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ABSTRACT 
User written transaction code is responsible for the “C” in ACID 
transactions, i.e., taking the database from one consistent state to 
the next.  However, user transactions can be flawed and lead to 
inconsistent (or invalid) states.  Database systems usually correct 
invalid data using “point in time” recovery, a costly process that 
installs a backup and rolls it forward.  The result is long outages 
and the “de-commit” of many valid transactions, which must then 
be re-submitted, frequently manually.  We have implemented in 
our transaction-time database system a technique in which only 
data tainted by a flawed transaction and transactions dependent 
upon its updates are “removed”. This process identifies and 
quarantines tainted data despite the complication of determining 
transactions dependent on data written by the flawed transaction.  
A further property of our implementation is that no backup needs 
to be installed for this because the prior transaction-time states 
provide an online backup.   

1. INTRODUCTION 
1.1 The Problem 
One strong reason for using database systems is their promise to 
guard the integrity of their data via transactions, whose properties 
have been described as “ACID”.  Transactions provide atomicity 
(A) with its promise of “all or nothing” execution, hence 
preventing partial transaction executions in which, for example, 
money intended to be transferred between accounts is only 
withdrawn or only credited, but not both.  They implement 
isolation (I) so that the effects of one transaction do not interfere 
with the effects of another, providing the illusion that transactions 
execute in some serial order.   They implement redo recovery and 
forced logging so that once the database responds accepting 
responsibility for a transaction’s updates, those updates are 
durable (D), i.e. guaranteed to be included in the database state.  
However, these techniques, which are commonly known in the 
database technical community, do not entirely cope with the 
problem of consistency (C), which is primarily the responsibility 
of a user transaction to preserve.   

 

 

 

There is no system mechanism that prevents a user from entering a 
bad transaction, e.g. crediting the wrong amount to a bank 
account, or charging for an item that was not shipped.  Existing 
systems do, however, have ways to “clean up” the database should 
this kind of problem be detected.  We describe here a new 
recovery method for such “bad” transactions, where “recovery” 
refers to cleaning up after them. This is related but not identical to 
the traditional recovery task of restoring the data to consistency 
after aborts or system crashes. 

1.2 Existing Solutions 
Database systems already deal with bad data.  A disk may fail, 
either catastrophically or by losing some bits.  This is media 
failure, and dealing with it is called media recovery.  Commonly, 
database systems take regular backups, a special form of replica 
optimized for high speed writing and reading.  Media recovery 
involves backup load (restore) and redo recovery (roll forward) 
using a media recovery log that records transaction updates since 
the backup, hence restoring the database to its most recent state.  
This process can be arduous, and result in a long outage. 

Media recovery does not deal with the problem of bad user 
transactions.   The damage done by these erroneous transactions is 
particularly pernicious because not only is the data they write 
invalid, but the data written by all transactions that read this data 
may likewise be invalid.  The usual database technique to deal 
with such invalid data is heroic, both in the cost to use it and the 
impact that it has on the database, its users, and those responsible 
for managing the database. 

Removing inconsistency induced by bad user transactions is 
usually based on the media recovery technique described above, 
in which a backup is restored, and a media recovery log is used to 
roll the database state forward.  But media recovery is halted 
before the current state of the database is recovered.  Instead, 
recovery continues until just before the “bad” transaction 
executed.  This is “point in time” recovery and it is effective.  

However, “point in time” recovery is a heroic measure.  It is 
costly to perform, introducing a long outage while the backup is 
used to restore the database, and the media recovery log is used to 
roll the state forward to the time desired.  So this can seriously 
impair database availability.   

Further, the impact of “point in time” recovery on the database 
state is extreme.  All transactions that committed later than the 
erroneous transaction are “de-committed”, i.e. their effects are 
removed from the resulting database state.  In a high performance 
transaction application, this can result in hundreds, even 
thousands, of transactions being de-committed.  These 
transactions then need to be re-submitted in some way so as to try 
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to reduce the negative impact.  This can be a very labor intensive 
process since re-executing some of these transactions might result 
in different results than their original execution. 

1.3 Our Approach 
High human cost of existing practices suggests using machine 
resources to automate and speed this recovery.  Our goal is to 
automatically identify and isolate the ill-effects of a flawed 
transaction, thus preserving much more of the current database 
state while also reducing the service outage time. 

We want to attack both the problems mentioned above, long 
outages and the de-committing of large numbers of transactions.  
Long outages have previously been attacked by suggesting that a 
transaction time database can be used to provide an on-line 
backup that is always installed [4].  Reducing the number of 
transactions that need to be de-committed is the innovation that 
we introduce here to deal with “bad” transactions.   Oracle 
Flashback [7] attacks long outages by keeping older versions 
available for point-in-time recovery.  But they do not reduce the 
number of de-committed transactions in this process, as we do. 

1.3.1Transaction Time Versions as Backup 
A transaction time database [5,8,9,10] stores and makes accessible 
prior states of a database.  Each transaction execution produces a 
new database state.  So there are a very large number of states.  
However, transactions typically change only a very small part of 
the database, and most data can be shared between many states.  
Each database update introduces a new version of the data it 
touches.  The version is timestamped with the transaction time.   
One kind of query is an “as of” query that asks for the state of the 
database as of some selected time.  This query is answered by 
finding the data that has the latest timestamp preceding the “as of” 
time.  It is possible to construct a time based index for this data 
that will direct the query to exactly the data constituting the 
database state as of the time requested [3]. 

Because a transaction-time database contains prior states of the 
database, it can provide the function of a backup, i.e. a prior state 
of the database from which the media recovery log can be used to 
roll forward the state so as to reconstruct the current database 
state.  This requires the prior state to be on a different medium 
than the current state, which we support. The prior state requires 
no restore process, since the past states are always on-line.  Thus, 
the large availability outage is immediately avoided.  An 
additional virtue of this approach is that the “backup” can be 
queried using various temporal queries, e.g., both “as of” querying 
and time travel querying where one asks for the history of some 
records in the database over some time period. 

1.3.2 Identifying and “Removing” Invalid Data 
Like a conventional backup, a transaction time database backup 
can also be used to provide “point in time” recovery, greatly 
reducing any outage resulting from bad transactions.  This can be 
accomplished by removing in some way all data versions that 
were introduced after the corruption occurred.  However, this by 
itself does nothing in terms of reducing the number of de-
committed transactions. The rest of the paper describes our 
innovations that  

• reduce the number of de-committed transactions via the 
logging of transaction reads;  

 

• quarantine data of de-committed transactions, making it 
invisible to normal querying so that earlier valid versions of 
the data are seen instead. 

The result of these innovations, coupled with the use of a 
transaction time database as a backup, is that the outage period to 
provide recovery is almost eliminated, and the number of de-
committed transactions is reduced to those reading tainted data, 
usually an enormous reduction.  This is illustrated in Figure 1.  
This figure shows that the historical states of the transaction time 
database can be used as an online backup.  Then, when bad user 
data is identified, because we log reads, we can identify exactly 
the data that is invalid and “de-commit” only this data.  This is a 
very substantial improvement over “point in time” recovery. 

1.4 Organization of Paper 
We describe in section 2 how data is stored in Immortal DB [5], 
our transaction time database built into SQL Server.  Section 3 
details how we identify data made invalid by a bad user 
transaction (the potentially inconsistent data).  In section 4, we 
discuss how we “invalidate” this data.  We describe how our 
system works when invalidated data is encountered in section 5.  
Finally, section 6 summarizes what we have done and suggests 
some possible extensions. 

2. MULTI-VERSION DATA 
2.1 Record Versions 
2.1.1 Transaction Time Data 
A transaction time database [10] stores multiple versions of data, 
each identified by a timestamp.   When a transaction executes, it is 
assigned a timestamp for its execution.  The timestamps for 
transactions are consistent with the serialization order of the 
transactions.  A transaction’s timestamp is stored in the versions 
of the data d that the transaction writes so as to identify exactly 
when its version became the current version.  This transaction 
time TT denotes the start time for the data, i.e. d.TT├.  W(T) 
denotes the exact versions of data that are written by T., i.e. those 
stamped with the timestamp of the transaction. For serializable 
transactions, that same timestamp identifies the versions of the 
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decommits all later 
transactions 

Time 
Figure 1: Removing invalid data produced by an 

erroneous user transaction. 
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data that are read by the transaction, i.e. the versions current ``as 
of” the time denoted by the transaction’s timestamp.   

A data item is identified by a key.  A version of a data item d is 
valid during the time interval from its start time d.TT├ to its end 
time d.TT┤, which is the start time for its succeeding version.  
Hence, it is valid during the semi-open interval [d.TT├,d.TT┤).   

 We will need to identify exactly which version of a data item d is 
the version that is read.  We use R(T) to denote the exact set of 
versions of data that are read by transaction T.  We need to 
carefully make note of all times used in identifying versions of 
data that are read, so as to precisely define R(T).  For serializable 
transactions, these are the versions of the data items read that are 
current at the time TT for the transaction. 

2.2 Intra-Page Organization 
2.2.1 Version Chains 
Immortal DB record versions are accessed from a slot array, 
ordered by their identifying key, as is typical within a B-tree style 
primary index organization.  Each version is timestamped with the 
time of the transaction that wrote it.  Thus, the span of a version 
starts with this time, and ends with the time of the succeeding 
version that records an update for the record with the given key.   

The versions of a record, which share a common key, are stored 
on linked version lists within a page, the most recent version for 
each data item at the head of the chain and each version linked to 
the immediately preceding version in time order.  The head of the 
chain is stored in a slot array, a very common organization for 
database pages.  This organization makes it easy to determine the 
version of interest within a page.   It is simply the first version, 
starting at the head of the chain for the data item with a given key, 
and searching down the chain for the first version with a 
timestamp ≤ the time of interest.  A page is illustrated in Figure 2, 
which shows two data items (records), one with key A, another 
with key B.  These are chained together, with chain heads in the 
slot array at the end of the page. 

2.2.2 Dealing with Deletes 
We need to provide an end time for versions immediately 
preceding deletes.  To do this, we add a special new version to the 
head of the version chain, which is marked as a “delete stub.  The 
delete stub includes a special delete stub flag, the identifying key 
for the record, and the timestamp for the delete.  The stub serves 
to provide the end time for the immediately preceding version.  

2.3 Inter-Page Organization 
Versions of records can overflow the page on which the current 
version is stored.  When this occurs, we can split the page on 
either time or identifying key.  We then index these rectangular 
key-time regions using a TSB-tree [3], as shown in Figure 3.  

Thus, chains of record versions can span pages, the earliest 
version on a page pointing to the slot in which to find the record 
latest version on the page containing immediately preceding 
versions.  When a version’s lifetime spans the time boundary used 
to in the time split, the version appears in both pages, and the 
version in the later page is linked to its clone in the earlier page.  
The back pointer that spans pages makes it simple to trace back 
the versions of a data item across pages.  Figure 4 illustrates the 
back pointer between versions on different pages. 

 

Page Header 

Slot 0 

At0 

Bt1 

At2 

At3 
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1 

Figure 2: A page containing versioned data for records 
with keys A and B. 
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Figure 4:  Handling versions between time-split pages. 
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When a delete stub might cross the time split boundary, it is not 
cloned but only appears in the earlier page.   The non-propagation 
of a delete stub prevents the database from filling up with deleted 
records.  The delete stub’s purpose is to provide an end time for 
the preceding deleted version, and it has already accomplished 
that.  We will return to this in section 5, because not cloning 
delete stubs complicates dealing with invalidated data.  Non-
propagation of delete stubs is also illustrated in Figure 4, where 
the dotted line indicates that the delete stub is NOT present. 

3. INVALID DATA 
3.1 What Data is Invalid 
We need to compute the closure of all data written by transactions 
impacted by invalid data. Essentially, this process involves 
computing C(DB), which denotes the exact versions of data that 
are invalid (corrupt) in the database.  This can be expressed in 
terms of the initially invalid versions of data and the versions of 
data written by transactions that have read invalid data.  

1. C(Tc)0 = W(Tc), where Tc is the transaction now known to be 
corrupt.  Identifying Tc is done outside of our technology by 
a process that will usually be a manual one. 

2. C(Tc)i+1 = C(Tc)i ∪ {W(Ti+1) | ∃(Ti+1) R(Ti+1) ∩ C(Tc)i ≠ φ} 
where Ti+1 has a timestamp TS(Ti+1) and there are no 
transactions Tj such that TS(Ti)< TS(Tj) < TS(Ti+1).     

3. C(Tc) = C(Tc)j  such that there is no Tj+1, with TS(Tj) < 
TS(Tj+1) with  R(Tj+1) ∩ C(Tc )j ≠ φ.       

We need to interpret item 2 of the preceding list somewhat 
carefully in order to deal correctly with phantoms [2], as we will 
describe later.  In particular, the set R(Ti+1) can include ranges of 
records read, not simply single record reads. 

3.1.1 An Example of Invalidation 
We illustrate the computation of invalid data using the example 
below in Figure 5. In Figure 5, transaction 1 at time T1 is 
determined to be an invalid transaction.  So its write set {X1} is 
shown as invalid (dark box).  Our analysis shows that transaction 
3 at T3 reads X1 and writes a new value X3.  This is also marked 
as invalid (striped lines).  Further, transaction 5 at T5 reads X3, so 
we show its write of Z5 as invalid also (striped lines).  Finally, 
transaction 6 at T6 reads Z5 and writes W6, which we also show as 
invalid (striped lines). 

 

3.1.2 Conventional Database 
Note that this same computation can be used to identify 
potentially invalid data in a conventional database by simply 
removing the version identification.  This essentially collapses all 
invalid versions of a data item into the single (invalid) instance of 
the data that is present in the current database.  So long as the 
only transactions being considered are those that execute after the 
Tc, this computation would be effective as well.  It could be used 
to avoid de-committing transactions that are not impacted by the 
initial corruption. 

3.2 Logging to Track Invalid Data 
3.2.1 Tracking Reads 
The technology enabling us to avoid de-committing transactions 
is based on logging the identity of data that each transaction reads.  
This permits us to identify the transactions whose execution 
depended on the data now known to be invalid.  Recovery logging 
in Immortal DB logs the identity of data items written by each 
transaction, i.e. W(T), and includes the way in which they were 
changed.  By logging the identity of the data items read by each 
transaction, i.e. R(T), previously suggested in [1] to handle 
application corruption via wild stores of data in a main memory 
database system, we have enough information recorded on the log 
to perform the computation of C(Tc) in section 3.1. 

The “C” in “ACID” transactions stands for “consistency” and is 
largely the responsibility of the transaction code.  When a 
transaction executes in its entirety, it promises to make a 
transition from one consistent database state to another.  So, 
should a transaction be erroneous and make the database state 
invalid, then of necessity, the entire effects of the transaction are 
invalid.  Hence, a transaction either invalidates the database or it 
does not.  And if it does, all its updates to the data items it is 
writing are invalid. 

Since a transaction in its entirety is either invalid or consistent, we 
can treat the activities of a transaction, both its reads and its writes 
as a whole.  Where this is leading is that we do not need to 
remember when a read occurred within a transaction.  A 
transaction that reads any invalid data will produce invalid 
updates, even when the invalid data is read after an update occurs.  
It is simply impossible to produce a consistent result were we to 
try and distinguish updates occurring before an invalid read from 
those occurring after such a read. 

Thus, we do not need to remember when transaction reads occur 
relative to transaction updates.   This permits us to consolidate all 
read information about a transaction into a single log record that 
we write just before we commit the transaction.  Only if such a 
record is too long for our logging mechanism to deal with easily 
might it be useful to break the read log record into a number of 
records.  Especially in transaction processing, this should always 
be unnecessary, and a single read log record should suffice.  We 
thus store the information about what each transaction reads in a 
volatile data structure.  Every such transaction is enhanced with a 
volatile structure which temporarily keeps track of the records that 
are read by the transaction under consideration. Access to this 
structure is synchronized with spinlocks to deal with multi-
threading within the kernel. 

Not all reads need to be recorded in the read log record.  In an 
ARIES style recovery method [6], log operations document the 
data changes.  As ARIES is used in SQL Server, update 
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T3: R(X1,Y0) 
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Figure 5: Transaction time database with invalid data. 
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operations don’t reveal whether the data is read prior to being 
written.  To be conservative, we assume that all updates 
(including inserts) require reads of the updated data. Hence, only 
reads of versions not updated by the transaction need logging.  
Reads for updated data are already logged via update log records. 

We only deal with user transactions that have performed at least 
one write operation, as read-only transactions by default do not 
make data invalid.  

In the rest of this section, we discuss two aspects of how best to 
do this logging: 

• how to identify the data items being read; 

• the nature of the log records for reads. 

3.2.2 Identifying Data Items Read 
Some database applications will do extensive amounts of reading 
prior to changing some much smaller part of the database state.  
This can make the size of the read log record very large.  Further, 
the size of the data structure needed to remember this information 
during transaction execution until the moment of commit when 
the read log record is written can likewise be very large.  It is 
always awkward to deal with large numbers of resources.  Each 
resource must be identified unambiguously. Maintaining such a 
data structure is not difficult but it can put pressure on the 
database system’s kernel which adds to the costs involved. 

The above problem, i.e., of a very large number of resources, is 
not unique to our wanting to log transaction reads.  It arises as 
well when transactions need to lock resources so as to provide 
transaction isolation.  And we can deal with the issue in the same 
way, namely by introducing multi-granularity resources. 

We capture the information about a transaction’s activity at the 
interface between the query processor and the underlying database 
kernel.  At that point, in our underlying system, we know about 
individual record reads and about reads of record ranges.   We 
capture both forms of reads.  Capturing key range accesses 
provides us with the multi-granularity resource information that 
permits us to avoid recording every record that is read in the 
range.  Furthermore, knowing about ranges is critical if we are to 
deal correctly with phantoms (see the next subsection). 

The solution we implemented in the current prototype is to 
preserve ranges of records that have been read. In order to identify 
the ranges that have been read, the system records the requests for 
range reads that come from the upper parts of the system (i.e. the 
query processor) and uses that in order to aggregate the 
information whenever possible. The system can currently record 
the reads at the granularity of single records, full table scans, and 
as (closed, right open, left open) ranges.  While recording the 
reads we also make several checks, when those can be performed 
cheaply so that we avoid recording duplicate information. 

3.2.3 Phantoms 
Some explanation is required to describe how phantoms arise 
when tracking data invalidation.  Consider an invalid transaction 
that deletes a record.  The deletion is invalid because the 
transaction has read invalid data.  Hence the deletion should not 
have occurred.  Were a transaction to read a range that includes 
the deleted record, that read should make the transaction invalid.  
However, if we were only recording record reads, we would not 
“see this”.  None of the records in the range that our transaction is 
reading are invalid.  What is invalid is that the transaction should 

have read the deleted record but did not.  This deleted record is a 
phantom.  Fortunately, by recording the range that is read by this 
transaction, we can detect that the invalid deletion occurred in this 
range, and so make our “range reading” transaction invalid. 

3.3 Writing Read Log Records 
When a transaction that has performed user level updates is about 
to commit and before writing its commit record to the log, the 
system generates its read log record and writes it to the log. This 
log record contains the information that has been accumulated for 
the reads of this particular transaction. If the maximum size of the 
log record is reached during the writing process, multiple read log 
records may be created and written.   

The format of the read log record is illustrated in Figure 6.  The 
read log record header includes all the information of a basic log 
record structure (i.e. log record length, operation type, LSN of the 
previous log record, ID of the transaction that created this record 
etc) and in addition four more fields to denote the number of table 
scans, left open ranges, right open ranges, closed ranges and 
single record fields (in that order) that exist in the log record. This 
ordering permits us to decode the information that exists in the 
fields of the log record.   

We chose to store the information in this particular order (i.e. first 
table scans, then ranges, the single records) so as to put large 
granularity ranges first.  By checking the large granularity reads 
(i.e., the large ranges) first when reading this record, we increase 
the probability that we will discover that the transaction is an 
invalid one without looking at all the data that has been read.  Of 
course, for valid transactions, which we expect to be the common 
case, there is no avoiding examining all the entries of the read log 
record.   

The cost of logging reads is typically only a very small fraction of 
the overall logging costs for installations that need the ability to 
purge bad user transactions.  These are typically enterprise 
systems such as OLTP.  Even simple transactions will usually 
have several updates, e.g. debit/credit.  And these systems do only 
a modest amount of additional reading of non-updated data.  
Adding one additional log record to transactions for these 
scenarios is a pretty most cost. 
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4. THE INVALIDATION PROCESS  
In section 3.1, we defined invalid data as data written by an 
invalid transaction (W(Tc)) or data written by transactions that 
have read invalid data (C(Tc)).  This definition provides an 
abstract algorithm for doing the computation.   When we log reads 
(see section 2.2) we have the information needed to compute the 
data corrupted by an initial invalid transaction Tc.  In this section, 
we describe how to execute our abstract algorithm in the context 
of a database system. 

4.1 Identifying Invalid Record Versions 
The process of identifying all the invalid record versions consists 
of two steps.  

1. identify the original invalid transaction and its versions; 

2. recursively identify as invalid the versions that are written by 
transactions that have read invalid data.  

We treat delete stubs as we treat regular record versions, i.e. we 
invalidate them exactly when the transaction that produced them 
either was the invalid transaction or has read invalid data. 

We maintain a main memory data structure to record versions 
identified as invalid.  Subsequently, we use the versions identified 
in this structure to mark the on disk versions in our transaction 
time database.  

4.1.1 Identification of Initial Invalid Transaction 
Step one is to identify the user transaction which produced the 
initial invalid data.  This part of removing invalid data cannot be 
automated.   A user who understands the applications being 
served by the database needs to identify in some way when an 
invalid transaction has executed.  Recall that it is the user, not the 
database system, which provides the “C” in “ACID” transactions. 

What we deal with here is the way in which the user identifies the 
invalid transaction to our system.  We are aware that there might 
be several ways in which this might be done, and our invalidation 
framework can accommodate several methods.  Some examples 
might be for the user to: 

1. provide a request ID identifying the user level request that 
resulted in the invalid transaction being executed.  The 
system might then map this request ID into a transaction 
timestamp. 

2. provide the precise timestamp of the invalid transaction.  
Such a timestamp uniquely identifies the transaction within 
our transaction time database. 

3. point to a record version that the user identifies as 
containing invalid data.   

There are surely other methods that might also be employed. 

It is the third alternative above that we pursue here. We assume in 
this that our knowledgeable user has executed an “as of” query 
and has seen what he considers to be invalid data.   Our problem 
boils down to translating this identification of an invalid version 
into determination of the transaction on the log that wrote the 
invalid version and its timestamp.  We can then identify its 
updates W0(T) and initiate the invalidation algorithm to produce 
WC(T). 

The transaction we want to identify is the one which touched 
(with an insert, delete or update operation) the latest record whose 
timestamp is less than or equal to the “as of” time used in the 

query.   Currently in our system, an “as of” query cannot read the 
timestamp of the data, so we need to discover it.  Then we will use 
the log and our logged reads and writes to identify the rest of the 
invalid data. 

We scan the log backward, starting at the current end of the 
recovery log for our transaction time database. During the scan 
the set of all the committed transactions (called the CS or commit 
set) is maintained in the form of a hash table, with transaction ID 
as the hashed key.  The following actions are performed during 
the backward scan: 

1. When a commit log record is encountered, the ID and 
commit timestamp of the transaction which created this log 
record is saved in the CS.  The timestamp is given in the 
immediately earlier record, where it is recorded as an update 
to our transaction time table.  Moreover, for reasons that 
become obvious later, we also maintain the LSN of the start 
record for this transaction in the CS.  In Immortal DB, this 
information is provided in the commit log record.  

2. When any update, insert or delete log records is encountered, 
the CS is probed and the transaction that performed this 
action is identified (we use the transaction ID which is part 
of the log record for any update log records for the probe 
value). This information will reveal the timestamp for this 
“modify” log record. If this timestamp is smaller or equal to 
the “as of” time for the record version identified as invalid, 
and the record has the same table and key values as the 
invalid record of the “as of” query, then we have identified 
the record version and its transaction that is the invalid one.  

 
At the end of the first phase we have identified the invalid 
transaction Tc, the transaction that “corrupted” the database. The 
next step is to identify the set of all records that Tc has updated 
(which are also invalid). This step is interleaved with the second 
pass of the invalid record identification task, and is described in 
the next section. 

4.1.2 Transitive closure of Invalid Record Versions 
In the second phase of the identification of all the record versions 
that are invalid, we perform a forward scan through the log, 
starting from the smallest LSN of the start record for any 
transaction that we have encountered with a timestamp that is later 
than or equal to the timestamp for Tc.  All updates invalidated 
both directly and transitively by Tc must have log records with 
LSNs later than that LSN, and hence occur later in the log. During 
this step we maintain a volatile structure which holds the set of all 
corrupted records that we identify during this forward scan. We 
call this set the IRS (Invalid Record Set). We also maintain the 
information about committed transactions that we have identified 
in the backward scan done in our first step, until we can decide 
whether those transactions are invalid.  

We do not maintain in IRS an enumeration of record versions that 
we determine to be invalid.  We assume that once a record version 
in our transaction time database is invalid, all subsequent versions 
of the record are invalid.  With ARIES style recovery [6], with its 
physiological log records, any modification of an existing record 
is assumed to have also read the record.  Hence, once a record 
version is invalid, all subsequent versions, which are produced as 
a result of having read the invalid version, will also be invalid.  
Thus, to identify corrupt versions of records, we need merely 
identify the earliest version of a record that is invalid.  All 
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subsequent versions will also be invalid.  This observation permits 
us to keep the space required by the IRS much smaller than it 
would be otherwise. 

As a result, we need only maintain the key that identifies a 
particular version, the table where this record resides and the 
timestamp of the earliest associated version that was identified as 
invalid.   We proceed as follows: 

1. We initially include in the IRS the records updated by Tc 
(which we have identified in step one), adding them as we 
encounter them in our now forward log scan. When we 
encounter the commit log record of Tc, we know that we have 
found all the record versions modified by that transaction. 

2. We now identify the other invalid record versions as follows:  
(a) if a “modify” log record (i.e. denoting insert, update, or 

delete) is encountered, we check whether there exists 
within the IRS another version with the same key that 
belongs to the same table. If so this version is also invalid. 
Hence the associated transaction and all its records are also 
invalid, as well as the remaining records that have been 
modified by that transaction.  

(b) when a read log record is encountered we check whether 
any of the reads that were performed by the associated 
transaction contain any of the records in the IRS.  If so, 
then this transaction is invalid, and all its modifications to 
the database need to be identified as invalid.  Because this 
check can only be done when we are at the end of a 
transaction, we need to remember until the commit record 
for each transaction is encountered, each update that a 
transaction has made.   

(c) at the end of each transaction encountered on the log, we 
know whether the transaction as a whole is either valid or 
invalid.  If invalid, all the record versions modified by the 
transaction are entered into the IRS.  Otherwise, we discard 
its temporarily remembered modified records.  

Note that we know the validity or invalidity of all records read by 
any transaction before we encounter the transaction’s commit 
record.  Thus, when we do encounter a transaction’s commit 
record, we can with certainty decide on the validity of the 
transaction. 

4.2 Quarantining Invalid Record Versions 
4.2.1 Handling Normal Record Versions 
The last step of the data corruption recovery process is to mark as 
invalid the data versions in the database itself, which are located 
on disk. This permits us to quarantine the records from normal 
data access.  To denote a record as invalid, we use one bit in the 
record header.  Setting the bit marks the record version as invalid.  
During this process, the database is off-line, as it would be when 
performing ordinary crash recovery. 

Recall that the IRS contains the set of invalid records, each 
identified by its primary key, together with the timestamp of the 
earliest invalid version.  All later versions of the record with the 
given primary key are likewise invalid.   

We need to mark each version of every record in the IRS as 
invalid back to the timestamp of this earliest invalid version. 
Thus, we search for each record’s current version, essentially 
performing a current time query for it. Then we traverse the 
associated record version chain backwards in time (using the 
previous version pointer of each on-page record in order to 

identify all its previous versions that reside in the same page and 
the previous page pointer of the associated page for record 
versions that reside in different pages).  As we traverse this 
version chain, we mark the versions as invalid until we identify a 
record with timestamp equal to the earliest timestamp that we 
have saved in the IRS for this record.   

4.2.2 Handling Delete Stubs 
In Immortal DB, a record version deletion is denoted with a delete 
stub.  The delete stub records the fact that the record is deleted, 
and provides an end time d.TT, for the immediate earlier version.  
Recall that we need the delete stub only in the page containing 
this prior version.  Any later pages will simply not have the record 
present.  That is, we do not propagate delete stubs the way we 
propagate other versions across time split pages.   

Not propagating the invalid delete stubs creates new problems.   

1. When we look for a current version of a record in the IRS, 
and it has been deleted in an older page, the delete stub is not 
present in the current page.  Hence there is no evidence of 
the record in the current page.  How do we reach the versions 
of this IRS record so as to mark them as invalid? 

2. When we do normal queries later, we want the prior, valid 
versions of the records requested to be part of the answer.  
But records with invalid delete stubs in earlier pages might 
not be present at all.  So we would not even know that a 
record that would satisfy a range query that is an extension of 
the lifetime of an earlier valid record exists.  

Here we address what we do during the invalidation process.  This 
will directly solve problem (1) above.  And it will set us up to 
solve problem (2), which is part of how we deal with the database 
during normal processing after records are marked as invalid (see 
section 5). 

Recall that we do not want to propagate delete stubs for fear that 
they end up diluting later database states, where the delete stubs 
might be so large in number that the actual existing records 
become only a small fraction of the total utilization of later pages.  
However, we are prepared to mark the pages with a small and 
bounded amount of extra information. 

When we execute our current time query for a record in the IRS 
that has a delete stub that has not been propagated to the current 
page and hence has an invisible invalid delete stub, we mark the 
page with an IDS flag (using one bit in the page header) as 
“containing” an invalid delete stub that was not propagated to it.  
We then follow the page pointer (our time split pages are chained 
from current time back, as we previously described) to the 
immediate preceding page.  We continue marking pages in this 
way until we reach the page containing the invalid delete stub.  At 
that point, we mark the delete stub as invalid, and commence 
traversing the record version chain as we did for ordinary record 
versions, marking each as invalid until we reach the version 
containing the timestamp of the earliest invalid version, as 
recorded in the IRS. 

The result of the prior process is that we have marked each invalid 
version using one bit in the record header, including for versions 
that are delete stubs.  In addition, each page that would have 
included delete stubs had they been propagated like normal record 
versions has been marked by IDS in the page header as 
“containing” unpropagated delete stubs. 
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4.3 Making the Quarantine Durable 
The durability of the data invalidation process is achieved by 
marking all pages modified by invalidation as dirty pages in the 
cache.  Then, when we are finished with the process, we flush all 
dirty pages to disk before making the database available for 
regular processing.  This is the normal, non-failure case.   

To guard against system crashes during invalidation requires that 
we make invalidation “recoverable”.  For this, we define two new 
log records which denote the beginning and completion of the 
data invalidation process.  

1. The begin invalidation log record is designated with a log 
operation signifying this.  It also contains the ID of the 
transaction which caused the invalidation. This log record is 
written to the log when we have established this transaction’s 
ID, and before starting the identification of the invalid record 
versions.  This permits us, upon system crash, to re-initiate 
the invalidation process as part of recovery, and before the 
system is made available for subsequent normal access. 

2. The end invalidation log record is written to the log after all 
pages dirtied by the invalidation process have been flushed 
back to disk.  At this point, we know that all invalidation has 
been done AND has been made stable.  Hence, should the 
system subsequently crash, during recovery we can 
determine that we do not have to repeat the invalidation 
process, but rather can make the database available for 
normal processing. 

5. DATABASE AFTER QUARANTINE 
5.1 Normal Database Access 
We want the effect of accessing our database after invalid data has 
been quarantined to be as if the bad user transactions that resulted 
in invalid database states had never been executed.  Consider our 
example of Figure 5.  In that example, transaction T1 was 
identified as invalid and its update of X produced an inconsistent 
database state.  Subsequently, transactions T3, T5, and T6 read 
either X or other variables that had been made invalid by earlier 
transactions.  This resulted in the versions of W written by T6, X 
written by T3 and Z written by T5 to also be invalid.  

After our invalidation process, we want the effects of all the above 
invalid transactions to “disappear” from the database, as if these 
transactions had never executed.  This quarantines them during 
normal access. Thus we want the database to be as shown in 
Figure 7.  In that figure, the version preceding the invalid one has 
its lifetime extended up to the current time.  

Our invalidation process has not, however, actually removed the 
invalid data.  Nor has it propagated the prior valid versions of W, 
X, and Z as suggested in Figure 7.  Rather, it has merely marked 
the versions shaded or striped in Figure 5 as invalid.  It is how we 
interpret the data following invalidation that permits us to achieve 
the logical result suggested by Figure 7.  

After data corruption recovery has taken place several data 
manipulation operations need to be modified in order to return, or 
operate on the database, as if the latter had no corrupted record 
versions. We describe how various database operations need to be 
changed in order to achieve the desired effect. 

 

5.1.1 AS_OF Point Query 
This query requests record version in a transaction-time table 
identified by the record’s primary key as of a particular time or the 
current time.  The processing for that record proceeds as if data 
invalidation recovery has not taken place, until the page that 
contains the record version that  would be returned if no data 
invalidation recovery has taken place (if one exists) is identified. 
At this point, what happens depends on what we find on the page. 

Page contains a version of the record: If a version of the record 
is found, then we search, starting at the head of the chain for that 
record’s version, and search the chain for the latest valid version 
earlier than the “as of” time as the answer.  This is the empty set 
when that valid version found is a delete stub.  If the later versions 
are marked as invalid, we need to search this version chain, 
potentially back through a number of pages until we encounter the 
first valid version.  That then becomes the result that we return. 

Page does not contain a version of the record:  If we do not find 
a version of the record on the page there are two cases: 

• If the page is not marked as IDS then we return the empty set 
as the answer.  The requested version does not exist. 

• For an IDS marked page, we follow our page chain backward 
to earlier pages that contain earlier versions for the key space 
of interest, repeating this process. That is, we look again for a 
version of the record on the older page, etc.  Eventually we 
either find a version of the record (whether valid or not) and 
then switch to traversing the version chain instead of the 
page chain. Or we encounter a page not marked as IDS at 
which point we return the empty set as the answer.   

5.1.2 AS_OF Range Query 
This query requests all records versions “as of” a given time in a 
specified table and that belong to a given range of keys.  To 
efficiently handle this query when invalid data might be present in 
the range, we accumulate the valid versions for the range in a 
batch, rather than looking for each version individually.  Thus, for 
each data pages accessed by normal processing via our temporal 
TSB-tree index, we identify the part of the key value range for 
which it provides the answer.  We then have a number of cases: 

Page is NOT marked with IDS.  We collect valid normal record 
versions in the range and include them in ANSWER set.  We 
follow intra-page versions chains looking for and including valid 
versions when the later version is marked as invalid.  Versions 

T0: X=20 T0: Y=30 T0: Z=40 

T0 

LOG 

T1: R(X0) 

W(X1:21) 

T2: W=12 

T2: R(W0,Y0) 

W(W2:12) 

T3: R(X1,Y0) 

W(X3:33) 

T0: W=10 

T4: R(Y0,Z0) 

W(Y4:34) 
T4: Y=34 

T5: R(X3, Z0) 

W(Z5:45) 

T6: R(W2,Z5) 

W(W6:16) 

Figure 7:  Versions from Figure 5 showing the logical view, 
as if invalid versions were not present.   
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remaining as invalid in the range as of the time requested are put 
in our PENDING set, including invalid delete stubs.  The valid 
delete stubs we encounter are ignored.  We follow the page chain 
back in time, and search each of these pages for members of 
PENDING.  When we find the latest (first encountered in the 
backward chain) valid version for a member of PENDING, we 
remove that record from PENDING and include this valid version 
in ANSWER. When PENDING is empty, this process stops.  
Should the latest valid version be a delete stub, we remove the 
record from PENDING but do not include it in ANSWER. 

Page is MARKED with IDS. We proceed as if the page is 
unmarked, placing record versions either in ANSWER or 
PENDING.  However, it is possible that there are additional 
record versions “hiding behind” unpropagated invalid delete 
stubs.  Thus when we traverse the page chain for the next older 
page, we not only search for records in PENDING.  We also 
search for invalid delete stubs.  When we find an invalid delete 
stub in the query range, we add its record to PENDING.  We 
continue to traverse the page chain until PENDING is empty 
AND the page is not marked as IDS.   

When collecting record versions in ANSWER, we make sure to 
(a) preserve only the latest valid version of a specific record and 
(b) preserve the record ordering, so that we do not disrupt 
operations that rely on that ordering.  When processing is 
complete for the sub-range of the query range in a given page, we 
return the subrange in ANSWER.  This permits the range query to 
be answered incrementally. 

5.1.3 Update Record 
 In Immortal DB, the update of a specific record is realized as 
follows: first the version of the record to be updated is identified 
by performing a retrieval operation.  We then copy this version to 
a new version of the record and include it at the head of the 
version chain.  This becomes the basis for the new version, which 
we then update in place.  If the current version is invalid, instead 
using the current version as the basis for the new version, i.e., as 
the one that is updated in place, the system identifies the first 
valid version (if one exists) and copies the content of this valid 
version to the newly created record that is then updated.  

For insertion of a new record, we need to make sure that an 
existing record with the same key does not already exist.  This is 
answered by doing a retrieve for the record prior to the insert.  An 
existing record may be “hiding” behind an invalid delete, but the 
retrieval will find it.  When no prior record exists, the insert 
process is the usual one for multi-versioned databases.   

A delete also requires a retrieve prior to deletion to make sure 
there is a record to delete.  Such a record might also be “hiding” 
behind an invalid delete, but retrieval will again find it.  When a 
prior record exists, delete involves creating a new delete stub in 
the otherwise usual way.   

We also need to maintain the version chain.  In all cases, if there 
is an immediate prior version in the current page, valid or not, the 
back pointer of the new version (or delete stub) points to it.  If the 
immediate prior version is in the immediate prior page, we store 
its slot number in the back pointer.  If there is no prior version 
(the insert case), the back pointer is set to null.  Finally, if the 
prior version is further back in the page chain, due to 
unpropagated invalid delete stubs, we mark the back pointer with 
a special non-null value indicating that.  

5.2 Database Healing after Invalidation 
Pages that are marked as having unpropagated invalid delete stubs 
(IDS pages) are expensive to process.  As our transaction time 
table grows via splitting, we would like to remove the IDS mark 
from new pages when the IDS mark is not needed.  We call this 
“healing” the database.  Once the IDS mark is removed, 
subsequent update performance and query performance for the 
current database will return to the level prior to the invalidation.  
Thus what we examine here is when the IDS mark needs to be 
propagated through page splits and, importantly, when it does not.  

We need to understand when we need the IDS mark on a page.  
We need it exactly when there are records missing from a page 
that should contain them.  We do not need the IDS mark if we are 
simply missing some versions on the version chain of a record.  
The version chain will tell us about that condition.   

Time splits: In Immortal DB, data pages can be split both by key 
and by time. With time splits, both pages inherit the same record 
set.  Hence both pages must inherit the IDS mark since if records 
are missing from the record set on the page prior to the split, they 
will be missing in both history and current page after the split.   

Key splits: A key split divides a page’s key range into two new 
ranges.  While at least one of the resulting pages must have an 
IDS mark if the mark was present before the key split, one page 
might not.  Hence we check whether the resulting pages (i.e. the 
original split page or the new page or both) still need the IDS 
mark.  Thus, after we have performed a normal multi-version key 
split, for each resulting page we (a) identify its range and (b) we 
perform a backward search in its page version chain to determine 
if there is an invalid delete stub which belongs to this range. If we 
find one we mark the page, otherwise we remove the marking.  

Updates: When we update or delete a record in an IDS marked 
page, we want to know if the new record version heals (removes) 
the IDS marking.  We do a range based on the key range of the 
page.  If there is only one invalid delete stub in this range and it 
has the same key as specified in the update or delete, we remove 
the IDS mark on the page, otherwise we leave it.  

Healing operations are very important. Unpropagated invalid 
delete stubs negatively affect the performance of subsequent 
operations on an IDS marked page.  Each time we may need to 
traverse several pages, to determine the valid contents of the page, 
without which we could not reliably execute the operations 
correctly.   As a result, we have taken steps to only propagate this 
marking as necessary to avoid this search in later operations. 

Last, in order to make the propagation of page marking 
recoverable, Immortal DB provides two new log records, one to 
set the IDS flag in a page, and the other to reset it.  These permit 
us to make the setting of this flag durable, avoiding the messy and 
costly task of recomputing it after a system crash. 

6. DISCUSSION 
6.1 Controlling Costs 
Not all database installations want or need the level of data 
integrity provided by our technique.  For that reason, we make it 
optional both declaration of a table as immortal, and the logging 
of reads.  However, it is clear that many enterprises need the kind 
of functionality that we provide.  The existing technique, point-in-
time recovery, documents this need, and is used even though it 
can result in very long availability outages. 
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For installations that need protection from bad user transactions, 
doing our invalidation promises to substantially shorten outages.  
The largest normal execution cost is in supporting the multi-
versioning implied by transaction time databases.  This cost, 
which is almost exclusively a storage cost, can be controlled by an 
administrator deciding how long database states should be 
maintained.  Earlier states can be deleted at low cost, as Immortal 
DB does now for snapshot isolation versioning [5]. 

6.2 Querying Quarantined Data 
We have quarantined the invalid record versions but have not 
shown how to query them.  Querying is desirable as it permits 
system administrators and perhaps auditors to examine everything 
that has happened to the data in the database.  To provide this 
functionality, we might provide a special SQL Select statement 
that indicates that INVALID data should be included. Perhaps one 
might ask for only INVALID data, or simply, for the purposes of 
this particular query, to treat invalid data as if it were valid.  

Less clear is whether changing invalid data, perhaps making it 
valid again, is useful.  For example, a bank account might have 
become invalid by having had an erroneous withdrawal posted.  
That may have resulted in the balance going negative.  Were 
subsequent transactions re-executed against the corrected state, it 
would be possible to correct this erroneous state.  However, 
posting compensating actions, which is the technique used 
currently may be a more effective may to deal with the problem.   
For example, a negative balance may have triggered a bank 
penalty, which now must be “undone” as well, presumably by 
posting an appropriate corresponding credit.   

6.3 Other Invalidation Implementations 
Dealing with unpropagated invalid delete stubs is the largest 
complication introduced by our invalidation implementation.  We 
know of two different ways we might have proceeded, and discuss 
them here.  Building a system is about making choices, frequently 
without complete knowledge.  We made the choices described 
above, but would like to share some insights into alternatives that 
might have been used instead. 

IDS Count Field: We use a one bit flag to mark pages as having 
unpropagated invalid delete stubs.  This restriction results from 
SQL Server having a small number of remaining flags in a page 
header. Without that limitation, we would have used a count of 
the number of unpropagated invalid delete stubs.  Using a count 
would simplify the code for performing IDS propagation during 
record updates.  Instead of a range search for all records in the key 
range on the page, we could have searched exactly for the key of 
the modified record, and reduced the IDS count as appropriate.  A 
count of zero then indicates that the database page is “healed”. 

Instant Current State Healing: Without changing data on 
history pages, we cannot entirely avoid IDS pages.  But there is a 
compromise position, i.e., instantly heal the current state.  This 
avoids the complexity of dealing with invalid current states.  This 
involves searching once for the valid record versions of a current 
page, and including them on the page during the invalidation 
process.  Then only historical versions can be invalid.  To do this, 
the valid version for each invalid record is copied to the head of 
its version chain in the current page.  Where there is no record in 
the current page because of an unpropagated invalid delete stub, 
the missing valid version is inserted as a new record. 

Including valid versions into a current page may cause a page to 
split, and that increases cost and complexity.  Further, one still has 
to deal with the effects of unpropagated invalid delete stubs for 
historical queries.  But added complexity for data modification 
operations, i.e. insert, delete and update, which only impact the 
current database state, are completely avoided.  Similarly, range 
queries against the current database state never see invalid data.  

6.4 Summary 
We have dealt with the problem of bad user transactions that 
result in invalid data.  Our method identifies the initial invalid 
data and all subsequent data that depends on it. Only transactions 
writing invalid data need to have their effects “de-committed”.  
We identify this closure of invalid data, via logging data reads. 
Our method then removes only the effects of invalid transactions.  
Working with a transaction time database means that it is 
unnecessary to restore a backup as the historical state needed is 
already online.  The bottom line is that our technique de-commits 
far fewer transactions in order to remove invalid data from the 
database, and the process for dealing with invalid data results in a 
much shorter outage than is currently the case for “point in time” 
recovery, the current method of choice. 
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