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Abstract

In this paper, we present a shape constrained Markov
network for accurate face alignment. The global face shape
is defined as a set of weighted shape samples which are
integrated into the Markov network optimization. These
weighted samples provide structural constraints to make the
Markov network more robust to local image noise. We pro-
pose a hierarchical Condensation algorithm to draw the
shape samples efficiently. Specifically, a proposal density
incorporating the local face shape is designed to gener-
ate more samples close to the image features for accurate
alignment, based on a local Markov network search. A
constrained regularization algorithm is also developed to
weigh favorably those points that are already accurately
aligned. Extensive experiments demonstrate the accuracy
and effectiveness of our proposed approach.

1. Introduction

Shape alignment is an actively studied problem in com-
puter vision. Applications of shape alignment range from
medical image processing [12], object tracking [15], face
recognition [14] and modeling [4], to face cartoon anima-
tion [8]. Accurate alignment of face shapes or contours de-
pends on parameter estimation of an optimal deformable
shape model that matches the image evidence collected
from a single image or a video sequence.

A number of different shape models have been proposed
for face alignment. One approach is to postulate the defor-
mation parameters by reducing the shape deformation cor-
relations. The shape prior is then modeled by the distribu-
tion of the deformation parameters. After the pioneering
work on active shape model (ASM) [2], many interesting
models have been developed. For example, a Bayesian tan-
gent shape model is proposed in [16] to make the parameter
estimation more accurate and robust by using an EM based
searching algorithm. To alleviate the local minima problem,
a hierarchical shape model and DDMCMC inference algo-

rithm are designed in [7]. The condensation algorithm has
also been adopted in the ASM framework in [13]. To han-
dle the nonlinear shape variance, a mixture of Gaussians [1]
and kernel PCA [11] are used to model the distribution of
deformation parameters. These methods usually generate
an observed shape by sampling each feature point indepen-
dently from a local likelihood and then regularize it using
the shape prior model. The common problem for all these
methods is that each feature point is sampled without con-
sidering its relationship with neighbor points. Since no local
shape constraints are applied to the neighbor points, the ob-
served location of each individual point is very sensitive to
noise. Although the global regularization based on a shape
prior may help to assure an overall shape reasonably similar
to a face, it is difficult to obtain the accurate shape locations.

Recently, Markov Random Field model has been pro-
posed for face alignment [3]. In this method, each feature
point is considered as a node in a graph, and a link is set be-
tween each pair of feature points with the interaction energy
designed to impose the local structure constraints between
them. The benefit of such a model is that the shape prior is
distributed in a Markov network of components and the im-
age observation is still distributed by modeling the image
likelihood of each individual component. The close inter-
action between the local image observation and structure
constraints leads to more accurate local shape estimation.
The shortcoming of this approach is that it models the shape
only in a local neighborhood. Such a low level model can-
not capture high level semantics in the shape. The lack of
a global shape prior often leads such methods to nonstable
results.

In our recent work [6], we adopted the Markov network
to find an optimal shape, then regularize the shape by the
PCA based shape prior though a constrained regularization
algorithm. Although such integrated model can improve the
alignment preciseness to some extend, but the regulariza-
tion step does not consider the image information anymore,
therefore the alignment’s precision is still not good enough
for some cases.
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In this paper, we develop an approach to incorporate the
global shape prior directly into the Markov network for ac-
curate face alignment. We are inspired by recent work of
Object Cut [5], where robust object segmentation is ob-
tained by integrating the global shape prior of an object into
a Markov random field.

In our approach, we decompose the face shape into a
number of small line segments to construct the Markov net-
work. The global shape prior is defined as a set of weighted
shape samples. For accurate face alignment, these shape
samples should be mostly drawn from places close to the
image features. We obtain such samples by designing a pro-
posal density to incorporate the local geometry constraints
between line segments. Moreover, we develop a new con-
strained regularization algorithm to keep the positions of
those already aligned sampling points. Our algorithm is ac-
curate and robust for face alignment, as demonstrated by
extensive experiments.

2. Global Shape Constrained Markov Network
for Face Alignment

2.1 Markov Network Shape Model

Assuming that a shape S is described byN feature points
si = (xi, yi) in the image, we can represent it by a 2N -
dimensional vector S = {(xi, yi), i = 1, ..., N}. We break
the shape S into a set of line segments by the feature points.
The parameters of each line segment qi are the coordinates
of its two endpoints qi = [ws

i ,w
e
i ]. As shown in Figure 1,

these line segments are the nodes in the hidden layer of the
graph. If two nodes are correlated, there will be an undi-
rected link between them. For a deformable shape, we as-
sign a link between any pair of connected line segments.

Assuming the Markovian property among the nodes, the
shape prior can be modeled as p(Q),Q = {q0,q1, ...,qK},
which is a Gibbs distribution and can be factorized as a
product of all the potential functions over the cliques in the
graph:

p(Q) =
1
Z

∏
c∈C

ψc(Qc) (1)

whereC is a collection of cliques in the graph, Qc is the set
of variables corresponding to the nodes in clique c, and Z
is the normalization constant or the partition function.

In the context of deformable shapes, we adopt a pair-
wise potential function ψij(qi,qj) to present the constraint
between two connected line segments. Thus we write the
shape prior p(Q) as:

p(Q) =
1
Z

∏
(i,j)∈C2

ψij(qi,qj) (2)

The pairwise potential function is defined by the con-
straints of the distance of two endpoints (we

i and ws
j ) and
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Figure 1. An illustration of the global shape constrained
Markov network for a face. Using eye shape as an example,
each node qi in the graph is a line segment and qi is associ-
ated with its image observation Γi. All the nodes are con-
strained by the global shape parameter Θ. The face shape is
to show that for the graph of face, the links are added within
each black line.
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Figure 2. The constraints of two connected line segments:
the distance dij between two end points, and the angle γij

between two connecting line segments.

the angle γij between the two line segments, as illustrated
in Figure 2:

ψij(qi,qj) = G(dij ; 0, σd
ij)·G(Aij ;µA

ij , σ
A
ij) (3)

where dij = |we
i −ws

j | is the distance between we
i and ws

j ,
Aij = sin(γij), and σd

ij and σA
ij are variance parameters.

σd
ij that control the tightness of the connectivity constraint.

Given the image observation I , as shown in Figure 1,
each segment qi is also associated with its image observa-
tion, denoted as Γi. Assuming the local observation to be
independent of other nodes given qi, the likelihood is fac-
torized as:

p(I|Q) =
∏

i

pi(Γi|qi) (4)

Then the posterior can be factorized as:

p(Q|I) ∝ 1
Z

∏
i

pi(Γi|qi)
∏

(i,j)∈C2

ψij(qi,qj) (5)

The posterior can be maximized efficiently by Belief
Propagation [10]. During the inference, the movement of
each line segment is affected by the local image observa-
tion together with the local geometry constraints coming
from its neighboring nodes. Compared with the central-
ized algorithms [2, 7] where the shape is regularized after
each feature point is moved independently, the movements
of feature points are more consistent and a more accurate
result can be achieved.
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2.2 Global Shape Constrained Markov
Network

Although the Markov network can achieve a more accu-
rate alignment result. However, since the currently designed
graph only models the local geometry constraints between
the neighboring feature points by the pairwise potential, the
shape prior is often too local to guarantee a globally reason-
able shape, especially when a strong edge appears near the
ground truth.

Many algorithms like [2] adopt a generative shape prior
model: the shape is generated by the combination of a set of
deformable modes. A common way to do this is first align
the shape to the tangent space, then adopt PCA to find the
deformable modes. The aligned shape x is then generated
by

x = µ+ φrb + ε (6)

where µ is the mean shape, and φr consists of the first r
columns of the projection matrix. Each column of φr corre-
sponds to a deformable mode. ε is an isotropic noise in the
tangent space. b defines the shape intrinsic deformation.
Then the global shape prior is modeled as p(S) ∼ p(b).

This implies that all the nodes in the graph (Figure 1)
are correlated by an underlying shape parameter. The ques-
tion is how to add such constraint into the optimization of
Markov network Equation (5). Further considering the the
extrinsic parameters, e.g., scaling c, rotation Rθ, and trans-
lation t, we denote the global shape parameter as Θ =
{c, Rθ, t,b}. As in [5], we treat Θ as the missing data,
based on the EM algorithm, the optimal position of the line
segments Q can be obtained by iteratively maximizing the
lower bound of p(Q|I):

Q∗ = argmax
Q

∫
Θ

log p(Q|Θ, I)p(Θ|I,Qt−1)dΘ (7)

In [5], random samples Θ(1), ... ,Θ(N) are drawn from
the distribution p(Θ|I,Qt−1), then Equation (7) can be ap-
proximated as:

Q∗ = arg max
Q

∑
k

wk · log p(Q|Θ(k), I) (8)

where wk = p(Θ(k)|I,Qt−1). Note that:

p(Q|Θ(k), I) ∝ p(Θ(k)|Q)p(Q|I) (9)

Given a global parameter Θ(k), a shape S(k) can be gener-
ated. We expect the final shape inferred by the Markov net-
work to be close to S(k). Unlike the segmentation work in
[5], we define the probability p(Θ(k)|Q) to make not only
the feature point position close to the given shape S(k), but
also the relative position between two linked line segments

Given an image I , set the initial shape as the mean shape of the
training data.

1. Adopt hierarchical condensation to obtain the samples
S(Θ(1)) . . . S(Θ(N))

2. Obtain the mean shape of the weighted samples, generate the
line segment candidates along the profile, as in Figure 4.

3. Compute log p(Q|Θ(k), I) and set wk ≈ p(Θ(k)|I)

4. The object function Equation 8 is maximized by belief propa-
gation algorithm to obtain the optimal shape.

Table 1. The overview of our algorithm.

close to the relation appearing in S(k):

p(Θ(k)|Q) ∝
∏

i

pi(S(k)|(qi))
∏

(i,j)∈C2

ψij(qi,qj |S(k))

(10)
where

pi(S(k)|qi)) =
1

1 + exp(d(qi,S(k)))
(11)

d(qi,S(k)) is the distance of a line segment from the given
shape.

ψij(qi,qj |S(k)) = G(Aij ; Ãij , νA) (12)

Ãij is the sine value of the angle between two given line
segments, and νA is set as a small value. From Equation (5)
and Equation (10):

log p(Q|Θ(k), I) =
∑

i

(log pi(Γi|qi) + log pi(S(k)|qi)

+
∑

j

logψij(qi,qj) + logψij(qi,qj |S(k))) + const (13)

Notice that based on the above definition, Equation (8)
can still be maximized by the belief propagation algo-
rithm. Then the key problem is how to draw samples from
p(Θ|I,Qt−1). Similar to [5], we use p(Θ|I) to approxi-
mate the initial distribution of p(Θ|I,Qt−1). In the follow-
ing section, we will explain how we adopt the condensation
algorithm [9] hierarchically to sample p(Θ|I).

The overview of our accurate face alignment algorithm
is summarized in Table 1.

3. Local Shape Constrained Sampling of
p(Θ|I)

It is not easy to sample the distribution p(Θ|I), because
it is non-analytical and high dimensional. The condensation
algorithm [9] provides an efficient way to approximate a
complex distribution based on factored sampling. Recently
it has been used for the face alignment by [13]. We adopt the
hierarchical condensation [13] to sample p(Θ|I), but design
a more efficient proposal density p(Θi|Θi−1) based on the
Markov network model. We also develop a constrained reg-
ularization to improve the accuracy of the locations of sam-
pled shapes.
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Figure 3. The comparison of different sampling strategies. (a) Sampling each feature point independently as in [13]. (b) and (c)
are the results of our algorithm but using different likelihood models for the line segment: (b) models the likelihood only using the
features of two endpoints, (c) uses some edge-based features. The results are from one condensation iteration at the lowest resolution
level with the image size as 64x64 and the local search length as 5. The left image in (a), (b) or (c) shows the sampling probability
of the feature point along the profile. The green line is the initial shape. The probability is proportional to the size of the yellow
point. The right image in (a), (b) or (c) shows 100 shapes sampled by each method.

3.1 Hierarchical Condensation

We denote Θi as the global shape parameters of iteration
i and Ii = {I1, . . . , Ii} as the entire image stream up to that
time. In condensation [9], the rule to propagate the posterior
p(Θi|Ii) is:

p(Θi|Ii) ∝ p(Ii|Θi)p(Θi|Ii−1) (14)

where

p(Θi|Ii−1) =
∫
Θi−1

p(Θi|Θi−1)p(Θi−1|Ii−1)dΘi−1

(15)
To approximate p(Θi|Ii), samples {S(n)

i } are drawn
from p(Θi−1|Ii−1), then each sample is evolved by sam-
pling the proposal density p(Θi|Θi−1). Finally, the

samples are weighted by the image likelihood π
(n)
i =

p(Ii|Θi = S(n)
i ). The posterior p(Θi|Ii) is represented

by the weighted samples {S(n)
i , π

(n)
i }N

n=1.
To make the sampling more efficient, we adopt a hier-

archical structure similar to [7, 13]: the shape resolution
changes from coarse to fine corresponding to a Gaussian
pyramid of the image. The weighted samples obtained at
the resolution level l are propagated to the higher resolution
level l + 1 by factored sampling. We model the proposal
density between adjacent resolution layers p(Θl+1|Θl) as
a Gaussian, as in [7].

During the condensation of one resolution layer, we de-
sign the proposal density p(Θi|Θi−1) to make the shape
parameter move towards regions of higher image likelihood,
as explained in the following section.

3.2 Sampling proposal density p(Θi|Θi−1)

3.2.1 Incorporate Local Shape Prior into Sampling

We design p(Θi|Θi−1) to make the shape parame-
ter move based on the current local image observation
Γ(Θi−1): p(Θi|Θi−1) ∝ p(Θi|Γ(Θi−1)). In the work

in [13], each feature point sj is sampled based on its lo-
cal image likelihood independently: p(Θi|Γ(Θi−1)) ∝∏
j

p(Γj,i−1|sj,i−1). Because no geometry constraints be-

tween feature points are considered during the sampling,
the sampled shape is usually a zigzag. As a result, the reg-
ularized shape cannot attach to the image features closely,
so a precise alignment result cannot be achieved. Also the
sampling is sensitive to the local noise. As shown in Figure
3 (a), because of the strong edge, for the two points below
the jaw, the probability to sample them is very small, so the
sampled shapes are stuck into the wrong region.

Instead, we define the proposal density as the Markov
network based posterior of the line segments Qi:

p(Θi|Γ(Θi−1)) ∝ p(Qi|Γ(Θi−1)) (16)

with the formulation as in Equation (5). In this way, the lo-
cal geometry constraints are incorporated into the sampling
stage.

To sample p(Qi|Γ(Θi−1)), we first discretize the state
space of the Markov network in the neighbor of the cur-
rent shape Si−1 generated from Θi−1, as shown in Fig-
ure 4. The BP algorithm is adopted to calculate the belief
(the marginal posterior) p(qk|Γ(Θi−1)) of each line seg-
ment qk . Then the poses of line segments are sampled se-
quentially, one line segment at a time. To guarantee that
the pose of the line segment sampled satisfies the geometry
constraint with its neighbors previously sampled, each line
segment is sampled from:

p(qk|Γ(Θi−1), N(qk)) ∝ p(qk|Γ(Θi−1))
∏

j∈N(qk)

ψkj(qk,qj)

(17)
where N(qk) denotes the neighbors of qk previously sam-
pled and ψkj(qk,qj) is the potential as in Equation (3).

Since the belief of each line segment is the product of the
local image likelihood and the messages from its neighbors,
a message from a good neighbor will help to alleviate the ef-
fect of local noise. As shown in Figure 3 (b), in this case, to
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1−iq 1+iq
iq

Figure 4. Generate Markov network states. The black line
is the current shape St

l . qi,qi−1,qi+1 are linked Markov
network nodes. The candidate states of qi are generated
along the shape’s profile.

use a similar point likelihood model as in [13], we only use
the features of two endpoints to model the likelihood of a
line segment. Under such model, the likelihoods of the blue
lines (see the left image of Figure 3 (b)) of the node q1 and
q3 are big. Because of the geometry constraint between
the node q2 with q1 and q3, the belief of q2’s red line is
increased. To compare with [13] clearly, we show the cor-
responding marginal distribution of the feature points in the
left image of Figure 3 (b). It is obvious that compared with
[13], the sampling probabilities of the jaw’s feature points
are increased. Furthermore, by using some edge-based fea-
tures to model the likelihood, the ambiguity caused by the
noisy edge is eliminated, as shown in Figure 3 (c).

3.2.2 Constrained Regularization
Based on the proposed line segments, the shape parameter
Θ can be obtained by the BTSM algorithm [16] to minimize
the distance ∆ between the generated shape S(Θ) and the
given shape under the constraint of the deformation param-
eters b’s prior:

Ep = ∆T Σ−1
l ∆ + bT Σ−1

b b (18)

where Σl = diag(σ2
1 , σ

2
2 , ..., σ

2
N ) is the likelihood variance

matrix and Σb is the variance matrix of b. Usually Σl is
set as an identity matrix, and the regularization algorithm
will try to find a solution that minimizes the distance to
each point equally including bad points. As a result, some
sampled points that are already at good positions may be
dragged away, as shown in Figure 5. Integrating such global
shapes as the constraints in the final Markov network op-
timization Equation (8) will decrease the alignment preci-
sion. If we can constrain those good points during the regu-
larization, the problem can be alleviated.

Actually, from the beliefs of the line segments obtained
by the local markov network search, we can approximate
the marginal histogram {sn

k , w
n
k }M

n=1 of the kth feature
point’s position sk = (xk, yk). We parameterize the po-
sition distribution p(sk) as a 1D Gaussian:

p(sk) = G(d(sk, s̄k); 0, ηk) (19)

where s̄k =
∑

n w
n
k · sn

k is the mean position, and d(sk, s̄k)
is the distance between the point and the mean s̄k. From the

(a) (b)

Figure 5. Constrained Regularization. (a) The constraint
weights of the feature points. The blue (darker) line is the
sampled shape. The weight is in a direct ratio to the size
of the yellow point. (b) The results of regularization with
(yellow line) and without (blue line) constraints.

statistical viewpoint, a peaked position distribution implies
that there are no ambiguous regions nearby; therefore it’s
better to keep the point near the mean; while a smoother dis-
tribution means that the point’s position is not clearly deter-
mined and its effect in Equation (18) should be decreased.
Thus we set the weight of each point’s error σk in Equation
(18) in an inverse ratio to its position’s probability:

σk =
1

1 + p(sk)
(20)

As shown in Figure 5, the weights represent each point’s
confidence properly and the constrained regularization
keeps the positions of the good points better than without
constraint. We adopt such constrained regularization for the
condensation at the high resolution layers to improve the
final alignment precision.

4. Experiments

In our experiment, we use a set of face images of size
512 × 512. A total of 87 feature points are manually la-
beled on each image for both the training and testing data
sets. This data set contains the photos of children from 2
to 15 years old with different expressions. Thus the face
shape variance is large. Consequently, although the images
have good quality, the data set is still difficult for precise
alignment.

In the hierarchical condensation stage, a four-level Gaus-
sian pyramid is built by repeated sub-sampling. For each
image layer from coarse to fine, the corresponding face
shape contains 18, 37, 57 and 87 feature points respectively.

4.1 Evaluation of the Shape Constrained
Markov Network

To demonstrate the benefit of the shape constrained
Markov network, we compare our algorithm with the Con-
densation and Condensation + Markov network (running
the Markov network search after the Condensation). The
result of the condensation is set as the mean of the weighted
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(a) (b) (c) (d)

Figure 6. The comparison of our algorithm with Condensa-
tion and Condensation + Markov network. (a) is the source
image and (b) is the labeled shape. In (c), the first row is
Condensation’s result, the second row is the result of Con-
densation + Markov network. (d) is our result.

samples and this mean shape is used as the initial shape for
our algorithm and Condensation + Markov network.

As shown in the first row of Figure 6, the problem of
the condensation is that after regularizing the shape by the
PCA model, some good points that have already positioned
at the boundary may be moved away and the resulting shape
is not very accurate. And from the second row of Figure 6,
we can see, although the Markov network has the ability to
align to the boundary more accurately, it is sensitive to the
local noise, and sometimes the searched shape seems un-
reasonable. For our algorithm, the integrated global shape’s
constraints will provide good guide for the Markov network
search in the ambiguous regions caused by the local noises,
thus a more reasonable and accurate shape can be obtained.

4.2 Comparison with BTSM algorithm

We compare our algorithm (succinctly named as SCMN
in this section) with BTSM [16]. The reason for comparing
with BTSM is that it is an improvement of the classic ASM
algorithm and extensive experiments have demonstrated its
good performance. To the best of our knowledge, BTSM is
one of the most accurate face alignment systems to-date.

We first compare our algorithm with BTSM statistically.
We divide the data set into 428 images for training and 350
images for testing. For each test image, an initial shape
is generated by randomly rotating (from −20◦ to 20◦) and
scaling (from 0.9 to 1.1) the mean shape of the training set,
and it is fed into the two algorithms.

To quantitatively evaluate the accuracy of the algorithm,
we calculate the estimation error by a curve difference mea-
surement. Defining Dk as the distance of one point Pk of
the searched shape to its ground true curve as explained in
Figure 7(a), the estimation error is calculated as:

dist(A)j =
N∑

k=1

DA
k (21)

where dist(A)j denotes the estimation error of algorithmA
on the image j, andN is the number of feature points. Such

Searched shape

Closed contour Two open curves

(b)

P1 P2

P10
P20

Ground truth

(a)

Figure 7. Illustration for shape distance. (a) For the point
P1, D1 is defined as the minimum distance |P1P10|. For
the endpoint P2, D2 is defined as the distance between two
endpoints |P2P20|. (b) The closed contour is broken into
two open curves to calculate the distance.

< 3pixel < 5pixel > 10pixel
SCMN 252(72.0%) 318(90.0%) 5(1.4%)
BTSM 131(37.4%) 239(68.3%) 32(9.1%)

Table 2. The accuracy comparison for the contour. We
show the number of samples with maximum align-
ment errors smaller (or larger) than a threshold.

< 3pixel < 5pixel > 10pixel
SCMN 181(51.7%) 297(84.9%) 2(0.6%)
BTSM 103(29.4%) 243(69.4%) 25(7.1%)

Table 3. The accuracy comparison for the mouth.

< 2pixel < 3pixel > 5pixel
SCMN 321(91.7%) 346(98.9%) 0(0%)
BTSM 160(45.7%) 304(86.9%) 3(0.9%)

Table 4. The accuracy comparison for the eye.

a curve measurement is more reasonable for the comparison
of alignment accuracy, because in many cases the curves are
almost the same although the positions of two sets of control
points are different.

For the whole face alignment, we have plotted j ∼
dist(BTSM)j−dist(SCMN)j in Figure 8(a). It is shown
that on 324 of 350 (92.6%) images, the search results of
our algorithm are better than that of BTSM. Since a hu-
man is more sensitive to the alignment accuracy for facial
contour, eyes, and mouth, we also compare the accuracy of
these three parts respectively. For the facial contour, the
eyes, and the mouth, 307(87.7%), 309(88.3%), 279(79.7%)
of 350 results of our algorithm are better than that of BTSM.
As shown in Figure 8(b), 8(c) and 8(d), the improvement
is distinct. Furthermore, for each algorithm, we calculate
how many samples’ errors (the max distance between two
shapes) are within an accuracy threshold or larger than a er-
ror tolerance (failure). As shown in Table 2, 3 and 4, our
algorithm can improve the alignment accuracy and robust-
ness greatly.

Figure 9 shows a set of searching results of our algorithm
and BTSM. In the case that the facial contour or other facial
sub-parts is largely variant from the average shape or there
are wrinkles and shadings on the face, while by condensa-
tion, our algorithm can recover from these local minimas.

While BTSM can localize the whole face well, the re-
sults are often not accurate enough especially for the mouth,
eyes, and contour, as shown in Figure 10, 11 and 12. Our
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Figure 8. Comparison of the accuracy of our algorithm and BTSM for the whole facial shape (a), facial contour (b), the eyes (c) and
the mouth (d), respectively. The x-axis denotes the index j of test images and the y-axis denotes the difference of the estimation
errors dist(BTSM)j − dist(SCMN)j . Points above y = 0 (blue stars) denote images with better accuracy by our algorithm and
points below y = 0 (red circles) are the opposite.

Figure 9. Comparison of our algorithm and BTSM results. The first row is our results, the second row is BTSM results. The white
rectangles highlight the regions to be compared.

Figure 10. Comparison of our algorithm and BTSM searching results for the mouth part. The first row is the mouth part cut from
the test image, the second row is our results, and the third row is BTSM’s results.

algorithm can obtain much more accurate results.
Currently, it takes about a few seconds to complete face

alignment with our un-optimized research code.

5. Conclusion

In this paper, we have presented a shape constrained
Markov network for accurate face alignment.

Some weighted global shapes sampled by the condensa-
tion algorithm are added as additional shape structure con-
straints into the Markov network optimization. This makes
the algorithm more robust to local noise. During the con-
densation stage, by using the Markov network posterior as
the proposal density and adopting the constrained regular-
ization, the sampled shapes are more close to the image
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Figure 11. Comparison of our algorithm and BTSM searching results for the eye part. First row is the eye part cut from the test
image, the second row is our results, and the third row is BTSM’s result.

(a1) (a2) (a3) (b1) (b2) (b3)

Figure 12. Comparison of our algorithm and BTSM searching results for the facial contour part. (a2) and (b2) are our results, (a3)
and (b3) are BTSM’s results.

features, thus the added global shapes constraints are more
meaningful. We have compared our algorithm with BTSM
and demonstrated greatly improved accuracy.
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