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Abstract—Key audio effects are those special effects that play
critical roles in human’s perception of an auditory context in
audiovisual materials. Based on key audio effects, high-level
semantic inference can be carried out to facilitate various con-
tent-based analysis applications, such as highlight extraction and
video summarization. In this paper, a flexible framework is pro-
posed for key audio effect detection in a continuous audio stream,
as well as for the semantic inference of an auditory context. In
the proposed framework, key audio effects and the background
sounds are comprehensively modeled with hidden Markov models,
and a Grammar Network is proposed to connect various models to
fully explore the transitions among them. Moreover, a set of new
spectral features are employed to improve the representation of
each audio effect and the discrimination among various effects.
The framework is convenient to add or remove target audio
effects in various applications. Based on the obtained key effect
sequence, a Bayesian network-based approach is proposed to
further discover the high-level semantics of an auditory context by
integrating prior knowledge and statistical learning. Evaluations
on 12 h of audio data indicate that the proposed framework can
achieve satisfying results, both on key audio effect detection and
auditory context inference.

Index Terms—Audio content analysis, auditory context,
Bayesian network, flexible framework, grammar network,
key audio effect, multi-background model.

I. INTRODUCTION

THERE are various audio effects in daily life and mul-
timedia materials, such as car-horn, bell-ringing, and

laughter. These special effects play important roles in humans’
understanding of the high-level semantics of the auditory
context. For instance, car-horn and noisy-speech are often
associated with a scene of street; and the mixture of siren,
car-racing, and car-crash may indicate a pursuit in progress.
Therefore, detection and recognition of these key audio effects
in a continuous stream are important and helpful in many
applications, such as context-aware computing [1], [2] and
video content parsing, including highlight extraction [3]–[7]
and video summarization [8].
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Most relevant research focuses on general audio segmen-
tation and classification [9]–[12]. In these works, the audio
stream is coarsely divided and classified into a few basic
classes, such as speech, music, environmental sounds, and
silence. However, these basic audio categories can only provide
limited semantic information and cannot meet the requirements
of current applications.

A number of recent works have paid attention to exploring
more concrete key audio effects with high-level semantics in
various applications, such as highlight detection and context
identification. For example, in sports video analysis [4], [6], [7],
[13], highlight events are detected based on special audio ef-
fects like applause, cheer, ball-hit, and whistling; and in film
indexing [5], [14], sounds like car-racing, siren, gun-shot, and
explosion are used to identify violent scenes in action movies.

In most of the above works, a sliding window of a given length
is usually utilized to presegment an audio stream, and then each
window is used as the basic unit to model and recognize audio
effects. For example, in [4], support vector machines (SVMs)
are built to detect key effects, such as whistling and ball-hit,
based on audio frames of 20 ms; and in [7], the input stream
is first segmented into units of 0.5 s with 0.125 s overlapping,
then each unit is classified into applause, cheer, music, speech,
and speech with music. However, in most cases, such a sliding
window could not cover one complete audio effect, since the
durations of different audio effects usually vary largely and the
start time of an audio effect in a continuous stream is unknown
a priori. Thus, a sliding window may chop an audio effect into
several parts, or contain several kinds of audio effects. Based on
such a window, it is difficult to obtain comprehensive models to
satisfy the performance requirements of audio effect detection,
especially when the effects have distinct characteristics in their
temporal evolution processes.

To solve the problems introduced by sliding windows, a
new framework with a hierarchical structure is proposed in this
paper. In this framework, we do not segment the audio stream
in advance but take it as a whole. The scheme essentially is a
hierarchical probabilistic model, where an HMM is first built
for each key audio effect based on complete sound samples,
and then a high-level probabilistic model is used to connect
these individual models. Thus, for a given input stream, the
optimal key effect sequence is searched through the candidate
paths with the Viterbi algorithm, and the location and duration
of each key effect in the stream is determined simultaneously
by tracing back the optimal path.

Besides the problems associated with sliding windows, there
are still some other issues which should be taken into account
when detecting key audio effects in a continuous stream.
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1) In audio streams, the target key effects are usually
sparsely distributed, and there are many nontarget sounds
which should be rejected in detection. Some previous
works do not consider this case, while others use thresh-
olds to discard the sounds with low confidence [3], [14].
However, the threshold setting becomes troublesome for
a large number of key effects.

2) There are some relationships among key audio effects. For
example, some key effects, such as applause and laughter,
are likely to happen together, while others are not. How-
ever, previous works usually identify each window inde-
pendently but seldom consider the transition relationships
between different key effects.

3) With more key audio effects explored, the features should
provide more sufficient representations of the key effects,
as well as adequate discrimination among various key
effects.

The proposed framework also provides solutions to the above
issues. First, comprehensive background models are established
to cover all nontarget sounds, as opposed to the target key ef-
fects. Thus, the nontarget sounds would be detected as back-
ground sounds and excluded from the target key effect sequence.
A similar definition of background sounds is also used in pre-
vious works. However these works usually focus on special do-
mains, such as sports video in [7], and do not provide a compre-
hensive formulation of background modeling, as our approach
does. To solve the second issue, in our framework, a Grammar
Network is proposed to organize all the sound models, in which
the transition probabilities among various key effects and back-
ground sounds are taken into account in finding the optimal key
effect sequence. Finally, a set of new audio spectral features are
proposed in this framework to improve the description of each
key effect and to explore more key effects.

Furthermore, based on the key effects obtained, the frame-
work is further designed to discover the high-level semantics of
related auditory contexts. Key audio effects have been proven to
be efficient in bridging the gap between low-level audio features
and high-level semantics. Most of previous related works uti-
lize heuristic rule-based approaches [4], [13] or statistical clas-
sification [5], [14]. For example, in [4], heuristic rules such as
“if double whistling, then Foul or Offside” were used to infer
the events in soccer games; while in [5] and [14], SVMs and
Gaussian mixture models (GMMs) were employed to statisti-
cally learn the relationships between key effects and higher se-
mantics. In general, heuristic rules can represent prior knowl-
edge well for semantic inference but it is usually laborious to set
up a proper rule set in the complicated applications. Meanwhile,
statistical classification can automatically learn the complex re-
lationships between key effects and higher semantics; however,
its performance relies highly on the training set. To combine the
advantages of these approaches and to compensate for their lim-
itations, our framework utilizes a Bayesian network to detect the
semantics at different levels for various applications.

The rest of this paper is organized as follows. An overview
of the proposed framework is described in Section II. In
Section III, audio features used in the framework are discussed.
Section IV presents the algorithms on key audio effect detec-
tion, including modeling of the key effects and the background
sounds, and the construction of the Grammar Network. In

Fig. 1. Framework flowchart for key audio effect detection and auditory
context inference. It is mainly composed of three parts: (I) sound modeling,
(II) key audio effect detection, and (III) semantic extraction.

Section V, a Bayesian network-based approach is proposed
for high-level semantic discovery, and is compared with two
other methods. Experiments and discussions are presented in
Section VI, and conclusions are given in Section VII.

II. FRAMEWORK OVERVIEW

The system flowchart of the proposed framework is illustrated
in Fig. 1. It is mainly composed of three steps: sound modeling,
key audio effect detection, and semantic extraction.

In the framework, an HMM is used to model each target key
audio effect and these models ensemble a Key Effect Pool. Cor-
respondingly, a Background Sound Pool is used to enclose all the
nontarget sounds. Since the background in key effect detection
is quite complex, the background sounds are divided into a few
basic categories, each of which is also modeled with an HMM.
The Grammar Network is then constructed to organize all the
HMMs and to represent the transition probabilities among var-
ious sounds. It actually constructs a higher-level probabilistic
model for key audio effect detection.

To detect key effects, the acoustic features of each frame,
including temporal features and spectral features, are passed
through the above hierarchical structure. The optimal sequence
of key effects and background sounds are then found with
the Viterbi algorithm. Post-processing approaches, such as the
Smoother, could optionally be further applied to improve the
detection performance. For example, isolated key effects with
very short durations could be deleted.

At last, based on the detected key effect sequence, high-level
semantics are detected with inference engines. Different infer-
ence engines can be easily integrated into the framework. In
our implementation, a Bayesian network-based method is pro-
posed and compared with conventional heuristic and classifi-
cation-based approaches. Moreover, based on the obtained se-
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mantic context, we could further revise the key effect sequence
according to prior knowledge.

It should be noted that the proposed framework is flexible in
practice. With this framework, it is convenient to add or remove
key effects to satisfy new requirements, and the only part that
needs to be updated is the transition probability setting in the
Grammar Network. In contrast, in most of the previous works,
such as the decision tree-based system in [5] and the hierarchical
SVM-based system in [10], the whole system must be retrained
when a new audio effect is added in.

III. FEATURE EXTRACTION

Feature extraction is one of the most fundamental and im-
portant issues in key audio effect detection. In this section, we
present the features used in the proposed framework. Besides a
number of widely used features, two new spectral features are
also proposed to provide a more complete description of key
effects and to discern more key effects. In this framework, all
these features are concatenated as a feature vector for each audio
frame.

A. Basic Audio Features

Many audio features have been proposed in previous works
on content-based audio analysis [9]–[12], [15] and have been
proved effective in characterizing various key audio effects.
Grounded on these works, in our framework, both temporal
features and spectral features are extracted for each audio
frame. The temporal features consist of short-time energy
(STE) and zero-crossing rate (ZCR), and the spectral features
consist of band energy ratios (BERs), brightness, bandwidth,
and Mel-frequency cepstral coefficients (MFCCs).

In the temporal domain, STE provides a good representa-
tion of the amplitude or the loudness of the audio effect sounds
and ZCR gives a rough estimation of the frequency content
in an audio signal. In the spectral domain, the characteristics
of spectral energy distribution, as BER describes, are widely
used to discriminate between different audio effects [12]. In
our experiments, the spectral domain is equally divided into
eight subbands in Mel-scale and the energy in each subband
is then normalized by the whole spectrum energy. Brightness
and bandwidth are related to the first- and second-order sta-
tistics of the spectrogram, respectively. They roughly measure
the timbre quality of a sound. MFCCs are subband energy fea-
tures in Mel-scale, which give a more accurate simulation of
the human auditory system. As suggested in [9], eight-order
MFCCs are used in the experiments. A more detailed implemen-
tation of these features can be found in our previous works [10].

B. New Spectral Features

In the spectral domain, there are two other important char-
acteristics associated with human identification of sounds [16]:
1whether there is a prominent partial at a certain spectral sub-
band; and 2) whether the sound is harmonic. For example, one
distinct difference between cheer and laughter is that laughter
usually has prominent harmonic partials but cheer does not.
However, the above basic features are incapable of describing
these characteristics. Brightness and bandwidth can only mea-
sure the global energy center and the deviation of the whole

spectrum. Although BER and MFCC calculate the average en-
ergy in subbands, it is still hard to specify whether there exist
salient components in some subbands.

Based on our previous works on audio representation [17],
[18], two new spectral features, subband spectral flux and
Harmonicity Prominence, are utilized as supplements of those
basic features. Subband spectral flux is used to measure whether
there are salient frequency components in the subband, and
Harmonicity Prominence estimate the harmonic degree of a
sound.

In order to remove the impact induced by the energy variation
in different time slices, the spectrum is converted to the decibel
scale and is constrained to unit -norm, as suggested in [19]

(1)

where is the original spectral coefficient vector generated by
fast Fourier transform, and is the new spectral vector with unit

-norm in decibel scale.
1) Subband Spectral Flux: Subband spectral flux estimates

the existence of prominent partials by accumulating the vari-
ation between adjacent frequencies in each subband. For sub-
bands containing salient components, the flux value should be
large; otherwise, it is small. In practice, the spectrum is divided
into eight subbands equally in Mel-scale, with 50% overlap be-
tween each other. The flux is defined as

(2)

where and are the low and high boundaries of the th sub-
band, respectively; indicates the corresponding existence
probability of salient frequency components.

2) Harmonicity Prominence: Considering the property of
an ideally harmonic sound (assuming there is only one domi-
nant fundamental frequency), that is, its full spectrum energy
is highly concentrated and precisely located at those predicted
harmonic positions which are multiples of the fundamental
frequency , the harmonicity measurement can be designed
according to the following three factors: 1) the energy ratio
between the detected harmonics and the whole spectrum; 2)
the deviation between the detected harmonics and predicted
positions; and 3) the concentration degree of the harmonic en-
ergy. Based on the above factors, the Harmonicity Prominence
consists of three components and is defined as

(3)

where is the th predicted harmonic position and is defined
by

(4)

where is the inharmonicity modification factor and is set as
0.0005 following the discussions in [20]. In (3), is the
energy of the detected th harmonic contour in the range of

and the denominator is the total
spectrum energy. The ratio between and describes the
first factor listed above. and are the brightness and
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Fig. 2. Definition of the Harmonicity Prominence. The horizontal axis
represents the frequency, and the vertical axis denotes the energy. The harmonic
contour is the segment between the adjacent valleys of a harmonic peak. Based
on the harmonic contour, three factors, that is, the peak energy, the energy
centroid (brightness), and the concentrated degree (bandwidth), are computed
to estimate the Harmonicity Prominence, as illustrated at the second harmonic
position in this example.

bandwidth [12] of the th harmonic contour, respectively. The
brightness is used here, instead of the detected harmonic
peak, in order to estimate a more accurate frequency center.
The bandwidth describes the concentration degree of the

th harmonic. It is normalized by a constant , which is de-
fined as the bandwidth of an instance where the energy is uni-
formly distributed in the search range. Thus, the component

in the numerator of (3) measures the
second factor, while the component approxi-
mates the third factor. A clear illustration of the definition of
the Harmonicity Prominence is shown in Fig. 2.

In our implementation, is estimated with the autocorrela-
tion based approach; and only the first (which is set as 4)
harmonic partials are considered in the computation, since only
these harmonic partials are sufficiently prominent in most cases.
Furthermore, following our previous work [18], in a case where
the fundamental frequency cannot be precisely predicted, is
varied in a predefined range and the corresponding Harmonicity
Prominences are calculated, in which the maximum is chosen as
the value of for the frame. For a sound without pitch, is
set to zero.

IV. KEY AUDIO EFFECT MODELING AND DETECTION

In this section, we discuss some critical issues in key audio ef-
fect detection, including the modeling of the key effects and the
background sounds, as well as the construction of the Grammar
Network.

A. Key Audio Effect Modeling

Most audio effects usually have distinct characteristics along
their evolution processes. HMMs provide a natural and flex-
ible way for modeling time-varying process [21], and have been

proven to be effective for audio effect modeling in many pre-
vious works [3], [13], [14], [22]. In our proposed framework,
HMMs are also selected for key audio effect modeling. The
main issue that should be addressed with HMM is the param-
eter selection, including: 1) the optimal model size (the number
of states); 2) the number of Gaussian mixtures of each state; and
3) the topology of the model.

In model size selection, we should balance the number of
hidden states in the HMMs and the computational complexity
in the training and recognition processes. In general, sufficient
states are required to describe those significant and represen-
tative acoustical characteristics in signals; however, when the
number of states increases, the computational complexity grows
dramatically and more training samples are required. Unlike
speech modeling, in which basic units such as phonemes could
be referenced to specify the number of states, generic audio ef-
fects lack such basic units, and make the choice of the state num-
bers difficult. In our approach, a clustering-based method sim-
ilar to [11] is utilized to estimate the reasonable state number
(model size) for each key effect. In the clustering, an improved
unsupervised -means algorithm is employed and after conver-
gence the final cluster number is taken as the model size. More
details on the implementation can be found in [11] and [22].

The number of Gaussian mixtures per state is usually deter-
mined by experiments [3], [11]. Based on audio effect modeling
experiences in previous research works, as well as the size of
training data, we adopt 32 Gaussian mixtures for each state in
the HMMs. This number is larger than those used in previous
works in order that the models have sufficient discriminative ca-
pabilities to identify many more key effects in our framework.

As for the topology, the most popular HMM topology is
left-to-right or fully connected. The left-to-right structure only
permits transitions between adjacent states; while the fully
connected structure allows transitions between any two states
in the model. In the proposed framework, they are used to
model key effects with different properties according to the
following rules.

• For key effects with obvious characteristics in their
progress phases, such as car-crash and explosion, the
left-to-right structure is adopted.

• For key effects without distinct evolution phases, such
as applause and cheer, the fully connected structure is
applied.

B. Background Modeling

To facilitate the detection of the sparsely distributed key audio
effects in audio streams and to reject those nontarget sounds,
a background model is proposed to describe all the nontarget
sounds. Background modeling is extremely critical to the de-
tection performance. Many sounds in the background would be
misclassified as key audio effects without sufficient description
of the background.

A straightforward approach to background modeling is to
build a “huge” HMM, and train it with as many samples as
possible. However, background sounds are very complex and
their feature vectors are widely scattered in the feature space, so
that both the number of states and the Gaussian mixtures per
state of such a HMM must be particular large to give a uni-
versal representation of all background sounds. Meanwhile, the
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Fig. 3. Illustration of the Grammar Network with Effect Groups, where G is the kth Effect Group and G is the Background Sound Pool. For convenience,
all the key audio effect models are presented as three-state left-to-right HMMs, and all the background models are denoted as three-state fully connected HMMs.
The dummy start and end states are used to link models, and make the structure more clear.

training time of the model would become prohibitively long, and
it would be hard to reach the convergence point.

In order to solve the above issue, we model the background
with a set of subsets of general audio classes. It is noted that
background sounds in most practical applications can be further
classified into a few primary categories, such as speech, music,
and other noise. Thus, if we can train background models from
all these respective subsets, the training data will be relatively
concentrated, and the training time will be reduced. Another ad-
vantage of building several subset models is that it could further
provide useful information in high-level semantic inference of
the auditory context. For example, music is usually used in the
background of movies, and speech is the most dominant com-
ponent in talk shows. Actually, according to the requirements of
applications, the background can be divided and modeled with
more categories.

In our current system, three background models are built
with fully connected HMMs for speech, music, and other noise
respectively. Here, noise includes all the background sounds
except for speech and music. To provide comprehensive de-
scriptions of the background, more states and more Gaussian
mixtures in each state should be used in modeling. Consid-
ering the balance between the representation capability and
the computational complexity, in our approach the number of
states is chosen as 10 and the number of mixtures per state is
experimentally chosen as 128. The influences of the parameter
selection are fully investigated in the experiments.

C. Grammar Network Construction

Similar to the language model in speech processing, a
Grammar Network is proposed to organize all the above HMMs
for continuous recognition. Two models are connected in
the Grammar Network, if the corresponding sounds have the
possibility to occur subsequently, both within and between
the Key Effect Pool and the Background Sound Pool. For each

connection, the corresponding transition probability is set and
taken into account in finding the optimal effect sequence from
the input stream.

A simple approach to construct a Grammar Network is using
a fully connected network and then learning the transition prob-
abilities statistically. However, it is usually difficult to collect
sufficient training data in practice. Furthermore, it is noted that
some key audio effects usually occur together, while others
seldom happen subsequently. For instance, gun-shot often
happens with explosion, but rarely takes place with laughter.
This indicates that it is not necessary to fully connect all the
sound models. Therefore, an alternative way is introduced in
our framework, in which an Effect Group is proposed to denote
a set of key effects which usually occur together, as the –
shown in Fig. 3. We assume: 1) only key effects in the same
Effect Group can happen subsequently, and there should be
background sounds between any two key effects in different
groups; and 2) one key effect can belong to several Effect
Groups. Based on these assumptions, the Grammar Network is
constructed, as shown in Fig. 3.

To avoid the training problem and enhance the detection flex-
ibility, in this work, the transition probabilities between key ef-
fects are assumed equal and set with some heuristic rules, based
on the above principles. Suppose the set is an ensemble of
all the sounds which a given audio effect can transit to (or
occur subsequently) in the audio stream, there is

(5)

where is the th Effect Group that belongs to (it implies
that an audio effect can belong to multiple Effect Groups) and

denotes the ensemble of the Background Sound Pool. Thus,
the transition probability from to a given sound can be
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intuitively set as (6), assuming the equal transition probabilities
from one effect to another

.
(6)

Similarly, for a background sound , as it can occur with (or be
followed by) all the sounds, its transition probability to a given
sound is

(7)

where is the total number of key effect models in the Key
Effect Pool and is the number of background models in the
Background Sound Pool.

The above transition probability setting can achieve similar
detection performance as statistical learning, as shown in the ex-
periments. Moreover, this scheme keeps the advantage of frame-
work flexibility in various applications. That is, when new target
effects are added in or removed from either the Key Effect Pool
or the Background Sound Pool, only the Effect Groups need to
be redefined, without any extra system retraining.

D. Key Audio Effect Detection

To this end, we have built a hierarchical probabilistic struc-
ture by connecting key effects and background models with a
Grammar Network. The Viterbi algorithm is then utilized to
choose the optimal state sequence from the continuous audio
stream, as

(8)

where is the candidate state sequence, represents the hi-
erarchical structure, and is the observation vector sequence
which is extracted from each frame using the features presented
in Section III.

Thus, for each audio frame, the corresponding state and log-
probability are obtained. A complete audio effect or background
sound can be determined by merging adjacent frames belonging
to the same sound model. The corresponding confidence of a
sound is measured by averaging all the frame log-probabilities
of this sound. Besides confidence, the start position and duration
of each sound is also recorded for further semantic inference in
our framework.

V. AUDITORY CONTEXT INFERENCE

Based on the obtained key effect sequence, we further
extend the framework to detect high-level semantics in an
audio stream. Key audio effects are efficient ways to bridge
the gap between low-level features and higher semantics. In
many previous works, semantics detection is based on preseg-
mented audio clips [2], [5], [13]. In the case of our continuous
streams, the auditory contexts, each of which contains several
neighboring key effects, are first used to locate those potential
segments with consistent semantic meaning; and then the
semantic inference is performed on these auditory contexts.
Here, the semantic concept of an auditory context means an
auditory scene or an event happens in this segment. Thus, the

Fig. 4. Examples of the auditory context in an audio stream.

key audio effects provide important cues for these events, and
facilitate the corresponding semantic inference.

Fig. 4 gives an illustration of the auditory contexts. Two ad-
jacent key effects are assumed to be in the same context if their
time interval is short enough, since humans usually only keep
a short memory of a past occurrence. As illustrated in Fig. 4, a
new context is started if the time interval between two key ef-
fects is larger than a predefined threshold . The threshold
can be determined based on the upper limit of human memory
to perceive a consecutive scene and is set to 16 s in this frame-
work, following the previous work in [23].

To infer high-level semantics from key effects, most of pre-
vious works utilize rule-based approaches [4], [13] or statistical
classification [5], [14]. In this section, we briefly describe these
two methods, and propose a Bayesian network-based solution
to solve the disadvantages of those previous methods.

A. Heuristic Inference

A heuristic approach is the most natural and common method
to discover semantics based on the obtained key effects. Ac-
cording to human experience and experts’ knowledge, a set of
rules is found to map key effects to high-level semantics. For
instance, the appearance of laughter may indicate a humor con-
text. Although heuristic inference is straightforward and easily
applied in practice, it is laborious to find a proper rule set if the
situation is complex. Some rules may be in conflict with others,
and some cases may not be well-covered. People are used to de-
signing rules from a positive view but ignoring those negative
instances, thus many false alarms are introduced although high
recall can be achieved. For example, people like to create rules
like “a scene with laughter is a humor scene,” but seldom design
rules such as “a scene with explosion is NOT a humor scene.”
Actually, in practice, it is impossible to enumerate all those ex-
ceptions in designing the rules. Moreover, there are often lots of
thresholds defined in heuristic rules. The setting of thresholds
becomes another difficult problem.

B. Classification-Based Inference

Classification-based methods provide solutions from the view
of statistical learning. Using these means, relationships between
the key effects in an auditory context and the corresponding se-
mantics are automatically learned based on training data, either
using generative models such as GMM or discriminative models
such as SVM [24]. However, like most machine learning ap-
proaches, the inference performance relies highly on the com-
pleteness and the size of the training samples. Without sufficient
data, a positive instance not included in the training set will usu-
ally be misclassified. Thus these approaches are usually prone to
high precision but low recall. Furthermore, it is inconvenient to



1032 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006

Fig. 5. Example Bayesian network for auditory context inference. Arcs are
drawn from cause to effect. Here, we adopt the convention of representing
discrete variables as squares while continuous variables as circles, and
representing observed variables as shaded while hidden variables as clear.

combine prior knowledge into the classification process in these
algorithms.

C. Bayesian Network Inference

To integrate the advantages of heuristic and statistical
learning methods, a Bayesian network-based approach is
implemented in this framework for high-level semantic dis-
covery. A Bayesian network [25] is a directed acyclic graphical
model that encodes probabilistic relationships among nodes
which denote random variables related to semantic concepts.
A Bayesian network can handle situations where some data
entries are missing, as well as avoid the overfitting of training
data [25]. Thus, it weakens the influence from unbalanced
training samples. Furthermore, a Bayesian network can also
integrate prior knowledge by specifying its graphic structure.

Fig. 5 illustrates the graphic topology of an example Bayesian
network with three layers. Nodes in the bottom layer are the ob-
served key effects; nodes in the second layer denote high-level
semantic categories such as scenes; and those in the top layer
denote much higher semantic meanings. In Fig. 5, the nodes in
adjacent layers can be fully connected, or partially connected
based on the prior knowledge of the application domain. For
instance, if it is known a priori that some key effects have no
relationships with one semantic category, the arcs from that cat-
egory node to those key effect nodes could be removed. In com-
parison, a Bayesian network with a manually specified graphic
structure utilizes human knowledge in representing the condi-
tional dependencies among nodes, thus it can describe some
cases which are not covered in the training samples.

Besides the network topology, we also need to choose the
value type and the conditional probability distribution (CPD)
of each node in the graph. In our approach, the nodes in the
upper layers are assumed to be discrete binaries which represent
the presence or absence of a corresponding context category;
and the nodes in the bottom layer are continuous-valued with
Gaussian distribution, as

(9)

where is the two-dimensional (2-D) observation vector of the
th key effect, and is composed of its normalized duration

and confidence in the context scope, as

(10)

TABLE I
INFORMATION OF THE EXPERIMENTAL AUDIO DATA

and denotes a possible assignment of values to the parent
nodes of ; and are the mean and covariance of the cor-
responding Gaussian distribution respectively.

In the training phase, all these CPDs are uniformly initial-
ized and then updated by maximum likelihood estimation using
the expectation–maximization (EM) algorithm. In the inference
process, the junction tree algorithm [26] is used to calculate the
occurrence probability of each semantic category. Thus, given
information on the key effects in the context, we could infer
the semantics in each layer based on the posterior probabilities.
In current experiments, an auditory context in the second level
could be classified into the th semantic category with the max-
imum marginal posterior probability

where

(11)

With this scheme, human knowledge and machine learning
are effectively combined in the semantic inference. That is, the
graphic topology of the network can be designed according to
the prior knowledge of the application domains, and the opti-
mized model parameters are estimated by statistical learning.

VI. IMPLEMENTATION AND EVALUATION

In this section, we present the detailed implementations and
evaluations of the proposed framework, both on key audio effect
detection and on semantic inference of the auditory context.

A. Database Information

The evaluations of the proposed framework have been per-
formed on audio tracks of about 12 h in length extracted from
various types of video, including movies and entertainment tele-
vision shows. Theses videos have relatively abundant audio ef-
fects, and the contained audio effects are usually distinct enough
to be perceived. Detailed information on these audio tracks is
listed in Table I. All audio streams are in 16 kHz, 16-bit, and
mono channel format, and are divided into frames of 30 ms with
50% overlapping for feature extraction.

B. Key Audio Effect Detection

To evaluate the performance of the proposed framework with
a large number of targets, ten key audio effects are taken into ac-
count in the experiments. They are: applause, car-racing, cheer,
car-crash, explosion, gun-shot, helicopter, laughter, plane, and
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TABLE II
NUMBER OF HMM STATES OF KEY EFFECTS IN EXPERIMENTS

TABLE III
EFFECT GROUPS FOR THE GRAMMAR NETWORK CONSTRUCTION

siren. These audio effects are selected based on two criteria.
First, the effects should be distinctly perceived and frequently
occur in audio tracks from same video category. For example,
gun-shot happens in almost all the action movies. Second, the
effects should be typical enough to characterize the related se-
mantic events we address in Section VI-B1, that is, excitement,
humor, pursuit, fight, and air-attack.

The training samples are collected from the web and ex-
tracted from audio tracks of several other television programs
and movies. In total, there are around 100 samples for each key
audio effect, and 5 h for background sounds which are then
divided into three basic categories: music, speech, and noise.
As ground truth, the positions and durations of all the target
key audio effects are manually labeled for the audio tracks in
the database. For an audio segment in which several key effects
are mixed, the dominant one is selected as the label.

In key audio effect modeling, the unsupervised -means clus-
tering referred in Section IV-A is first performed on the training
sets to estimate the HMM states of each key audio effect model.
The corresponding results are listed in Table II. It should be
noted that more states are used here than were used in our pre-
vious work [3], in order to cover the large variety of training
samples in our current implementation. Then, a traditional EM
algorithm is used to train an HMM for each key effect. Although
discriminative training of HMMs can improve the performance
of classification and recognition, both for speech and generic
audio, it is not suitable in our framework. This is because all the
HMMs have to be retrained when new key effects are added into
the system with the scheme of discriminative training. This will
lead to the loss of the framework flexibility in practice, which is
one important advantage of our proposed framework.

To establish the Grammar Network, two Effect Groups are
defined based on the above ten key audio effects. One is for
those effects related to the entertainment scenes, and the other
is for sounds in violent scenes. The two groups seldom happen
together in general television shows and movies. The Effect
Groups and the related key audio effects are shown in Table III.

In key effect detection, all audio tracks in the database are
tested, and the start time, duration and confidence of the de-
tected key effects are recorded for further semantic inference.
Then, each frame in a stream is labeled (recognized) according
to the corresponding key effects or background sounds, based
on which recall and precision are computed. We use a frame-by-

TABLE IV
FOUR SYSTEMS FOR THE PERFORMANCE EVALUATION

frame approach to evaluate the performance of the framework,
since frame is the basic unit in audio effect detection from a con-
tinuous stream. Thus, for a given key effect, its precision and
recall are defined as

precision recall (12)

where denotes the number of correctly detected frames,
represents the number of all the frames recognized as the target
effect, and is the total frame number of the target key effect
in the ground truth.

To fully investigate the performances of the proposed frame-
work on key audio effect detection, a series of experiments are
implemented. In the following experiments, we first evaluate
the effectiveness of the proposed spectral features and the
multi-background model strategy, as well as the reasonable-
ness of the transition probability setting in constructing the
Grammar Network. These evaluations are described in the
following Sections VI-B1–B3, respectively. Moreover, to in-
vestigate the influences of the number of Gaussian mixtures in
each state of the background model, various mixture numbers,
from 8 to 256, are tested in all the above evaluations, and the
optimal mixture number is selected in Section VI-B4. Then,
the detailed system performance is presented in Section VI-B5.
Finally, in Section VI-B6, the comparison between the proposed
framework and the traditional sliding window-based approach
is reported. The scalability of the proposed framework is also
evaluated in Section VI-B7.

To carry out the above evaluations, several preliminary
systems have been built and compared based on the proposed
framework, as illustrated in Table IV. System is a baseline
which uses basic audio features and a mono-background model,
while system is used to evaluate the new spectral features
by comparing them with . System adopts the multi-back-
ground strategy based on ; and is similar to except
that the transition probabilities of the Grammar Network are
statistically learned.

1) Evaluation of New Spectral Features: In order to evaluate
the effectiveness of the proposed new spectral features, the per-
formance of system and have been compared, as shown in
Fig. 6. It is noted that the recalls of system are generally in-
creased while the precision is almost kept the same as system

, whatever the number of Gaussian mixtures is in the back-
ground models. On average, the recall is improved significantly,
by around 14.5%, and the precision drops less than 1%. It indi-
cates that with the proposed new spectral features, more target
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Fig. 6. Comparison of the performances of system AAA and BBB, to evaluate the
effectiveness of the proposed new spectral features.

Fig. 7. Comparison of the performances of system BBB and CCC , to evaluate the
effectiveness of the multi-background model strategy.

effects are accurately discriminated from background sounds
and few additional false alarms are introduced.

2) Evaluation of the Multi-Background Model Strategy:
Although new spectral features increase the recalls signif-
icantly, the precisions in system are still not as high as
required. The lower precisions indicate many background
sounds are misclassified as key effects due to the noncompre-
hensive background model. To give a more comprehensive
description of the backgrounds, a multi-background model
strategy is proposed in Section IV-B. Fig. 7 illustrates the
effectiveness of the multi-background model strategy by com-
paring system and . In comparison, system can markedly
improve the precision, by about 24.3% on average. This in-
dicates that the multiple background models can significantly
help in discriminating the background sounds from the key
effects. Meanwhile, in system , the recalls of the key effects
drop slightly by around 1.3% averagely. This indicates that the
improved background models introduce few key effects which
are falsely recognized as the background sounds, and most of
the target key effects are still correctly detected as in system .

3) Transition Probability Setting: As mentioned in
Section IV-C, the transition probabilities are ideally statis-
tically learned from training data. However, due to the difficulty
in training data collection and in order to keep the flexibility of
the framework, in our approach, the transition probabilities are

Fig. 8. Comparison of the performances of system CCC and DDD, to evaluate the
reasonableness of the transition probability setting in the Grammar Network.

Fig. 9. F1 measure of the performances for the four evaluation systems with
different numbers of Gaussian mixtures per state in the background models.

set by Effect Groups with (5)–(7). This experiment is designed
to show the reasonableness of such a setting, by comparing
systems and . The comparison results are illustrated in
Fig. 8, in which system can achieve very similar results
with , either on precision or on recall. This demonstrates that
the proposed heuristic settings of the transition probabilities
are feasible in practice, and they can effectively approximate
the real transition probabilities among all the key effects and
the background sounds in a continuous audio stream. This
conclusion is critical to guarantee the flexibility property of the
whole framework.

4) Selection of Gaussian Mixtures in Background Models:
Figs. 6–8 also shows the performance variance with various
Gaussian mixture numbers in each state of the background
models. In general, the recall drops while the precision in-
creases when the number of Gaussian mixtures increases. In
order to balance the recall and precision and to achieve the
best overall performance, we should choose a proper mixture
number in the background modeling. Here, we adopt the

-measure to characterize the overall performance of all the
systems, which is a harmonic mean of recall and precision, as

Recall Precision
Recall Precision

(13)

The -measures of all four systems with different Gaussian
mixtures in each state of the background models are shown in
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TABLE V
CONFUSION MATRIX OF THE SYSTEM WITH ADDITIONAL SPECTRAL FEATURES AND MULTI-BACKGROUND MODELS

Fig. 9. It is noted that the increase of -measures become non-
prominent after the mixture number is larger than 128. The
of system even decreases after that. Considering the balance
between computational burden and relatively high performance,
we choose 128 as the mixture number in the background models
in the following experiments.

5) Detailed Performance of the Final System: Based on
the above evaluations, system has been selected as the final
system, integrating new spectral features, Effect Groups, and
multi-background models with 128 Gaussian mixtures in each
state. Overall, the system achieves recall of about 88% and
precision of near 80%. The detailed confusion matrix of the key
effect detection is listed in Table V. It shows that high accuracy
(the numbers in bold) is achieved for each target effect in the
experiments. The average accuracy of the ten key effects is
higher than 92%. The accuracy of gun-shot and explosion are
somewhat low, since they are easily misclassified into each
other and are usually covered by background music and noise.
From the table, it is noted that the key effects in different Effect
Groups are seldom misclassified with each other. This again
indicates the efficiency of the Grammar Network proposed in
this work.

Furthermore, to show how accurately the target effects can be
located in the audio stream, the boundary shift is measured be-
tween the detected effect and the true effect. Fig. 10 illustrates
the histogram of the boundary shift duration of all the detected
key effects. From Fig. 10, it can be seen that nearly 62% of the
detected effect boundaries are less than 0.3 s away from the true
boundaries, and 79.6% are less than 1 s. Only around 14% are
outside of 2 s. The results indicate that our approach has an ac-
ceptable temporal resolution, comparing with the average length
of key effects which is around 3.7 s in our experiments. Actu-
ally, for audio tracks from movies and televisions, it is usually
hard for people to precisely distinguish the sound boundaries
with a high resolution, since in most cases, there are no clear
boundaries between key effects and backgrounds, which may
be caused by mixed sounds and audio transitions such as fade-in
and fade-out.

6) Comparison With Sliding Window-Based Approach: The
proposed framework is also compared with a traditional sliding
window-based approach to key effect detection, similar to the
one used in our previous work [3]. In the compared approach,
the length of the sliding window is 1 s with 50% overlapping.

Fig. 10. Histogram of the shift duration from the true effect boundary.

The low-level features and HMM parameters used in the com-
pared approach are the same as those used in system .

Table VI lists the detailed performance comparison between
the sliding window-based approach and our approach (system

). From Table VI, it is noted that system achieves much
better performance on all the key effects, either on precision
or on recall. System improves the average precision and re-
call significantly, by around 19.24% and 8.68% respectively,
which indicates that it can distinguish different key effects and
background sounds better. On the contrary, the sliding window-
based approach usually works worse due to two reasons. First,
a sliding window usually cannot cover a complete audio effect
and may contain several kinds of sounds. Thus it is likely to in-
troduce inaccurate recognitions. Second, the co-occurrence re-
lationships among various key effects are ignored in the sliding
window-based approach. Thus some background segments are
usually misclassified into key effects, which leads to the low pre-
cision of these key effects. In comparison, system improves
the performance by modeling such relationships with the tran-
sition probabilities described in Section IV-C.

7) Evaluation of the System Flexibility: Finally, we have
preliminarily investigated the scalability of the proposed frame-
work; that is, the performance variance is measured regarding
the increase of the number of target effects. The scalability
here requires that, with increasing numbers of target effects in
system: 1) the detection performances should be stable; and
2) the Grammar Network should correctly approximate the real
transition probabilities among sounds.
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TABLE VI
COMPARISON OF PERFORMANCE BETWEEN THE PROPOSED FRAMEWORK AND

THE SLIDING WINDOW-BASED APPROACH ON KEY EFFECT DETECTION

Fig. 11. Evaluation of the scalability of the proposed framework.

In the experiments, key effects are ran-
domly selected from all of the ten effects and then detected by
the proposed system. The above process is repeated 20 times
and the average performance is taken as the performance of a
given . Moreover, for each , the transition probability setting
schemes are compared between the heuristic rules as (5)–(7) and
the statistical setting based on the training data to measure their
difference under a different number of target effects. The corre-
sponding average precision and recall are shown in Fig. 11.

First, the performance of the system with rule-based transi-
tion probabilities is evaluated. From Fig. 11, it is noted that the
recall drops slightly as the number of target effects increases,
while the precision is somewhat low when is small and in-
creases when more key effects are taken into account. This phe-
nomenon can be explained by the following information. When
there is not sufficient knowledge (that is, few key effects are
modeled) in the system, it is easy for the system to recognize
some confusing audio effects as the target effects. For example,
we find in experiments that some laughter segments are easily
misclassified as cheer in detection when there is only a cheer
model in the system. Thus, the number of false alarm is large
when is too small so that the precision is a little bit low. How-
ever, when more audio effect models are available, that is, there
is sufficient knowledge to discriminate confusing effects, the

TABLE VII
RULES FOR THE HEURISTIC INFERENCE IN THE EXPERIMENT

false alarms decrease and precision increases. In the above ex-
ample, when models of both laughter and cheer are available,
few laughter segments are recognized as cheer. Correspond-
ingly, the recall will inevitably decrease since more misclas-
sifications are introduced when more target effects are consid-
ered. However, our proposed framework can keep recall stability
above 85% with various key effect numbers in detection. The
almost stable recall and increasing precision indicates the ex-
cellent scalability of our system.

Furthermore, by comparing the different transition proba-
bility setting schemes, it can be seen that they achieved very
similar performance under different numbers of target effects.
This again indicates the proposed heuristic settings are feasible
on our current target scale, which can satisfy the requirements
of most current applications. However, it is noted that when the
amount of target effects increases significantly (for example,
100), the proposed rules might be too simple to describe the
complex relationships among various sounds. We will address
this issue in our future work.

C. Auditory Context Inference

Based on the detected key effects in the above section, five
relevant semantic categories of the auditory context are fur-
ther detected: excitement, humor, pursuit, fight, and air-attack.
The excitement category mainly consists of cheer and applause,
while laughter is the dominant component in the humor con-
text. Pursuit usually happens in action movies and is associated
with car-crash and car-racing, and sometimes with siren, heli-
copter, gun-shot, and explosions are sometimes included. Fight
and air-attack often occur in war movies. Scenes of fight mostly
contain gun-shot and explosion; and air-attack includes plane
and explosion.

The semantic category of each auditory context is manually
labeled for all of the audio tracks in the database. In detection,
a context segment is considered to be correctly recognized if
it has the same semantics and more than 50% temporal over-
lapping with the ground truth. The following experiments con-
sist of two parts. First, based on the key effect detection re-
sults, the semantic inference of the auditory context is carried
out and compared using heuristic-based, classification-based,
and Bayesian network-based approaches respectively, as shown
in Sections VI-C1–C3. Second, to show the advantages of the
key effect-based approach in semantic inference, we also imple-
mented a low-level feature-based system for comparison, The
performance comparison is reported in Section VI-C4.

1) Heuristic Inference: The heuristic rules used in the ex-
periments are listed in Table VII. These conditions are executed
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TABLE VIII
PERFORMANCE OF SEMANTIC INFERENCE BY USING DIFFERENT APPROACHES

consecutively and each auditory context is then classified into a
related category.

2) Classification-Based Inference: During implementation,
half of the context segments in the database are used to train
one-against-all SVMs with probabilistic outputs [27] for the se-
mantic categories. The 2-D feature vector [as in (10)] of each
key effect or background segment is concatenated to form the
feature vector of the corresponding auditory context. For those
effects and background sounds which do not appear, their values
are set to zero. In recognition, the context is validated against all
the SVMs, and then classified into the semantic category with
the maximum probabilistic output.

3) Bayesian Network Inference: A two-layer Bayesian net-
work is used in the experiment. There are 13 nodes in the bottom
layer to represent the ten key audio effects and three background
sound categories in their auditory context; and there are five
nodes in the top layer, denoting the five predefined semantic cat-
egories. For comparison, the graphic structure is defined using
two strategies: 1) fully connected; that is, for each node in the
bottom layer, all nodes in the top layer are its parents; 2) man-
ually specify the causal relationships based on the above defi-
nitions of the five context categories; that is, the children of a
category node only include those key effect nodes which have
relationships with this semantic category. For example, the node
of excitement only connects with the nodes of cheer and ap-
plause in the bottom layer. The model parameters are uniformly
initialized. Half of the labeled context segments in the database
are selected as training samples to update the CPDs of each node
in the model. In our implementation, the model training and se-
mantic inference are implemented with the Bayes Net Toolbox
[28].

Detailed comparison results are shown in Table VIII, where
the precision and recall of each semantic category is listed, and

-measure is again used to evaluate the overall performance
of each system.

From Table VIII, it can be seen that the heuristic rule-based
method usually obtains high recall but low precision, since the
rules are usually set from a positive view, so that the nega-
tive samples are often misclassified. In contrast, the SVM-based
approach obtains high precision but low recall, since it usu-
ally could not detect the instances not included in the training
set. Comparatively, the Bayesian network can handle situations
where some data entries are missing, so that it has both high re-
call and high precision and shows a better overall performance
than the above two approaches. As shown in Table VIII, the
Bayesian network with a fully connected graphic structure of-

TABLE IX
PERFORMANCE COMPARISON OF SEMANTIC INFERENCE BETWEEN

FROM KEY EFFECTS AND FROM LOW-LEVEL FEATURES

fers similar precision to SVM while improving recall by 7.2%,
and obtains recall similar to the rule-based approach while im-
proving the precision by about 10.7%.

Furthermore, after prior knowledge is utilized to manually
specify the structure of the Bayesian network, the performance
is further improved. Its average recall reaches about 90%, which
is much better than others, while the precision stays similar.
This indicates that prior knowledge can be integrated into a
Bayesian Network to increase recall and overall performance
by decreasing false alarms.

4) Semantic Inference From Low-Level Features: To show
the advantages of the key audio effect-based semantic infer-
ence, we compared it with a system which infers semantics from
low-level features directly. The implementation of the low-level
feature-based approach is similar to the system presented in
[2], in which the mappings to high-level semantics are modeled
using GMMs with 128 mixtures. Half of the context segments
in the database are used for training and another half are used
for testing. Table IX lists the performance comparison between
these two approaches.

From Table IX, it is noted that the overall performance of
the key audio effect-based approach (with a manually speci-
fied Bayesian network structure) is much better than that of the
low-level feature-based approach, especially on the average pre-
cision, which is improved by nearly 73%. This indicates that
a great deal of background (nontarget) segments is misclassi-
fied into the target context categories with the low-level fea-
ture-based approach. This is because the context segments usu-
ally share a large similarity in the background sounds (speech
and music). Thus, when learned from the low-level features di-
rectly, the GMMs of these semantic categories lack the capa-
bility to discriminate from the background segments.
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Actually, compared with Table VIII, it can be seen that the
performance of a low-level feature-based approach is much
worse than any of the key effect-based approaches shown in
Table VIII. The comparisons again indicate that key audio
effects are efficient in bridging the gap between low-level
acoustic features and high-level semantics.

VII. CONCLUSION

In this paper, a flexible framework has been proposed for key
audio effect detection in a continuous stream and for semantic
inference of related auditory context. In this framework, two
new spectral features have been introduced to improve the
representation of key effects, and multi-background models are
used to achieve more comprehensive characterization of the
environment background. All the models are connected by the
Grammar Network which represents the transition probabilities
among various sounds. With this framework, an optimal key
effect sequence is obtained directly from the continuous audio
stream without the need of sliding window-based presegmen-
tation. Based on the obtained key effect sequence, a Bayesian
network-based inference has been proposed to combine the
advantages of both prior knowledge and statistical learning in
mapping key effects to the high-level semantics of the auditory
context. Experimental evaluations have shown that the frame-
work can achieve very satisfying results, both on key audio
effect detection and semantic inference of the auditory context.

There is still room to improve the proposed framework. For
example, a duration model for each key effect can be built and
integrated into the detection process; and -best result paths
can be recorded for the input audio stream to provide more in-
formation for further semantic inference. Moreover, the scale
of target key effects in current system is still limited. Although
such a target scale can meet the requirements of most current
applications, some potential problems may arise when the scale
increases significantly. For example, the generalization ability
of the heuristic setting of the transition probabilities, and the dis-
criminative ability of the HMMs, may both be challenged when
more key effects are considered in detection. This is also a di-
rection of our future works.
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