
AjaxScope: A Platform for Remotely Monitoring
the Client-Side Behavior of Web 2.0 Applications

Emre Kıcıman and Benjamin Livshits
Microsoft Research
Redmond, WA, USA

{emrek, livshits}@microsoft.com

ABSTRACT
The rise of the software-as-a-service paradigm has led to the de-
velopment of a new breed of sophisticated, interactive applications
often called Web 2.0. While web applications have become larger
and more complex, web application developers today have little
visibility into the end-to-end behavior of their systems. This pa-
per presents AjaxScope, a dynamic instrumentation platform that
enables cross-user monitoring and just-in-time control of web ap-
plication behavior on end-user desktops. AjaxScope is a proxy
that performs on-the-fly parsing and instrumentation of JavaScript
code as it is sent to users’ browsers. AjaxScope provides facili-
ties for distributed and adaptive instrumentation in order to reduce
the client-side overhead, while giving fine-grained visibility into
the code-level behavior of web applications. We present a variety
of policies demonstrating the power of AjaxScope, ranging from
simple error reporting and performance profiling to more complex
memory leak detection and optimization analyses. We also apply
our prototype to analyze the behavior of over 90 Web 2.0 applica-
tions and sites that use large amounts of JavaScript.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Distributed debugging; D.4.7
[Distributed systems]: Organization and Design

General Terms
Reliability, Performance, Measurement, Management, Languages

Keywords
Web applications, software monitoring, software instrumentation

1. INTRODUCTION
In the last several years, there has been a sea change in the way

software is developed, deployed, and maintained. Much of this has
been the result of a rise of software-as-a-service paradigm as op-
posed to traditional shrink-wrap software. These changes have lead
to an inherently more dynamic and fluid approach to software dis-
tribution, where users benefit from bug fixes and security updates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

instantly and without hassle. As our paper shows, this fluidity also
creates opportunities for software monitoring. Indeed, additional
monitoring code can be seamlessly injected into the running soft-
ware without the users awareness.

Nowhere has this change in the software deployment model been
more prominent than in a new generation of interactive and pow-
erful web applications. Sometimes referred to as Web 2.0, ap-
plications such as Yahoo! Mail and Google Maps have enjoyed
wide adoption and are highly visible success stories. In contrast
to traditional web applications that perform the majority of their
computation on the server, Web 2.0 applications include a signif-
icant client-side JavaScript component. Widely-used applications
consist of over 50,000 lines of JavaScript code executing in the
user’s browser. Based on AJAX (Asynchronous JavaScript and
XML), these web applications use dynamically downloaded Java-
Script programs to combine a rich client-side experience with the
storage capacity, computational power, and reliability of sophisti-
cated data centers.

However, as web applications grow larger and more complex,
their dependability is challenged by many of the same issues that
plague any large, cross-platform distributed system that crosses
administrative boundaries. There are subtle and not-so-subtle in-
compatibilities in browser execution environments, unpredictable
workloads, software bugs, dependencies on third-party web ser-
vices, and—perhaps most importantly—a lack of end-to-end vis-
ibility into the remote execution of the client-side code. Without
visibility into client-side behavior, developers have to resort to ex-
plicit user feedback and attempts to reproduce user problems.

This paper presents AjaxScope, a platform for instrumenting
and remotely monitoring the client-side execution of web applica-
tions within users’ browsers. Our goal is to enable practical, flexi-
ble, fine-grained monitoring of web application behavior across the
many users of today’s large web applications. Our primary focus
is on enabling monitoring and analysis of program behavior at the
source code level to improve developers’ visibility into the correct-
ness and performance problems being encountered by end-users.

To achieve this goal, we take advantage of a new capability of the
web application environment, instant redeployability: the ability to
dynamically serve new, different versions of code each time any
user runs a web application. We use this ability to dynamically
provide differently instrumented code per user and per execution
of an application.

Instant redeployability allows us to explore two novel instrumen-
tation concepts, adaptive instrumentation, where instrumentation is
dynamically added or removed from a program as its real-world be-
havior is observed across users; and distributed tests, where we dis-
tribute instrumentation and run-time analyses across many users’
execution of an application, such that no single user experiences

the overhead of heavy-weight instrumentation. A combination of
these techniques allows us to take many brute-force, runtime mon-
itoring policies that would normally impose a prohibitively high
overhead, and instead spread the overhead across users and time so
that no single execution suffers too high an overhead. In addition,
instant redeployability enables comparative evaluation of optimiza-
tions, bug fixes, and other code modifications.

To demonstrate these concepts, we have built AjaxScope, a pro-
totype proxy that rewrites JavaScript-based web applications on-
the-fly as they are being sent to a user’s browser. AjaxScope pro-
vides a flexible, policy-based platform for injecting arbitrary in-
strumentation code to monitor and report on the dynamic runtime
behavior of web applications, including their runtime errors, per-
formance, function call graphs, application state, and other infor-
mation accessible from within a web browser’s JavaScript sand-
box. Because our prototype can parse and rewrite standard Java-
Script code, it does not require changes to the server-side infras-
tructure of web applications, nor does it require any extra plug-ins
or extensions on the client browser. While we built our prototype
to rewrite JavaScript code, our techniques extend to any form of
client-executable code, such as Flash or Silverlight content. A pub-
lic release of our prototype proxy, extensible via plug-in instrumen-
tation policies, is available at http://research.microsoft.
com/projects/ajaxview/.

To evaluate the flexibility and efficacy of AjaxScope, we use it
to implement a range of developer-oriented monitoring policies, in-
cluding runtime error reporting, drill-down performance profiling,
optimization-related policies, a distributed memory leak checker,
and a policy to search for and evaluate potential function cache
placements. In the course of our experiments, we have applied
these policies to 90 web sites that use JavaScript.

1.1 Contributions
This paper makes the following contributions:

• We demonstrate how instant redeployability of applications
can provide a flexible platform for monitoring, debugging,
and profiling of service-oriented applications.

• For Web 2.0 applications, we show how such a monitor-
ing platform can be implemented using dynamic rewriting
of client-side JavaScript code.

• We present two new instrumentation techniques, adaptive in-
strumentation and distributed tests and show that these tech-
niques can dramatically reduce the per-user overhead of oth-
erwise prohibitively expensive policies in practice. Addition-
ally, we demonstrate how our platform can be used to enable
on-line comparative evaluations of optimizations and other
code changes.

• We evaluate the AjaxScope platform by implementing a wide
variety of instrumentation policies and applying them to 90
web applications and sites containing JavaScript code. Our
experiments qualitatively demonstrate the flexibility and ex-
pressiveness of our platform and quantitatively evaluate the
overhead of instrumentation and its reduction through distri-
bution and adaptation.

1.2 Paper Organization
The rest of the paper is organized as follows. First, we give an

overview of the challenges and opportunities that exist in web ap-
plication monitoring. Then, in Section 3, we describe the architec-
ture of AjaxScope, together with example policies and design de-
cisions. We present our implementation, as well as our experimen-
tal setup and micro-benchmarks of our prototype’s performance in

Browser Version Array.sort() Array.join() String +

Internet Explorer 6.0 823 38 4820
Internet Explorer 7.0 833 34 4870
Opera 9.1 128 16 6
FireFox 1.5 261 124 142
FireFox 2.0 218 120 116

Figure 1: Performance of simple JavaScript operations varies
across commonly used browsers. Time is shown in ms to exe-
cute 10k operations.

Section 4. Section 5 and Section 6 describe adaptive instrumen-
tation and distributed tests, using drill-down performance profiling
and memory leak detection as examples, respectively. Section 7
discusses comparative evaluation, or A/B testing, and applies it to
dynamically evaluate the benefits of cache placement choices. We
discuss implications for web application development and opera-
tions in Section 8. Finally, Sections 9 and 10 present related work
and our conclusions.

2. OVERVIEW
Modern Web 2.0 applications share many of the development

challenges of any complex software system. But, the web appli-
cation environment also provides a number of key opportunities
to simplify the development of monitoring and program analysis
tools. The rest of this section details these challenges and op-
portunities, and presents concrete examples of monitoring policies
demonstrating the range of possible capabilities.

2.1 Core Challenges
The core challenge to building and maintaining a reliable client-

side web application is a lack of visibility into its end-to-end be-
havior across multiple environments and administrative domains.
As described below, this lack of visibility is exacerbated by uncon-
trolled client-side and third-party environment dependencies and
their heterogeneity and dynamics.

Non-standard Execution Environments: While the core Java-
Script language is standardized as ECMAScript [13], run-
time JavaScript execution environments differ significantly.
As a result, applications have to frequently work around sub-
tle and not-so-subtle cross-browser incompatibilities. As a
clear example, sending an XML-RPC request involves call-
ing an ActiveX object in Internet Explorer 6, as opposed to
a native JavaScript object in Mozilla FireFox. Other, more
subtle issues include significant cross-browser differences in
event propagation models. E.g., given multiple event han-
dlers registered for the same event, in what order are they
executed? Moreover, even the standardized pieces of Java-
Script can have implementation differences that cause seri-
ous variations in performance; see Figure 1 for examples.

Third-Party Dependencies: All web applications have depen-
dencies on the reliability of back-end web services. And
though they strive to maintain high availability, these back-
end services can and do fail. However, even regular up-
dates, such as bug fixes and feature enhancements, can eas-
ily break dependent applications. Anecdotally, such break-
ing upgrades do occur: live.com updated their beta gadget
API, breaking dependent developers code [25]; and, more re-
cently, the popular social bookmark website, del.icio.us,
moved the URLs pointing to some of their public data
streams, breaking dependent applications [7].

Traditional Challenges: Where JavaScript programs used to be
only simple scripts containing a few lines of code, they have
grown dramatically, to the point where the client-side code
of cutting-edge web applications easily exceed tens of thou-
sands of lines of code (see Figure 6). The result is that web
applications suffer from the same kinds of bugs as traditional
programs, including memory leaks, logic bugs, race condi-
tions, and performance problems.

2.2 Key Opportunities
While the challenges of developing and maintaining a reliable

web application are similar to traditional software challenges, there
are also key opportunities in the context of rich-client web applica-
tions that did not exist in previous systems.

Instant redeployment: In contrast to traditional desktop soft-
ware, changes can be made instantaneously to web 2.0 appli-
cations. AjaxScope takes advantage of this ability to perform
on-the-fly, per-user JavaScript rewriting.

Adaptive and distributed instrumentation: Web 2.0 applica-
tions are inherently multi-user, which allows us to seamlessly
distribute the instrumentation burden across a large user pop-
ulation. This enables the development of sophisticated in-
strumentation policies that would otherwise be prohibitively
expensive in a single-user context. The possibility of adapt-
ing instrumentation over time enables further control over
this process.

Large-scale workloads: In recent years, runtime program analy-
sis has been demonstrated as an effective strategy for finding
and preventing bugs in the field [17, 20]. Many Web 2.0 ap-
plications have an extensive user base, whose diverse activity
can be observed in real-time. As a result, a runtime analy-
sis writer can leverage the high combined code coverage not
typically available in a test context.

2.3 Categories of Instrumentation Policies
As a platform, AjaxScope enables a large number of exciting

instrumentation policies:

Performance: Poor performance is one of the most commonly
heard complaints about the current generation of AJAX ap-
plications [8]. AjaxScope enables the development of poli-
cies ranging from general function-level performance profil-
ing (Section 5.2) to timing specific parts of the application,
such as initial page loading or the network latency of asyn-
chronous AJAX calls.

Runtime analysis and debugging: AjaxScope provides an ex-
cellent platform for runtime analysis, from finding simple
bugs like infinite loops (Section 3.2.2) to complex pro-active
debugging policies such as memory leak detection (Sec-
tion 6.2). Given the large number of users for the more pop-
ular applications, an AjaxScope policy is likely to enjoy high
runtime code coverage.

Usability evaluation: AjaxScope can help perform usability eval-
uation. Because JavaScript makes it easy to intercept UI
events such as mouse movements and key strokes, user ac-
tivity can be recorded, aggregated, and studied to produce
more intuitive web interfaces [3]. While usability evaluation
is not a focus of this paper, we discuss some of the privacy
and security implications in Section 8.

Policy Adaptive Dist. A/B Test

Client-side error reporting
Infinite loop detection
String concatenation detection
Performance profiling X
Memory leak detection X
Finding caching opportunities X X
Testing caching opportunities X

Figure 2: Policies described in above and in Sections 5–7

3. AJAXSCOPE DESIGN
Here, we first present a high-level overview of the dynamic in-

strumentation process and how it fits into the web application en-
vironment, followed in Section 3.2 with some simple examples
of how instrumentation can be embedded into JavaScript code to
gather useful information for the development and debugging pro-
cess. Sections 3.3 and 3.4 summarize the structure of AjaxScope
instrumentation policies and policy nodes.

3.1 Platform Overview
Figure 3 shows how an AjaxScope proxy fits into the exist-

ing web application environment. Other than the insertion of the
server-side proxy, AjaxScope does not require any changes to ex-
isting web application code or servers, nor does it require any mod-
ification of JavaScript-enabled web browsers. The web application
provides uninstrumented JavaScript code, which is intercepted and
dynamically rewritten by the AjaxScope proxy according to a set of
instrumentation policies. The instrumented application is then sent
on to the user. Because of the distributed and adaptive features of
instrumentation policies, each user requesting to download a web
application may receive a differently instrumented version of code.

The instrumentation code and the application’s original code are
executed together within the user’s JavaScript sandbox. The instru-
mentation code generates log messages recording its observations
and queues these messages in memory. Periodically, the web appli-
cation collates and sends these log messages back to the AjaxScope
proxy.

Remote procedure call responses and other data sent by the web
application are passed through the AjaxScope proxy unmodified,
but other downloads of executable JavaScript code will be instru-
mented according to the same policies as the original application.
JavaScript code that is dynamically generated on the client and ex-
ecuted via the eval construct is not instrumented by our proxy.1

3.2 Example Policies
Below, we describe three simple instrumentation schemes to

illustrate how source-level automatic JavaScript instrumentation
works. The purpose of these examples is to demonstrate the flexi-
bility of instrumentation via code rewriting, as well as some of the
concerns a policy writer might have, such as introducing temporary
variables, injecting helper functions, etc.2

1One option, left for future work, is to rewrite calls to eval to
send dynamically generated scripts to the proxy for instrumentation
before the script is executed.
2Readers familiar with the basics of JavaScript and source-level
instrumentation may want to skip to Sections 5–7 for examples of
more sophisticated rewriting policies.

AjaxScope
proxy

Web
application

logslogsinstrumented JavaScriptinstrumented JavaScript

Figure 3: Deployment of AjaxScope server-side proxy for a popular web application lets developers monitor real-life client-side
workloads

3.2.1 Client-side Error Reporting
Currently, web application developers have almost no visibility

into errors occurring within users’ browsers. Modern JavaScript
browsers do allow JavaScript code to provide a custom error han-
dler by setting the onerror property:

window.onerror = function(msg, file, line){...}

However, very few web applications use this functionality to report
errors back to developers. AjaxScope makes it easy to correct this
oversight by automatically augmenting the onerror handler to log
error messages. For example, a policy may automatically augment
registered error handlers without requiring any input from the ap-
plication developer, resulting in the following code:

window.onerror = function(msg, file, line){
ajaxScopeSend('Detected an error: ' + msg +

' at ' + file + ':' + line +
'\nStack: ' + getStack());

... // old handler code is preserved
}

One of the shortcomings of the onerror handler is the lack of ac-
cess to a call stack trace and other context surrounding the error.
In Section 5.2, we describe how to collect call stack information as
part of the performance profile of an application. This instrumen-
tation provides critical context when reporting errors.

3.2.2 Detecting Potential Infinite Loops
While infinite loops might be considered an obvious bug in many

contexts, JavaScript’s dynamic scripts and the side-effects of DOM
manipulation make infinite loops in complex AJAX applications
more common than one might think.

Example 1. The code below shows one common pattern leading
to infinite loops [33].

for (var i=0; i < document.images.length; i++) {
document.body.appendChild(

document.createElement("img"));
}

The array document.images grows as the body of the loop is ex-
ecuting because new images are being generated and added to the
body. Consequently, the loop never terminates. 2

To warn a web developer of such a problem, we automatically
instrument all for and while loops in JavaScript code to check
whether the number of iterations of the loop exceeds a developer-
specified threshold. While we cannot programmatically determine
that the loop execution will never terminate, we can reduce the rate

of false positives by setting the threshold sufficiently high. Below
we show the loop above instrumented with infinite loop detection:

var loopCount = 0, alreadySend = false;
for (var i = 0; i < document.images.length; i++) {
if (!alreadySent &&

(++loopCount > LOOP_THRESHOLD)) {
ajaxScopeSend('Unexpectedly long loop '
+ ' iteration detected');

alreadySent = true;
}
document.body.appendChild(

document.createElement('img'));
}

When a potential infinite loop is detected, a warning message is
logged for the web application developer. Such a warning could
also trigger extra instrumentation to be added to this loop in the fu-
ture to gather more context about why it might be running longer
than expected. This example injects new temporary variables
loopCount and alreadySend; naming conflicts can be avoided
using methods proposed in BrowserShield for tamper-proofing[24].

3.2.3 Detecting Inefficient String Concatenation
Because string objects are immutable in JavaScript, every string

manipulation operation produces a new object on the heap. When
concatenating a large number of strings together, avoiding the cre-
ation of intermediate string objects can provide a significant perfor-
mance improvement, dependent implementation of the JavaScript
engine. One way to avoid generating intermediate strings is to
use the native JavaScript function Array.join, as suggested by
several JavaScript programming guides [16, 1]. Our own micro-
benchmarks, shown in Figure 1, indicate that using Array.join
instead of the default string concatenation operator + can produce
over 130x performance improvement on some browsers.

Example 2. The string concatenation in the following code

var small = /* Array of many small strings */;
var large = '';
for (var i = 0; i < small.length; i++) {

large += small[i];
}

executes more quickly on Internet Explorer 6, Internet Explorer 7,
and FireFox 1.5 if written as: var large = small.join(’’). 2

To help discover opportunities to replace the + operator with
Array.join in large programs, we instrument JavaScript code to
track string concatenations. To do so, we maintain “depth” val-
ues, where depth is the number of string concatenations that led to
the creation of a particular string instance. The depth of any string

P
ar

se
r

JavaScript AST

logs

F R

Instrumentation Policy

Modified Program

Lo
g

co
lle

ct
o

r

Figure 4: Structure of an instrumentation policy. The first F
stage in these policies is a simple static analysis or filter to iden-
tify relevant instrumentation points. The second R stage is a
rewriting node to inject instrumentation code into the program.

not generated through a concatenation is 0. Our instrumentation
rewrites every concatenation expression of the form a = b + c,
where a is a variable reference, and b and c are expressions. The
rewritten form is:

var tmp1,tmp2;
...
(tmp1 = b, tmp2 = c, tmp3 = a,

a = tmp1 + tmp2,
adjustDepth(tmp1, tmp2, tmp3), a)

where the comma operator in JavaScript is used to connect state-
ments. We use a helper function adjustDepth to dynamically
check that the types of b and c are strings, to compute the max-
imum depth of b and c increased by 1 and associate it with a.3

Depth maintenance is accomplished by having a global hash map
of string→ depth values.footnoteSince strings are passed by
value in JavaScript, this approach can occasionally result in false
positives, although we have not seen that in practice. Whenever
the depth first exceeds a user-defined threshold, a warning message
is logged. This instrumentation goes beyond pattern-matching in
simple loops, finding opportunities to optimize even interprocedu-
ral string concatenations.

3.3 Structure of an Instrumentation Policy
To describe the structure of an instrumentation policy in Ajax-

Scope, we first present some key definitions:

• An instrumentation point is any instance of a language el-
ement in JavaScript code, such as a function declaration,
statement, variable reference, or the program as a whole. In-
strumentation points are represented as abstract syntax tree
(AST) nodes of the JavaScript program’s parse tree.

• Policy nodes are the basic unit of organization for analyzing
and instrumenting JavaScript code. The primary purpose of
a policy node is to rewrite the instrumentation point to re-
port observations of its runtime state and/or apply a static or
runtime analysis. We discuss policy nodes in more detail in
Section 3.4.

• Policy nodes are pipelined together to form a complete in-
strumentation policy. This pipeline represents a dataflow of

3For this rewriting, function adjustDepth is injected by Ajax-
Scope into the header of every translated page.

Browser w/out Instrumentation w/Instrumentation Per-message
mean std.dev. mean std.dev. overhead

IE 7.0 80 30 407 40 0.016
FireFox 1.5 33 14 275 40 0.012

Figure 5: Overhead of message logging across browsers. All
times are reported in ms.

instrumentation points from one policy node to the next. The
first instrumentation point entering the pipeline is always the
root AST node of a JavaScript program.

The JavaScript rewriting examples presented in Section 3.2 are all
instrumentation policies implementable with a simple two-stage
pipeline, as shown in Figure 4.

Two components within the AjaxScope proxy provide key sup-
port functionality for instrumentation policies. The parser is re-
sponsible for identifying and extracting JavaScript code from the
HTTP traffic passing through the proxy. Once identified, the Java-
Script code is parsed into an abstract syntax tree (AST) representa-
tion and passed through each of the instrumentation policies. The
log collector receives and logs messages reported by instrumenta-
tion code embedded within a web application and distributes them
to the responsible instrumentation policy for analysis and reporting.

3.4 Policy Nodes
To support their analysis of code behavior, policy nodes may

maintain global state or state associated with an instrumentation
point. One of the simplest kinds of policy nodes are stateless and
stateful filters. Stateless filter nodes provide the simple function-
ality of a search through an abstract syntax tree. Given one or
more AST nodes as input, a filter node will search through the tree
rooted at each AST node, looking for any instrumentation point that
matches some constant filter constraints. The results of this search
are immediately output to the next stage of the policy pipeline.

A stateful filter searches through an AST looking for instrumen-
tation points that not only match some constant filter constraint, but
which are also explicitly flagged in the filter’s state. This stateful
filter is a useful primitive for enabling human control over the op-
eration of a policy. It is also useful for creating a feedback loop
within a policy pipeline, allowing policy nodes later in the pipeline
to use potentially more detailed information and analysis to turn on
or off the instrumentation of a code location earlier in the pipeline.

Some policy nodes may modify their injected instrumentation
code or their own dynamic behavior based on this state. We de-
scribe one simple and useful form of such adaptation in Section 5.
Policy nodes have the ability to inject either varied or uniform in-
strumentation code across users. We describe how we use this fea-
ture to enable distributed tests and A/B tests in Sections 6 and 7.

4. IMPLEMENTATION
We have implemented an AjaxScope proxy prototype described

in this paper. Sitting between the client browser and the servers of a
web application, the AjaxScope proxy analyzes HTTP requests and
responses and rewrites the JavaScript content within, according to
instantiated instrumentation policies. Our prototype uses a custom
JavaScript parser based on the ECMA language specification [13]
in C#, whose performance is further described in below.

STATIC RUNTIME (PAGE INITIALIZATION)

Web application or site JavaScript code size Number of functions Execution
LoC KB Files Declared Executed Unique Ex. time (ms)

IE FF IE FF IE FF IE FF IE FF IE FF IE FF

Mapping services
maps.google.com 33511 33511 295 295 7 7 1935 1935 17587 17762 618 616 530 610
maps.live.com 63787 65874 924 946 6 7 2855 2974 4914 4930 577 594 190 150

Portals
msn.com 11,499 11,603 124 127 10 11 592 592 1,557 1,557 189 189 301 541
yahoo.com 18,609 18,472 278 277 5 5 1,097 1,095 423 414 107 103 669 110
google.com/ig 17,658 17,705 135 167 3 3 960 960 213 213 59 59 188 244
protopages.com 34,918 35,050 599 599 2 2 1,862 1,862 0 0 0 0 13,782 1,291

News sites
cnn.com 6,299 6,473 126 137 24 25 197 200 120 139 56 63 234 146
abcnews.com 7,926 8,004 121 122 20 21 225 228 810 810 86 86 422 131
bbcnews.co.uk 3,356 3,355 57 57 10 10 142 142 268 268 23 23 67 26
businessweek.com 7,449 5,816 135 119 18 13 258 194 7,711 7,711 137 137 469 448

Online games
chi.lexigame.com 9,611 9,654 100 100 2 2 333 333 769 769 55 55 208 203
minesweeper.labs.morfik.com 33,045 34,353 253 265 2 2 1,210 1,210 290 290 122 122 505 650

Figure 6: Benchmark application statistics for Internet Explorer 7.0 (IE) and FireFox 1.5 (FF).

4.1 Micro-benchmarks
Before we characterize overhead numbers for large web applica-

tions, we first present some measurements of aspects of AjaxScope
that affect almost every instrumentation.

4.1.1 Logging Overhead
By default, instrumented web applications queue their obser-

vations of application behavior in memory. Our instrumentation
schedules a timer to fire periodically, collating queued messages
and reporting them back to the AjaxScope proxy via an HTTP POST

request.
To assess the critical path latency of logging a message within

an instrumented program, we wrote a simple test case program that
calls an empty JavaScript function in a loop 10,000 times. With
function-level instrumentation described in Section 5.2, there are
two messages that are logged for each call to the empty function.
As a baseline, we first measure total execution time of this loop
without instrumentation and then measure with instrumentation.
We calculate the time to log a single message by dividing the dif-
ference by the 2 × 104 number of messages logged. We ran this
experiment 8 times to account for performance variations related to
process scheduling, caching, etc. As shown in Figure 5, our mea-
surements show that the overhead of logging a single message is
approximately 0.01–0.02 ms.

4.1.2 Parsing Latency
We find that the parsing time for our unoptimized AjaxScope

JavaScript parser is within an acceptable range for the major
Web 2.0 sites we tested. In our measurements, parsing time grows
approximately linearly with the size of the JavaScript program. It
takes AjaxScope about 600 ms to parse a 10,000-line JavaScript
file. Dedicated server-side deployments of AjaxScope can improve
performance with cached AST representations of JavaScript pages.

4.2 Experimental Setup
For our experiments (presented in Sections 5–7) we used two

machines connected via a LAN hub to each other and the Inter-

net. We set up one machine as a proxy running our AjaxScope
prototype. We set up a second machine as a client, running vari-
ous browsers configured to use AjaxScope as a proxy. The proxy
machine was an Intel dual core Pentium 4, clock rate 2.8GHz
with 1GB of RAM, running Windows Server 2003/SP1. The
client machine was an Intel Xeon dual core, clock rate 3.4GHz
with 2.5GB of RAM, running Windows XP/SP2.

4.3 Benchmark Selection
We manually selected 12 popular web application and sites from

several categories, including portals, news sites, games, etc. Sum-
mary information about our benchmarks is shown in Figure 6. This
information was obtained by visiting the page in question using ei-
ther Internet Explorer 7.0 or Mozilla FireFox 1.5 with AjaxScope’s
instrumentation. We observed overall execution time with minimal
instrumentation enabled to avoid reporting instrumentation over-
head. Separately, we enabled fine-grained instrumentation to col-
lect information on functions executed during page initialization.

Most of our applications contain a large client-side component,
shown in the code size statistics. There are often small variations
in the amount of code downloaded for different browsers. More
surprising is the fact that even during the page initialization alone,
a large amount of JavaScript code is getting executed, as shown by
the runtime statistics. As this initial JavaScript execution is a sig-
nificant component of page loading time as perceived by the user, it
presents an important optimization target and a useful test case. For
the experiments in Sections 5–6, we use these page initializations
as our test workloads. In Section 7, we use manual searching and
browsing of Live Maps as our test application and workload.

In addition to the 12 web applications described above, we also
benchmark 78 other web sites. These sites are based on a sample
of 100 URLs from the top 1 million URLs clicked on after being
returned as MSN Search results in Spring 2005. The sample of
URLs is weighted by click-through count and thus includes both a
selection of popular web sites as well as unpopular or "tail" web
sites. From these 100 URLs, we removed those that either 1) had

no JavaScript; 2) had prurient content; 3) were already included in
the 12 sites described above; or 4) were no longer available.

4.4 Overview of Experiments
In subsequent sections, we present more sophisticated instru-

mentation policies and use them as examples to showcase and eval-
uate different aspects of AjaxScope. Section 5 describes issues
of policy adaptation, using drill-down performance profiling as an
example. Section 6 describes distributed policies, using a costly
memory leak detection policy as an example. Finally, Section 7
discusses the function result caching policy, an optimization policy
that uses A/B testing to dynamically evaluate the benefits of cache
placement decisions.

5. ADAPTIVE INSTRUMENTATION
This section describes how we build adaptive instrumentation

policies in AjaxScope. We then show how such adaptive instru-
mentation can be used to reduce the performance and network over-
head of function-level performance profiling, via drill-down perfor-
mance profiling.

5.1 Adaptation Nodes
Adaptation nodes are specialized policy nodes which take ad-

vantage of the serial processing by instrumentation policy nodes to
enable a policy to have different effects over time. The key mecha-
nism is simple: for each instrumentation point that passes through
the pipeline, an adaptation node makes a decision to either instru-
ment the node itself or to to pass the instrumentation point to the
next policy node for instrumentation. Initially, the adaptation node
applies its own instrumentation and then halts the processing of the
particular instrumentation point, sending the instrumentation point
in its current state to the end-user. In later rounds of rewriting, e.g.,
when other users request the JavaScript code, the adaptation node
will revisit this decision. For each instrumentation point, the adap-
tation node will execute a specified test and, when the test succeeds,
allow the instrumentation point to advance and be instrumented by
the next adaptation node in the policy.

5.2 Naïve Performance Profiling
One naïve method for performance profiling JavaScript code is to

simply add timestamp logging to the entry and exit points of every
JavaScript function defined in a program. Calls to native functions
implemented by the JavaScript engine or browser (such as DOM
manipulation functions, and built-in mathematical functions) can
be profiled by wrapping timestamp logging before and after every
function call expression. However, because this approach instru-
ments every function in a program, it has a very high overhead,
both in added CPU time as well as network bandwidth for report-
ing observations.

5.3 Drill-Down Performance Profiling
Using AjaxScope, we have built an adaptive, drill-down perfor-

mance profiling policy, shown in Figure 7, that adds and removes
instrumentation to balance the need for measuring the performance
of slow portions of the code with the desire to avoid placing extra
overhead on already-fast functions.

Initially, our policy inserts timestamp logging only at the be-
ginning and end of stand-alone script blocks and event handlers
(essentially, all the entry and exit points for the execution of a
JavaScript application). Once this coarse-grained instrumentation
gathers enough information to identify slow script blocks and event
handlers, the policy adds additional instrumentation to discover the
performance of the functions that are being called by each slow

Add entry/exit

logging

F AN.2AN.1

Stateful filter

for script

blocks, event

handlers, and

marked

functions

Add call/return

logging

Drill into slow

functions

Drill into

slow calls

Figure 7: Policy for drill-down performance profiling

script block and event handler. As clients download and execute
fresh copies of the application, they will report more detail on the
performance of the slow portions of code.

After this second round of instrumentation has gathered enough
information, our policy drills down once again, continually search-
ing for slower functions further down the call stack. To determine
when to drill down into a function, we use a simple non-parametric
test to ensure that we have collected enough samples to be statisti-
cally confident that our observed performance is higher than a given
performance threshold. In our experiments, we drill down into any
function believed to be slower than 5 ms. Eventually, the drill-down
process stabilizes, having instrumented all the slow functions, with-
out having ever added any instrumentation to fast functions.

5.4 Evaluation
The goal of our adaptation nodes is to reduce the CPU and net-

work overhead placed on end-user’s browsers by brute-force in-
strumentation policies while still capturing details of bottleneck
code. To measure how well our adaptive drill-down performance
profiling improves upon the naïve full performance profiling, we
tested both policies against our 90 benchmark applications and
sites. We first ran our workload against each web application 10
times, drilling down into any function slower than 5 ms. After these
10 executions of our workload, we captured the now stable list of
instrumented function declarations and function calls and measured
the resulting performance overhead. Our full performance profiler
simply instrumented every function declaration and function call.
We also used a minimal instrumentation policy, instrumenting only
high-level script blocks and event handlers, to collect the base per-
formance of each application.

Figure 8 shows how using adaptive drill-down significantly re-
duces the number of instrumentation points that have to be mon-
itored in order to capture bottleneck performance information.
While full-performance profiling instruments a median of 89 in-
strumentation points per application (mean=129), our drill-down
profiler instruments a median of only 3 points per application
(mean=3.7).

This reduction in instrumentation points—from focusing only on
the instrumentation points that actually reveal information about
slow performance—also improves the execution and network over-
head of instrumentation and log reporting. Figures 9 and 10 com-
pare the execution time overhead and logging message overhead
of full performance profiling and drill-down performance profil-
ing on FireFox 1.5 (graphs of overhead on Internet Explorer 7
are almost identical in shape). On average, drill-down adaptation
alone provides a 20% (mean) or 30% (median) reduction in exe-
cution overhead. As seen in Figure 9, 7 of our 90 sites appear to
show better performance under full profiling than drill-down pro-
filing. After investigation, we found that 5 of these sites have lit-

1

10

100

1000
N

u
m

b
e

r
o

f
in

st
ru

m
e

n
ta

ti
o

n

p
o

in
ts

Web Site

Full Profiling Drill-down Profiling

Figure 8: Number of functions instrumented per web site with
full profiling vs. drill-down profiling

0%

50%

100%

150%

200%

250%

300%

O
ve

rh
e

ad
 a

s
a

%
 o

f
O

ri
gi

n
al

Ex

e
cu

ti
o

n
 T

im
e

Web sites

Full Profiling Drill-down Profiling

Figure 9: Execution time overhead of drill-down performance
profiling compared to full performance profiling

tle JavaScript executing, and the measured difference in overhead
is within the approximate precision of the JavaScript timestamp
(around 10–20ms). Due to an instrumentation bug, 1 site failed
when full instrumentation was enabled, resulting in a measurement
of a very low overhead. The 7th site appears to be a legitimate ex-
ample where full profiling is faster than drill-down profiling. This
could be due to subtle differences in the injected instrumentation
or, though we attempted to minimize such effects, it may be due
to other processes running in the background during our drill-down
profiling experiment.

While overall the reduction in CPU overhead was modest, the
mean network overhead from log messages improved substantially,
drops from 300KB to 64KB, and the median overhead drops from
92KB to 4KB. This improvement is particularly important for end-
users sitting behind slower asymmetric network links.

6. DISTRIBUTED INSTRUMENTATION
This section describes how we build distributed instrumentation

policies in AjaxScope, and then applies this technique to reduce the
per-client overhead of an otherwise prohibitively expensive mem-
ory leak checker.

6.1 Distributed Tests
The second specialized policy node we provide as part of the

AjaxScope platform is the distributed tests. The purpose of a dis-
tributed test is to test for the existence or nonexistence of some con-
dition, while spreading out the overhead of instrumentation code
across many users’ executions of a web application. Note that all

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

Lo
gg

in
g

M
es

sa
ge

 O
ve

rh
ea

d

(b
yt

es
)

Web Sites

Full Profiling Drill-down Profiling

Figure 10: Logging overhead of drill-down performance profil-
ing compared to full performance profiling

distributed tests are also adaptation nodes, since distributed tests
cannot evaluate until gathering observations of runtime behavior.

At any given point in time, the value of the distributed test can
be in one of three states with respect to a specific instrumentation
point: (1) pass, the instrumentation point has passed the test, in
which case it will be sent to the next policy node in the pipeline;
(2) fail, the instrumentation point has failed the test, in which case,
it will not be sent to the next policy node and the distributed test
will cease instrumenting it; and (3) more testing, the information
gathered so far is insufficient and the distributed test needs to gather
further observations.

Our distributed test abstraction requires that a policy writer pro-
vide the specific rewriting rule that measures some runtime behav-
ior of an application, and the parameters to a simple test function.
However, once this is provided, the distributed test provides for the
randomized distribution of instrumentation across the potential in-
strumentation points and users, and the evaluation of the test for
each instrumentation point.

Our AjaxScope prototype provides distributed tests on pseudo-
boolean as well as numerical measures. In the pseudo-boolean
case, we allow the measure of runtime behavior to return one
of 5 values: TotalFailure, Failure, Neutral, Success,
TotalSuccess. If a measure at an instrumentation point ever
reports a TotalFailure or TotalSuccess, the distributed test
value for that point is immediately set to fail or pass, respectively. If
neither a TotalFailure nor TotalSuccess have been reported,
then the parameterized test function is applied to the number of
failure, neutral and success observations. In the case of numerical
measures, the distributed test directly applies the parameterized test
function to the collection of metrics.

A more advanced implementation of distributed tests would dy-
namically adjust the rate at which different instrumentation points
were rewritten, for example, to more frequently instrument the
rare code paths and less frequently instrument the common code
path [15]. We leave such an implementation to our future work.

6.2 Memory Leaks in AJAX Applications
Memory leaks in JavaScript have been a serious problem in web

applications for years. With the advent of AJAX, which allows
the same page to be updated numerous times, often remaining in
the user’s browser for a period of hours or even days, the problem
has become more severe. Despite being a garbage-collected lan-
guage, JavaScript still suffers from memory leaks. One common
source of such leaks is the failure to nullify references to unused

<html>
<head>
<script type="text/javascript">

var global = new Object;

function SetupLeak(){
global.foo = document.getElementById("leaked");
document.getElementById("leaked").

expandoProperty = global;
}

</script>
</head>
<body onload="SetupLeak()">
<div id="leaked"></div>
</body>
</html>

Figure 11: An object cycle involving JavaScript and DOM ob-
jects

<html>
<head>
<script type="text/javascript">

window.onload = function(){
var obj = document.getElementById("element");
obj.onclick = function(evt){ ... };

};
</script>
</head>
<body><div id="element"></div></body>
</html>

Figure 12: A memory leak caused by erroneous use of closures

objects, making it impossible for the garbage collector to reclaim
them [29]. Other memory leaks are caused by browser implemen-
tation bugs [28, 5].

Here, we focus on a particularly common source of leaks:
cyclical data structures that involve DOM objects. JavaScript
interpreters typically implement the mark-and-sweep method of
garbage collection, so cyclical data structures within the JavaScript
heap do not present a problem. However, when a cycle involves
a DOM element, the JavaScript collector can no longer reclaim
the memory, because the link from the DOM element to JavaScript
“pins” the JavaScript objects in the cycle. Because of a reference
from JavaScript, the DOM element itself cannot be reclaimed by
the browser. This problem is considered a bug in web browsers
and has been fixed or mitigated in the latest releases. However,
it remains a significant issue because of the large deployed base
of older browsers. Because these leaks can be avoided through
careful JavaScript programming, we believe it is a good target for
highlighting the usefulness of dynamic monitoring.

Example 3. An example of such a memory leak is shown
in Figure 11. DOM element whose DOM id is leaked has
a pointer to global JavaScript object global through property
expandoProperty. Conversely, global has a pointer to leaked

through property foo. The link from leaked makes it impossible
to reclaim global; at the same time the DIV element cannot be
reclaimed since global points to it. 2

Explicit cycles such as the one in Figure 11 are not the most
common source of leaks in real applications, though. JavaScript
closures inadvertently create these leaking cycles as well.

Example 4. Figure 12 gives a typical example of closure misuse,
leading to the creation of cyclical heap structures. DOM element

referred to by obj points to the closure through the onclick prop-
erty. At the same time, the closure includes implicit references to
variables in the local scope so that references to them within the
closure function body can be resolved at runtime. In this case, the
event handler function will create an implicit link to obj, leading
to a cycle. If this cycle is not explicitly broken before the web
application is unloaded, this cycle will lead to a memory leak. 2

6.3 Instrumentation
To detect circular references between JavaScript and DOM ob-

jects, we use a straight-forward, brute-force runtime analysis of
the memory heap. First, we use one instrumentation policy to dy-
namically mark all DOM objects. A second instrumentation pol-
icy explicitly tracks closures, so that we can traverse the closure
to identify any circular references caused inadvertently by closure
context. Finally, a third instrumentation policy instruments all ob-
ject assignments to check for assignments that complete a circular
reference. This last policy is the instrumentation that places the
heaviest burden on an end-user’s perceived performance. Thus, we
implement it as a distributed test to spread the instrumentation load
across users.

6.3.1 Marking DOM objects
We mark DOM objects returned from methods

getElementById, createElementById, and other similar
functions as well as objects accessed through fields such as
parentNode, childNodes, etc. The marking is accomplished by
setting the isDOM field of the appropriate object. For example,
assignment

var obj = document.getElementById(”leaked”);

in the original code will be rewritten as

var tmp;
var obj=(tmp=document.getElementById("leaked"),

tmp.isDOM = true, tmp);

As an alternative to explicitly marking DOM objects, we could also
have speculatively infer the type of an object based on whether it
contained the members of a DOM object.

Rewrite to

markup DOM

F R

Stateless filter

for member

and call

expressions

Rewrite to

track closures

F R

Stateless filter

for function

nodes

a) DOM tracking policy b) Closure tracking policy

Distributed

test: adds

cycle-checker

F

Stateless filter

for object

assignments

c) Cycle checking policy

DT

Figure 13: Three instrumentation policy pipelines work to-
gether to catch circular references between DOM and Java-
Script objects that are potential memory leaks

352 var pipelineContainers = document.getElementById("cnnPipelineModule").getElementsByTagName("div");
...
355 for (var i=0; i<pipelineContainers.length; i++){
356 var pipelineContainer = pipelineContainers[i];
357 if(pipelineContainer.id.substr(0,9) == "plineCntr") {
358 pipelineContainer.onmouseover = function () {CNN_changeBackground(this,1); return false;}
359 pipelineContainer.onmouseout = function () {CNN_changeBackground(this,0); return false;}
360 }
... }

Figure 14: A circular reference in cnn.com, file mainVideoMod.js (edited for readability). Unless this cycle is explicitly broken before
page unload, it will leak memory.

6.3.2 Marking Closures
Since closures create implicit links to the locals in the current

scope, we perform rewriting to make these links explicit, so that
our detection approach can find cycles. For instance, the closure
creation in Figure 12 will be augmented in the following manner:

obj.onclick = (tmp = function(evt){ ... },
tmp.locals = new Object, tmp.locals.l1 = obj, tmp);

This code snippet creates an explicit link from the closure assigned
to obj.onclick to variable obj declared in its scope. The assign-
ment to obj.onclick will be subsequently rewritten as any other
store to include a call to helper function checkForCycles. This
allows our heap traversal algorithm to detect the cycle

function(evt){...} → function(evt){...}.locals→
obj→ obj.onclick

6.3.3 Checking Field Stores for Cycles
We check all field stores of JavaScript objects to determine if

they complete a heap object cycle that involves DOM elements.
For example, field store

document.getElementById(”leaked”).sub = div;

will be rewritten as

(tmp1 = div,
tmp2 = document.getElementById("leaked"),
tmp2.isDOM=true,
tmp2.sub = tmp1,
checkForCycles(tmp1, tmp2,
'Checking document.getElementById(

"leaked").sub=div');

Finally, an injected helper function, checkForCycles, performs a
depth-first heap traversal to see if (1) tmp2 can be reached by fol-
lowing field accesses from tmp1 and (2) if such a cycles includes a
DOM object, as determined by checking the isDOM property, which
is set as described above.

6.4 Evaluation
As with our adaptation nodes, the goal of our distributed tests is

to reduce the overhead seen by any single user, while maintaining
aggregate visibility into the behavior of the web application under
real workloads. To distribute our memory checking instrumenta-
tion, we implement our field store cycle check as a distributed test,
randomly deciding with some probability whether to add this in-
strumentation to any given instrumentation point. We continue to
uniformly apply the DOM tracking and closure tracking policies.
In our experiments, the overhead added by these two policies was
too small to measure .

1

10

100

1,000

10,000

0 15 30 40 60 75

C
o

u
n

t

Time to perform cycle check (ms)

Figure 15: The histogram of circular reference check times.
The vast majority of checks for cycles take under 1 ms

Applying our memory leak checker, we found circular references
indicating a potential memory leak in the initialization code of 4 of
the 12 JavaScript-heavy applications in our benchmarks, including
google.com/ig, yahoo.com, chi.lexigame.com, and cnn.com.

Example 5. As a specific example of a potential memory leak, Fig-
ure 14 shows code from the video player located on the cnn.com
main page, where there is a typical memory leak caused by clo-
sures. Here, event handlers onmouseover and onmouseoout close
over the local variable pipelineContainer referring to a div el-
ement within the page. This creates an obvious loop between the
div and the closure containing handler code, leading to a leak. 2

Figure 15 shows a histogram of the performance overhead of an
individual cycle check. We see that almost all cycle checks have a
minimal performance impact, with a measured overhead of 0ms.
A few cycle checks do last longer, in some cases up to 75ms.
We could further limit this overhead of individual cycle checks
by implementing a random walk of the memory heap instead of
a breadth-first search. We leave this to future work.

To determine whether distributing our memory leak checks truly
reduced the execution overhead experienced by users, we loaded
cnn.com in Internet Explorer 7 with varying probabilities of in-
strumentation injection, measured the time to execute the page’s
initialization code, and repeated this experiment several times each
for different probability settings. Figure 16 shows the result and we
can see that, as expected, the average per-user overhead is reduced
linearly as we reduce the probability of injecting cycle checks into
any single user’s version of the code. At a probability of 100%, we
are adding 1,600 cycle checks to the web application, resulting in
an average startup time of 1.8sec. At 0% instrumentation probabil-
ity, we reduce the startup to its baseline of 230ms. This demon-
strates that simple distribution of instrumentation across users can
turn heavy-weight runtime analyses into practical policies with a
controlled impact on user-perceived performance.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0% 20% 40% 60% 80% 100%

C
n

n
.c

o
m

 S
ta

rt
u

p
 t

im
e

 (
m

s)

% of cycle checks distributed to single user

Figure 16: The average startup time for cnn.com increases lin-
early with the probability of injecting a cycle check

F

Stateless filter

for function

declarations

a) Detect potential cache opportunities

A/B test:

Compares performance

with and without cache

F

Stateful filter

for cache-able

functions

b) A/B test of cache opportunities

A/B

DT DT

Test if function

has simple

arguments

Test if function

appears to be

deterministic

Figure 17: Two policies work together for detection and per-
formance testing of cache opportunities. After policy (a) finds
a potential cache opportunity, a human developer must check
its semantic correctness before policy (b) can test it for perfor-
mance improvements.

7. A/B TESTING
On web sites, A/B testing is commonly used to evaluate the ef-

fect of changes to banner ads, newsletters, or page layouts on user
behavior. In our developer-oriented scenarios, we use A/B tests
to evaluate the performance impact of a specific rewriting, such
as the code optimization described in Section 3.2. The A/B test
policy node serves the original code point to X% of the web ap-
plication’s users and serves the rewritten version of the code point
to the other (100 − X)% of users. In both cases, the A/B test
adds instrumentation to measure the performance of the code point.
The resulting measurements allow us to evaluate the average per-
formance improvement, as well as the average improvements for a
subpopulation of users, such as all FireFox users. A more advanced
implementation of A/B tests could potentially monitor the rates of
exceptions occurring within the block of code, to notice potential
reliability issues.

7.1 Function Return Value Caching
With live monitoring, we can use a multi-stage instrumentation

policy to detect possibly valid optimizations and evaluate the poten-
tial benefit of applying the optimization. Let us consider a simple
optimization strategy: the insertion of function result caching. For

this optimization strategy to be correct, the function being cached
must (1) return a value that is deterministic given only the function
inputs and (2) have no side-effects. We monitor the dynamic behav-
ior of the application to check the first criteria, and rely on a human
developer to understand the semantics of the function to determine
the second. Finally, we use a second stage of instrumentation to
check whether the benefits of caching outweigh the cost.

The first stage of such a policy injects test predicates to help
identify when function caching is valid. To accomplish this, the
rewriting rule essentially inserts a cache, but continues to call the
original function and check its return value against any previously
cached results. If any client, across all the real workload of an ap-
plication, reports that a cache value did not match the function’s
actual return value, we know that function is not safe for optimiza-
tion and remove that code location from consideration.

After gathering many observations over a sufficient variety and
number of user workloads, we provide a list of potentially cache-
able functions to the developer of the application and ask them
to use their knowledge of the function’s semantics to determine
whether it might have any side-effects or unseen non-determinism.
The advantage of this first stage of monitoring is that reviewing a
short list of possibly valid cache-able code points should be easier
than inspecting all the functions for potential cache optimization.

In the second stage of our policy, we use automatic rewriting
to cache the results of functions that the developer deemed to be
free of side-effects. To test the cost and benefit of each function’s
caching, we distribute two versions of the application: one with
the optimization and one without, where both versions have per-
formance instrumentation added. Over time, we compare our ob-
servations of the two versions and determine when and where the
optimization has benefit. For example, some might improve perfor-
mance on one browser but not another. Other caches might have a
benefit when network latency is high, but not otherwise.

7.2 Evaluation
In this section, we described two instrumentation policies: the

first searches for potential caching opportunities, while the second
tests their performance improvement using automatic comparison
testing of the original and optimized versions. The goal of both
policies is to reduce the effort developers must make to apply sim-
ple optimizations to their code, and to show how dynamic A/B test-
ing can be used to evaluate the efficacy of such optimizations under
real-life user workloads.

Figure 18 shows the end results of applying these policies to
maps.live.com. Our instrumentation started with 1,927 total func-
tions, and automatically reduced this to 29 functions that appeared
to be deterministic. To exercise the application, we manually ap-
plied a workload of common map-related activities, such as search-
ing, scrolling and zooming. Within a few minutes, our A/B test
identified 2 caching opportunities that were both semantically de-
terministic and improved each function’s performance by 20%–
100%. In addition, we identified 3 relatively expensive functions,
including a GetWindowHeight function, that empirically appeared
to be deterministic in our workloads but semantically are likely
to not be deterministic. Seeing these results, our recommendation
would be to modify the implementation of these functions to sup-
port caching, while maintaining correctness by explicitly invalidate
the cache when an event, such as a window size change, occurs.
We expect that these kinds of automated analysis and optimization
would be even more useful for newly written or beta versions of
web applications, in contrast to a mature, previously optimized ap-
plication such as Live Maps.

Hit Performance Improvement
Function Deterministic rate Original (ms) Cached (ms) ms %

OutputEncode_EncodeURL X 77% 0.85 0.67 0.18 21%
DegToRad X 85% 0.11 0.00 0.11 100%

GetWindowHeight 7 90% 2.20 0.00 2.20 100%
GetTaskAreaBoundingBoxOffset 7 98% 1.70 0.00 1.70 100%
GetMapMode 7 96% 0.88 0.00 0.88 100%

Figure 18: Results of search for potential cacheable functions in Live Maps

8. DISCUSSION
Section 8.1 presents possible deployment scenarios for Ajax-

Scope. Section 8.2 addresses potential reliability risks involved in
deploying buggy instrumentation policies. Issues of privacy and
security that might arise when extra code is executing on the client-
side are addressed in Section 8.3. Finally, Section 8.4 addresses the
interaction of AjaxScope and browser caching.

8.1 AjaxScope Deployment Scenarios
The AjaxScope proxy can be deployed in a variety of settings.

While client-side deployment is perhaps the easiest, we envision
AjaxScope deployed primarily on the server side, in front of a web
application or a suite of applications. In the context of load bal-
ancing, which is how most widely-used sites today are structured,
the functionality of AjaxScope can be similarly distributed in or-
der to reduce the parsing and rewriting latency. Server-side de-
ployment also allows developers or system operators to tweak the
“knobs” exposed by individual AjaxScope policies. For instance,
low-overhead policies may always be enabled, while others may be
turned on on-demand after a change that is likely to compromise
system reliability, such as a major system update or a transition to
a new set of APIs.

AjaxScope can be used by web application testers without nec-
essarily requiring support from the development organization, as
demonstrated by our experiments with third-party code. AjaxScope
can also be used in a test setting when it is necessary to obtain
detailed information from a single user. Consider a performance
problem with Hotmail, which only affects a small group of users.
With AjaxScope, when a user complains about performance issues,
she may be told to redirect her browser to an AjaxScope proxy de-
ployed on the server side. The instrumentation performed can also
be customized depending on the bug report. That way, she will be
the only one running a specially instrumented version of the ap-
plication, and application developers will be able to observe the
application under the problematic workload. A particularly attrac-
tive feature of this approach is that no additional software needs
to be installed on the client side. Moreover, real-life user work-
loads can be captured with AjaxScope for future use in regression
testing. This way real-life workloads can be used, as opposed to
custom-developed testing scripts.

AjaxScope also makes gradual proxy deployment quite easy:
there is no need to install AjaxScope on all servers supporting a
large web application. Initially, a small fraction of them may be in-
volved in AjaxScope deployment. Alternatively, only a small frac-
tion of users may initially be exposed to AjaxScope.

Our paper does not explore the issues of large-scale data process-
ing, such as data representation and compression as well as various
ways to present and visualize the data for system operators. For in-
stance, network overhead can be measured and superimposed onto
a map in real time. This way, when the performance of a certain re-
gion, as represented by a set of IP addresses, goes down, additional

instrumentation can be injected for only users within that IP range
to investigate the reason for the performance drop.

8.2 Policy Deployment Risks
Users appreciate applications that have predictable behavior, so

we do not want to allow policies to significantly impact perfor-
mance, introduce new errors, etc. New policies can also be de-
ployed in a manner that reduces the chances of negatively affecting
application users. After the application developers have debugged
their instrumentation, more users can be redirected to AjaxScope.
To ensure that arbitrary policies do not adversely affect predictabil-
ity, our infrastructure monitors every application’s coarse-grained
performance and observed error rate. Monitoring is done via a
trusted instrumentation policy that makes minimal changes to ap-
plication code, an approach we refer to as meta-monitoring.

When a buggy policy is mistakenly released and applied to a web
application, some relatively small number of users will be affected
before the policy is disabled. This meta-monitoring strategy is not
intended to make writing broken policies acceptable. Rather, it is
intended as a backup strategy to regular testing processes to ensure
that broken policies do not affect more than a small number of users
for a short period of time.

8.3 Information Protection
Existence of the JavaScript sandbox within the browser pre-

cludes security concerns that involve file or process manipulation.
We argue that AjaxScope does not weaken the security posture of
an existing web application, as there is a trust relationship between
a user and a web application and, importantly, a strong boundary to
that relationship, enforced by the browser’s sandbox. However, one
corner-case occurs when web applications wish to carefully silo
sensitive information. For example, e-commerce and financial sites
carefully engineer their systems to ensure that critical personal in-
formation, such as credit card numbers, are only stored on trusted,
secured portions of their data centers. Arbitrary logging of infor-
mation on the client can result in this private information making
its way into a comparatively insecure logging infrastructure.

One option to deal with this is to add dynamic information taint-
ing [23, 31, 21], which can be easily done using our rewriting in-
frastructure. In this case, the web application developer would co-
operate to label any sensitive data, such as credit card numbers.
The running instrumentation policies would then refuse to report
the value of any tainted data.

8.4 Caching Considerations
While instant redeployment enables many key AjaxScope fea-

tures, unfortunately, it does not interact well with client-side
caching. Indeed, many complex web applications are organized
around a collection of JavaScript libraries. Once the libraries are
transferred to the client and cached by the browser, subsequent
page loads usually take much less time. If AjaxScope policies

provide the same instrumentation for subsequent loads, rewriting
results can be easily cached.

However, since we want to perform policy adaptation or dis-
tribution, we currently disable client-side caching. The browser
can check whether AjaxScope wants to provide a new version of
a particular page by issuing a HEAD HTTP request. Depending on
other considerations, such as the current load or information about
network latency of that particular client, AjaxScope may decide
whether to provide a newly instrumented version.

9. RELATED WORK
Several previous projects have worked on improved monitoring

techniques for web services and other distributed systems [4, 2],
but to our knowledge, AjaxScope is the first to extend the devel-
oper’s visibility into web application behavior onto the end-user’s
desktop. Other researchers, including Tucek et al. [30], note that
moving debugging capability to the end-user’s desktop benefits
from leveraging information easily available only at the moment
of failure—we strongly agree.

While performance profiles have been used for desktop applica-
tion development for a very long time, AjaxScope is novel in that
it allows developers to gain insight into application behavior in a
wide-area setting. Perhaps the closest in spirit to our work is Para-
Dyn [22], which uses dynamic, adaptive instrumentation to find
performance bottlenecks in parallel computing applications. Much
research has been done in runtime analysis for finding optimization
opportunities [27, 10, 20]. In many settings, static analysis is used
to remove instrumentation points, leading to a reduction in runtime
overhead [20]. However, the presence of the eval statement in
JavaScript as well as the lack of static typing make it a challenging
language for analysis. Moreover, not the entire code is available
at the time of analysis. However, we do believe that some instru-
mentation policies can definitely benefit from static analysis, which
makes it a promising future research direction.

Both BrowserShield and CoreScript use JavaScript rewriting to
enforce browser security and safety properties [24, 32]. Ajax-
Scope’s focus on non-malicious scenarios, such as developers de-
bugging their own code, allows us to simplify our rewriting require-
ments and make different trade-offs to improve the performance
and simplicity of our architecture. For example, BrowserShield im-
plements a JavaScript parser in JavaScript and executes this parser
in the client browser to protect against potentially malicious, run-
time generated code. In contrast, our parser executes in a proxy and
any dynamically generated code is either not instrumented or must
be sent back to the proxy to be instrumented.

In recent years, runtime program analysis has emerged as a pow-
erful tool for finding bugs, ranging from memory errors [26, 12,
6, 15, 10] to security vulnerabilities [14, 21, 23]. An area of run-
time analysis that we believe to be closest to our work is statistical
debugging. Statistical debugging uses runtime observations to per-
form bug isolation by using randomly sampled predicates of pro-
gram behavior from a large user base [17, 18, 19]. We believe that
the adaptive instrumentation of AjaxScope can improve on such
algorithms by enabling the use of active learning techniques [11].

10. CONCLUSIONS
In this paper we have presented AjaxScope, a platform for im-

proving developer’s end-to-end visibility into web application be-
havior through a continuous, adaptive loop of instrumentation, ob-
servation, and analysis. We have demonstrated the effectiveness
of AjaxScope by implementing a variety of practical instrumenta-
tion policies for debugging and monitoring web applications, in-

cluding performance profiling, memory leak detection, and cache
placement for expensive, deterministic function calls. We have ap-
plied these policies to a suite of 90 widely-used and diverse web
applications to show that 1) adaptive instrumentation can reduce
both the CPU overhead and network bandwidth, sometimes by as
much as 30% and 99%, respectively; and 2) distributed tests allow
us fine-grained control over the execution and network overhead of
otherwise prohibitively expensive runtime analyses.

While our paper has focused on JavaScript rewriting in the con-
text of Web 2.0 applications, we believe that we have just scratched
the surface when it comes to exploiting the power of instant rede-
ployment for software-as-a-service applications. In the future, as
the software-as-a-service paradigm, centralized software manage-
ment tools [9] and the property of instant redeployability become
more wide-spread, AjaxScope’s monitoring techniques have the
potential to be applicable to a broader domain of software. More-
over, the implications of instant redeployability go far beyond sim-
ple execution monitoring, to include distributed user-driven test-
ing, distributed debugging, and potentially adaptive recovery tech-
niques, so that errors in one user’s execution can be immediately
applied to help mitigate potential issues affecting other users.

11. REFERENCES
[1] String performance in Internet Explorer.

http://therealcrisp.xs4all.nl/blog/2006/12/09/
string-performance-in-internet-explorer/,
December 2006.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Performance
debugging for distributed systems of black boxes. In
Proceedings of the Symposium on Operating Systems
Principles, pages 74–89, October 2003.

[3] Richard Atterer, Monika Wnuk, and Albrecht Schmidt.
Knowing the user’s every move: user activity tracking for
website usability evaluation and implicit interaction. In
Proceedings of the International Conference on World Wide
Web, pages 203–212, May 2006.

[4] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard
Mortier. Using Magpie for request extraction and workload
modelling. In Proceedings of the Symposium on Operating
Systems Design and Implementation, pages 259–272,
December 2004.

[5] David Baron. Finding leaks in Mozilla. http://www.
mozilla.org/performance/leak-brownbag.html,
November 2001.

[6] Emery D. Berger and Benjamin G. Zorn. Diehard:
probabilistic memory safety for unsafe languages. SIGPLAN
Notes, 41(6):158–168, June 2006.

[7] Adam Bosworth. How to provide a Web API.
http://www.sourcelabs.com/blogs/ajb/2006/08/
how_to_provide_a_web_api.html, August 2006.

[8] Ryan Breen. Ajax performance.
http://www.ajaxperformance.com, 2007.

[9] Ramesh Chandra, Nickolai Zeldovich, Constantine
Sapuntzakis, and Monica S. Lam. The Collective: A
cache-based system management architecture. In
Proceedings of the Symposium on Networked Systems
Design and Implementation, May 2005.

[10] Trishul M. Chilimbi and Ran Shaham. Cache-conscious
coallocation of hot data streams. SIGPLAN Notes,
41(6):252–262, 2006.

[11] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan.
Active learning with statistical models. Journal of Artificial
Intelligence Research, 4:129–145, 1996.

[12] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton. StackGuard: automatic adaptive
detection and prevention of buffer-overflow attacks. In
Proceedings of the Usenix Security Conference, pages
63–78, January 1998.

[13] ECMA. ECMAScript Language Specification 3rd Ed.
http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf,
December 1999.

[14] Vivek Haldar, Deepak Chandra, and Michael Franz.
Dynamic taint propagation for Java. In Proceedings of the
Annual Computer Security Applications Conference, pages
303–311, December 2005.

[15] Matthias Hauswirth and Trishul M. Chilimbi. Low-overhead
memory leak detection using adaptive statistical profiling. In
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 156–164, October 2004.

[16] Internet Explorer development team. IE+JavaScript
performance recommendations part 2: JavaScript code
inefficiencies.
http://therealcrisp.xs4all.nl/blog/2006/12/09/
string-performance-in-internet-explorer/.

[17] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and
Michael I. Jordan. Scalable statistical bug isolation. In
Proceedings of the Conference on P.rogramming Language
Design and Implementation, pages 15–26, June 2005.

[18] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P.
Midkiff. Statistical debugging: A hypothesis testing-based
approach. IEEE Transactions on Software Engineering,
32(10):831–848, 2006.

[19] Chao Liu and Jiawei Han. Failure proximity: a fault
localization-based approach. In Proceedings of the
International Symposium on Foundations of Software
Engineering, pages 46–56, November 2006.

[20] Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding application errors and security vulnerabilities using
PQL: a program query language. In Proceedings of the
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, October 2005.

[21] Michael Martin, Benjamin Livshits, and Monica S. Lam.
SecuriFly: Runtime vulnerability protection for Web
applications. Technical report, Stanford University, October
2006.

[22] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille,
Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L.
Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
ParaDyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, November 1995.

[23] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff
Shirley, and David Evans. Automatically hardening Web
applications using precise tainting. In Proceedings of the
IFIP International Information Security Conference, June
2005.

[24] Charles Reis, John Dunagan, Helen J. Wang, Opher
Dubrovsky, and Saher Esmeir. BrowserShield:
Vulnerability-Driven Filtering of Dynamic HTML. In
Proceedings of the Symposium on Operating Systems Design
and Implementation, December 2006.

[25] Steve Rider. Recent changes that may break your gadgets.
http://microsoftgadgets.com/forums/1438/
ShowPost.aspx, November 2005.

[26] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M.
Roy, Tudor Leu, and Jr. William S. Beebee. Enhancing
server availability and security through failure-oblivious
computing. In Proceedings of the Symposium on Operating
Systems Design and Implementation, pages 303–316,
December 2004.

[27] Shai Rubin, Rastislav Bodik, and Trishul Chilimbi. An
efficient profile-analysis framework for data-layout
optimizations. SIGPLAN Notes, 37(1):140–153, 2002.

[28] Isaac Z. Schlueter. Memory leaks in Microsoft Internet
Explorer. http://isaacschlueter.com/2006/10/
msie-memory-leaks/, October 2006.

[29] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv.
Estimating the impact of heap liveness information on space
consumption in Java. In Proceedings of the the International
Symposium on Memory Management, pages 64–75, June
2002.

[30] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos,
and Yuanyuan Zhou. Automatic on-line failure diagnosis at
the end-user site. In Proceedings of the Workshop on Hot
Topics in System Dependability, November 2006.

[31] Larry Wall, Tom Christiansen, and Randal Schwartz.
Programming Perl. O’Reilly and Associates, Sebastopol,
CA, 1996.

[32] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor
Serikov. JavaScript Instrumentation for Browser Security. In
Proceedings of the Symposium on Principles of
Programming Languages, pages 237–249, January 2007.

[33] Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett.
Professional Ajax. Wrox, 2006.

