Transactions: From Local Atomicity
to Atomicity in the Cloud

David Lomet

Microsoft Research
Redmond, WA 98052 USA

Abstract. Atomicity is a fundamental concept in computer science. Ini-
tially it was defined as an abstraction to be used in a local context. But
over time, its use has expanded or scaled as application programmers
have come to rely on it. This reliance is based on atomicity’s ability to
make concurrent systems understandable and applications much simpler
to program. Atomicity has multiple origins, but it can be fairly said that
Brian Randell’s Reliability Project at the University of Newcastle in the
1970’s played a significant early role in defining the atomicity abstrac-
tion and building an early prototype to realize it. This paper starts by
sketching the Newcastle contribution and goes on to explore how atomic-
ity has been stretched to deal with clusters of processors. The challenge
today is to deal well with systems of vast scale, as exemplified by the
enormous data centers of current cloud services providers. We sketch a
new and promising approach to this challenge.

1 Atomicity and Transactions: A Personal Perspective

The atomic action (or serializable transaction) abstraction has multiple roots.
Among those roots was work that was outside of the database area that is usually
thought of when thinking about transactions (the database folks coined the term
“transaction” for this abstraction and connected it with earlier work, e.g. IMS
program isolation). The reliable computing (fault tolerance) world also played
a key role in the emergence of atomicity as a way of building and understand-
ing systems. And no place played a larger role in this than the University of
Newcastle and the Reliability Project of Brian Randell.

1.1 ACID Properties

Serializable transactions are the gold standard for controlling and understanding
concurrent execution [I12]. The properties of these transactions make systems as
well as user application programs understandable. As well, using serializable
transactions in situations where concurrent activity is in progress makes the
programming chore substantially easier. The reason for this can be stated in a
number of ways.

In my early work, I characterized atomic actions (serializable transactions) as
presenting to users “a consistent view of the data, i.e. one in which each of them

C.B. Jones and J.L. Lloyd (Eds.): Festschrift Randell, LNCS 6875, pp. 38{52] 2011.
© Springer-Verlag Berlin Heidelberg 2011

Transactions: From Local Atomicity to Atomicity in the Cloud 39

appears to be the sole user of the system” [14]. Thus, within the boundaries of
an atomic action, if an “action” is correct when executed serially or in isolation,
it will be correct when executed in the presence of concurrent activity.

Subsequently, Haerder and Reuter [10] characterized transactions via the
“ACID” acronym, where the letters of “ACID” characterized the properties of
transactions. We list the ACID properties of serializable transactions in Ta-
ble [l That characterization is useful as it teases apart properties that have
subsequently been seen to be separable, but that atomic actions (serializable
transactions) possess in their entirety.

While ACID properties were described after the fact, they can also serve as
a framework for understanding the early evolution of the atomicity concept.
Unfortunately, the “A” in “ACID” is used to denote what is called the “atomic”
property, and as a result is overloaded. In our discussion of ACID, we will use
the phrase “All or nothing” for the “A” of ACID, and indeed, that captures the
intent more precisely.

Table 1. ACID properties of serializable transactions

A|All or nothing
C|Consistent

I |Isolated
D|Durable

I would like to make a couple of comments about ACID transactions. First,
the ACID properties are separable. One can have the all-or-nothing “A” without
having the “I” of isolation. One can have both “A” and “I” without having
durability (the “D”). Indeed, while durability is essential, for transactions that
are provided to database application programmers, in the case of system level
activity, durability may not serve a useful purpose. Further, consistency (the
“C”) is actually provided by the programmer using the atomic abstraction. The
system supporting the atomic action abstraction provides the “AID” properties.

1.2 Architectural Approach to Reliability

Fundamental to the role that the Newcastle Reliability Project played in the
development of atomicity was Brian Randell’s vision of reliability as resulting
from the use of system architectural mechanisms [I8]. This was in stark contrast
to the view of reliability as a consequence of the writing of correct programs.
While few would dispute that reliability increases as the bug count drops, in the
real world, large systems and large applications are never “correct”. Indeed, it
is usually impossible to fully state the correctness conditions, much less provide
a proof that the system meets them. Further, hardware fails from time to time,
so even perfect programs would not prevent system failures. What was needed,
and this is Brian Randell’s key insight, is an architectural mechanism that can
be used to cope with the inevitable failures that will always occur. Brian was

40 D. Lomet

pursuing this “fault tolerant systems” approach at the emergence of fault tolerant
systems as a separate technical area.

As part of the Reliability Project work, the Newcastle team had invented a
notion called “Recovery Blocks”. A recovery block [I1] is illustrated in Figure[Il
(a), taken from the original paper. A recovery block permitted a program, having
failed in its execution of a block of code, to return cleanly to an earlier state,
and try again, perhaps executing a different program block. Tom Anderson and
Ron Kerr at Newcastle implemented recovery blocks using what they called
a “recovery cache” [3], a mechanism that incrementally saved program state
as of entry to the recovery block and would restore it should a failure occur.
Recovery blocks were thought of as “backward error handling” in which, instead
of going forward in an effort to find a new correct state (forward error handling),
a program returned to a prior (hopefully correct) state to try and straighten
things out. Recovery blocks and the recovery cache that realized them captured
the “A” in ACID transactions (all or nothing). That is, the recovery block either
executed successfully to completion or undid its effects and tried something else.

<identifier>:action(<parameter-list>);
<statement-list>
end;

recovery block &

arceptance test AT

primary block AP
[await:action(test:boolean function, body:procedure);
program t delay(atomic action until prescience
tells us that "test” is true, or that
alternate block AQ it escapes, then immediately execute
the following)
program if test then
| begin;
- body;
return;
Figure 1. end:

A diagramatic representation of a recovery block structure, else error: +
y

end await;

Fig. 1. (a) Nested recovery blocks. (b) Atomic action and “await” statement.

1.3 Dealing with Concurrent Execution

My involvement in “fault tolerant computing” arose as a result of a sabbat-
ical I took from IBM Research in Yorktown. I was working in programming
lanaguages at this time and was investigating how programming languages might
help in writing understandable concurrent programs. Les Belady suggested that

Transactions: From Local Atomicity to Atomicity in the Cloud 41

Brian Randell at Newcastle was doing interesting work in the area of reliability,
and, after a rather involved negotiation, I went off to Newcastle to participate
in Brian’s Reliability Project and to interact with Brian and his collaborator,
Michael Melliar-Smith.

I was entranced with the recovery block idea. I decided I would figure out
what was needed for the recovery block notion to work in the presence of con-
currently executing activites. This is how atomic actions came to be [I4]. Atomic
actions are similar to procedures in how I chose to define them, as illustrated in
Figure[l(b). And in an isolated setting, they behave just like procedures. When
concurrent activity is present, the body of an atomic action continues to behave
as it did in isolation, while an ordinary procedure, if it accesses shared state,
may behave very differently. Figure[d also illustrates how it is possible to include
a synchronizing condition with an atomic action without violating its isolation
property.

This work was done at Newcastle, and was greeted with great enthusiasm by
both Brian and Michael. And it changed my research career. Atomic actions
added the “I” of ACID (isolation) and with recovery blocks hence provided both
“A” and “I”. Since a user provides the C (consistency), we now had everything
but the “D” (durability) of ACID transactions. Given the system setting (where
we were not providing durability guarantees to user transactions) this captured
the salient parts of atomicity. Though we did not think about it in these terms,
this was really the start of transactional memory (of the software kind).

The term transactional memory was first used in a paper by Herlihy and
Moss [9], where they described a hardware oriented approach that relied on ex-
ploiting processor cache and optimistic concurrency control. Processor caches
were still new in 1976, and optimistic concurrency control had not yet been
invented. So we had no thought of using these techniques in the way Herlihy
and Moss suggested. Rather, we suggested using two phase locking to provide
isolation for atomic actions [I4] and recovery blocks for “all or nothing” execu-
tion. But subsequent to the Herlihy and Moss paper, and recognizing the great
value of the atomicity abstraction, many folks have explored pure software imple-
mentations for transactional memory. Newcastle had all the pieces for software
transactional memory in 1976.

2 Database Connection

2.1 Early Transactions

Brian and the Newcastle Reliability Project did the earliest work of which
I am aware that exploited architectural and framework engineering approaches
to reliable systems in the fault tolerant computing area. However, overlapping
with this, researchers in the database community were wrestling with how to
provide concurrent access to a large data store without application program-
mers needing to use subtle reasoning to get programs concurrently accessing a
database to operate in a well-behaved manner. This led (at around the same
time) to the notion of database transaction.

42 D. Lomet

IBMs System R team associated the word “transaction” with atomicity, and
established it as the key database abstraction in a 1975 paper [8], hence over-
lapping with the Newcastle effort, but focused on database state, not program
state. Databases added durability to the definition of transactions (the “D” of
ACID). Durability was essential to support “committed database state change”,
a promise to a user that the system would not forget his business transaction,
e.g. the purchase of an airline ticket, even were the system to subsequently fail.

The key to why database transactions were so successful is the following: an
application programmer could disregard whatever any other application was do-
ing once the relevant part of a program was wrapped within transaction brackets,
just as was the case with atomic actions. The result was as if an application in-
stance were the only program executing on database state. This is where the
“C” of ACID transactions comes into play. If a transaction, operating all by
itself could transform an earlier consistent state into a later consistent state in
ISOLATION (in the absence of other executing programs) then during concur-
rent execution, that consistency would continue to hold when the transaction
executed.

When I found database systems using transactions, I switched fields (from
programming languages) to take part in the research enterprise of implementing
and exploring the uses of transactions.

2.2 Ever More Data

Databases and their transactions are all about data. And because data volumes
become larger and larger, users want to have their transactional systems scale
to handle ever more data. So scalability has been and is a big issue within the
database world.

It is possible to ride the technology curve with ever larger single systems
with their faster processors, larger memories, and bigger disks. And this has
been a boon to the database world. However, the demand for data “knows no
bounds”, and so databases now support multi-computer deployments. Instead of
only “scaling up” with processor power, database systems “scale out” to exploit
multiple computer systems. Database scale out takes two forms, shared nothing
and data sharing. Figure[2illustrates these architectures, which are described in
the next subsections.

Shared Nothing. A shared nothing database system executes in isolation from
other database systems. It is solely responsible for the execution of queries, the
modification of data, its caching, its transactions, etc. No coordination with
another system is required. It usually works in the context of directly attached
disks.

To scale out such systems requires that we partition data among a number
of systems. This can work well, and especially so when all transactions can be
assigned to and exploit data stored at a single shared nothing DBMS instance.

However, it is typical that no partitioning succeeds in targetting every trans-
action of an application to a single node. And complexity increases when transac-
tions can span multiple DBMS instances. This is when two phase commit (2PC)

Transactions: From Local Atomicity to Atomicity in the Cloud 43

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

cpu cpu cPu cpu cpu cpu I U " U I I U II U I I U ” U I
& | el I |]

| [[T T T
I Memory I I Memory I I Memory I | Memory I I Memory I I Memory |

|
|
|
|
|
|
|
|
e
: ; Cache Coherence & Locking E
| e e e e e e e e
I
|
;
|
[
I

Data sharing Shared nothing

Fig. 2. Two cluster architectures for scaling out to handle more data

is needed to coordinate a distributed transaction. The 2PC protocol requires
that every node involved in the transaction agree to its being committed, and
involves extra rounds of messages between nodes. This becomes a larger problem
as the number of nodes hosting data for an application increases. The result can
be that more and more nodes need to be involved in a transaction, leading to
the potential for network partitions to disrupt service and block 2PC protocol
completion.

In addition to the potential for blocking, the partitioned approach has other
difficulties. Two phase commit introduces extra latency which, while not itself
a problem, can reduce throughput. Also, load imbalance, where some nodes be-
come saturated while others are under-utilized, can become an issue. To balance
the load typically takes some time and planning, and this makes it difficult to
do such balancing in real time.

Data Sharing. Data sharing systems are characterized by multiple nodes being
able to “share” common data, i.e. operate on it as if it were local, with the
ability to cache the data, update it, and store it back to the stable database.
The technology price for this is the requirement to handle distributed cache
coherence, distributed locking, and coordinated access in some fashion to the
transaction log. And this extra technology not only makes data sharing systems
more complicated than shared nothing systems, but also usually incurs higher
execution overhead.

While both architectural simplicity and performance are compromised, data
sharing systems do exhibit decent scalability up to a modest number of nodes,
perhaps in the low tens. And this scalability is achieved without the need to
partition the data, which makes administering data sharing systems simpler than

44 D. Lomet

shared nothing systems. However, data sharing system scalability does not come
close to dealing effectively with the huge data sets that are of current interest.
Further, data sharing works best when all nodes can directly access the disks,
which interferes with exploiting commodity hardware and reaping its economic
advantage.

3 The Cloud

We now have a new platform, the cloud, that is the focus of much business and
technical interest. This platform presents new technology and business opportu-
nities, and makes possible data storage and possible integration on a scale that
we have not really witnessed in the past. What we have is enormous data cen-
ters supporting thousands of machines, attached by high speed, relatively low
latency communications. Figure [3]is a picture of one such data center, built in
a modular way, in locations where costs are low and communications are good.
This is truly a concentration of data storage and compute power that we have
not seen before.

R T Sy = =
Q’M T 2 j—.}

Fig. 3. Microsoft’s data center “architecture”

3.1 Economic Imperative

It is not an accident that the cloud has attracted serious attention. The economics
of the cloud are compelling, said by some to be a factor of six or seven cheaper
than alternative infrastructure. The last time we have seen such a decisive cost

Transactions: From Local Atomicity to Atomicity in the Cloud 45

factor was when PC based servers displaced mainframe and mini-computer based
servers.

Typically such a cloud data center is located where power is cheap and land
costs low. The hardware is purchased in bulk at rock bottom prices or spe-
cially assembled from even cheaper components. Operations are automated, and
multi-tenancy, where customers pay for what they use instead of provisioning
for their maximum load, is offered at enormously attractive prices. In addition,
cloud providers have found, despite execution on cheap, and occasionally flaky
hardware and disks, that they can offer their customers excellent availability
via data replication, which is really essential to attracting “bet your business”
applications.

3.2 Distributed Systems

Because data centers offer a large set of nodes with communication interconnects,
it is natural to think of such a data center as a distributed system. Because data
can be distributed over multiple nodes, database users want transactions to work
across such systems. Historically, this led to the development of distributed com-
mit protocols, and a collection of variations on this, e.g. two phase commit, three
phase commit, optimizations like presumed abort, presumed commit, nested,
switch of coordination, timestamping protocols, etc.

Every distributed infrastructure standard has started by defining a “standard”
two phase commit (2PC). This includes OSF, DCE, X/Open, OSI, CORBA,
OMG, DCOM, etc. But 2PC is rarely used for wide area distributed systems,
and “never” crosses administrative domains. This effectively rules out using 2PC
for the web. Everyone will coordinate, but no one will participate because 2PC
is a blocking protocol and message latencies can be substantial.

Thus, while the intent has been the optimistic vision of data anywhere joined
in transactions, what has been delivered is much more limited. Mostly distributed
commit protocols are used to commit transactions on a cluster of machines in
the same or nearby machine rooms, and all within one administrative domain.
The idea has been to handle larger databases “locally” with each node of the
system being a simple “shared nothing” system participating in transactions via
2PC when transactions crossed database partiton boundaries.

So the question here is whether this distributed system approach can or should
apply to the enormous number of processors in cloud data centers.

3.3 CAP Caution

How cloud providers and their customers view data centers colors what kind of
functionality will be offered and/or used. If one views a data center as simply
another instance of a distributed system, then one needs to pause and take a deep
breath when considering the transactional functionality that might be provided
or requested.

Brewer’s CAP theorem [7] states that you cannot simultaneously have con-
sistency (the “C”), availability (the “A”), and partition resilience (the “P”) in

46 D. Lomet

a distributed system. This theorem has made cloud providers careful about the
transactional functionality that they support as transactions provide the consis-
tency. Cloud providers knew that they needed to give their users high availability,
so other aspects were relegated to secondary consideration.

Early on, when companies like Amazon, Google, Yahoo, and Microsoft first
rolled out their cloud platforms, they did not include transactions. The view [17]
was that, given the CAP theorem, providing transactions was more or less in-
feasible, especially if you wanted good performance as well as scalability and
availability. That CAP included network partitioning and, at least within a data
center, that should not really have been an issue, did not prevent this view from
becoming wide spread, at least for a while.

3.4 Eventual Consistency and More

Cloud providers hoped that “eventual consistency” would be sufficient. “Even-
tual consistency” provides the guarantee that the changes that your program
makes will eventually show up everywhere, including at all replicas, so long as
you can wait sufficiently long. The difficulty with “eventual consistency” is ex-
actly in the lengths that application programmers need to go to ensure that that
consistency is achieved. Figure [] illustrates the extent to which these concerns
impact code complexity and understandability [2].

MSRE00k i

What We Want What We Have Today

Begin Transaction

click
1. Add me to[Dave’s riend Tist]

2. Add Dave fo|my friend list / .
f Confirm
s (53 S

sl - s
Message

David Lomet has requested that you be

Eventual consistency*

1B

t ;¢ add_to_retry_queve(operation.updatefriendlis
4 users, user2, current_time();

;¢ add_to_retry_queve(operation.updatefriendlist,
usera, users,

public st get_friends(usera){(8 _listactual_friends = new list8 st friends =
get_friends(), foreach friend n friends){ if(friend.status ==
friend actual_friends.add(friend); Jelse
et and Kfriend.status &=

friends
friendstatus.deleted)){
deleted? friend status =
friend: firmed,

friends on MSRBook. Do you know
Davi

Vtalso
please touch the confirm

B actal_friendsadd(friend;® update_friends
ed), Jelse{
i

_listusers, friend,
witha deleteli update_friends_list(users, friend,
status.deleted)i] Jifforeach return actual_frien

button to confirm that you are indeed

friends

Fig. 4. Applications want transactions, not eventual consistency

Transactions: From Local Atomicity to Atomicity in the Cloud 47

But things are currently in flux. Google and Microsoft both now provide local
transactions without any caveats [4J6]. Amazon is following with Oracle support
in the cloud [I]. So local transactions are now seen as not only feasible but to
provide real value to users. Indeed, in the database case, that value has never
been doubted. And if cloud based databases are to become accepted, transactions
are a must. Database users both expect and demand transactional consistency—
though they may not always know what form of transaction they are executing
as many do not, in fact, execute serializable transactions.

Google even provides distributed transactions via two phase commit in the
cloud [4], though they come with a suggestion not to use this capability— or at
least not use it often. But distributed transactions local to a data center have
been supported in the past [19] with decent performance, and I believe we are
moving to a world where this support will become more robust over time.

3.5 A New Platform

Data centers are an entirely new platform. A data center is not the web. Data
centers that consist of thousands of machines connected by a high speed com-
munication infrastructure surely have failures of parts. But a data center link is
no more likely to go down than is a data center processor, perhaps less likely.
One way to think about a data center is to consider it as similar to an enormous
NUMA machine, where the advantage of local execution and local data access
is strong, but where remote execution and remote access is possible as well.

A way to think about all the data center disks is as if they were one large SAN,
and treat them accordingly. These analogies are not precise, but each captures
an aspect of large data centers, each stressing in a different way, that process-
ing and data access within a data center is fundamentally different from wide
area networks of computers and their associated storage. Further, an application
hosted at a data center, regardless of where its data is located within the center,
has no need to cross administrative domains to access it.

Why should we think that the CAP theorem applies to such data centers,
however large. Yet transaction support has been very limited. However, care is
required as data can be spread over a very large number of machines.

4 New Look at Transactions on Distributed Data

4.1 How to Exploit Data Centers

While data centers are not the web, they are also not a simple SMP machine,
not even of the NUMA variant. Users with large quantities of data typically need
to partition it among perhaps a large number of the servers of the data center.

The potential wide spread of data over nodes in a cloud data center currently
means that application designers have to be very careful about how their data
is partitioned between nodes. The problem with conventional approach is that
every node with data involved in the transaction needs to be a two phase commit
participant. At the end of the transaction, when you would like to “discharge”

48 D. Lomet

the transaction, release its locks, and move on to processing work for other
transactions, the system must “pause” to coordinate the distributed transactions
among all nodes containing data. This requires extra visits to all the nodes
involved at the end of the transaction, before the transaction is committed and
data is accessible once again. One visit is to prepare the transaction, the second to
commit it. The prepare phase is synchronous, and, absent potential optimizations
which do not always apply, include waiting for the write of at least one record
to the log.

So how might we view transactions with distributed data? Consider that we
do not do two phase commit with disks when data is distributed across
several disks. Why is this? All that is expected of the disk is that it be an atomic
page store (that is not quite true, as we need to take measures to at least detect
when a disk fails in that role). But we do not need to get the permission of a disk
to commit a transaction, except perhaps the disk on which the log resides. So
one way of handling distributed data in the cloud is to use virtual disks provided
by the cloud infrastructure, and commit the transaction elsewhere (or perhaps
at one of the virtual disks handling the log).

While that is an interesting view, it too has its difficulties. When using the
shared nothing strategy, this requires that all caching be done at a single node,
even though the quantity of data can be truly enormous. So, while data capacity
scales, single node caching restricts application scalability. Further, we need to
force flush our log before sending the data to the cloud disk infrastructure. To do
that requires that we read all data first, so that we can do the usual undo/redo
logging. But cloud latencies and communication overhead make this costly and
limit optimization opportunities.

4.2 Deuteronomy

We cannot scale our ability to cache updatable data without permitting multiple
machines to participate. This has traditionally forced us to choose between the
shared nothing and the data sharing architectures, both of which have difficulties
we want to avoid. Shared nothing systems require two phase commit that intro-
duces extra latency at the end of each transaction to execute this protocol. Data
sharing introduces a cache coherence problem that has required some form of
distributed locking. What we want is distributed and partitioned caching, hence
avoiding distributed cache coherence, but without requiring 2PC. This is what
the Deuteronomy architecture provides [I5I13].

A Deuteronomy based system divides a database engine into transaction com-
ponent (TC) and data component (DC), isolating transactional functionality
(TC) from the rest of data access management (DC). These functions have tra-
ditionally been tightly integrated, with many database folks convinced that they
were not separable. We beg to differ. By enforcing the right contract between
system parts, we can achieve the partitioning into TC and DC, as illustrated in
Figure

The Deuteronomy approach, not surprisingly, has its own set of issues.
Among them is how to efficiently deal with the interaction of distribution with

Transactions: From Local Atomicity to Atomicity in the Cloud 49

Client Request
G)
Interaction Contract [12]
Transaction Component (TC) 1. Concurrency control
1. Guarantee ACID Properties “No conficting concurrent ops”
2. No knowledge of physical data Avo'f""g globallock HLIEERT
storage 2. Reliable messaging
> Logical locking and logging “At least once execution”
Via repeated msg send
Record 1 L l Control > !‘:]te st?;':sl:if tion”
; Operations RECEL
Operations | Y Via duplicate detection
Data Component (DC) 4. Causality
1. Physical data storage “If DC remembers message, TC must
2. Atomic record modifications also” .
3. Data could be anywhere (cloud/local) Via Write-ahead Iog?'"g .
5. Contract termination
“Mechanism to delimit contract”
Via Checkpointing
Storage S)

Fig. 5. Deuteronomy Architecture and “Contract”

transaction logging, i.e. to enforce the write-ahead log protocol and provide for
checkpointing of the log. Naively, one might think that the log needs to be forced
to disk at the TC prior to sending the operation request to the DC. This would
lead to excessive forced logging. Instead, the TC:DC contract permits the TC to
control when the DC makes operation results stable, permitting the TC to lazily
flush its transaction log. Further, the TC cannot checkpoint the log without
DC agreement, permitting the DC to be similarly lazy in its posting of results
back to the persistent database (e.g. on disk). These are captured in the TC:DC
wnteraction contract.

4.3 Deuteronomy Scaling

We do not perform 2PC with our disks, we merely expect them to be atomic
page stores. We do not perform 2PC with DCs, we merely expect them to be
atomic record stores that support a contract enabling lazy logging and lazy cache
management. Thus, the Deuteronomy architecture enables effective transaction
processing over data center hosted data that is distributed across very large
numbers of machines. Together with the traditional stateless application servers,
also perhaps hosted in the data center, this permits transaction processing at
“data center scale”. This is illustrated in Figure[@l It is even possible to provide
transactional functionality for data stored at multiple cloud providers since no
2PC protocol agreement is needed.

There is effectively no limit to data scalability in this picture, and no limit to
application logic scalability as well. The TC does limit transaction scalability, i.e.
the rate at which transactions and their operations can be executed. However, the
TC, with its very modest computational requirements, suggests that transaction

50 D. Lomet

1
App
server
2

App
Server

Fig. 6. Scaling that exploits a separate TC

“bandwidth” at the TC hosting node should be very high, even though it is
the limiting scalability factor. Very high transaction rates should be achievable.
Our prototype implementation provides credible performance with further large
improvement opportunities [13].

Transactional scalability can be enhanced by increasing the number of TC’s
involved in supporting an application. This will require two phase commit among
the TC’s. However, note that 2PC is not required for every node hosting appli-
cation data, only with nodes hosting a TC. This breaks the link between where
data is stored and who is involved in the 2PC protocol.

5 Summary

Atomic actions and transactions were originally conceived as a local architec-
tural mechanism for handling concurrency control and recovery in systems that
were subsequently explored in the fault tolerant and the database fields. Over
time, the atomicity mechanism has been stretched to handle more situations,
including database systems with ever larger amounts of data spread over ever
larger numbers of nodes. The abstraction has shown great resilience, a tribute to
the ever increasing cleverness of its supporting mechanisms, produced by large
numbers of researchers over many years.

The current cloud environment poses a new challenge, one of unprecedented
scale. But, given the incredible value that transactions bring to application pro-
grammers, I believe that ways will be found to realize effective and performant
atomicity mechanisms in the cloud. Indeed, though I am hardly objective in this,

Transactions: From Local Atomicity to Atomicity in the Cloud 51

I believe that the Deuteronomy approach holds the promise of making transac-
tional programming the defacto way of accessing cloud data.

Atomicity now has a long history in computer science. An atomic action (seri-
alizable transaction) is an architectural abstraction that makes concurrent pro-
grams both easier to write and easier to understand. This was and continues to
be Brian Randell’s vision for how to build and understand large, fault tolerant,
and concurrent systems. I want to thank Brian for inviting me to visit on my
IBM sabbatical so many years ago and for structuring the environment where
the emergence of atomicity was inevitable, both by laying the groundwork with
recovery blocks, and by fostering a collaborative environment where so many of
us could prosper.

References

1. Amazon: Oracle and AWS,
http://aws.amazon.com/solutions/global-solution-providers/oracle/

2. Agrawal, D., Abbadi, A.E., Das, S.: Big Data and Cloud Computing: New Wine
or just New Bottles? In: VLDB (2010), tutorial

3. Anderson, T., Kerr, R.: Recovery blocks in action: A system supporting high reli-
ability. In: ICSE 1976, pp. 447-457 (1976)

4. Baker, J., Bond, C., Corbett, J., Furman, J.J., Khorlin, A., Larson, J., Leon, J.-M.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In: CIDR 2011, pp. 223-234 (2011)

5. Barga, R.S., Lomet, D.B., Shegalov, G., Weikum, G.: Recovery Guarantees for
Internet Applications. ACM Trans. Internet Techn. 4(3), 289-328 (2004)

6. Bernstein, P., Cseri, I., Dani, N., Ellis, N., Kakivaya, G., Kalhan, A., Lomet, D.,
Manne, R., Novik, L., Talius, T.: Adapting Microsoft SQL Server for Cloud Com-
puting. In: ICDE 2011, pp. 1255-1263 (2011)

7. Brewer, E.A.: Towards Robust Distributed Systems Distributed Systems. PODC
Keynote (July 19, 2000)

8. Gray, J., Lorie, R.A., Putzolu, G.R., Traiger, I.L.: Granularity of Locks in a Large
Shared Data Base. In: VLDB 1975, pp. 428-451 (1975)

9. Maurice Herlihy, J., Moss, E.B.: Transactional Memory: Architectural Support for
Lock-Free Data Structures. In: ISCA 1993, pp. 289-300 (1993)

10. Haerder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15(4), 287-317 (1983)

11. Horning, J.J., Lauer, H.C., Melliar-Smith, P.M., Randell, B.: A program structure
for error detection and recovery. In: Symposium on Operating Systems 1974, pp.
171-187 (1974)

12. Jones, C.B., Lomet, D.B., Romanovsky, A.B., Weikum, G.: The Atomic Manifesto.
J. UCS 11(5), 636-651 (2005)

13. Levandoski, J.J., Lomet, D.B., Mokbel, M.F., Zhao, K.: Deuteronomy: Transaction
Support for Cloud Data. In: CIDR 2011, pp. 123-133 (2011)

14. Lomet, D.B.: Process Structuring, Synchronization, and Recovery Using Atomic
Actions. In: Language Design for Reliable Software, pp. 128-137 (1977)

15. Lomet, D.B., Fekete, A., Weikum, G., Zwilling, M.J.: Unbundling Transaction
Services in the Cloud. In: CIDR (2009)

http://aws.amazon.com/solutions/global-solution-providers/oracle/

52

16.

17.

18.

19.

D. Lomet

Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ACM Trans. Database Syst. 17(1), 94-162
(1992)

Ramakrishnan, R., Cooper, B., Silberstein, A.: Cloud Data Management @ Yahoo!
In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS,
vol. 5981, pp. 2-2. Springer, Heidelberg (2010)

Randell, B.: System Structure for Software Fault Tolerance. IEEE Trans. Software
Eng. 1(2), 221-232 (1975)

Tandem Database Group: NonStop SQL, A Distributed, High-Performatlce, High-
Availability Implementation of SQL. Tandem Technical Report 87.4 (April 1987)

	Transactions: From Local Atomicity to Atomicity in the Cloud
	Atomicity and Transactions: A Personal Perspective
	ACID Properties
	Architectural Approach to Reliability
	Dealing with Concurrent Execution

	Database Connection
	Early Transactions
	Ever More Data

	The Cloud
	Economic Imperative
	Distributed Systems
	CAP Caution
	Eventual Consistency and More
	A New Platform

	New Look at Transactions on Distributed Data
	How to Exploit Data Centers
	Deuteronomy
	Deuteronomy Scaling

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

