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Abstract: One of the problems facing translation systems that automatically extract transfer mappings (rules or examples) from bilingual corpora is the trade-off between contextual specificity and general applicability of the mappings, which typically results in conflicting mappings without distinguishing context. We present a machine-learning approach to choosing between such mappings, using classifiers that, in effect, selectively expand the context for these mappings using features available in a linguistic representation of the source language input. We show that using these classifiers in our machine translation system significantly improves the quality of the translated output. Additionally, the set of distinguishing features selected by the classifiers provides insight into the relative importance of the various linguistic features in choosing the correct contextual translation.

1 Introduction

Much recent research in machine translation has explored data-driven approaches that automatically acquire translation knowledge from aligned or unaligned bilingual corpora. One thread of this research focuses on extracting transfer mappings, rules or examples, from parsed sentence-aligned bilingual corpora [1,2,3,4]. Recently this approach has been shown to produce translations of quality comparable to commercial translation systems [5].

These systems typically obtain a dependency/predicate argument structure (called “logical form” in our system) for source and target sentences in a sentence-aligned bilingual corpus. The structures are then aligned at the sub-sentence level. From the resulting alignment, lexical and structural translation correspondences are extracted, which are then represented as a set of transfer mappings, rules or examples, for translation. Mappings may be fully specified or contain “wild cards” or under-specified nodes. 

A problem shared by all such systems is choosing the appropriate level of generalization for the mappings. Larger, fully specified mappings provide the best contextual
 translation, but can result in extreme data sparsity, while smaller and more under-specified mappings are more general, but often do not make the necessary contextual translation distinctions. 

All such systems (including our own) must therefore make an implicit or explicit compromise between generality and specificity. For example, Lavoie [4] uses a hand-coded set of language-pair specific alignment constraints and attribute constraints that act as templates for the actual induced transfer rules.

As a result, such a system necessarily produces many mappings that are in conflict with each other and do not include the necessary distinguishing context. A method is needed, therefore, to automatically choose between such mappings.

In this paper, we present a machine-learning approach to choosing between conflicting transfer mappings. For each set of conflicting mappings, we build a decision tree classifier that learns to choose the most appropriate mapping, based on the linguistic features present in the source language logical form. The decision tree, by selecting distinguishing context, in effect, selectively expands the context of each such mapping.

2 Previous Work

Meyers [6] ranks acquired rules by frequency in the training corpus. When choosing between conflicting rules, the most frequent rule is selected. However, this will results in choosing the incorrect translation for input for which the correct contextual translation is not the most frequent translation in the corpus.

Lavoie [4] ranks induced rules by log-likelihood ratio and uses error-driven filtering to accept only those rules that reduce the error rate on the training corpus. In the case of conflicting rules this effectively picks the most frequent rule.

Watanabe [7] addressed a subset of this problem by identifying “exceptional” examples, such as idiomatic or irregular translations, and using such examples only under stricter matching conditions than more general examples. However he also did not attempt to identify what context best selected between these examples.

Kaji [1] has a particularly cogent exposition of the problem of conflicting translation templates and includes a template refinement step. The translation examples from which conflicting templates were derived are examined, and the templates are expanded by the addition of extra distinguishing features such as semantic categories. For example, he refines two conflicting templates for “play <NP>” which translate into different Japanese verbs, by recognizing that one template is used in the training data with sports (“play baseball”, “play tennis”) while the other is used with musical instruments (“play the piano”, “play the violin”). The conflicting templates are then expanded to include semantic categories of “sport” and “instrument” on their respective NPs. This approach is likely to produce much better contextual translations than the alternatives cited. However, it appears that in Kaji’s approach this is a manual step, and hence impractical in a large-scale system. 

The approach described in this paper is analogous to Kaji, but uses machine learning instead of hand-inspection.

3 System Overview
3.1 The logical form
Our machine translation system [5] uses logical form representations (LFs) in transfer. These representations are graphs, representing the predicate argument structure of a sentence. The nodes in the graph are identified by the lemma (base form) of a content word. The edges are directed, labeled arcs, indicating the logical relations between nodes. 

Additionally, nodes are labeled with a wealth of morpho-syntactic and semantic features extracted by the source language analysis module.

Logical forms are intended to be as structurally language-neutral as possible. In particular, logical forms from different languages use the same relation types and provide similar analyses for similar constructions. The logical form abstracts away from such language-particular aspects of a sentence as voice, constituent order and inflectional morphology. Figure 1 depicts an example Spanish logical form, including features such as number, gender, definiteness, etc.
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Figure 1: Example Logical Form

3.2 Acquiring and using transfer mappings

In our MT architecture, alignments between logical form subgraphs of source and target language are identified in a training phase using aligned bilingual corpora. From these alignments a set of transfer mappings is acquired and stored in a database. A set of language-neutral heuristic rules determines the specificity of the acquired mappings. This process is discussed in detail in [8].

During the translation process, a sentence in the source language is analyzed, and its logical form is matched against the database of transfer mappings. From the matching transfer mappings, a target logical form is constructed which serves as input to a generation component that produces a target string. 

3.3 Competing transfer mappings

It is usually the case that multiple transfer mappings are found to match each input sentence, each matching some subgraph of the input logical form. The subgraphs matched by these transfer mappings may overlap, partially or wholly.

Overlapping mappings that indicate an identical translation for the nodes and relations in the overlapping portion are considered compatible. The translation system can merge such mappings when constructing a target logical form.

Overlapping transfer mappings that indicate a different translation for the overlapping portions are considered competing. These mappings cannot be merged when constructing a target logical form, and hence the translation system must choose between them. Figure 2 shows an example of two partially overlapping mappings that compete on the word “presentar”. The first mapping translates “presentar ventaja” as “have advantage”, whereas the second mapping translates “presentar” by itself to “display”.
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Figure 2: Competing transfer mappings

3.4 Conflicting transfer mappings

In this paper we examine the subset of competing mappings that overlap fully. Following Kaji [1] we define conflicting mappings as those whose left-hand sides are identical, but whose right-hand sides differ.

Figure 3 shows two conflicting mappings that translate the same left-hand side, “todo (las) columna(s)”, as “all (of the) column(s)” and “(the) entire column” respectively. 
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Figure 3: Conflicting transfer mappings

4 Data

Our training corpus consists of 351,026 aligned Spanish-English aligned sentence pairs taken from published computer software manuals and online help documents. The sentences have an average length of 17.44 words in Spanish and 15.10 words in English. Our parser produces a parse in every case, but in each language roughly 15% of the parses produced are “fitted” or non-spanning. We apply a conservative heuristic and only use in alignment those sentence-pairs that produced spanning parses in both languages. In this corpus, 277,109 sentence pairs (or 78.9% of the original corpus) were used in training.

5 Using machine learning

The machine learning approach that we use in this paper is a decision tree model. The reason for this choice is a purely pragmatic one: decision trees are easy to construct and easy to inspect. Nothing in our methodology, however, hinges on this particular choice
. 

We use a set of automated tools to construct decision trees [9] based on the features extracted from logical forms. 

5.1 The classification task

Each set of conflicting transfer mappings (those with identical left-hand sides) comprises a distinct classification task. The goal of each classifier is to pick the correct transfer mapping. For each task the data consists of the set of sentence pairs where the common left-hand side of these mappings matches a portion of the source (Spanish) logical form of the sentence pair. For a given training sentence pair for a particular task, the correct mapping is determined by matching the (differing) right-hand sides of the transfer mappings with a portion of the reference target (English) logical form.

5.2 Features

The logical form provides over 200 linguistic features, including semantic relationships such as subject, object, location, manner etc., and features such as person, number, gender, tense, definiteness, voice, aspect, finiteness etc. We use all these features in our classification task.

The features are extracted from the logical form of the source sentence as follows:

1. For every source sentence node that matches a node in the transfer mapping, we extract the lemma, part-of-speech and all other linguistic features available on that node. 

2. For every source node that is a child or parent of a matching node, we extract the relationship between that node and its matching parent or child, in conjunction with the linguistic features on that node.

3. For every source node that is a grandparent of a matching node, we extract the chain of relationships between that node and its matching grandchild in conjunction with the linguistic features on that node.

These features are extracted automatically by traversing the source LF and the transfer mapping. The automated approach is advantageous, since any new features that are added to the system will automatically be made available to the learner. The learner in turn automatically discovers which features are predictive. Not all features are selected for all models by the decision tree learning tools.

5.3 Sparse data problem

Most of the data sets for which we wish to build classifiers are small (our median data set is 134 sentence pairs), making overfitting of our learned models likely. We therefore employ smoothing analogous to average-count smoothing as described by Chen and Goodman [10], which in turn is a variant of Jelinek and Mercer [11] smoothing. 

For each classification task we split the available data into a training set (70%) and a parameter tuning set (30%). From the training set, we build decision tree classifiers at varying levels of granularity (by manipulating the prior probability of tree structures to favor simpler structures). If we were to pick the tree with the maximal accuracy for each data set independently, we would run the risk of over-fitting to the parameter tuning data. Instead, we pool all classifiers that have the same average number of cases per mapping (i.e. per target feature value). For each such pool, we then evaluate the pool as a whole at each level of decision tree granularity and pick the level of granularity that maximizes the accuracy of the pool as a whole. We then choose the same granularity level for all classifiers in the pool.

5.4 Building decision trees

From our corpus of 277,109 sentence pairs, we extracted 161,685 transfer mappings. Among these, there were 7027 groups of conflicting mappings, amounting to 19,582 conflicting transfer mappings in all, or about 2.79 mappings per conflicting group. The median size of the data sets was 134 sentence pairs (training and parameter tuning) per conflicting group.

We built decision trees for all groups that had at least 10 sentence pairs, resulting in a total of 6912 decision trees
. The number of features emitted per data set ranged from 15 to 1775, with an average of 653. (The number of features emitted for each data set depends on the size of the mappings, since each mapping node provides a distinct set of features. The number of features also depends on the diversity of linguistic features actually present in the logical forms of the data set). 

In total there were 1775 distinct features over all the data sets. Of these, 1363 features were selected by at least one decision tree model. The average model had 35.49 splits in the tree, and used 18.18 distinct features.

The average accuracy of the classifiers against the parameter tuning data set was 81.1% without smoothing, and 80.3% with smoothing. By comparison the average baseline (most frequent mapping within each group) was 70.8%
.

Table 1: Training data and decision trees

	Size of corpus used (sentence pairs)
	277,109

	Total number of transfer mappings
	161,685

	Number of conflicting transfer mappings
	19,582

	Number of groups of conflicting mappings
	7,027

	Number of decision tree classifiers built
	6,912

	Median size of the data set used to train each classifier
	134

	Total number of features emitted over all classifiers
	1,775

	Total number of features selected by at least one classifier
	1,363

	Average number of features emitted per data set
	653

	Average number of features used per data set
	18.18

	Average number of decision tree splits
	35.49

	Average baseline accuracy
	70.8%

	Average decision tree accuracy without smoothing
	81.1%

	Average decision tree accuracy with smoothing
	80.3%


6 Evaluating the decision trees

6.1 Evaluation method

We evaluated the decision trees using a human evaluation that compared the output of our Spanish-English machine translation system using the decision trees (WithDT) to the output of the same system without the decision trees (NoDT), keeping all other aspects of the system constant.

Each system used the same set of learned transfer mappings. The system without decision trees picked between conflicting mappings by simply choosing the most frequent mapping, (i.e., the baseline) in each case.

We translated a test set of 2000 previously unseen sentences. Of these sentences, 1683 had at least one decision tree apply. 

For 407 of these sentences at least one decision tree indicated a choice other than the default (highest frequency) choice, hence a different translation was produced between the two systems. Of these 407 different translations, 250 were randomly selected for evaluation.

Seven evaluators from an independent vendor agency were asked to rate the sentences. For each sentence the evaluators were presented with an English reference (human) translation and the two machine translations
. The machine translations were presented in random order, so the evaluators could not know their provenance. 

Assuming that the reference translation was a perfect translation, the evaluators were asked to pick the better machine translation or to pick neither if both were equally good or bad. Each sentence was then rated –1, 0 or 1, based on this choice, where –1 indicates that the translation from NoDT is preferred, 1 indicates that WithDT is preferred, and 0 indicates no preference. The scores were then averaged across all raters and all sentences.

6.2 Evaluation results

The results of this evaluation are presented in Tables 2a and 2b. In Table 2a, note that a mean score of 1 would indicate a uniform preference (across all raters and all sentences) for WithDT, while a score of –1 would indicate a uniform preference for NoDT. The score of 0.33+/-0.093 indicates a strong preference for WithDT. 

Table 2b shows the number of translations preferred from each system, based on the average score across all raters for each translation. Note that WithDT was preferred more than twice as often as NoDT.

The evaluation thus shows that in cases where the decision trees played a role, the mapping chosen by the decision tree resulted in a significantly better translation. 

Table 2a: Evaluation results: Mean Score

	
	Score
	Significance
	Sample size

	WithDT vs. NoDT
	0.330 +/- 0.093
	>0.99999
	250


Table 2b: Evaluation results: Sentence preference

	
	Number of sentences WithDT rated better
	Number of sentences NoDT rated better
	Number of sentences neither rated better

	WithDT vs. NoDT
	167 (66.8%)
	75 (30%)
	8 (3.2%)


7 Comparisons

The baseline NoDT system uses the same (highest-frequency) strategy for choosing between conflicting mappings as is used by Meyers et al [6] and by Lavoie et al [4]. The results show that the use of machine learning significantly improves upon this strategy.

The human classification task proposed by Kaji [1] points us in the right direction, but is impractical for large-scale systems. The machine learning strategy we use is the first automated realization of this strategy.

8 Examining the decision trees

One of the advantages of using decision trees to build our classifiers is that decision trees lend themselves to inspection, potentially leading to interesting insights that can aid system development. In particular, as discussed in Sections 1 and 2, conflicting mappings are a consequence of a heuristic compromise between specificity and generality when the transfer mappings are acquired. Hence, examining the decision trees may help understand the nature of that compromise.

We found that of a total of 1775 features, 1363 (77%) were used by at least one decision tree, 556 (31%) of them at the top-level of the tree. The average model had 35.49 splits in the decision tree, and used 18.18 distinct features. Furthermore, the single most popular feature accounted for no more than 8.68% of all splits and 10.4% of top-level splits. 

This diversity of features suggests that the current heuristics used during transfer mapping acquisition strike a good compromise between specificity and generality. This is complemented by the learner, which enlarges the context for our mappings in a highly selective, case-by-case manner, drawing upon the full range of linguistics features available in the logical form.

9 An example

We used DnetViewer [12], a visualization tool for viewing decision trees and Bayesian networks, to explore the decision trees, looking for interesting insights into problem areas in our MT system. Figure 4 shows a simple decision tree displayed by this viewer. The text has been enlarged for readability and each leaf node has been annotated with the highest probability mapping (i.e., the mode of the predicted probability distribution shown as a bar chart) at that node.

The figure depicts the decision tree for the transfer mappings for (*—Attrib—agrupado), which translates, in this technical corpus, to either “grouped”, “clustered”, or “banded”. The top-level split is based on the input lemma that matches the * (wild-card) node. If this lemma is “indice” then the mapping for “clustered” is chosen.

If the lemma is not “indice”, the next split is based on whether the parent node is marked as indefinite, which leads to further splits, as shown in the figure, based again on the input lemma that matches the wild-card node.

Examples of sentence pairs used to build this decision tree:

Los datos y el índice agrupado residen siempre en el mismo grupo de archivos.

The data and the clustered index always reside in the same filegroup.

Se produce antes de mostrar el primer conjunto de registros en una página de datos agrupados.

Occurs before the first set of records is displayed on a banded data page.

En el caso de páginas de acceso a datos agrupadas, puede ordenar los registros incluidos en un grupo.

For grouped data access pages, you can sort the records within a group.
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Figure 4: Decision tree for (*—Attrib—agrupado)

10 Conclusions and future work

We have shown that applying machine learning to this problem resulted in a significant improvement in translation over the highest-frequency strategy used by previous systems. 

However, we built decision trees only for conflicting mappings, which comprise a small subset of competing transfer mappings (discussed in Section 3.3). For instance, in our test corpus, on average, 38.67 mappings applied to each sentence, of which 12.76 mappings competed with at least one other mapping, but of these only 2.35 were conflicting (and hence had decision trees built for them). We intend on extending this approach to all competing mappings, which is likely to have a much greater impact. This is, however, not entirely straightforward, since such matches compete on some sentences but not others.

In addition, we would like to explore whether abstracting away from specific lemmas, using thesaurus classes, WordNet syn-sets or hypernyms, etc. would result in improved classifier performance.
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� In this paper, context refers only to that within the same sentence. We do not address issues of discourse or document-level context.


� Our focus in this paper is understanding this key problem in data-driven MT, and the application of machine learning to it, and not the learner itself. Hence we use an off-the-shelf learner and do not compare different machine learning techniques etc.


� We discard mappings with frequency less than 2. A conflicting mapping group (at least 2 mappings) would have, at minimum, 4 sentence pairs. The 115 groups for which we don’t build decision trees are those with 4 to 9 sentence pairs each.


� All of the averages mentioned in this section are weighted in proportion to the size of the respective data sets.


� Since the evaluators are given a high-quality human reference translation, the original Spanish sentence is not essential for judging the MT quality, and is therefore omitted. This controls for differing levels of fluency in Spanish among the evaluators.
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