
Locally Adaptive Dimensionality Reduction
for Indexing Large Time Series Databases

KAUSHIK CHAKRABARTI
Microsoft Research
EAMONN KEOGH
University of California at Riverside
and
SHARAD MEHROTRA and MICHAEL PAZZANI
University of California at Irvine

Similarity search in large time series databases has attracted much research interest recently. It
is a difficult problem because of the typically high dimensionality of the data. The most promising
solutions involve performing dimensionality reduction on the data, then indexing the reduced data
with a multidimensional index structure. Many dimensionality reduction techniques have been
proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT),
and the Discrete Wavelet Transform (DWT). In this article, we introduce a new dimensionality
reduction technique, which we call Adaptive Piecewise Constant Approximation (APCA). While
previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items
in the database that minimizes the global reconstruction error, APCA approximates each time series
by a set of constant value segments of varying lengths such that their individual reconstruction
errors are minimal. We show how APCA can be indexed using a multidimensional index structure.
We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast
searching: a lower bounding Euclidean distance approximation, and a non-lower-bounding, but very
tight, Euclidean distance approximation, and show how they can support fast exact searching and
even faster approximate searching on the same index structure. We theoretically and empirically
compare APCA to all the other techniques and demonstrate its superiority.
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1. INTRODUCTION

Time series account for a large proportion of the data stored in financial, medical
and scientific databases. Recently, there has been much interest in the prob-
lem of similarity search (query-by-content) in time series databases. Similarity
search is useful in its own right as a tool for exploratory data analysis, and it is
also an important element of many data mining applications such as clustering
[Debregeas and Hebrail 1998], classification [Keogh and Pazzani 1998; Ng et al.
1998], and mining of association rules [Das et al. 1998].

The similarity between two time series is typically measured with Euclidean
distance, which can be calculated very efficiently. However, the volume of data
typically encountered exasperates the problem. Multi-gigabyte datasets are
very common. As typical example, consider the MACHCO project. This database
contains more than a terabyte of data and is updated at the rate of several
gigabytes a day [Welch and Quinn 1999].

The most promising similarity search methods are techniques that perform
dimensionality reduction on the data, then use a multidimensional index struc-
ture to index the data in the transformed space. The technique was introduced
in Agrawal et al. [1993] and extended in Rafiei [1999], Loh et al. [2000] and
Chu and Wong [1999]. The original work by Agrawal et al. [1993] utilizes the
Discrete Fourier Transform (DFT) to perform the dimensionality reduction, but
other techniques have been suggested, including Singular Value Decomposition
(SVD) [Korn et al. 1997; Keogh et. al. 2000; Kanth et al. 1998], the Discrete
Wavelet Transform (DWT) [Chan and Fu 1999; Wu et al. 2000; Kahveci and
Singh 2001] and Piecewise Aggregate Approximation (PAA) [Keogh et al. 2000;
Yi and Faloutsos 2000].

For a given index structure, the efficiency of indexing depends only on the
fidelity of the approximation in the reduced dimensionality space. However, in
choosing a dimensionality reduction technique, we cannot simply choose an ar-
bitrary compression algorithm. What is required is a technique that produces
an indexable representation. For example, many time series can be efficiently
compressed by delta encoding, but this representation does not lend itself to
indexing. In contrast SVD, DFT, DWT and PAA all lend themselves natu-
rally to indexing, with each eigenwave, fourier coefficient, wavelet coefficient or
aggregate segment mapping onto one dimension of an index tree.

The main contribution of this article is to propose a simple, but highly
effective, compression technique, Adaptive Piecewise Constant Approxima-
tion (APCA), and show that it can be indexed using a multidimensional
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Fig. 1. A visual comparison of the time series representation proposed in this article (APCA), and
the three other representations advocated in the literature. For fair comparison, all representations
have the same compression ratio. The reconstruction error is the Euclidean distance between the
original time series and its approximation.

index structure. This representation was considered by other researchers, but
they suggested it “does not allow for indexing due to its irregularity” [Yi and
Faloutsos 2000]. We show that indexing APCA is possible, and using APCA is
up to one to two orders of magnitude more efficient than alternative techniques
on real world datasets. We define the APCA representation in detail in Section
3; however an intuitive understanding can be gleaned from Figure 1.

There are many situations in which a user would be willing to sacrifice some
accuracy for significant speed-up [Bennett et al. 1999]. With this in mind, we
introduce two distance measures defined on the APCA representation. The first
tightly lower bounds the Euclidean distance metric and is used to produce
exact nearest neighbors. The second is not lower bounding, but produces a
very close approximation of Euclidean distance and can be used to quickly find
approximate nearest neighbors. Both methods can be supported by the same
index structure so that a user can switch between fast exact search and even
faster approximate search. Additionally, we show that the APCA representation
can support queries where the distance measure is an arbitrary Lp norm (i.e.,
p = 1, 2, . . . ,∞).

The rest of the article is organized as follows: In Section 2, we provide back-
ground on and review related work in time series similarity search. In Section 3,
we introduce the APCA representation, an algorithm to compute it efficiently
and two distance measures defined on it. In Section 4, we demonstrate how
to index the APCA representation. Section 5 contains a comprehensive experi-
mental comparison of APCA with all the competing techniques. In Section 6, we
discuss several advantages APCA has over the competing techniques, in addi-
tion to being faster. Section 7 offers conclusions and directions for future work.

2. BACKGROUND AND RELATED WORK

Given two time series Q = {q1, . . . , qn} and C = {c1, . . . , cn}, their Euclidean
distance is defined as:

D(Q,C) ≡
√√√√ n∑

i=1

(qi − ci)2 (1)

Figure 2 shows the intuition behind the Euclidean distance.
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Fig. 2. The intuition behind the Euclidean distance. The Euclidean distance can be visualized as
the square root of the sum of the squared lengths of the gray lines.

Fig. 3. The subsequence matching problem can be converted into the whole matching problem by
sliding a “window” of length n across the long sequence and making copies of the data falling withi
the windows.

There are essentially two ways the data might be organized [Faloutsos et al.
1994]:

—Whole Matching. Here it assumed that all sequences to be compared are the
same length n.

—Subsequence Matching. Here we have a query sequence Q (of length n), and
a longer sequence C (of length m). The task is to find the subsequence in
C of length n, beginning at ci, which best matches Q, and report its offset
within C.

Whole matching requires comparing the query sequence to each candidate
sequence by evaluating the distance function and keeping track of the sequence
with the lowest distance. Subsequence matching requires that the query Q be
placed at every possible offset within the longer sequence C. Note it is possible
to convert subsequence matching to whole matching by sliding a “window” of
length n across C, and making copies of the (m-n) windows. Figure 3 illustrates
the idea. Although this causes storage redundancy, it simplifies the notation
and algorithms, so we will adopt this policy for the rest of this article.

There are two important kinds of queries that we would like to support in
time series database, range queries (e.g., return all sequences within an epsilon
of the query sequence) and nearest neighbor (e.g., return the K closest sequences
to the query sequence). The brute force approach to answering these queries,
sequential scanning, requires comparing every time series ci to Q. Clearly, this
approach is unrealistic for large datasets.

Any indexing scheme that does not examine the entire dataset could poten-
tially suffer from two problems, false alarms and false dismissals. False alarms

ACM Transactions on Database Systems, Vol. 27, No. 2, June 2002.



192 • K. Chakrabarti et al.

occur when objects that appear to be close in the index are actually distant.
Because false alarms can be removed in a post-processing stage (by confirm-
ing distance estimates on the original data), they can be tolerated so long as
they are relatively infrequent. A false dismissal is when qualifying objects are
missed because they appear distant in index space.

We refer to similarity-searching techniques that guarantee no false dis-
missals as exact, and techniques that do not have this guarantee as
approximate. Approximate techniques can still be very useful for exploring large
databases, particularly if the probability of false dismissal is low. We review ap-
proximate techniques in Section 2.1 and exact techniques in Section 2.2.

2.1 Approximate Techniques for Similarity Searching

Several researchers have suggested abandoning the insistence on exact search
in favor of a much faster search that returns approximately the same results.
Typically, this involves transforming the data with a lossy compression scheme,
then doing a sequential search on the compressed data. Typical examples in-
clude Shatkay and Zdonik [1996], Keogh and Smyth [1997], Li et al. [1998],
and Wang and Wang [2000], who all utilize a piecewise linear approximation.
Others have suggested transforming the data into a discrete alphabet and using
string-matching algorithms [Agrawal et al. 1995b; Huang and Yu 1999; Park
et al. 1999; Lam and Wong 1998; Jonsson and Badal 1997; Qu et al. 1998].
All these approaches suffer from some limitations. They are all evaluated on
small datasets residing in main memory, and it is unclear if they can be made
to scale to large databases. Further, the systems are evaluated without consid-
ering precision and recall, thus we can say little or nothing about the quality
of the returned answer set.

The work of Agrawal et al. [1995a], Perng et al. [2000], Struzik and Siebes
[1999], and Keogh and Pazzani [1998, 1999] differs from the above in that
they focus in providing a more flexible query language and not on performance
issues.

2.2 Exact Techniques for Similarity Searching

A time series C = {c1, . . . , cn}with n datapoints can be considered as a point in n-
dimensional space. This immediately suggests that time series could be indexed
by multidimensional index structure such as the R-tree and its many variants
[Guttman 1984]. Since realistic queries typically contain 20 to 1,000 datapoints
(i.e., n varies from 20 to 1000) and most multidimensional index structures
have poor performance at dimensionalities greater than 8-12 [Chakrabarti
and Mehrotra 1999], we need to first perform dimensionality reduction in or-
der to exploit multidimensional index structures to index time series data. In
Faloutsos et al. [1994], the authors introduced GEneric Multimedia INdexIng
method (GEMINI), which can exploit any dimensionality reduction method to
allow efficient indexing. The technique was originally introduced for time se-
ries, but has been successfully extend to many other types of data [Korn et al.
1997].
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Table I. An Outline of the GEMINI Indexing Building Algorithm

Algorithm BuildIndex(C,n); //C is the dataset, n is size of the window
begin
1. for all objects in database
2. Ci ← Ci // Optional: remove the mean of Ci
3. C̄i ← SomeTransformation(Ci); // C̄i is some dimensionality reduced representation
4. Insert C̄i into the Spatial Access Method with a pointer to Ci on disk;
5. endfor
end

An important result in Faloutsos et al. [1994] is that the authors proved
that, in order to guarantee no false dismissals, the distance measure in the
index space must satisfy the following condition:

Dindex space(A,B) ≤ Dtrue(A,B)

This theorem is known as the lower bounding lemma or the contractive prop-
erty. Given the lower bounding lemma, and the ready availability of off-the-shelf
multidimensional index structures, GEMINI requires just the following three
steps.

(a) Establish a distance metric from a domain expert (in this case, Euclidean
distance).

(b) Produce a dimensionality reduction technique that reduces the dimension-
ality of the data from n to N , where N can be efficiently handled by your
favorite index structure.

(c) Produce a distance measure defined on the N dimensional representation
of the data, and prove that it obeys Dindex space(A,B) ≤ Dtrue(A,B).

Table I contains an outline of the GEMINI indexing algorithm. All sequences
in the dataset C are transformed by some dimensionality reduction technique1

and then indexed by the index structure of choice. The indexing tree repre-
sents the transformed sequences as points in N dimensional space. Each point
contains a pointer to the corresponding original sequence on disk.

Note that each sequence has its mean subtracted before indexing. This has
the effect of shifting the sequence in the y-axis such that its mean is zero,
removing information about its offset. This step is included because, for most
applications, the offset is irrelevant when computing similarity.

Table II contains an outline of the GEMINI range query algorithm.
The range query algorithm is called as a subroutine in the K Nearest Neigh-

bor algorithm outlined in Table III. There are several optimizations to this basic
K Nearest Neighbor algorithm that we utilize in this article [Seidl and Kriegel
1998]. We discuss them in more detail in Section 4.

1We remove the mean (optionally) because, for many applications, we are only interested in the
similarity based on the shape of the sequence and not its vertical offset from the x-axis. If the offset
is not removed, it would dominate the Euclidean distance function leading to unintuituve notions
of similarity [Chan and Fu 1999]. We remove the mean for the experiments in this article. For the
illustrative examples we use in this article, we do not remove the mean for simplicity.
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Table II. The GEMINI Range Query Algorithm

Algorithm RangeQuery(Q,ε)
begin
1. Project the query Q into the same feature space as the index.
2. Find all candidate objects in the index within ε of the query.
3. Retrieve from disk the actual sequences pointed to by the candidates.
4. Compute the actual distances, and discard false alarms.
end

Table III. The GEMINI Nearest Neighbor Algorithm

Algorithm K NearestNeighbor(Q,K)
begin
1. Project the query Q into the same feature space as the index.
2. Find the K nearest candidate objects in the index.
3. Retrieve from disk the actual sequences pointed to by the candidates.
4. Compute the actual distances and record the maximum, call it εmax.
5. Issue the range query, RangeQuery(Q,εmax);
6. Compute the actual distances, and choose the nearest K.
end

The efficiency of the GEMINI query algorithms depends only on the qual-
ity of the transformation used to build the index. The tighter the bound on
Dindex space(A,B)≤ Dtrue(A,B) the better, as tighter bounds imply fewer false
alarms, hence lower query cost [Chakrabarti and Mehrotra 2000]. Time series
are usually good candidates for dimensionality reduction because they tend to
contain highly correlated features. For brevity, we will not describe the three
main dimensionality reduction techniques, SVD, DFT and DWT, in detail. In-
stead, we refer the interested reader to the relevant papers or to Keogh et al.
[2000], which contains a survey of all the techniques. We briefly revisit related
work in Section 6 when the reader has developed more intuition about our
approach.

3. ADAPTIVE RESOLUTION REPRESENTATION

In recent work, Keogh et al. [2000] and Yi and Faloutsos [2000] independently
suggested approximating a time series by dividing it into equal-length segments
and recording the mean value of the datapoints that fall within the segment.
The authors use different names for this representation (Keogh et al. [2000]
calls it Piecewise Aggregate Approximation while Yi and Faloutsos [2000] calls
it Segmented-Means); we will refer to it as Piecewise Aggregate Approximation
(PAA) in this article. This simple technique is surprisingly competitive with the
more sophisticated transforms.

The fact that each segment in PAA is the same length facilitates indexing
of this representation. Suppose, however, we relaxed this requirement and al-
lowed the segments to have arbitrary lengths; does this improve the quality of
the approximation? Before we consider this question, we must remember that
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Fig. 4. A comparison of the reconstruction errors of the equal-size segment approach (PAA) and
the variable length segment approach (APCA), on a collection of miscellaneous datasets. (A) IN-
TERBALL Plasma processes. (B) Darwin sea level pressures. (C) Space Shuttle telemetry. (D)
Electrocardiogram. (E) Manufacturing. (F) Exchange rate.

the approach that allows arbitrary length segments, which we call Adaptive
Piecewise Constant Approximation (APCA), requires two numbers per segment.
The first number records the mean value of all the datapoints in segment, the
second number records the length. So a fair comparison is N PAA segments to
M APCA segments, were M = [N/2].

It is difficult to make any intuitive guess about the relative performance of
the two techniques. On one hand, PAA has the advantage of having twice as
many approximating segments. On the other hand, APCA has the advantage
of being able to place a single segment in an area of low activity and many
segments in areas of high activity. In addition, one has to consider the structure
of the data in question. It is possible to construct artificial datasets where one
approach has an arbitrarily large reconstruction error, while the other approach
has a reconstruction error of zero.

Figure 4 illustrates a fair comparison between the two techniques on sev-
eral real datasets. Note that for the task of indexing, subjective feelings about
which technique “looks better” are irrelevant. All that matters is the quality of
the approximation, which is given by the reconstruction error (because lower
reconstruction errors result in tighter bounds on Dindex space(A,B)≤ Dtrue(A,B).).

On five of the six time series, APCA outperforms PAA significantly. Only on
the Exchange Rate data are they essentially the same. In fact, we repeated
similar experiments for more than 40 different time series datasets, over a
range of sequence lengths and compression ratios and we found that APCA
is always at least as good as PAA, and usually much better. This comparison
motivates our approach. If the APCA representation can be indexed, its high
fidelity to the original signal should allow very efficient pruning of the index
space (i.e., few false alarms; hence, low query cost). We show how APCA can
be indexed in the next section (Section 4). In the rest of this section, we define
the APCA representation formally, describe the algorithm to obtain the APCA
representation of a time series and discuss the distance measures for APCA.
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Table IV. The Notation Used in this Article

Symbols Definitions
S Number of objects in the database.
N Length of time series (a.k.a. query length, original

dimensionality)
C = {c1, . . . , cn} A time series in a database, stored a vector of length n.
Q = {q1, . . . , qn} A query time series, represented as a vector of length n.

N Dimensionality of index structure, with N ¿ n.
M Number of segments in APCA representation, with M = [N /2].

C = An adaptive piecewise constant approximation of C, with ci
{〈cv1,cr1〉, . . . ,〈cvM ,crM 〉} the mean value of ith segment and cri the right

endpoint of ith segment.
Q ′ = Also an adaptive piecewise constant approximation, but

{〈qv1,qr1〉, . . . ,〈qvM ,qrM 〉} obtained using a special algorithm as describe in Eq. (4).
D(Q,C) Euclidean distance

DAE (Q,C) An non-lower bounding approximation of Euclidean distance
DLB(Q,C) or DLB(Q ′,C) A lower bounding approximation of the Euclidean distance

cmaxi , cmini The max and min values of APCA representation C in ith
segment

R= (L, H)= MBR associated with a node (say U) of the index built on
({l1, . . . , lN }, {h1, . . . , hN }) N -dimensional APCA space; L = {l1, . . . , lN } and H =

{h1, . . . , hN } denote the lower and higher endpoints of the
major diagonal of R.

C̄ = ({cmin1, cr1, . . . , cminM , APCA rectangle corresponding to APCA point C
crM }, {cmax1, cr1, . . . ,

cmaxM , crM })
GR

i = {GR
i [1], GR

i [2], ith region associated with R; GR
i [1] and GR

i [3] are low and
GR

i [3], GR
i [4]} high bounds along the value axis; GR

i [2] and GR
i [4] are

those along the time axis
MINDIST(Q, R) Minimum distance of MBR R from query time series Q

MINDIST(Q, R, t) Minimum distance of MBR R from Q at time instant t
MINDIST(Q, G, t) Minimum distance of region G from Q at time instant t

3.1 The APCA Representation

Given a time series C = {c1, . . . , cn}, we need to be able to produce an APCA
representation, which we represent as

C = {〈cv1, cr1〉, . . . , 〈cvM , crM 〉}, cr0 = 0 (2)

where cvi is the mean value of datapoints in the ith segment (i.e., cvi =
mean(Ccri−1+1,...,Ccri )) and cri the right endpoint of the ith segment. We do not
represent the length of the segments but record the locations of their right end-
points instead for indexing reasons as will be discussed in Section 4. The length
of the ith segment can be calculated as (cri − cri−1). Figure 5 illustrates this
notation.

3.2 Obtaining the APCA Representation

As mentioned before, the performance of the index structure built on the
APCA representation defined in Eq. (2) depends on how closely the APCA
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Fig. 5. A time series C and its APCA representation C, with M = 4.

representation approximates the original signal. Closer the approximation,
fewer the number of false alarms, better the performance of the index. We
say that an M-segment APCA representation C of a time series C is optimal (in
terms of the quality of approximation) iff Chas the least reconstruction error
among all possible M-segment APCA representations of C. Finding the opti-
mal piecewise polynomial representation of a time series requires a O(Mn2)
dynamic programming algorithm [Faloutsos et al. 1997; Pavlidis 1976]. This
is too slow for high-dimensional data. In this article, we propose a new algo-
rithm to produce almost optimal APCA representations in O(n log (n)) time.
The algorithm works by first converting the problem into a wavelet compres-
sion problem, for which there are well-known optimal solutions, then convert-
ing the solution back to the ACPA representation and (possibly) making minor
modifications. The algorithm leverages off the fact that the Haar wavelet trans-
formation of a time series signal can be calculated in O(n), and that an optimal
reconstruction (i.e., having least reconstruction error) of the signal for any level
of compression (i.e., #retained coefficients/n) can be obtained by sorting the co-
efficients in order of decreasing normalized magnitude, then truncating off the
smaller coefficients [Stollnitz et al. 1995]. The segments in the reconstructed
signal may have approximate mean values (due to truncation); we replace them
by the exact mean values to get a valid APCA representation as defined in
Eq. (2). There are, however, two issues we must address before utilizing this
approach.

(1) The DWT is defined only for time series with a length that is an integer
power of two while n may not necessarily be a power of two. This problem
can be solved easily by padding those time series with zeros, then truncating
the corresponding segment after performing the DWT.

(2) There is no exact mapping between the number of Haar coefficients retained
and the number of segments in the APCA representation resulting from the
reconstruction. For example, a single coefficient Haar approximation could
produce a 1-, 2-, or 3-segment APCA representation. Our solution is to keep
the largest M coefficients; this will produce an APCA representation with
the number of segments between M and 3M. If the number of segments

2The parameter M should be chosen judiciously. If M is too large, the dimensionality N of index
structure (N = 2M ) will be high resulting in high query cost (due to dimensionality curse). If M is
too small, the reconstruction error may become large leading to too many false positives and hence
high query cost. So, M should be chosen such that the overall reconstruction error remains low
without letting the dimensionality exceed the critical threshold of the index structure (above which
it performs worse than sequential scan). The actual choice of M would depend on the dataset and
the multidimensional index structure used.

ACM Transactions on Database Systems, Vol. 27, No. 2, June 2002.



198 • K. Chakrabarti et al.

Table V. An Algorithm to Produce the APCA

Algorithm Compute APCA(C,M )2

begin
1. if length(C) is not a power of two, pad it with zeros to make it so.
2. Perform the Haar Discrete Wavelet Transform on C.
3. Sort coefficients in order of decreasing normalized magnitude, truncate after M.
4. Reconstruct approximation (APCA representation) of C from retained coeffs.
5. If C was padded with zeros, truncate it to the original length.
6. Replace approximate segment mean values with exact mean values.
7. while the number of segments is greater than M
8. Merge the pair of segments that can be merged with least rise in error
9. endwhile
end

Table VI. Haar Wavelet Transform for APCA Computation

Resolution Averages Detail Coefficients
3 [7, 5, 5, 3, 3, 3, 4, 6] —
2 [6, 4, 3, 5] [1, 1, 0, −1]
1 [5, 4] [1, −1]
0 [4.5] [0.5]

is more than M, adjacent pairs of segments are merged until exactly
M segments remain. The segment pairs targeted for merging are those
that can be fused into a single segment with the minimum increase in re-
construction error.

Table V contains the outline of the algorithm.
We illustrate the working of the above algorithm using a numerical example.

Example 1 (Computing APCA Representation). Let us consider a time
series C = [7, 5, 5, 3, 3, 3, 4, 6]. Table VI shows the Haar wavelet decom-
position of the series. We start by pairwise averaging the values to get a
new “lower-resolution” representation of the data with the following aver-
age values [(7+ 5)/2, (5+ 3)/2, (3+ 3)/2, (4+ 6)/2]= [6, 4, 3, 5]. Obviously,
some information is lost in this averaging process. To be able to reconstruct
the original series, we need to also store the differences of the (second of
the) averaged values from the computed pairwise average, that is [6 − 5,
4− 3, 3− 3, 5− 6]= [1, 1, 0,−1]. These are called the detail coefficients. Apply-
ing the pairwise averaging and differencing process recursively on the lower-
resolution array containing the averages, we get the full decomposition shown in
Table VI.

The wavelet transform WC of C consists of the single coefficient representing
the overall average of data values followed by the detailed coefficients in the
order of increasing resolution. So WC = [4.5, 0.5, 1, −1, 1, 1, 0, −1]. To take
into account the importance of a coefficient with regard to the reconstruction
of the original series (i.e., the number of elements in the series it contributes to
the reconstruction of), we normalize the transform by dividing each coefficient
by 2(l/2) where l is the level of resolution of the coefficient. So the normalized
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Fig. 6. Step-by-step working of Compute APCA algorithm. (a) Original time series C= [7, 5,
5, 3, 3, 3, 4, 6] (b) Time series reconstructed from the M (3 in this case) best wavelet coefficients
of C. The reconstructed series has 4 segments (segment boundaries indicated by dots). The mean
value of each segment is shown just above the segment. (c) Reconstructed time series with approx-
imate means replaced by exact means (cvi ’s). (d) Final APCA representation obtained by merging
segments 2 and 3 (to reduce the number of segments to M = 3).

wavelet transform of C is

Wc =
[
4.5, 0.5,

1√
2

,
−1√

2
,

1
2

,
1
2

, 0,
−1
2

]
.

Suppose M = 3. So we would retain the three coefficients with highest nor-
malized magnitude, that is, the first, third and fourth coefficients. Figure 6(a)
and (b) show the original time series C and time series reconstructed from
those 3 coefficients respectively. Figure 6(c) shows the reconstructed time se-
ries with approximate segment mean values replaced by the exact ones. Finally,
we need to merge one pair of segments to reduce the number of segments to
M = 3; segment 2 and 3 is the best pair to merge as it results in the minimum
increase in reconstruction error. Figure 6(d) shows the final 3-segment APCA
representation of C produced by the Compute APCA algorithm.

We experimentally compared this algorithm with several of the heuristic,
merging algorithms [Faloutsos et al. 1997; Pavlidis 1976; Shatkay and Zdonik
1996] and found it is faster (at least 5 times faster for any length time series)
and slightly superior in terms of reconstruction error.

3.3 Distance Measures Defined for the APCA Representation

Suppose we have a time series C, which we convert to the APCA representation
C, and a query time series Q. Clearly, no distance measure defined between Q
and C can be exactly equivalent to the Euclidean distance D(Q,C) (defined in
Eq. (1)) because C generally contains less information than C. However, we will
define two distance measures between Q and C that approximate D(Q,C). The
first, DAE(Q,C) is designed to be a very tight approximation of the Euclidean
distance, but may not always lower bound the Euclidean distance D(Q,C).
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Fig. 7. A visualization of the two distance measures define on the APCA representation. (I) A
query time series Q and a APCA object C. (II) The DAE measure can be visualized as the Euclidean
distance between Q and the reconstruction of C. (III) Q ′ is obtained by projecting the endpoints of
Conto Q and calculating the mean values of the sections falling within the projected lines. (IIII)
The DLB measure can be visualized as the square root of the sum of the product of squared length
of the gray lines with the length of the segments they join.

The second, DLB(Q,C) is generally a less tight approximation of the Euclidean
distance, but is guaranteed to lower-bound, a property necessary to utilize
the GEMINI framework. These distance measures are defined below; Figure 7
illustrates the intuition behind the formulas.

3.3.1 An Approximate Euclidean Measure DAE . Given a query Q, in raw
data format, and a time series C in the APCA representation, DAE(Q,C) is
defined as:

DAE(Q,C) ≡
√√√√ M∑

i=1

cr1−cri=1∑
k=1

(cvi − qk+cri=1 )2. (3)

This measure can be efficiently calculated in O(n), and it tightly approxi-
mates the Euclidean distance, unfortunately it has a drawback that prevents
its use for exact search.

PROPOSITION 1. DAE(Q,C ) does not satisfy the triangular inequality.

PROOF. By counter example.
The triangular inequality states that for any objects α, β and χ

d (α, β) ≤ d (α, χ )+ d (β, χ ).

In other words, if DAE(Q, C)obeys triangle inequality, there can exist no object
A, B and C such that

DAE(A,B) ≥ DAE(A,C)+ DAE(B,C).

We prove our proposition by finding three such objects.
Consider the time series A={−1,−1,−2, 1, 2}, B={1, 1, 0,−1,−1} and

C={0, 1, 0, 1,−2}. The 2-segment APCA representations of A, B and C as
produced by the Compute APCA algorithm are A = {〈−1, 2〉, 〈1/3, 5〉}, B =
{〈2/3, 3〉, 〈−1, 5〉} and C={〈1/2, 2〉, 〈−1/3, 5〉}, respectively.
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According to Eq. (3),

DAE(A, B)

≡
√(

2
3
− (−1)

)2

+
(

2
3
− (−1)

)2

+
(

2
3
− (−2)

)2

+ (−1− 1)2 + (−1− 2)2

≡
√

2.7777+ 2.7777+ 7.1111+ 4+ 9 ≡ 5.0662

Similarly, DAE(A,C) = 3.8079 and DAE(B, C) = 1.2247.
So, DAE(A,C)+ DAE(B,C) = 5.0326.
⇒ DAE(A,B) ≥ DAE(A,C)+ DAE(B,C)
This implies DAE(Q,C) does not satisfy the triangular inequality.

The failure of DAE to obey the triangular inequality means that it may
not lower bound the Euclidean distance and thus cannot be used for exact
indexing [Yi et al. 1998]. However, we demonstrate later that it is very useful
for approximate search.

3.3.2 A Lower-Bounding Measure DLB. To define DLB(Q,C), we must first
introduce a special version of the APCA. Normally, the algorithm mentioned in
Section 3.2 is used to obtain this representation. However we can also obtain
this representation by “projecting” the endpoints of C onto Q, and finding the
mean value of the sections of Q that fall within the projected intervals. A time
series Q converted into the APCA representation this way is denoted as Q ′. The
idea can be visualized in Figure 7(III).
Q ′ is defined as:

Q ′ = {〈qv1, qr1〉, . . . , 〈qvM , qrM 〉}, where qri = cri and
qvi = mean

(
qcri−1+1, . . . , qcri

)
(4)

DLB(Q ′, C) is defined as: DLB(Q ′, C) ≡
√√√√ M∑

i=1

(cri − cri−1)(qvi − cvi)2 (5)

We illustrate the computation of DLB(Q ′, C) using a numerical example
below.

Example 2 (Computation of DLB(Q ′,C )). Let us consider a time series
A={4, 6, 1, 0, 2}. The 2-segment APCA representation of A as produced by
the Compute APCA algorithm is A = {〈5, 2〉, 〈1, 5〉}. Let Q={5, 3, 5, 6, 7} be a
query time series. To compute DLB(Q ′, C), we first compute Q ′ = {〈4, 2〉, 〈6, 5〉}.
DLB(Q ′, C) =

√
(2− 0)(4− 5)2 + (5− 2)(6− 1)2 = 8.775. Note that DLB(Q ′,C)

lower bounds D(Q,C) =
√

(5− 4)2 + (3− 6)2 + (5− 1)2 + (6− 0)2 + (7− 2)2 =
9.327. The formal proof is shown below.

LEMMA 1: DLB (Q ′,C ) lower bounds the Euclidean Distance D(Q,C).

PROOF. We present a proof for the case where there is a single segment in
the APCA representation. The more general proof for the M segment case can
be obtained by applying the proof to each of the M segments.
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Let W ={w1, w2, . . . , wp} be a vector of p real numbers. Let W̄ denote the
arithmetic mean of W , that is, W̄ = (6wi)/p. We define a vector 1W of real
numbers where 1wi ≡ W̄ −wi. It is easy to see that 61wi = 0. The definition
of1wi allows us to substitute wi by W̄ −1wi, a fact which we will utilize in the
proof below.

Let Q and C be the query and data time series respectively, with |Q| = |C| = n.
Let Q ′ and C be the corresponding APCA vectors as defined in Eqs. (4) and (2),
respectively.

We want to prove
√∑n

i=1(qi − ci)2 ≥
√∑M

i=1(cri − cri=1)(qvi − cvi)2. Because
we are considering just the single segment case, we can remove summation
over M segments and rewrite the inequality as:
Assume √√√√ n∑

i=1

(qi − ci)2 ≥
√

(cri − cri−1) (qvi − cvi)2

Because (cri – cri−1) = n√√√√ n∑
i=1

(qi − ci)2 ≥
√

n (qvi − cvi)2

Since the terms under radicals must be nonnegative, we can square both sides
n∑

i=1

(qi − ci)2 ≥ n (qvi − cvi)2

qvi is simply mean of Q, so rewrite as Q̄ cvi is simply mean of C, so rewrite as C̄
n∑

i=1

(qi − ci)2 ≥ n
(
Q̄ − C̄

)2

Substitute rearrangement of definition above
n∑

i=1

((Q̄ − 1qi) − (C̄ −1ci))2 ≥ n (Q̄ − C̄ )2

Rearrange terms
n∑

i=1

((Q̄ − C̄) − (1qi −1ci))2 ≥ n (Q̄ − C̄ )2

Binomial theorem
n∑

i=1

(Q̄ − C̄)2 − 2(Q̄ − C̄)(1qi −1ci) + (1qi −1ci)2 ≥ n
(
Q̄ − C̄

)2

Distributive law
n∑

i=1

(Q̄ − C̄)2 −
n∑

i=1

2(Q̄ − C̄)(1qi −1ci)

+
n∑

i=1

(1qi −1ci)2 ≥ n
(
Q̄ − C̄

)2
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Summation properties

n(Q̄ − C̄)2 − 2(Q̄ − C̄)
n∑

i=1

(1qi −1ci) +
n∑

i=1

(1qi −1ci)2 ≥ n(Q̄ − C̄ )2

Associative law

n(Q̄ − C̄)2 − 2(Q̄ − C̄)

(
n∑

i=1

1qi −
n∑

i=1

1ci

)
+

n∑
i=1

(1qi −1ci)2 ≥ n (Q̄ − C̄ )2

61wi = 0, proved above

n(Q̄ − C̄)2 − 2(Q̄ − C̄)
(
0− 0

)+ n∑
i=1

(1qi −1ci)2 ≥ n(Q̄ − C̄ )2

Subtract like term from both sides

n(Q̄ − C̄)2 +
n∑

i=1

(1qi −1ci)2 ≥ n(Q̄ − C̄ )2

n∑
i=1

(1qi −1ci)2 ≥ 0

The sum of squares must be nonnegative, so our assumption was true.
Hence, the proof.

3.4 Quality of Proposed Distance Measures DLB and DAE

The quality of a lower-bounding distance measure can be gauged by how tightly
it lower bounds the true distance between all queries of interest and all objects
in the database (because all queries of interest cannot be known in advance and
the database may be very large, a large random sampling must suffice). For a
non-lower-bounding measure, the quality is a little more difficult to define. In-
tuitively we want the measure to tightly approximate the true distance but only
rarely overestimate it. In addition, when the true distance is overestimated, it
should not be by a large amount.

We devised a simple experiment to illustrate the quality of DLB and DAE
compared to the DWT (Haar) and the DFT approaches. We randomly extracted
two sequences A and B from a database and measured the true Euclidean
distance D(A,B) between them. We also measured the distance between A and B
using the various reduced dimensionality representations for a fixed value of N .
The ratio of the estimated distance over the true distance for all combinations
was used to plot a point in 2-space, as illustrated in Figure 8.

We repeated this 1,000 times with randomly chosen sequences for each of two
datasets. DWT and DFT behaved similarly, so for brevity we will only discuss
the comparisons between DWT and the two measures defined on APCA.
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Fig. 8. A visualization of the pruning power of the two distance measures defined on APCA as
compared to the pruning power of the Haar wavelet and DFT approaches. Points on the diagonal
indicate that the two approaches being compared have the same pruning power, points below the
diagonal indicate that APCA is superior and points above the diagonal indicate that APCAs rival
is superior.

For the Electrocardiogram dataset, DLB produces tighter lower bounds than
the Haar wavelet approach 99.9% of the time, and the difference is usually
quite significant. The DAE measure very tightly approximated the true distance,
and only violated lower bounding 2.9% of the time, generally by a very small
amount.

For the Star Light Curve dataset, DLB produces tighter lower bounds than
the Haar wavelet approach 81.3% of the time. The DAE measure only violates
lower bounding 0.1% of the time and generally is an extremely tight approxi-
mation of the true distance.

The quality of these results strongly suggests that APCA would be superior to
existing approaches if indexable. We will address this issue in the next section.

4. INDEXING THE APCA REPRESENTATION

The APCA representation proposed in Section 3.1 defines a N -dimensional
feature space (N = 2M ). In other words, the proposed representation maps
each time series C={c1, . . . , cn} to a point C ={cv1, cr1, . . . , cvM , crM } in a
N-dimensional space. We refer to the N-dimensional space as the APCA space
and the points in the APCA space as APCA points. In this section, we discuss
how we can index the APCA points using a multidimensional index structure
(e.g., R-tree) and use the index to answer range and K nearest neighbors (K-NN)
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Table VII. K-NN Algorithm to Compute the Exact K Nearest
Neighbors of a Query Time Series Q using a Multidimensional

Index Structure

Algorithm ExactKNNSearch(Q,K)
Variable queue: MinPriorityQueue;
Variable list: temp;
begin
1. queue.push(root node of index, 0);
2. while not queue.IsEmpty() do
3. top = queue.Top();
4. for each time series C in temp such that D(Q,C) ≤ top.dist
5. Remove C from temp;
6. Add C to result;
7. if |result| = K return result;
8. endfor
9. queue.Pop();
10. if top is an APCA point C
11. Retrieve full time series C from database;
12. temp.insert(C, D(Q,C));
13. else if top is a leaf node
14. for each data item C in top
15. queue.push(C, DLB(Q ′,C));
16. endfor
17. else
18. for each child node U in top
19. queue.push(U, MINDIST(Q,R)) // R is MBR of U
20. endfor
21. endif
22. enddo
end

queries efficiently. We concentrate on K-NN queries in this section; range
queries will be discussed briefly at the end of the section.

A K-NN query (Q, K) with query time series Q and desired number of neigh-
bors K retrieves a set C of K time series such that for any two time series C
∈ C, E /∈ C, D(Q, C) ≤ D(Q, E). The algorithm for answering K-NN queries
using a multidimensional index structure is shown in Table VII.3 The above
algorithm is an optimization on the GEMINI K-NN algorithm described in
Table III and was proposed in Seidl and Kriegel [1998]. Like the basic K-NN
algorithm [Hjaltason and Samet 1995; Roussopoulos et al. 1995], the algorithm
uses a priority queue queue to navigate nodes/objects in the index in the in-
creasing order of their distances from Q in the indexed (i.e., APCA) space.

3In this article, we restrict our discussion to only feature-based index structures, that is, multi-
dimensional index structures that recursively cluster points using minimum bounding rectangles
(MBRs). Examples of such index structures are R-tree, X-tree and Hybrid Tree. Note that the MBR-
based clustering can be logical, that is, the index structure need not store the MBRs physically as
long as they can be derived from the physically stored information. For example, space partitioning
index structures like the hB-tree and the Hybrid Tree store the partitioning information inside
the index nodes as kd-trees [Evangelidis et al. 1997; Chakrabarti and Mehrotra 1999]. Since the
MBRs can be derived from the kd-trees, the techniques discussed here are applicable to such index
structures [Chakrabarti and Mehrotra 1999].
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The distance of an object (i.e., APCA point) C from Q is defined by DLB(Q ′, C) (cf.
Section 3.3.2) while the distance of a node U from Q is defined by the minimum
distance MINDIST(Q,R) of the minimum bounding rectangle (MBR) R associ-
ated with U from Q (definition of MINDIST will be discussed later). Initially,
we push the root node of the index into the queue (Line 1). Subsequently, the
algorithm navigates the index by popping out the item from the top of queue
at each step (Line 9). If the popped item is an APCA point C, we retrieve the
original time series C from the database, compute its exact distance D(Q,C)
from the query and insert it into a temporary list temp (Lines 10–12). If the
popped item is a node of the index structure, we compute the distance of each
of its children from Q and push them into queue (Lines 13–20). We move a
time series C from temp to result only when we are sure that it is among the K
nearest neighbors of Q i.e. there exists no object E /∈ gesult such that D(Q,E) <
D(Q,C) and |result| < K. The second condition is ensured by the exit condition
in Line 7. The first condition can be guaranteed as follows. Let I be the set
of APCA points retrieved so far using the index (i.e. I= temp ∪ result). If we
can guarantee that ∀C ∈ I, ∀E/∈ I, DLB(Q ′,C) ≤ D(Q,E), then the condition
“D(Q,C) ≤ top.dist” in Line 4 would ensure that there exists no unexplored
time series E such that D(Q, E)<D(Q,C). By inserting the time series in temp
(i.e., already explored objects) into result in increasing order of their distances
D(Q,C) (by keeping temp sorted by D(Q,C)), we can ensure that there exists
no explored object E such that D(Q, E)<D(Q,C). In other words, if ∀C ∈ I,
∀E /∈ I, DLB(Q ′,C) ≤ D(Q,E), the above algorithm would return the correct
answer.

Before we can use the above algorithm, we need to describe how to compute
MINDIST(Q,R) such that the correctness requirement is satisfied, that is,
∀C ∈ I, ∀E /∈ I, DLB(Q ′,C) ≤ D(Q,E). We now discuss how the MBRs are
computed and how to compute MINDIST(Q,R) based on the MBRs. We start
by revisiting the traditional definition of an MBR [Guttman 1984]. Let us
assume we have built an index of the APCA points by simply inserting the
APCA points C = {cv1, cr1, . . . , cvM , crM} into a MBR-based multidimensional
index structure (using the insert function of the index structure). Let U be
a leaf node of the above index. Let R= (L, H) be the MBR associated with U
where L = {l1, l2, . . . , lN} and H={h1, h2, . . . , hN} are the lower and higher
endpoints of the major diagonal of R. By definition, R is the smallest rectangle
that spatially contains each APCA point C = {cv1, cr1, . . . , cvM , crM} stored in
U. Formally, R= (L, H) is defined as:

Definition 4.1 (Old Definition of MBR)

li = min
C in U

cv(i+1)/2 if i is odd

= min
C in U

cri/2 if i is even
(6)

hi = max
C in U

cv(i+1)/2 if i is odd

= max
C in U

cri/2 if i is even
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Fig. 9. Definition of cmini and cmaxi for computing MBRs.

The MBR associated with a non-leaf node would be the smallest rectan-
gle that spatially contains the MBRs associated with its immediate children
[Guttman 1984].

However, if we build the index as above (i.e., the MBRs are computed as in
Definition 4.1), it is not possible to define a MINDIST(Q,R) that satisfies the
correctness criteria. To overcome the problem, we define the MBRs as follows.
Let us consider the MBR R of a leaf node U. For any APCA point C = {cv1,
cr1, . . . , cvM crM } stored in node U, let cmini and cmaxi denote the minimum
and maximum values of the corresponding time series C among the datapoints
in the ith segment that is,

cmini =
cr1

min
1=cri−1+1

(cl ) and cmaxi = cr1max
1=cri−1+1

(cl ) (7)

The cmini and cmaxi of a simple time series with 4 segments is shown in
Figure 9.

We define the MBR R= (L,H) associated with U as follows:
Definition 4.2 (New Definition of MBR)

li = min
C inU

cmin(i+1)/2 if i is odd

= min
C inU

cri/2 if i is even
(8)

hi = max
C inU

cmax(i+1)/2 if i is odd

= max
C inU

cri/2 if i is even

As before, the MBR associated with a non-leaf node is defined as the small-
est rectangle that spatially contains the MBRs associated with its immediate
children.

How do we build the index such that the MBRs satisfy Definition 4.2. We in-
sert rectangles instead of the APCA points. In order to insert an APCA point C =
{cv1, cr1, . . . , cvM , crM }, we insert a rectangle C̄ = ({cmin1, cr1, . . . , cminM , crM },
{cmax1, cr1, . . . , cmaxM , crM }) (i.e., {cmin1, cr1, . . . , cminM , crM } and {cmax1,
cr1, . . . , cmaxM , crM }) are the lower and higher endpoints of the major diagonal
of C̄) into the multidimensional index structure (using the insert function of
the index structure). Since the insertion algorithm ensures that the MBR R of
a leaf node U spatially contains all the C̄ ’s stored in U, R satisfies Definition
4.2 (as illustrated in Example 3 below). The same is true for MBRs associated
with nonleaf nodes.

Example 3 (Computation of MBRs). Let us consider two time series A={4,
6, 1, 0, 2} and B={4, 3, 5, 1, 3}. The 2-segment APCA representations
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of A and B as produced by the Compute APCA algorithm are A =
{〈av1, ar1〉, 〈av2, ar2〉}= {〈5, 2〉, 〈1, 5〉} and B={〈bv1, br1〉, 〈bv2, br2〉}= {〈4, 3〉,
〈2, 5〉}, respectively. For A, amin1= min(4, 6)= 4, amax1= max(4, 6)= 6,
amin2= min(1, 0, 2)= 0, amax2= max(1, 0, 2)= 2. For B, bmin1= min(4, 3,
5)= 3, bmax1= max(4, 3, 5)= 5, bmin2= min(1, 3)= 1, bmax2= max(1, 3)= 3.
So, APCA rectangles Ā = ({amin1, ar1, amin2, ar2}, {amax1, ar1, amax2, ar2}) =
({4, 2, 0, 5}, {6, 2, 2, 5}) and B̄ = ({bmin1, br1, bmin2, br2}, {bmax1, br1, bmax2,
br2})= ({3, 3, 1, 5}, {5, 3, 3, 5}). Since the MBR R of Ā and B̄ is the
smallest rectangle that spatially contains Ā and B̄, R= ({min(amin1,
bmin1), min(ar1, br1), min(amin2, bmin2), min(ar2, br2)}, {max(amax1, bmax1),
max(ar1, br1), max(amax2, bmax2), max(ar2, br2)}), which satisfies Defi-
nition 4.2. To complete the example, R= ({min(4, 3), min(2, 3), min(0, 1),
min(5, 5)}, {max(6, 5), max(2, 3), max(2, 3), max(5, 5)})= ({3, 1, 0, 5}, {6, 3, 3, 5}).

Since we use one of the existing multidimensional index structures to build
the APCA index, the storage organization of the nodes follows that of the index
structure (e.g., 〈MBR, child ptr〉 array if R-tree is used, kd-tree if hybrid tree
is used). For the leaf nodes, we need to store the cvi ’s of each data point (in
addition to the cmaxi ’s, cmini ’s and cri ’s) since they are needed to compute DLB
(Line 15 of the K-NN algorithm in Table VII). The index can be optimized (in
terms of leaf node fanout) by not storing the cmaxi ’s and cmini ’s of the data
points at the leaf nodes, that is, just storing the cvi ’s and cri ’s (a total of 2M
numbers) per data point in addition to the tuple identifier. The reason is that
the cmaxi ’s and cmini ’s are not required for computing DLB, and hence are
not used by the K-NN algorithm. They are needed just to compute the MBRs
properly (according to definition 4.2) at the time of insertion. The only time
they are needed later (after the time of insertion) is during the recomputation
of the MBR of the leaf node containing the data point after a node split. The
insert function of the index structure can be easily modified to fetch the cmaxi ’s
and cmini ’s of the necessary data points from the database (using the tuple
identifiers) on such occasions. The small extra cost of such fetches during node
splits is worth the improvement in search performance due to higher leaf node
fanout. We have applied this optimization in the index structure for our ex-
periments but we believe the APCA index would work well even without this
optimization.

Once we have built the index as above (i.e., the MBRs satisfy Definition 4.2),
we define the minimum distance MINDIST(Q,R) of the MBR R associated with
a node U of the index structure from the query time series Q. For correctness,
∀C ∈ I, ∀E /∈ I, DLB(Q ′,C) ≤ D(Q,E) (where I denotes the set of APCA points
retrieved using the index at any stage of the algorithm). We show that the above
correctness criteria is satisfied if MINDIST(Q,R) lower bounds the Euclidean
distance D(Q,C) of Q from any time series C placed under U in the index.4

LEMMA 2. If MINDIST(Q,R)≤D(Q,C) for any time series C placed un-
der U, the algorithm in Table VII is correct that is, ∀C ∈ I, ∀E /∈ I,

4Note that MINDIST (Q,R) does not have to lower bound DLB(Q,C) for any C under U; it just has
to lower bound D(Q,C) for any C under U.
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DLB(Q ′, C) ≤ D(Q,E), where I denotes the set of APCA points retrieved using
the index at any stage of the algorithm.

PROOF. According to the K-NN algorithm, any item E /∈ I must satisfy one
of the following conditions:

(1) E has been inserted into the queue but has not been popped yet that is,
∀C ∈ I, DLB(Q ′,C) ≤ DLB(Q ′,E)

(2) E has not yet been inserted into the queue, that is, there exists a parent node
U of E whose MBR R satisfies the following condition: ∀C ∈ I, DLB(Q ′,C) ≤
MINDIST(Q,R).

Since DLB(Q ′, E) ≤ D(Q,E) (Lemma 1), (1) implies ∀C ∈ I, DLB(Q ′, C) ≤
D(Q,E). If MINDIST(Q,R)≤ D(Q,E) for any time series E under U, (2) implies
that ∀C ∈ I, DLB(Q ′, C) ≤ D(Q,E). Since either (1) or (2) must be true for any
item E /∈ I, ∀C ∈ I, ∀E /∈ I, DLB(Q ′, C) ≤ D(Q,E).

A trivial definition MINDIST(Q,R) that lower bounds D(Q,C) for any time
series C under U is MINDIST(Q,R)= 0 for all Q and R. However, this definition
is too conservative and would cause the K-NN algorithm to visit all nodes of
the index structure before returning any answer (thus defeating the purpose of
indexing). The larger the MINDIST, the more the number of nodes the K-NN
algorithm can prune, the better the performance. We provide such a definition
of MINDIST below.5

Let us consider a node U with MBR R= (L,H). We can view the MBR as
two APCA representations L = {〈l1, l2〉, . . . , 〈lN−1, lN 〉} and H = {〈h1, h2〉, . . . ,
〈hN−1, hN 〉}. The view of a 6-dimensional MBR ({l1, l2, . . . , l6}, {h1, h2, . . . , h6})
as two APCA representations {〈l1, l2〉, . . . , 〈l5, l6〉} and {〈h1, h2〉, . . . , 〈h5, h6〉} is
shown in Figure 10. Any time series C = {c1, c2, . . . , cn} under the node U is “con-
tained” within the two bounding time series L and H (as shown in Figure 10).
In order to formalize this notion of containment, we define a set of M regions
associated with R. The ith region GR

i (i = 1, . . . , M ) associated with R is defined
as the 2-dimensional rectangular region in the value-time space that fully con-
tains the ith segment of all time series stored under U. The boundary of a region
G, being a 2-d rectangle, is defined by 4 numbers: the low bounds G[1] and G[2]
and the high bounds G[3] and G[4] along the value and time axes, respectively.
By definition,

GR
i [1] = min

C under U
(cmini)

GR
i [2] = min

C under U
(cri−1 + 1)

(9)
GR

i [3] = max
C under U

(cmaxi)

GR
i [4] = max

C under U
(cri)

5Index structures can allow external applications to plug in domain-specific MINDIST functions
and point-to-point distance functions and retrieve nearest neighbors based on those functions (e.g.,
Consistent function in GiST).
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Fig. 10. The M Regions associated with a 2M-dimensional MBR. The boundary of a region Gis
denoted by G={G[1], G[2], G[3], G[4]}.

Based the definition of MBR in Definition 4.2, GR
i can be defined in terms of

the MBR R as follows:

Definition 4.3 (Definition of Regions Associated with MBR)

GR
i [1] = l{2i−1}

GR
i [2] = l{2i−2} + 1

(10)
GR

i [3] = h{2i−1}
GR

i [4] = h{2i}
Figure 10 shows the three regions associated with the 6-dimensional MBR

({l1, l2, . . . , l6}, {h1, h2, . . . , h6}). We illustrate the region computation using a
numeric example in Example 4.

Example 4 (Region Computation). Let us consider the MBR R in Example 3.
Recall R= ({l1, l2, l3, l4}, {h1, h2, h3, h4}) = ({3, 1, 0, 5), {6, 3, 3, 5}). The two
regions associated with R are:

GR
1 = {min(amin1, bmin1), min(ar0 + 1, br0 + 1), max(amax1, bmax1),

max(ar1, br1)} (by Eq. 9)).
= {l1,l0 + 1, h1,h2} (by Eq. 10)).
= {3, 1, 6, 3}

GR
2 = {min(amin2, bmin2), min(ar1 + 1, br1 + 1), max(amax2, bmax2),

max(ar2, br2)}
= {l3, l2 + 1, h3, h4}
= {0, 2, 3, 5}

At time instance t(t= 1, . . . , n), we say a region GR
i is active iff GR

i [2] ≤ t
≤ GR

i [4]. For example, in Figure 10, only regions 1 and 2 are active at time
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Fig. 11. Computation of MINDIST.

instant t1 while regions 1, 2 and 3 are active at time instant t2. The value ct
of a time series C under U at time instant t must lie within one of the regions
active at t, that is, ∨GR

i is active GR
i [1] ≤ ct ≤ GR

i [3].

LEMMA 3. The value ct of a time series C under U at time instant t must lie
within one of the regions active at t.

PROOF. Let us consider a region GR
i that is not active at time instant t that

is, either GR
i [2] > t or GR

i [4] < t. First, let us consider the case GR
i [2] > t. By

definition, GR
i [2] ≤ cri−1 + 1 for any C under U. Since GR

i [2] > t, t < cri−1 + 1
that is, ct is not in segment i.

Now let us consider the case GR
i [4] < t. By definition, GR

i [4] ≥ cri for any C
under U. Since GR

i [4] 〈t, t〉cri that is, ct is not in segment i.
Hence, if region GR

i is not active at t, ct cannot lie in segment i, that is, ct can
lie in segment i only if GR

i is active. By definition of regions, ct must lie within
one of the regions active at t that is, ∨GR

i
is active GR

i [1] ≤ ct ≤ GR
i [3].

Given a query time series Q={q1, q2, . . . , qn}, the minimum distance
MINDIST(Q,R,t) of Q from R at time instant t (cf. Figure 11) is given by

min
region G is active at t

MINDIST (Q,G,t) where

MINDIST(Q,G, t) = (G[1]− qt)2 if qt < G[1]
(11)

= (qt − G[3])2 if G[3] < qt

= 0 otherwise.

MINDIST(Q,R) is defined as follows:

MINDIST (Q, R) =
√√√√ n∑

i=1

MINDIST (Q,R,t) (12)

We illustrate the MINDIST computation using a numeric example in
Example 5.
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Example 5 (MINDIST Computation)

Let us consider the MBR R in Examples 3 and 4 and its associated regions GR
1

and GR
2 . Let us consider the query time series Q={5, 3, 5, 6, 7} in Example 2.

MINDIST (Q,R,1)=MINDIST (Q, GR
1 , 1)= 0

MINDIST (Q,R,2)=min (MINDIST(Q, GR
1 , 2), MINDIST(Q, GR

2 , 2))= 0
MINDIST (Q,R,3)=min (MINDIST(Q, GR

1 , 3), MINDIST(Q, GR
2 , 3))= 0

MINDIST (Q,R,4)=MINDIST (Q, GR
2 , 4)= (6− 3)2= 9

MINDIST (Q,R,5)=MINDIST (Q, GR
2 , 5)= (7− 3)2= 16

MINDIST (Q,R)=√9+ 16= 5.

Note that MINDIST(Q,R) lower bounds
D (Q, A)=

√
(5− 4)2 + (3− 6)2 + (5− 1)2 + (6− 0)2 + (7− 2)2= 9.327 and

D (Q, B)=
√

(5− 4)2 + (3− 3)2 + (5− 5)2 + (6− 1)2 + (7− 3)2 = 6.481 (formal
proof below).

LEMMA 4. MINDIST (Q,R) lower bounds D (Q,C) for any time series C un-
der U.

PROOF. We first show MINDIST(Q,R,t) lower bounds D(Q,C,t)= (qt−ct)2

for any time series C under U. We know that ct must lie in one of
the active regions (Lemma 3). Without loss of generality, let us assume
that ct lies in an active region G, taht is, G[1] ≤ ct ≤ G[3]. Hence
MINDIST(Q,G,t) ≤ D(Q,C,t). Also, MINDIST(Q,R, t) ⇐ MINDIST(Q,G,t) (by
definition of MINDIST(Q,R,t)). Hence MINDIST(Q,R, t) lower bounds D(Q,C,t).

Since MINDIST(Q,R)=
√∑1

t=1 MINDIST (Q,R,t) and D(Q,C)=
√∑1

t=1 MINDIST (Q,C,t),
MINDIST(Q,R,t)≤ D(Q,C,t) implies MINDIST(Q,R)≤ D(Q,C).

Note that, in general, lower the number of active regions at any instant
of time, higher the MINDIST, better the performance of the K-NN algorithm.
Also, narrower the regions along the value dimension, higher the MINDIST.
The above two principles justify our choice of the dimensions of the APCA
space. The odd dimensions help clustering APCA points with similar cvi ’s, thus
keeping the regions narrow along the value dimension. The even dimensions
help clustering APCA points that are approximately aligned at the segment
end points, thus ensuring only one region (minimum possible) is active for most
instants of time.

Although we have focussed on K-NN search in this section, the definitions
of DLB and MINDIST proposed in this article are also needed for answering
range queries using a multidimensional index structure. The range search al-
gorithm is shown in Table VIII. It is a straightforward R-tree-style recursive
search algorithm combined with the GEMINI range query algorithm shown in
Table II. Since both MINDIST(Q,R) and DLB(Q ′,C) lower bound D(Q,C), the
above algorithm is correct [Faloutsos et al. 1994].

In this section, we described how to find the exact nearest neighbors of a
query time series using a multidimensional index structure. In Section 3.3.1,
we proposed an approximate Euclidean distance measure DAE(Q,C) for fast
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Table VIII. Range Search Algorithm to Retrieve all the Time Series Within
a Range of ε from Query Time Series Q. The function is invoked as

ExactRangeSearch (Q, ε, groot node of index).

Algorithm ExactRangeSearch(Q, ε, T)
begin
1. if T is a non-leaf node
2. for each child U of T
3. if MINDIST(Q,R)≤ ε ExactRangeSearch(Q, ε, U); // R is MBR of U
4. endfor
5. else
6. for each APCA point Cin T
7. if DLB(Q ′,C)≤ ε
8. Retrieve full time series C from database;
9. if D(Q,C) ≤ ε Add C to result;
10. endif
11. endfor
12. endif
end

approximate search. If we want to use the same index structure to answer both
exact queries and approximate queries, we can simply replace the distance
function DLB(Q,C) in Line 15 of the K-NN algorithm (Table VII) by DAE(Q,C)
to switch from exact to approximate queries and vice-versa. Since DAE(Q,C) is
a tighter approximation of D(Q,C) than DLB(Q ′,C), the K-NN algorithm would
need to retrieve fewer APCA points from the index before the algorithm stops.
This would result in fewer disk accesses to retrieve the full time series corre-
sponding to the retrieved APCA points (Line 11 of Table VII), leading to lower
query cost. Since the approximate distance DAE(Q,C) between a time series
query Q={q1, q2, . . . , qn} and an APCA point C={cv1, cr1, . . . , cvM , crM } almost
always lower bounds the Euclidean distance D(Q,C) between Q and the original
time series C={c1, c2, . . . , cn} (see Figure 8), the approximate function can be
used to get reasonably accurate results more efficiently using the same index
structure.

If an index is used exclusively for approximate search based on DAE,
further optimizations are possible. For such an index, we can construct
the MBRs as defined in Definition 4.1 i.e. by inserting the APCA point
C={cv1, cr1, . . . , cvM , crM } itself instead of the corresponding rectangle ({cmin1,
cr1, . . . , cminM , crM }, {cmax1, cr1, . . . , cmaxM , crM }). The MINDIST computa-
tion is the same as in the exact case. It can be shown that MINDIST(Q,R) of
the query from the above MBR (Definition 4.1) lower bounds DAE(Q,C), there-
fore ensuring retrieval of APCA points in the order of their distances DAE(Q,C).
Since these MBRs are always smaller than the MBRs in Definition 4.2, the
MINDISTs will be larger resulting in fewer node accesses of the index struc-
ture compared to approximate search using the same index as the exact search
and hence even better performance. To exploit this optimization, one can main-
tain two separate indices (one with MBRs as defined in Definition 4.2 and
one with that defined in Definition 4.1) for exact and approximate searches,
respectively.
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5. EXPERIMENTAL EVALUATION

In this section, we present the results of an extensive empirical study we have
conducted to (1) evaluate APCA in terms of cost of computation (2) compare
APCA with other dimensionality reduction techniques in terms of pruning
power and query response times and (3) ascertain the ability of APCA to sup-
port approximate search. The major findings of our study can be summarized
as follows:

(1) Fast Computation. APCA can be computed efficiently and is hence tractable
for indexing.

(2) High Pruning Power. APCA has significantly higher pruning power com-
pared to DFT, DWT, PAA and FastMap that is, fewer false alarms.

(3) Low Query Cost. APCA outperforms other indexing techniques, namely
DFT, DWT and linear scan, in terms of query cost, often by one to two
orders of magnitude.

(4) Fast Approximate Search. APCA can support fast approximate search with
a high level of accuracy (≥80%).

Thus, our experimental results validate the thesis of the article that APCA
is an effective dimensionality reduction technique for time series databases.

5.1 Experiment Methodology

We experimentally compare all the state of the art indexing techniques with
our proposed method. We have taken great care to create high quality imple-
mentations of all competing techniques as discussed in detail below.

(1) SVD. Each time series of length n (n-dimensional point) is reduced to a point
in an N-dimensional space using Singular Value Decomposition [Keogh
et al. 2000].

(2) FastMap. Each time series of length n is mapped to a point in an
N-dimensional space using FastMap as proposed in Yi et al. [1998].

(3) DFT. DFT is applied individually to each time series (of length n) as pro-
posed in Agrawal et al. [1993]. Since we are computing the DFT of a real
signal, the first imaginary coefficient is zero, and because all objects in our
database have had their mean value subtracted, the first real coefficient is
also zero. These coefficients do not need to be retained, making room for ad-
ditional coefficients. We further optimize the representation by utilizing the
symmetric properties of the DFT as suggested in Rafiei [1999], that is, we
can simply multiply the magnitude of the 2nd to (N + 1)th real coefficients
by
√

2 and use it as the N-dimensional point.

(4) DWT. Each time series (of length n) is individually decomposed using the
Haar wavelet decomposition as proposed in Chan and Fu [1999]. Since
the objects have zero mean, the first Haar coefficient is always zero. We
use the magnitudes of the 2nd to (N + 1)th Haar coefficients to construct
the N -dimensional point.
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(5) PAA (also known as Segmented Means [Yi and Faloutsos 2000]). The
N -dimensional representation is computed by dividing the time series
(of length n) into N -equal length segments and recording the means of
those segments as proposed in Keogh et al. [2000] and Yi and Faloutsos
[2000].

(6) APCA. The N -dimensional representation is computed by running
Compute APCA(C,bN /2c) on each time series C (of length n).

We performed tests over a range of original dimensionalities (n) varying from
256 to 1024 and reduced dimensionalities (N ) varying from 16 to 64. We used
two datasets, one chosen because it is very heterogeneous and the other because
it is very homogenous.

—Homogenous Data: Electrocardiogram. This dataset is taken from the MIT
Research Resource for Complex Physiologic Signals [Moody 2000]. It is a
“relatively clean and uncomplicated” electrocardiogram. We generated data
of three different dimensionalities: n= 1024, n= 512 and n= 256.6 In each
case, the dataset consisted of 100,000 points/sequences.

—Heterogeneous Data: Mixed Bag. This dataset we created by combining seven
datasets with widely varying properties of shape, structure, noise, etc. The
only preprocessing performed was to ensure that each time series had a
mean of zero and a standard deviation of one (otherwise, many queries
become pathologically easy). The seven datasets are: Space Shuttle STS-
57 [Keogh and Smyth 1997; Keogh and Pazzani 1999], Arrhythmia [Moody
2000], Random Walk [Wang and Wang 2000; Park et al. 1999; Yi and Falout-
sos 2000; Keogh et al. 2000], INTERBALL Plasma processes (Figure 4)
[Shevchenko 2000], Astrophysical data (Figure 1) [Weigend 1994], Pseudo
Periodic Synthetic Time Series [Bay 2000], and Exchange rate (Figure 4)
[Weigend 1994]. Once again, we generated data of three different dimension-
alities: n= 1024, n= 512 and n= 256 and in each case, the dataset consisted of
100,000 points.

To perform realistic testing we need queries that do not have exact matches in
the database but have similar properties of shape, structure, spectral signature,
variance etc. To achieve this we used cross validation. We removed 10% of the
dataset, and build the index with the remaining 90%. The queries are then
randomly taken from the withheld subsection. For each result reported for
a particular dimensionality and query length, we averaged the results of 50
experiments.

For simplicity, we only show results for nearest neighbor queries, however
we obtained similar results for range queries.

6Because we wanted to include the DWT in our experiments, we chose n to be an integer power
of two. We consider a length of 1024 to be the longest query likely to be encountered (by analogy,
one might query a text database with a word, a phrase or a complete sentence, but the would
be little utility in a paragraph-length text query. A time series query of length 1024 corresponds
approximately with sentence length text query).
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Fig. 12. The time taken (in seconds) to compute the reduced representation using various tech-
niques over a range of query lengths (n varying from 32 to 1024) and database sizes (S varying
from 40 KB (20,000 objects) to 640 KB (320,000 objects)). The black topped histogram bars indicate
that an experimental run was abandoned at 1,000 seconds.

5.2 Experimental Results: Computing the Dimensionality Reduced Representation

We begin our experiments by measuring the time taken to compute the reduced
dimensionality representation for each of the suggested approaches. We did this
for query lengths (n) from 32 to 1024 and database sizes of 40 KB (20,000 objects)
to 640 KB (320,000 objects). The relatively small databases were necessary to
include SVD in the experiments. We used a Pentium PC 400 with 256 megs of
ram. Experimental runs requiring more than 1,000 seconds were abandoned
as indicated by the black-topped histogram bars in Figure 12.

We can see that SVD, being O(Sn2), is simply intractable for even moder-
ately sized databases with high query length. We extrapolated from these ex-
periments that it would take several months of CPU time to include SVD in all
the experiments in this article. For this reason we shall exclude SVD from the
rest of the experiments (in Section 6 we will discuss more reasons why SVD is
not a practical approach). The results for DWT and APCA are virtually indis-
tinguishable, which is to be expected given that the algorithm used to create
the APCA spends most of its time in a subroutine call to the DWT. The main
conclusion of this experiment is that APCA is tractable for indexing.

5.3 Experimental Results: Pruning Power

In comparing the four competing techniques (DFT, DWT, APCA and PAA), there
exists a danger of implementation bias. That is, consciously or unconsciously
implementing the code such that some approach is favored. As an example
of the potential for implementation bias in this work, consider the following.
At query time, DFT must do a Fourier transform of the query. We could use
the naı̈ve algorithm which is O(n2) or the faster radix-2 algorithm (padding
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Fig. 13. The fraction P , of the Mixed Bag database that must be examined by the five dimensional-
ity reduction techniques being compared, over a range of original dimensionalities (n varying from
256 to 1024) and reduced dimensionalities (N varying from 16 to 64). To preserve a meaningful
scale for the graphs, we truncated (poor) values at a certain threshold, the truncated values are
shown as black-topped histogram bars.

the query with zeros for n 6= 2integer) which is O(n log n). If we implemented the
simple algorithm it would make the other indexing methods appear to perform
better relative to DFT. While we do present detailed experimental evaluation
of an implemented system in the next section, we also present experiments in
this section which are free of the possibility of implementation basis. We achieve
this by comparing the pruning power of the various approaches.7

To compare the pruning power of the four techniques under consideration,
we measure P , the fraction of the database that must be examined before we
can guarantee that we have found the nearest match to a 1-NN query.

P = Number of objects that must be examined
Number of objects in database

(13)

To calculate P , we do the following: Random queries are generated (as de-
scribed above). Objects in the database are examined in order of increasing
(feature space) distance from the query until the distance in feature space of
the next unexamined object is greater than minimum actual distance of the
best match so far. The number of objects examined at this point is the absolute
minimum in order to guarantee no false dismissals.

Note the value of P for any transformation depends only on the data and
is completely independent of any implementation choices, including spatial ac-
cess method, page size, computer language or hardware. A similar idea for
evaluating indexing schemes appears in Hellerstein et al. [1997].

Figure 13 shows the value of P over a range of query lengths and dimension-
alities for the experiments that were conducted the Mixed Bag dataset.

7We also include FastMap [Yi et al. 1998] (along with DFT, DWT, APCA and PAA) in our pruning
power experiments for completeness.
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Fig. 14. The fraction P , of the Electrocardiogram database that must be examined by the three
dimensionality reduction techniques being compared over a range of original dimensionalities (n
varying from 256 to 1024) and reduced dimensionalities (N varying from 16 to 64). As in Figure 13,
we truncated (poor) values at a certain threshold, the truncated values are shown as black-topped
histogram bars.

Note that the results for PAA and DWT are identical. This because the prun-
ing power of DWT and PAA are identical when N = 2integer[Keogh et al. 2000].
Having empirically shown this fact, which was proved in Keogh et al. [2000]
and Yi and Faloutsos [2000], we have excluded PAA from future experiments
for clarity.

We repeated the experiment for the Electrocardiogram data, the results are
shown in Figure 14.

As shown in Figures 13 and 14, FastMap has significantly lower pruning
power compared to the other techniques. This can be explained by the way
FastMap works: while other approaches take the high-dimensional represen-
tation of the time series and project them to an N-dimensional space, FastMap
attempts to model the dataset in an N-dimensional space such that the dis-
tances between objects are approximately preserved. That is to say, FastMap
considers only the distances between the sequences, and disregards the actual
shape of the sequences. This attribute of FastMap makes it an ideal technique
for situations where the objects to be indexed have no natural features, but there
exists a method to compute the distances between them (e.g., indexing strings
under edit distance or time series under dynamic time warping [Yi et al. 1998]).
In the case where high-quality natural features can be extracted, FastMap is
outperformed by techniques (like DFT, DWT and APCA) that use those features
to obtain the reduced representation. Having shown this in the pruning power
experiments, we exclude FastMap from further experiments for clarity.8

8Note that, for fairness, we did not include FastMap in our experiments on the time required to
build compute the reduced representation (shown in Figure 12). This is because its implementation
requires several user-defined parameters and we could not guarantee our implementation was the
most efficient. We note that its time complexity is O(SnN) while that of APCA is O(Sn log (n)).
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In both Figures 13 and 14, we can see that APCA outperforms DFT and
DWT significantly, generally by an order of magnitude. These experiments
indicate that the APCA technique has fewer false alarms, hence lower query
cost as confirmed by the experiments below.

5.4 Experimental Results: Implemented System

Although the pruning power experiments are powerful predictors of the
(relative) performance of indexing systems using the various dimensionality
reduction schemes, we include a comparison of implemented systems for com-
pleteness. We implemented four indexing techniques: linear scan, DFT-index,
DWT-index and APCA-index. We compare the four techniques in terms of the
I/O and CPU costs incurred to retrieve the exact nearest neighbor of a query
time series. All the experiments reported in this section were conducted on a
Sun Ultra Enterprise 450 machine with 4 296 MHz CPUs, 1 GB of physical
memory and several GB of secondary storage, running Solaris 2.6.

Cost Measurements: We measured the I/O and CPU costs of the four
techniques as follows:

(1) Linear Scan (LS ). In this technique, we perform a simple linear scan
on the original n-dimensional dataset and determine the exact near-
est neighbor of the query. The I/O cost in terms of sequential disk
accesses is (S∗(n∗sizeof(float)+ sizeof(id)))/(PageSize). Since sizeof(id)¿
(n∗sizeof(float)), we will ignore the sizeof(id) henceforth. Assuming se-
quential I/O is about 10 times faster than random I/O, the cost in terms of
random accesses is (S∗sizeof(float)∗n)/(PageSize∗10). The CPU cost is the
cost of computing the distance D(Q,C) of the query Q from each time series
C = {c1, . . . , cn} in the database.

(2) DFT-index (DFT ). In this technique, we reduce the dimensionality of the
data from n to N using DFT and build an index on the reduced space using a
multidimensional index structure. We use the hybrid tree as the index struc-
ture. The I/O cost of a query has two components: (1) the cost of accessing the
nodes of the index structure and (2) the cost of accessing the pages to retrieve
the full time series from the database for each indexed item retrieved (cf.
Table VII). For the second component, we assume that a full time series ac-
cess costs one random disk access. The total I/O cost (in terms of random disk
accesses) is the number of index nodes accessed plus the number of indexed
items retrieved by the K-NN algorithm before the algorithm stopped (i.e.,
before the distance of the next unexamined object in the indexed space is
greater than the minimum of the actual distances of items retrieved so far).
The CPU cost also has two components: (1) the CPU time (excluding the I/O
wait) taken by the K-NN algorithm to navigate the index and retrieve the
indexed items and (2) the CPU time to compute the exact distance D(Q,C) of
the query Q from the original time series C of each indexed item C retrieved
(Line 12 in Table VII). The total CPU cost is the sum of the two costs.

(3) DWT-index (DWT ). In this technique, we reduce the dimensionality of
the data from n to N using DWT and build the index on the reduced space
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Fig. 15. Comparison of LS, DFT, DWT and APCA techniques in terms of I/O cost (number of
random disk accesses) over a range of original dimensionalities (n varying from 256 to 1024)
and reduced dimensionalities (N varying from 16 to 64). For LS, the cost is computed as num-
ber sequential disk accesses/10. We used the ECG dataset for this experiment.

using the hybrid tree index structure. The I/O and CPU costs are computed
in the same way as in DFT.

(4) APCA-index (APCA). In this technique, we reduce the dimensionality of
the data from n to N using APCA and build the index on the reduced space
using the hybrid tree index structure. The I/O and CPU costs are computed
in the same way as in DFT and DWT.

We chose the hybrid tree as the index structure for our experiments since it
is a space partitioning index structure (“dimensionality-independent” fanout)
and has been shown to scale to high dimensionalities [Chakrabarti and Mehro-
tra 1999; Porkaew et al. 1999; Keogh et al. 2000]. Since we had access to the
source code of the index structure (http://www-db.ics.uci.edu), we implemented
the optimization discussed in Section 4 (i.e., to increase leaf node fanout) for
our experiments. We used a page size of 4KB for all our experiments.

Dataset. We used the Electrocardiogram (ECG) database for these experi-
ments. We created three datasets from the ECG database by choosing three dif-
ferent values of query length n (256, 512 and 1024). For each dataset, we reduced
the dimensionality to N = 16, N = 32 and N = 64 using each of the three dimen-
sionality reduction techniques (DFT, DWT and APCA) and built the hybrid tree
indices on the reduced spaces (resulting a total of 9 indices for each technique).
As mentioned before, the queries were chosen randomly from the withheld sec-
tion of the dataset. All our measurements are averaged over 50 queries.

Figure 15 compares the LS, DFT, DWT and APCA techniques in terms of I/O
cost (measured by the number of random disk accesses) for the three datasets
(n = 256, 512 and 1024) and three different dimensionalities of the index
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Fig. 16. Comparison of LS, DFT, DWT and APCA techniques in terms of CPU cost (seconds) over
a range of original dimensionalities (n varying from 256 to 1024) and reduced dimensionalities (N
varying from 16 to 64). We used the ECG dataset for this experiment.

(N = 16, 32 and 64). The APCA technique significantly outperforms the other
three techniques in terms of I/O cost. The LS technique suffers due to the large
database size (e.g., 100,000 sequential disk accesses for n = 1024 which is equiv-
alent to 10,000 random disk accesses). Although LS is not considerably worse
than APCA in terms of I/O cost, it is significantly worse in terms of the overall
cost due to its high CPU cost component (see Figure 16). The DFT and DWT
suffer mainly due to low pruning power (cf. Figure 14). Since DFT and DWT
retrieve a large number of indexed items before it can guaranteed that the exact
nearest neighbor is among the retrieved items, the second component of the I/O
cost (that of retrieving full time series from the database) tends to be high. The
DFT and DWT costs are the highest for large n and small N (e.g., n = 1024,
N = 16) as the pruning power is the lowest for those values (cf. Figure 14). The
DWT technique shows a U-shaped curve for n = 1024: when the reduced dimen-
sionality is low (N = 16), the second component of the I/O cost is high due to low
pruning power, while when N is high (N = 64), the first component of the I/O
cost (index node accesses) becomes large due to dimensionality curse. We did
not observe such U-shaped behavior in the other techniques as their costs were
either dominated entirely by the first component (e.g., n = 256 and n = 512
cases of APCA) or by the second component (all of DFT and n = 1024 case
of APCA).

Figure 16 compares the LS, DFT, DWT and APCA techniques in terms of CPU
cost (measured in seconds) for the three datasets (n = 256, 512 and 1024) and
three different dimensionalities of the index (N = 16, 32 and 64). Once again,
the APCA technique significantly outperforms the other three techniques in
terms of CPU cost. The LS technique is the worst in terms of CPU cost as it
computes the exact (n-dimensional) distance D(Q,C) of the query Q from every
time series C in the database. The DFT and DWT techniques suffer again due
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to their low pruning power (cf. Figure 14), causing the second component of the
CPU cost (i.e., the time to compute the exact distances D(Q,C) of the original
time series of the retrieved APCA points from the query) to become high.

5.5 Experimental Results: Scalability Experiments

In the previous section, we reported the I/O and CPU costs instead of the
actual wall clock times required to answer the queries. We did that for two
reasons: first, it gives us information about the two components of the cost
individually enabling us to do a better comparison and second, the wall clock
times would have been misleading as it would not have included the I/O
cost component at all (because the index always fit in main memory (1GB of
physical memory) and there was no actual I/O involved). To measure wall clock
times, we ran experiments where the index did not fit in main memory (by
using larger datasets (up to 500,000 objects) and running them on a machine
with less physical memory); we report those results in this section. We compare
the four indexing techniques (namely, linear scan (LS), DFT-index (DFT),
DWT-index (DWT) and APCA-index (APCA)) in terms of the wall clock time
(elapsed time) required to retrieve the exact nearest neighbor of a query time
series. The wall clock time includes both the I/O wait time and the compute
time (CPU cost). As before, we used the hybrid tree index structure for our
experiments, the page size was 4KB. Due to unavailability of larger real-life
datasets, we generated 200,000 and 500,000 object databases from the 100,000
object ECG database by slightly perturbing the datapoints in the sequence to
generate the neighboring datapoints. For this experiment, we fixed the original
dimensionality to n = 1024, that is, we generated three datasets containing
100,000, 200,000 and 500,000 1024-dimensional points, respectively. We then
reduced the dimensionality to N = 64 using each of the three dimensionality
reduction techniques and built hybrid tree indices on the reduced space. The
queries were chosen randomly as discussed before and the measurements are
averaged over 50 queries. The experiments were conducted on a machine Sun
Ultra 2 machine with 2 168MHz CPUs and 256MB of physical memory.

Figure 17 compares the LS, DFT, DWT and APCA techniques in terms of
wall clock time required to retrieve the exact nearest neighbor of a query time
series. As shown in Figure 17(a), LS is much slower compared to other three
techniques mainly due to its high computational cost (as it computes the exact
1024-dimensional distance D(Q,C) of the query Q from every time series C in
the database). Since the plots of APCA, DFT and DWT are very close to each
other in Figure 17(a), we replot them in Figure 17(b) for a better comparison.
As before, APCA significantly outperforms the other techniques. DFT and
DWT suffer due to their low pruning power leading to longer I/O wait times as
well as more distance computations and hence higher wall clock times.

5.6 Experimental Results: Approximate Queries

In this section, we evaluate the ability of APCA to support approximate search.
To evaluate the quality of the returned answer set, we used the precision
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Fig. 17. (a) Comparison of LS, DFT, DWT and APCA techniques in terms of query response time
(wall clock time in seconds) with database size varying from 100,000 objects to 500,000 objects
(n = 1024, N = 64). (b) Same as (a) showing just DFT, DWT and APCA for better comparison. We
synthetically generated the dataset from the ECG dataset.

Table IX. The Precision of DAE for Various Values of K, with the Number of Disk
Accesses Required by Both DAE (Approximate Search) and DLB (Exact Search.)

K Disk Accesses DLB Disk Accesses DAE Precision
5 3,212.3 15 0.82

10 3,174.3 30 0.84
20 3,412.1 60 0.81

concept from information retrieval [Keogh and Pazzani 1999].

precision = relevant and retrieved
retrieved

(14)

The ideal value precision is 1, indicating that all the items retrieved are
relevant.

We compared DAE to DLB on the Mixed Bag dataset for K-NN queries. We
use a combination of long queries, n = 1024 and few dimensions, N = 16,
because this is when all techniques have the worst query response time.

For simplicity, we only consider the second component of the I/O cost (i.e.,
that of retrieving the full time series from the database (Line 11 in Table VII)).
This is reasonable since for n = 1024 and N = 16, the second component
dominates the total I/O cost (cf. Figure 15). For DAE, we adopted the following
simple protocol. We retrieved 3K objects from the database, then used the true
Euclidean distance to prune away 2K objects. We then measured the precision
of the remaining K items. Here the precision is simply the fraction of items
that DAE reported as being in the set of the top K neighbors, which actually
belong that set. The results for each value of K are averaged over 50 runs. The
results are reported in Table IX.

We can see that DAE is useful for very fast queries that give approximately
the same answer set as exact search. This feature is very useful interactive
exploratory analysis of massive datasets.
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6. DISCUSSION

Now that the reader is more familiar with the contribution of this article,
we will briefly revisit related work. We believe that this article is the first
to suggest locally adaptive indexing time series indexing. A locally adaptive
representation for 2-dimensional shapes was suggested in Chakrabarti et al.
[2000], but no indexing technique was proposed. Also in the context of images,
it was noted by Wu et al. [1996] that the use of the first N Fourier coefficients
does not guarantee the optimal pruning power. They introduced a technique
where they adaptively chose which coefficients to keep after looking at the data.
However, the choice of coefficients was based upon a global view of the data.
Later work [Wu et al. 2000] in the context of time series noted that the policy
of using the first N wavelet coefficients [Chan and Fu 1999; Wu et. al. 2000;
Kahveci and Singh 2001] is not generally optimal, but “keeping the largest
coefficients needs additional indexing space and (more complex) indexing
structures.” Singular value decomposition is also a data-adaptive technique
used for time series [Korn et. al. 1997; Keogh et al. 2000; Kanth et al. 1998],
but it is globally, not locally, adaptive. Recent work [Chakrabarti and Mehrotra
2000] has suggested first clustering a multidimensional space and then doing
SVD on local clusters, making it a semilocal approach. It is not clear however
that this approach can be made work for time series. Finally, a representation
similar to APCA was introduced in Faloutsos et al. [1997] (under the name
piecewise flat approximation), but no indexing technique was suggested.

6.1 Other Factors in Choosing a Representation to Support Indexing

Although we have experimentally demonstrated that the APCA representation
is superior to other approaches in terms of query response time, there are
other factors that one may wish to consider when choosing a representation to
support indexing. We will briefly consider some of these issues here.

One important issue is the length of queries allowed. For example, the
wavelet approach only allows queries with lengths that are an integer power of
two [Keogh et al. 2000]. This problem could be addressed by having the system
pad in zeros up to the next power of two, then filter out the additional false
hits. However, this will severely degrade performance. The APCA approach, in
contrast, allows arbitrary length queries.

Another important point to consider are the set of distance measures
supported by a representation. It has been argued that for many applications,
distance measures other than Euclidean distance are required. For example,
Yi and Faloutsos [2000] noted that the PAA representation can support queries
where the distance measure is an arbitrary Lp norm (i.e., p = 1, 2, . . ,∞). We
refer the interested reader to that paper for a discussion of the utility of these
distance metrics, but note that the APCA representation can easily handle
such queries by trivial generalizations of Eqs. (3) and (5) to Eqs. (15) and (16).

DAE(Q, C) ≡ p

√√√√ M∑
i=1

cli−cli−1∑
k=1

(
ci − qk+clk−1

)p (15)
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DLB(Q ′, C) ≡ p

√√√√ M∑
i=1

cli(qi − ci)p (16)

Note that as with the approach of Yi and Faloutsos [2000], we can reuse the
same index for any Lp norm.

Almost all time series databases are dynamic. For example, NASA updates
its archive of Space Shuttle telemetry data after each mission. Some databases
are updated continuously; for example, financial datasets are updated (at least)
at the end of each business day. It is therefore important that any indexing
technique be able to support dynamic inserts. Our proposed approach (along
with DWT, DFT and PAA) has this property. However, dynamic insertion is
the Achilles heel of SVD, a single insertion requires recomputing the entire
index. Faster methods do exist for incremental updates, but they introduce the
possibility of false dismissals [Chandrasekaran et al. 1997].

7. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

The main contribution of this article is to show that a simple, novel dimension-
ality reduction technique, namely APCA, can outperform more sophisticated
transforms by one to two orders of magnitude. In contrast to popular belief
[Yi and Faloutsos 2000; Faloutsos et al. 1997], we have shown that the APCA
representation can be indexed using a multidimensional index structure. In
addition to fast exact queries, the approach also allows even faster approximate
querying on the same index structure. We have also shown that our approach
can support arbitrary Lp norms, again using a single index structure.

The idea of locally adaptive representation is applicable not just to time-
series data but to sequence data in general (one-dimensional as well as
multidimensional sequences). For example, we applied such a representation
for 2-dimensional shapes in [Chakrabarti et al. 2000]. As future work, we
intend to apply this idea of locally adaptive representation to more such
application domains. We also intend to increase the speedup of our method
even further by exploiting the similarity of adjacent sequences (in a similar
spirit to the ”trail indexing” technique introduced in Faloutsos et al. [1994]).
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