes τ1. The resulting graph is still outerplanar. Clearly,
any choice of r offsets during the randomization provides at least an unbounded strong-diameter component.

5

3 Sparse Cover with Strong
Diameter

We provide a graph cover procedure that yields clusters have a bounded strong-diameter. The algorithm uses
the KPR [15] paradigm: recursively cutting strips from BFS trees. Unlike KPR, our algorithm takes at each
iteration, not only the desired strip, but also grows balls around desired “core” portions of the strip. Our
construction and proof can be seen as an enhancement of the arguments in [3]. Intuitively, our construction
ensures that each final cluster Gr+1 will have a “core” denoted Hr+1, such that (1) each node in Gr+1 is
“close” to Hr+1 (2) each node in Hr+1 is “far” from G \ Gr+1. Hence if Gr+1 has a long enough path
then (1) would imply that there exist r nodes in the Hr+1 that are far away from each other. Then (2) would
imply the exitance of a Kr,r minor.

The main result of this section is stated in the following theorem.

Theorem 1. Every weighted graph excluding a Kr,r minor has a (O(r2), 2O(r)r!) sparse cover scheme
constructible in polynomial time.

Proof. The algorithm receives a graph G and a parameter ρ. We begin with some notation. In order to be
consistent we fix an arbitrary labeling of the vertices. Given a subgraph Gi ⊆ G, let τi be the vertex with
minimal label in Gi. Let Ti be the unique breadth-first-search (BFS) spanning tree of Gi, rooted at τi where
parent vertices have the minimal possible label. We can now slice Ti to slices of size ρ, let Si,j be the jth
slice of Ti

Si,j = {v ∈ Gi | jρ ≤ dGi(τi, v) < (j + 1)ρ}

For a set U in a graph G and a distance c let BG(U, c) = {v | ∃u ∈ U, dG(u, v) ≤ c}.

Cover algorithm:

Initially G = G1 = H1.
cover-(Gi,Hi): If i = r + 1 then return Gi as one of the clusters of the cover. Otherwise, for every

integer j and every connected component G′ of the set

BGi(Si,j ∩Hi, iρ)

set Gi+1 = G′ , Hi+1 := G′ ∩ Si,j ∩Hi and execute cover-(Gi+1,Hi+1).

Claim 1. For every v there exists unique indexes j1, . . . , jr such that v ∈ Hr+1.

Proof. By induction. Clearly v ∈ H1. Given v ∈ Hi there exist a unique index ji such that v ∈ Si,ji .
Let Gi+1 be the connected component of BGi(Si,ji ∩ Hi, iρ) that contains v ∈ Hi so that v ∈ Hi+1 =
Gi+1 ∩ Si,ji ∩Hi as required.

So given v ∈ Hr+1 this implicitly defines a series of subgraphs G1,H1, . . . , Gr,Hr, Gr+1,Hr+1 in-
duced by the cover algorithm.

Property 1. (Cover). From Claim 1 there exists Hr+1 3 v. By induction, given BG(v, ρ) ⊆ Gi and
v ∈ Hi+1 it follows from the definition of Gi+1 that BG(v, ρ) ⊆ Gi+1

Property 2. (Sparse clusters). For each graph Gi that v belongs to, it belongs to at most (2i+ 1) graphs
Gi+1 with different indexes j due to the use of a ball of radius iρ on each stripe Si,j . Hence for each

6

i ∈ [1, r], by induction, a node belongs to at most
∏

1≤j≤i(2j + 1) ≤ 2i(i + 1)! graphs Gi. Therefore a
node belongs to at most 2O(r)r! clusters.

Property 3. (Strong-diameter). Fix some cluster Gr+1. We will now show that if Gr+1 has a strong
diameter of more than 4(r + 1)2ρ then G contains a Kr,r minor. If there exist two nodes such that
dGr+1(y1, yr) > 4(r + 1)2ρ then their shortest path in Gr+1 can be partitioned into r − 1 segments using r
points y1, . . . , yr ∈ Gr+1 such that the ballsBGr+1(yi, 2(r+1)ρ) are pairwise disjoint. Let xi be the closest
point inHr+1 to yi (so d(xi, yi) ≤ (r+1)ρ) then by the construction ofGr+1, the ballsBGr+1(xi, (r+1)ρ)
are pairwise disjoint.

We conclude the theorem by using the following lemma.

Lemma 1. If there exists points x1, . . . , xr ∈ Hr+1 such that the balls BGr+1(xi, (r + 1)ρ) are pairwise
disjoint then G contains a Kr,r minor.

Proof. Such a minor is composed of r sets called the left super-nodes, denoted as L1, L2, . . . , Lr, such
that xi ∈ Li; and from r sets called the right super-nodes, denoted V1, V2, . . . , Vr. Each super-node is a
connected sub-graph of G, all sets are pairwise disjoint and there is an edge connecting each set from the
first group with a each set from the second group.

For the analysis we use the following notation: for u ∈ Gi+1 let taili(u) be the unique path on Ti∩Gi+1

from u towards the root τi.

The left super-nodes: For each i ∈ [1, r], let Li =
⋃

j∈[1,r] tailj(xi). For any i, j ∈ [1, r], by construc-
tion, tailj(xi) ⊆ Gj+1 and its length in Gj+1 is at most (j + 1)ρ. Observe that each Li is a set of paths in
G that are connected at xi.

The right super-nodes: For all i ∈ [1, r] let Ui denote the subtree of Ti formed by the paths on Ti for
all j ∈ [1, r] from each xj to τi. The right super nodes are Vi for i ∈ [1, r], where Vi = Ui \Gi+1. Observe
that each Vi induces a connected subtree of G.

The super edges are the edges in Ti connecting each Vi with each taili(xj) ∈ Lj for each i, j ∈ [1, r].
We now show that the sets are pairwise disjoint.
For any i, j ∈ [1, r] and j < ` we claim that tailj(xi) ⊆ G` and that tailj(xi) is disjoint from the right

node V`−1. The proof is by by induction on `. For ` = j + 1 this is true by construction.
For j + 1 < `, by the induction hypothesis we have tailj(xi) ⊆ G`−1. Since xi ∈ H` and the length of

tailj(xi) is at most (j + 1)ρ it follows that tailj(xi) ⊆ G` and that it is disjoint from V`−1. This follows
since j + 1 ≤ `− 1 and the fact that BG`−1

(xi, (`− 1)ρ) ⊆ G`.
Therefore the set Li is contained in BGr+1(xi, (r + 1)ρ) so for all ` ∈ [1, r] and all i < j ∈ [1, r],

Li ∩ Lj = ∅ due to the assumptions that the balls BGr+1(xi, (r + 1)ρ) are pairwise disjoint. From the
inductive claim above, for all i ∈ [1, r] and all j ≤ ` ∈ [1, r], tailj(xi) ∩ V` = ∅. Finally, for all i ∈ [1, r]
and all ` < j ∈ [1, r], the set V` is clearly disjoint from tailj(xi) and from Vj since by construction
V` = U` \G`+1 and Vj ∪ tailj(xi) ⊆ Gj ⊆ G`+1.

4 Name-Independent Routing

In this part we consider the problem of routing messages between any pair of nodes of an unweighted graph
G with precomputed compact routing tables. The performances of the routing scheme is measured in term
of the size of the local routing tables and the maximum stretch, i.e., the ratio between the length of the route
from x to y and the minimum possible route length, dG(x, y).

7

We concentrate our attention on name-independent routing schemes, that is node names cannot be re-
labeled to optimize routing tables. Labeled routing scheme of stretch 1 + ε and with polylogarithmic size
routing tables, labels, and headers are known for weighted graphs excluding a fixed minor [1], whereas any
name-independent routing scheme on unweighted stars (depth one trees, so excluding K3) requires a stretch
at least 3 if less than Ω(n log n) bits per node are used [5].

We assume that G is unweighted, since it has been proved in [4] that there are stars with edge cost
1 or k for which every name-independent routing scheme of stretch < 2k + 1 requires routing tables of
Ω((n log n)1/k) bits, for every integer k ≥ 1.

In the remaining of the paper, we will assume that the n node names ofG range arbitrary in {1, . . . , nO(1)},
i.e., are on O(log n) bits. The scheme extends easily to longer names by the use of hashing techniques.

Thanks to Theorem 1 we can show:

Theorem 2. For every n-node unweighted graph of diameter D excluding a Kr,r minor, there is a polyno-
mial time constructible name-independent routing scheme, in the fixed port model4, with stretch O(r2) and
using O(log n)-bit headers, in which every node requires tables of 2O(r)r! · logD · log3 n/ log log n bits.

First let us outline the technique of hierarchical routing schemes introduced by Awerbuch and Peleg [8,
9]. Let us assume that there exist k and τ such that, for every ρ > 0, the graph G has a (k, ρ, τ) sparse
cover, and let Cρ denote this cover. Then, routing in G can be done by considering the family of covers
F = {C1, . . . , C2i , . . . , C2dlog De}. More precisely, for each cover C2i ∈ F and for each cluster C ∈ C, we
root a shortest path spanning tree TC of G[C], so of depth at most k2i. Let us call T the collection of all
these trees. Roughly speaking, the routing task for a source u consists in seeking the target v in each tree of
T it belongs to.

Actually, u needs to seek v only in dlogDe+1 trees in nondecreasing depth, each tree spanning the ball
BG(u, 2i) for some i ∈ {0, . . . , dlogDe}. If each try can be done within a route of length proportional to
the depth of the tree, then it is not difficult to check that the resulting stretch of the route from u to v isO(k),
the cluster covering BG(u, 2i) being of diameter at most k2i. Overall, if a tree routing scheme for seeking v
can be implemented with M -bit routing tables, then the routing scheme for G uses at most O(τ · logD ·M)
bits, each node participating in at most τ tree routings for each of the O(logD) covers of F .

By Theorem 1, we have τ = 2O(r)r! and k = O(r2). Therefore Theorem 2 can be proved by designing
a routing scheme with M = O(log3 n/ log log n)-bit routing tables for seeking any destination in a tree
along routes of length proportional to its depth. Unfortunately, such tree routing schemes cannot be applied
as a black box and plugged to the hierarchical scheme for G. Indeed, routing from u to v in some partial
tree T of G inevitably requires to visit some nodes outside T : forcing routing to use only edges of T is
equivalent to routing in a weighted tree T ′ spanningG where edges of T ′ \T have some large costs. And we
have seen that routing trees with edge weights in {1, k} requires Ω((n log n)1/k) bits for stretch Θ(k) [4].
It follows that routing in a cluster C interact with nodes not in C. This is source of several complications
since a node might be concerned with (and its routing table possibly charged for) the routing to some trees
in which it does not belong to. Potential a node maybe a neighbor of all the |T| = Ω(n) trees. To solve
the problem, we will use a modified version of the single-source unweighted tree routing of [2] combined
with the low density of minor-free graphs to balance routing information. This last step makes our routing
scheme available only for unweighted graphs.

An L-error reporting routing scheme for a subgraph C of G is a routing scheme such that, for all u ∈ C
and v of G: if v ∈ C, then the route from u to v has cost at most L, and if v /∈ C, then the routing from u to

4I.e., the port number around each node u is an arbitrary permutation of {1, . . . , deg(u)} that, as well as the node names, cannot
be changed during the design of the routing scheme.

8

v reports to u a failure mark in the header after a loop of cost at most L. In order to prove Theorem 2, our
goal is to construct, for each depth-h tree T ∈ T, a space efficient O(h)-error reporting routing scheme (cf.
Lemma 3 below).

An α-orientation of a graph is an orientation of its edges such that every node has out-degree at most α.

Lemma 2. Any graph excluding aKr,r minor has an Θ(r
√

log r)-orientation that can be computed in linear
time.

Proof. Graph excluding a fixed minor are closed under taking induced subgraphs. It is known that the
n-node graphs excluding a Kr minor have no more that f(r) · n edges [16] where f(r) = Θ(r

√
log r).

Therefore, an f(r)-orientation can be easily obtained in linear time by pruning the graph with the mini-
mum degree node. Now, the family of graphs excluding a K2r minor contains all the graphs excluding a
Kr,r minor. Thus any n-node graph excluding a Kr,r minor has no more than f(2r) · n edges, and so an
Θ(r

√
log r)-orientation computable in linear time.

The sparsity of a collection of trees of a graph G is the maximum number of trees a node of G belongs
to. The key lemma is the following:

Lemma 3. Let T be a collection of trees of sparsity σ in an n-node graphGwith an α-orientation. Then, one
can construct in polynomial time for each node of G a routing table of O(σ · log n · (α+ log2 n/ log log n))
bits, such that each depth-h tree of T has a 8h-error reporting routing scheme using O(log n)-bit headers.

The proof of Theorem 2 is completed thanks to Lemma 3 by observing that the sparsity of the col-
lection T is σ = 2O(r)r! · logD, and that α = O(r

√
log r) (Lemma 2), so providing a 2O(r)r! · logD ·

log3 n/ log log n-bit routing scheme for G as claimed.

Proof. Let U be the set of node names for G, |U| ≤ nO(1). Consider a depth-h rooted tree T of T, and let
m ≤ n be the number of nodes of T , and s be the root for T . Consider a source u of T , and let v be any
node of G. For simplicity, we confuse the nodes with their names, that is we assume that u, v ∈ U.

Let ψ : U → P be some universal hashing function mapping the names of U to P = {1, . . . , p} where
p is some prime such that m ≤ p < 2m. Such function ψ can be implemented with a degree-O(log p)
polynomial of the field Zp such that there are at most O(log p) collisions [11], thus using O(log2m) bits.

The outline of the L-error reporting scheme for T from u to v is the following:

1. Node u hashes v in ψ(v) ∈ P.
2. Node u routes a message to a node w of T , thanks to a labeled tree routing scheme L1, whose label

in L1 is precisely ψ(v).
3. Node w is in charge of the labels, for a tree routing scheme L2, of all the nodes z of T such that
ψ(z) = ψ(v).

4. If v is not one of such node z of T , then a failure mark is sent back from w to u using routing L1.
5. Otherwise, w routes to v using routing L2.

The routing schemes L1,L2 are based on a specific port labeling of T , called virtual port labeling w.r.t.
T . They requires that ports number i of u leads to the i-th heaviest child of u in T (the port to the parent of
u is fixed to 0). So, given the label of the current node x and the label of the destination y, say `2(x) and
`2(y), the scheme L2 computes the virtual port number i of the edge on the path from x to y in T . For the
scheme L2, we will use the label tree routing scheme of [14], that uses O(logm)-bit labels.

Unfortunately, real port numbers of u are fixed and range in {1, . . . ,degG(u)}, and degG(u) 6= degT (u)
in general. To overcome this problem we distribute a translation table from virtual to real port numbers over

9

all the neighbors of u, potentially charging some nodes of G that are not in T . To prevent the overload of
some nodes, we use the α-orientation of G.

Let port(x, y) be the real port number of the edge from x to y in G. Consider a node z with directed
neighbors (according to the α-orientation) z1, . . . , zα, and let zi be the i-th heaviest child of z.

For the port translation, node z stores: 1) the real port number of its parent for each tree of T it belongs
to; 2) the real port to zp with p = port(z, zi) for each i ∈ {1, . . . , α}, and for each tree of T node z belongs
to; 3) port(zi, zi

p), where p = port(zi, z), for each i ∈ {1, . . . , α}, and for each tree of T node zi belongs
to. We check that overall the memory requirements for the port translation is O(σ · α · log n) bits per node
of G.

The port translation in a node x of T is performed as follows: if the virtual port is 0, then the real port
of the parent of T is returned. If the virtual port is one of the real port to x1, . . . , xα, then the real port is
returned. Otherwise, if the virtual port is p, then a message from x on port p, specifying the tree T of T, is
sent, and let z be its neighbor. Note that this edge is incoming in x in the orientation, and outgoing from z.
Therefore, z knows the real port number of the p-th child of x in the tree T . In other words, the routing from
x to its parent is done in 1 step, whereas for a child it is done in at most three steps.

The L-error reporting routing scheme from u to v in T has the following performances: 1) if v /∈ T ,
then the route has length L ≤ dT (u, s) + 3dT (s, w) + dT (w, s) + 3dT (s, u) ≤ 8h. 2) if v ∈ T , then the
route has length L ≤ dT (u, s)+3dT (s, w)+dT (w, s)+3dT (s, v) ≤ 8h. Therefore, the scheme is 8h-error
reporting.

It remains to describe the tree routing scheme L1 (see [2] for details). The scheme is based on two
numbers, c(x) and q(x), we assign with each node x of T . The first, called the charge of x, represents
the total number of values ψ(v) mapped on the nodes of Tx, the subtree T of root x. (So for the root s,
c(s) = |P| = p). The second one denotes the number of values ψ(v) that are mapped to node x. These two
numbers satisfy that, for every x, c(x) =

∑
y∈Tx

q(y).
Given the numbers c(x) and q(x) one can then route through a modified DFS number f(x) associated

with each x and defined by: for the root f(s) := 1, and f(xi) := f(x) + q(x) +
∑

j<i c(xj), where xi is
the i-th child of x. (This matches to the standard DFS numbering if q(x) = 1 for every x.)

Now the routing L1 is done similarly to Interval Routing Scheme. Let w be the node in charge of ψ(v).
Assume that w is a descendant of some node x, initially x = s. It is easy to see that:

1. either ψ(v) ∈ [f(x), f(x) + q(x)), and w = x, i.e., the key of v is stored by x;
2. or w is a descendant of xi where ψ(v) ∈ [f(xi), f(xi+1)), and thus the routing in x must answer

port i.

So the routing from x to ψ(v) is well defined if x is aware of f(x), q(x), and of the vector ~c(x) =
(c(x1), c(x2), . . .) of charges of x’s children. Indeed the numbers f(xi) and f(xi+1) can be computed
from f(x), q(x), and from ~c(x).

It is proved in [2] that c(x) and q(x) can be polynomially computed in a particular way so that q(x) =
O(logm/ log logm) and ~c(x) contains at most O(log2m/ log logm) distinct values, and so coded with
O(log3m/ log logm) bits.

A node x belonging to T stores q(x), c(x), ~c(x), and all the labels and names for which x is in charge:
this is O(q(x) logm) values, since there are O(logm) nodes of T that can collide in the same node x.
Labels and names are on O(logm) bits, therefore the storage for L1 in x is O(log3m/ log logm) bits for
T .

Thus a node ofG storesO(σ·log3 n/ log log n) bits forL1 plusO(σ·α·log n) bits for the port translation
table and the scheme L2. Hashing functions for each tree represents O(σ · log2 n) bits. In total, a node of G
stores O(σ · log n(α+ log2 n/ log log n)) bits as claimed.

10

We check that all the headers are on O(log n) bits, completing the proof of the lemma.

5 Probabilistic Sparse Partitions

In this section we present probabilistic sparse partitions with strong-diameter guarantees. The overall ap-
proach is again similar in sprit to KPR. However there are three major differences. First, our phase i stripes
are of width 6iρ, while KPR always chooses width ρ. Second, after the initial cuts we use a cone based ap-
proach (see [12]) to “carve out” an appropriate “core” from each stripe. Third and most importantly, some
nodes end up associated with clusters that are outside of their stripe! specifically, the nodes of a stripe i that
do no get assigned to the ith “core” will be associated with the nodes of the (i+ 1) stripe.

Theorem 3. For every weighted graph excluding a Kr,r minor there exists a polynomial time sampleable
(O(r6r), O(r)) strong-diameter probabilistic sparse partition scheme.

Furthermore, for any ρ > 0, it is possible to find in polynomial time a partition with strong-diameter
O(r6rρ), where the total weight of edges crossing the partition is O(

∑
(u,v)∈E dG(u, v)/ρ).

Our proof strategy focuses on an unweighted graph first. We describe the partition procedure which is
to be performed r times. The following describes the k-th iteration step by step where k ∈ [1, r].

1. Denote by Gk−1 the current graph. G0 = (V,E) is the base of the recursion. Sample two numbers
hk, `k uniformly and independently from [0, ρ− 1].

2. Perform BFS from an arbitrary root node s ∈ Gk−1: Tk = BFS(Gk−1, s)

3. Divide into layers: Lk(i) = {u | ibkρ+`k ≤ dGk−1
(u, s) < (i+1)bkρ+`k}, where bk = 6bk−1 = 6k.

We omit i in most cases below, and mention it explicitly only when needed.

4. For each layerLk(i) letM(Lk(i)) be the set of nodes at its middle, i.e.,M(Lk(i)) =
{
u ∈ Lk(i) | dGk−1

(u, Lk(i− 1)) = (bk/2)ρ
}

.
When Lk(i) is clear from the context we may abbreviate notation and write Mk.

5. Define a “cone” distance function γk(·, ·) on the directed edges of Gk with respect to Tk. Specifically
for a directed edge u→ v let γk(u, v) = 0 if u is the unique parent of v in the tree Tk and otherwise the
distance equals the original distance γk(u, v) = ω(u, v) = dG(u, v). Notice that γk is not symmetric.

We can extend γk to nodes that are not connected by an edge. Specifically, let `k(u, v) be the cost of
the minimal cost directed path from u to v where the cost of a directed path is the sum of the weights
of its directed edges according to γk. We can also extend the notion of a ball to a cone by defining for
a set U and a distance c, BG(U, c, γk) = {v | ∃u ∈ U, `k(u, v) ≤ c}.

6. Define S+
k (i) to be the set of nodes within Lk(i) with γk distance of at most bkρ/2 + hk from

M(Lk(i)).
S+

k (i) = BLk(i)(M(Lk(i)), bkρ/2 + hk, γk) = {u | u ∈ Lk(i), γk(M(Lk(i)), u) ≤ bkρ/2 + hk}.
Note that S+

k (i) is a set grown around Mk which is at the middle of Lk(i). It may not include all of
Lk(i) but it has the property that if u is included then so are its children in Ti ∩ Lk(i).

7. After performing the previous steps to all layers in the decomposition, add all unassigned nodes from
L(i+ 1) which were not included in S+

k (i+ 1) into the set Sk(i).
Sk(i) = S+

k (i) ∪
{
Lk(i+ 1) \ S+

k (i+ 1)
}

11

8. Note that now the sets Sk(i) partitions Gk−1. For each i recurse on every connected component Xi

of Sk(i): Gk ∈ Xi.

Claim 2. In any iteration k ∈ [1, r] of the algorithm, if u, v ∈ Gk−1 then the probability that the k-th
iteration cuts an edge (u, v) into different clusters is at most 2/ρ.

Proof. In each execution of the procedure there are two ways an edge u, v could be cut. The first is that
u, v are cut in stage (3); i.e. u ∈ Lk(i) while v ∈ Lk(i + 1) for some i. The probability the edge is cut by
the layers is at most 1/ρ due to the randomness of `k. The second way in which (u, v) might be cut, given
u, v ∈ Lk(i), is if u ∈ S+

k (i) and v 6∈ S+
k (i). In other words it must be the case that one of the nodes (say

w.l.o.g u) has a small γk distance from Mk while node v has a large γk distance from Mk. Note however
that

|γk(Mk, u)− γk(Mk, v)| ≤ dG(u, v)

The threshold distance for inclusion in S+
k (i) is bkρ/2 + hk where hk ∈ [0, ρ− 1] is chosen uniformly

at random. It follows that given that u, v ∈ Lk(i), the probability (u, v) is cut at most 1/ρ, which concludes
the proof of the lemma.

There are a r recursive calls so by the union bound the probability of an edge (u, v) being cut is at most
2r · dG(u, v)/ρ.

Remark 1. The expected total weight of a cut in each iteration k is 2Wk/ρ where Wk is the total weight of
edges in Gk. There are ρ2 possibilities for a choice of hk, `k. At least one value of hk, `k yields a partition
where the weight of cut edges is at most 2Wk/ρ. Thus an exhaustive search would yield a cut with this value.
If this is done in every recursive call then the total weight of cut edges is at most 2rW0/ρ.

We are now left with proving that the diameter of each component isO(ρ). We do this by showing that if
there are two nodes in Gr such that the distance between any two of them is greater than 12rbrρ (a constant
which depends on r but not on |V (G)|) then the graph contains a Kr,r minor.

From now one we omit the notation that states which stripe we are talking about (the subscript i in
the previous section). The following lemma characterizes the properties we will need in order to show the
existence of the Kr,r minor. Fix some iteration k.

Lemma 4. Each node u ∈ Gk has an anchor ak(u) ∈ Mk such that ak(u) ∈ Gk and dGk
(u, ak(u)) ≤

(3bk/2 + 2)ρ.

Proof. Consider the construction of Gk out of Gk−1. The node u can be assigned to Gk either in Step
(6) or Step (7) of the construction. If it were assigned in Step (6) then there is a node a(u) such that
γk(a(u), u) ≤ (bk/2 + 1)ρ. The shortest path includes at most bk

2 ρ + (bk
2 + 1)ρ edges of Tk which have a

γk distance of 0, therefore dGk
(a(u), u) ≤ (bk + 1 + bk/2 + 1)ρ = (3bk/2 + 2)ρ.

If uwas assigned toGk in Step (7) then all its parents in the BFS tree were also assigned toGk, therefore
the path to the root of Tk reaches a node in Mk after distance at most bkρ.

Lemma 5. Let u ∈Mk. For every v ∈ Gk−1 such that dGk−1
(u, v) ≤ bkρ/2 it holds that v ∈ Gk. In other

words a ball around u in Gk−1 of radius bkρ/2 is contained in Gk.

Proof. Step (6) above includes in S+
k all the nodes at distance bkρ/2, thus v ∈ S+

k . The lemma then follows
since the path between u and v is contained in Sk.

12

5.1 The Super-nodes

Assume there are two nodes x, y ∈ Gr such that dGr(x, y) ≥ 12rbrρ. There must be therefore r nodes
x = x1, x2, . . . , xr = y in Gr such that dGr(xi, xj) ≥ 12brρ for every i 6= j. We show that this implies
that the graph contains a Kr,r minor which contradicts the assumption that G is Kr,r free. Such a minor is
composed of r sets denoted as B1, . . . , Br such that xi ∈ Bi and r sets R1, . . . , Rr such that each set is a
connected sub-graph of G, all sets are disjoint and there is an edge connecting Bi and Rj for every i, j. This
yields a contradiction since each set could be contracted to a single node creating a Kr,r minor.

The Set Bi

The node xi has an anchor in ar(xi) ∈ Mr. Call this node ar (for brevity we omit the subscript i), and
denote by Ar the path between xi and ar . The node ar has an anchor ar−1(ar) ∈ Mr−1. Call this node
ar−1 and define recursively aj−1 = aj−1(aj), and Aj to be the path between aj−1 and aj .

Let u ∈Mk. Define tailk(u) to be the path in Tk which connects u to the upper boundary of L. In other
words tailk(u) is a path of length at most bk/2 in Tk starting from u towards the root. Now define:

B(k) =
k⋃

j=1

Aj ∪ tailj(aj)

The set Bi is now defined as B(r). Clearly the induced graph G[Bi] is connected. This however turns out
not to be enough.

Lemma 6. All the nodes in Bi belong to Gr. Furthermore diamGr(Bi) ≤ 3brρ.

Proof. We prove that B(k) ⊆ Gk by induction on k. For the base case we have B(1) = A1 ∪ tail1(a1)
where A1 ⊆ G1 by Lemma 4. We have that tail1(a1) ⊆ G1 by Lemma 5. By the induction hypothesis
we have that B(r − 1) ⊆ Gr−1. Furthermore, Lemma 4 implies that Ar ⊆ Gr and Lemma 5 implies
that tailr(ar) ⊆ Gr. It remains therefore to show that B(r − 1) ⊆ Gr. Let u ∈ B(r − 1). By the
induction hypothesis dGr−1(ar, u) ≤ 3br−1ρ. We have that 3br−1 ≤ br/2 so by Lemma 5 B(r − 1) ⊆ Gr.
Furthermore diamGrB(r) ≤ (3br/2 + 1)ρ+ 3br−1ρ ≤ 3brρ.

The Set Rj

The Set Rj is constructed by pruning the tree Tj at Gj . In other words, u ∈ Rj if u 6∈ Gj and there is a
node v ∈ Gj such that u is an ancestor of v in Tj . Clearly the following holds:

Lemma 7. The set Rj has the following properties:

1. The induced subgraph G[Rj] is connected.
2. Rj ⊆ Gj−1.
3. Rj ∩Gj = ∅.

5.2 Putting It All Together

We defined 2r sets Bi and Ri. In order to complete the construction of the Kr,r minor we have to show the
following.

13

Lemma 8. If there are two nodes x, y in Gr such that dGr(x, y) ≥ 12rbrρ then the 2r sets of nodes Bi, Ri,
i ∈ [1, r], have the following properties:

1. For every i the subgraph G[Bi] and the subgraph G[Ri] are connected.
2. The sets Bi and Ri, i ∈ [1, r], are all mutually disjoint.
3. For every i, j there are nodes u ∈ Bi and v ∈ Rj such that (u, v) is an edge in G.

First we show why Lemma 8 suffices to prove Theorem 3. Since all the sets are connected in G and
they are all mutually disjoint, each one of the sets could be contracted into a different single node using
only minor operations. Property (3) of the lemma implies that the resulting graph contains a Kr,r minor
contradicting the fact that G is Kr,r free. We conclude that it must be that the strong-diameter of each Gr is
bounded by 12rbrρ.

Proof. The first assertion of the Lemma is immediate from the previous Section.
To see why the third Assertion is true consider two sets Ri, Bj . The set Bj contains the path taili(ai)

which is defined to be a BFS path in Ti. The set Ri is the remaining part of Ti thus the last node in taili(ai)
is connected to a node in Ti.

It remains to show that all the sets are mutually disjoint. We do this case by case:
First, for every i 6= j it holds that Ri ∩ Rj = ∅. Assume w.l.o.g that i ≤ j − 1. By Lemma 7 it holds

that Ri ∩Gj−1 = ∅ while Rj ⊆ Gj−1. Conclude that Ri ∩Rj = ∅.
Second, for every i, j it holds that Bi ∩ Rj = ∅. By Lemma 7 the set Rj is disjoint from Gr while by

Lemma 6 the set Bi is contained in Gr.
Finally, for every i 6= j it holds that Bi ∩ Bj = ∅. This follows since x1, x2, . . . , xr are far from one

another in Gr, yet each Bi has a small radius in Gr. To be precise, the radius of each Bi is bounded by 3brρ
while the distance between xi and xj is at least 12brρ.

5.3 The Weighted Case

We now present the reduction from the weighted graph case to the unweighted construction above. It is first
worthwhile illuminating the key aspects of the above construction that are affected by having non-uniform
edge weights. First, we need to find a node in Mk, the middle-strip, whenever two connected nodes cross
Mk. Second, for two nodes u, v whose distance is larger than r, we need to find r nodes along the shortest
path from u to v at distance d(u, v)/r apart. Finally, we need the distances in G to uphold the triangle
inequality; without it, the construction above may not yield the required cluster diameter bound.

We address all of these issues with the following reduction. Scale weights so that every edge weighs at
least 1. Round up edge weights to the nearest integer. Note that edge weights increase by at most 2 by these
transformations. Introduce virtual intermediate nodes along each edge, at intervals of length 1. Remove all
weights. Let the new unweighted graph be denoted G′. It is easy to see that virtual nodes do not change
the topological properties of the graph. Hence, if G excludes Kr,r, then so does G′. Now, perform the
probabilistic sparse partition above on G′, and let the resulting clusters in G′ be C ′

1, ..., C
′
m. Output the set

of clusters G[C ′
1], ..., G[C ′

m] induced by G′’s clusters.
To see that the resulting partition satisfies the required properties, first observe that for any u, v,∈ C ′,

distances satisfy dG(u, v) ≤ dC′(u, v). Hence, any bound on the diameters of the C ′ clusters is maintained
in the clusters induced on G.

14

Second, let us consider the probability that an edge (u, v) ∈ G is cut by the partition. This edge is
represented in G′ by at most bdG(u, v) + 2c unweighted edges. By union bound, the probability that (u, v)
is cut is at most bdG(u, v) + 2c2

ρ ≤
6dG(u,v)

ρ .
We remark that the time complexity of the construction does suffer from the transformation, by a factor

that is proportional to the aspect ratio of G.

6 Open Problems

The results of this paper could be utilized and optimized in several ways. The work suggests two main open
problems.

First, all our theorems have an exponential dependency on the size of the forbidden minor. When weak-
diameter is concerned it is possible to achieve a polynomial dependency [15]. It would be interesting to
find sparse covers and sparse partitions with strong-diameter and a polynomial dependency in r. Note that
the exponential dependency is an artifact of the technique of doubling the width of the cutting stripes each
iteration. This is a key ingredient of our approach, thus such an improvement would probably require a
different approach.

Finally, can Theorem 3 be extended to star-decompositions (see [12])? Can it be used to improve results
in approximation algorithms? Natural candidates are metric embeddings and building spanners.

References

[1] Ittai Abraham and Cyril Gavoille. Object location using path separators. In 25th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 188–197. ACM Press, July 2006.

[2] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Routing with improved communication-space trade-
off. In 18th International Symposium on Distributed Computing (DISC), volume 3274 of Lecture Notes
in Computer Science, pages 305–319. Springer, October 2004.

[3] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Compact routing for graphs excluding a fixed minor.
In 19th International Symposium on Distributed Computing (DISC), volume 3724 of Lecture Notes in
Computer Science, pages 442–456. Springer, September 2005.

[4] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Lower bounds. In 18th

Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 217–224. ACM
Press, July 2006.

15

[5] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact name-
independent routing with minimum stretch. In 16th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 20–24. ACM Press, July 2004.

[6] Baruch Awerbuch and David Peleg. Locality-sensitive resource allocation. Technical Report CS90-27,
Weizmann Institute, November 1990.

[7] Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 514–522, 1990.

[8] Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 503–513. IEEE Computer Society Press, October 1990.

[9] Baruch Awerbuch and David Peleg. Routing with polynomial communication-space trade-off. SIAM
J. Discret. Math., 5(2):151–162, 1992.

[10] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Improved sparse covers for graphs excluding
a fixed minor. Technical Report 06-16, Department of Computer Science, Rensselaer Polytechnic
Institute, November 2006.

[11] J. Lawrence Carter and Mark N. Wegman. Universal hash functions. Journal of Computer and System
Sciences, 18(2):143–154, 1979.

[12] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning trees.
In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 494–503, New York, NY, USA, 2005. ACM Press.

[13] Jittat Fakcharoenphol and Kunal Talwar. An improved decomposition theorem for graphs excluding a
fixed minor. In RANDOM-APPROX, pages 36–46, 2003.

[14] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In 28th International Colloquium on Automata,
Languages and Programming (ICALP), volume 2076 of Lecture Notes in Computer Science, pages
757–772. Springer, July 2001.

[15] Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and multi-
commodity flow. In 25th Annual ACM Symposium on Theory of Computing (STOC), pages 682–690.
ACM Press, 1993.

[16] Andrew Thomason. The extremal function for complete minors. Journal of Combinatorial Theory,
Series B, 81(2):318–338, 2001.

[17] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. Jour-
nal of the ACM, 51(6):993–1024, November 2004.

[18] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

16

	Abstract
	Introduction
	Summary of Contributions

	Large Diameter KPR Clusters
	Sparse Cover with Strong Diameter
	Name-Independent Routing
	Probabilistic Sparse Partitions
	The Super-nodes
	Putting It All Together
	The Weighted Case

	Open Problems

