Recovery from “Bad” User Transactions

David Lomet
Microsoft Research
Redmond, WA 98052

lomet@microsoft.com

ABSTRACT

User written transaction code is responsible for the “C” in ACID
transactions, i.e., taking the database from one consistent state to
the next. However, user transactions can be flawed and lead to
inconsistent (or invalid) states. Database systems usually correct
invalid data using “point in time” recovery, a costly process that
installs a backup and rolls it forward. The result is long outages
and the “de-commit” of many valid transactions, which must then
be re-submitted, frequently manualy. We have implemented in
our transaction-time database system a technique in which only
data tainted by a flawed transaction and transactions dependent
upon its updates are “removed”. This process identifies and
quarantines tainted data despite the complication of determining
transactions dependent on data written by the flawed transaction.
A further property of our implementation is that no backup needs
to be installed for this because the prior transaction-time states
provide an online backup.

1. INTRODUCTION
1.1 TheProblem

One strong reason for using database systems is their promise to
guard the integrity of their data via transactions, whose properties
have been described as “ACID”. Transactions provide atomicity
(A) with its promise of “al or nothing” execution, hence
preventing partia transaction executions in which, for example,
money intended to be transferred between accounts is only
withdrawn or only credited, but not both. They implement
isolation (1) so that the effects of one transaction do not interfere
with the effects of another, providing the illusion that transactions
execute in some seria order. They implement redo recovery and
forced logging so that once the database responds accepting
responsibility for a transaction’s updates, those updates are
durable (D), i.e. guaranteed to be included in the database state.
However, these techniques, which are commonly known in the
database technica community, do not entirely cope with the
problem of consistency (C), which is primarily the responsibility
of auser transaction to preserve.

1. Current Address: IBM Almaden Research Center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGMOD 2006, June 27-29, 2006, Chicago, lllinois, USA.

Zografoula Vagena®
Univ. of California Riverside
Riverside, CA

foula@cs.ucr.edu

Roger Barga
Microsoft Research
Redmond, WA 98052

barga@microsoft.com

Thereis no system mechanism that prevents a user from entering a
bad transaction, e.g. crediting the wrong amount to a bank
account, or charging for an item that was not shipped. Existing
systems do, however, have ways to “clean up” the database should
this kind of problem be detected. We describe here a new
recovery method for such “bad” transactions, where “recovery”
refers to cleaning up after them. Thisis related but not identical to
the traditional recovery task of restoring the data to consistency
after aborts or system crashes.

1.2 Existing Solutions

Database systems already deal with bad data. A disk may fail,
either catastrophically or by losing some bits. This is media
failure, and dealing with it is called media recovery. Commonly,
database systems take regular backups, a special form of replica
optimized for high speed writing and reading. Media recovery
involves backup load (restore) and redo recovery (roll forward)
using a media recovery log that records transaction updates since
the backup, hence restoring the database to its most recent state.
This process can be arduous, and result in along outage.

Media recovery does not deal with the problem of bad user
transactions. The damage done by these erroneous transactionsis
particularly pernicious because not only is the data they write
invalid, but the data written by all transactions that read this data
may likewise be invalid. The usual database technique to deal
with such invalid data is heroic, both in the cost to use it and the
impact that it has on the database, its users, and those responsible
for managing the database.

Removing inconsistency induced by bad user transactions is
usually based on the media recovery technique described above,
in which a backup is restored, and a media recovery log is used to
roll the database state forward. But media recovery is hated
before the current state of the database is recovered. Instead,
recovery continues until just before the “bad” transaction
executed. Thisis“point intime”’ recovery and it is effective.

However, “point in time” recovery is a heroic measure. It is
costly to perform, introducing a long outage while the backup is
used to restore the database, and the media recovery log is used to
roll the state forward to the time desired. So this can seriously
impair database availability.

Further, the impact of “point in time” recovery on the database
state is extreme. All transactions that committed later than the
erroneous transaction are “de-committed”, i.e. their effects are
removed from the resulting database state. In a high performance
transaction application, this can result in hundreds, even
thousands, of transactions being de-committed. These
transactions then need to be re-submitted in some way so asto try

to reduce the negative impact. This can be a very labor intensive
process since re-executing some of these transactions might result
in different results than their original execution.

1.3 Our Approach

High human cost of existing practices suggests using machine
resources to automate and speed this recovery. Our goa is to
automatically identify and isolate the ill-effects of a flawed
transaction, thus preserving much more of the current database
state while al so reducing the service outage time.

We want to attack both the problems mentioned above, long
outages and the de-committing of large numbers of transactions.
Long outages have previously been attacked by suggesting that a
transaction time database can be used to provide an on-line
backup that is always installed [4]. Reducing the number of
transactions that need to be de-committed is the innovation that
we introduce here to dea with “bad” transactions. Oracle
Flashback [7] attacks long outages by keeping older versions
available for point-in-time recovery. But they do not reduce the
number of de-committed transactions in this process, as we do.

1.3.1Transaction Time Versions as Backup

A transaction time database [5,8,9,10] stores and makes accessible
prior states of a database. Each transaction execution produces a
new database state. So there are a very large number of states.
However, transactions typically change only a very small part of
the database, and most data can be shared between many states.
Each database update introduces a new version of the data it
touches. The version is timestamped with the transaction time.
One kind of query isan “as of” query that asks for the state of the
database as of some selected time. This query is answered by
finding the data that has the latest timestamp preceding the “ as of”
time. It is possible to construct a time based index for this data
that will direct the query to exactly the data constituting the
database state as of the time requested [3].

Because a transaction-time database contains prior states of the
database, it can provide the function of a backup, i.e. a prior state
of the database from which the media recovery log can be used to
roll forward the state so as to reconstruct the current database
state. This requires the prior state to be on a different medium
than the current state, which we support. The prior state requires
no restore process, since the past states are always on-line. Thus,
the large availability outage is immediately avoided. An
additional virtue of this approach is that the “backup” can be
queried using various temporal queries, e.g., both “as of” querying
and time travel querying where one asks for the history of some
records in the database over some time period.

1.3.2 Identifying and “ Removing” Invalid Data

Like a conventiona backup, a transaction time database backup
can aso be used to provide “point in time’ recovery, greatly
reducing any outage resulting from bad transactions. This can be
accomplished by removing in some way &l data versions that
were introduced after the corruption occurred. However, this by
itself does nothing in terms of reducing the number of de-
committed transactions. The rest of the paper describes our
innovations that

e reduce the number of de-committed transactions via the
logging of transaction reads;

“Point-in-time
decommits all later
transactions

Version store r

Our Backup
always ‘“installed”

“Point in time” line:
backup must be installed
and rolled forward

| !
» Time
Figure 1: Removing invalid data produced by an
€rroneous user transaction.

Only “invalid” data is
decommitted in our
approach

e quarantine data of de-committed transactions, making it
invisible to normal querying so that earlier valid versions of
the data are seen instead.

The result of these innovations, coupled with the use of a
transaction time database as a backup, is that the outage period to
provide recovery is amost eliminated, and the number of de-
committed transactions is reduced to those reading tainted data,
usually an enormous reduction. This is illustrated in Figure 1.
This figure shows that the historical states of the transaction time
database can be used as an online backup. Then, when bad user
data is identified, because we log reads, we can identify exactly
the data that is invalid and “de-commit” only this data. Thisisa
very substantial improvement over “point in time” recovery.

1.4 Organization of Paper

We describe in section 2 how data is stored in Immortal DB [5],
our transaction time database built into SQL Server. Section 3
details how we identify data made invalid by a bad user
transaction (the potentialy inconsistent data). In section 4, we
discuss how we “invalidate’ this data. We describe how our
system works when invalidated data is encountered in section 5.
Finally, section 6 summarizes what we have done and suggests
some possible extensions.

2. MULTI-VERSION DATA

2.1 Record Versions

2.1.1 Transaction Time Data

A transaction time database [10] stores multiple versions of data,
each identified by atimestamp. When atransaction executes, it is
assigned a timestamp for its execution. The timestamps for
transactions are consistent with the seriadization order of the
transactions. A transaction’s timestamp is stored in the versions
of the data d that the transaction writes so as to identify exactly
when its version became the current version. This transaction
time TT denotes the start time for the data, i.e. dTTh W(T)
denotes the exact versions of data that are written by T, i.e. those
stamped with the timestamp of the transaction. For seriaizable
transactions, that same timestamp identifies the versions of the

data that are read by the transaction, i.e. the versions current ““as
of” the time denoted by the transaction’ s timestamp.

A dataitem is identified by akey. A version of adataitemd is
valid during the time interval from its start time d.TTt to its end
time d.TT!, which is the start time for its succeeding version.
Hence, it is valid during the semi-open interval [d.TTHd.TT?).

We will need to identify exactly which version of adataitendis
the version that is read. We use R(T) to denote the exact set of
versions of data that are read by transaction T. We need to
carefully make note of all times used in identifying versions of
data that are read, so as to precisely define R(T). For serializable
transactions, these are the versions of the data items read that are
current at the time TT for the transaction.

2.2 Intra-Page Organization

2.2.1 Version Chains

Immortal DB record versions are accessed from a slot array,
ordered by their identifying key, asis typical within a B-tree style
primary index organization. Each version is timestamped with the
time of the transaction that wrote it. Thus, the span of a version
starts with this time, and ends with the time of the succeeding
version that records an update for the record with the given key.

The versions of a record, which share a common key, are stored
on linked version lists within a page, the most recent version for
each data item at the head of the chain and each version linked to
the immediately preceding version in time order. The head of the
chain is stored in a slot array, a very common organization for
database pages. This organization makes it easy to determine the
version of interest within a page. It is simply the first version,
starting at the head of the chain for the data item with a given key,
and searching down the chain for the first version with a
timestamp < the time of interest. A pageisillustrated in Figure 2,
which shows two data items (records), one with key A, another
with key B. These are chained together, with chain heads in the
slot array at the end of the page.

2.2.2 Dealing with Deletes

We need to provide an end time for versions immediately
preceding deletes. To do this, we add a special new version to the
head of the version chain, which is marked as a “delete stub. The
delete stub includes a specia delete stub flag, the identifying key
for the record, and the timestamp for the delete. The stub serves
to provide the end time for the immediately preceding version.

2.3 Inter-Page Organization

Versions of records can overflow the page on which the current
version is stored. When this occurs, we can split the page on
either time or identifying key. We then index these rectangular
key-time regions using a TSB-tree [3], as shown in Figure 3.

Thus, chains of record versions can span pages, the earliest
version on a page pointing to the slot in which to find the record
latest version on the page containing immediately preceding
versions. When aversion’s lifetime spans the time boundary used
to in the time split, the version appears in both pages, and the
version in the later page is linked to its clone in the earlier page.
The back pointer that spans pages makes it simple to trace back
the versions of a data item across pages. Figure 4 illustrates the
back pointer between versions on different pages.

Page Header |

Slot 1|1 0

Figure 2: A page containing versioned data for records
with keys A and B.

TSB-tree

index

points directly to
current & history
pages

TSB-tree
Index

Current
Database

Key

4

A

Key & Time splitting produce rectangular KT regions.

Figure3: A TSB-tree.

DeleteStub:
Not Propagated

Time of split

Backpointer:
page number
and slot number

v

Time

Figure4: Handling versions between time-split pages.

When a delete stub might cross the time split boundary, it is not
cloned but only appearsin the earlier page. The non-propagation
of a delete stub prevents the database from filling up with deleted
records. The delete stub’s purpose is to provide an end time for
the preceding deleted version, and it has aready accomplished
that. We will return to this in section 5, because not cloning
delete stubs complicates dealing with invalidated data. Non-
propagation of delete stubs is also illustrated in Figure 4, where
the dotted line indicates that the delete stub is NOT present.

3. INVALID DATA
3.1 What Dataislnvalid

We need to compute the closure of all data written by transactions
impacted by invalid data. Essentialy, this process involves
computing C(DB), which denotes the exact versions of data that
are invalid (corrupt) in the database. This can be expressed in
terms of the initially invalid versions of data and the versions of
data written by transactions that have read invalid data.

1. C(Too= WT,), where T, is the transaction now known to be
corrupt. ldentifying T, is done outside of our technology by
aprocess that will usualy be amanual one.

2. C(Tohirr = C(Te)i U {W(Ti+a) | T (Tixd) R(Tin) N C(Te)i = 0}
where T,; has a timestamp TYT.;) and there are no
transactions T; such that TS(T;)< TY(T}) < TYTi,4).

3. C(To) = C(Ty); such that there is no Tj, with T(T) <
TS(Tjq) With R(Tis1) N C(Te); #o.

We need to interpret item 2 of the preceding list somewhat
carefully in order to deal correctly with phantoms [2], as we will
describe later. In particular, the set R(T;.1) can include ranges of
records read, not simply single record reads.

3.1.1 An Example of Invalidation

We illustrate the computation of invalid data using the example
below in Figure 5. In Figure 5, transaction 1 at time T1 is
determined to be an invalid transaction. So its write set {X,} is
shown as invalid (dark box). Our analysis shows that transaction
3 at T3 reads X; and writes a new vaue X;. Thisis aso marked
asinvaid (striped lines). Further, transaction 5 at T5 reads X3, S0
we show its write of Zs as invalid also (striped lines). Finaly,
transaction 6 at T6 reads Zs and writes Wg, which we also show as
invalid (striped lines).

TO: W=10 TO: X=20 TO: Y=30 TO: Z=40 @

T1: R(Xo)
W(X1:21)

T2: R(Wo,Yo)
W(W,:12)

T2: W=12

T3 R(X1,Yo)
T3 X=33 W(X+:33)

T4: R(Y0,Zo)
W(Y,:34)

T4:Y=34

T5:Z=45 T5: R(X3, Zo)
W(Z5:45)

T6: R(W2,Z5)
W(W: 16)

T6:-W=16

Figure5: Transaction time database with invalid data.

3.1.2 Conventional Database

Note that this same computation can be used to identify
potentially invalid data in a conventiona database by simply
removing the version identification. This essentialy collapses al
invalid versions of a data item into the single (invalid) instance of
the data that is present in the current database. So long as the
only transactions being considered are those that execute after the
T., this computation would be effective as well. It could be used
to avoid de-committing transactions that are not impacted by the
initia corruption.

3.2 Loggingto Track Invalid Data

3.2.1 Tracking Reads

The technology enabling us to avoid de-committing transactions
is based on logging the identity of data that each transaction reads.
This permits us to identify the transactions whose execution
depended on the data now known to be invalid. Recovery logging
in Immortal DB logs the identity of data items written by each
transaction, i.e. W(T), and includes the way in which they were
changed. By logging the identity of the data items read by each
transaction, i.e. R(T), previously suggested in [1] to handle
application corruption via wild stores of data in a main memory
database system, we have enough information recorded on the log
to perform the computation of C(T) in section 3.1.

The “C” in “ACID” transactions stands for “consistency” and is
largely the responsibility of the transaction code. When a
transaction executes in its entirety, it promises to make a
trangition from one consistent database state to another. So,
should a transaction be erroneous and make the database state
invalid, then of necessity, the entire effects of the transaction are
invalid. Hence, a transaction either invalidates the database or it
does not. And if it does, al its updates to the data items it is
writing areinvalid.

Since atransaction in its entirety is either invalid or consistent, we
can treat the activities of atransaction, both its reads and its writes
as a whole. Where this is leading is that we do not need to
remember when a read occurred within a transaction. A
transaction that reads any invalid data will produce invalid
updates, even when the invalid datais read after an update occurs.
It is simply impossible to produce a consistent result were we to
try and distinguish updates occurring before an invalid read from
those occurring after such aread.

Thus, we do not need to remember when transaction reads occur
relative to transaction updates. This permits us to consolidate al
read information about a transaction into a single log record that
we write just before we commit the transaction. Only if such a
record is too long for our logging mechanism to deal with easily
might it be useful to break the read log record into a number of
records. Especialy in transaction processing, this should always
be unnecessary, and a single read log record should suffice. We
thus store the information about what each transaction reads in a
volatile data structure. Every such transaction is enhanced with a
volatile structure which temporarily keeps track of the records that
are read by the transaction under consideration. Access to this
structure is synchronized with spinlocks to deal with multi-
threading within the kernel.

Not al reads need to be recorded in the read log record. In an
ARIES style recovery method [6], log operations document the
data changes. As ARIES is used in SQL Server, update

operations don’t reveal whether the data is read prior to being
written. To be conservative, we assume that al updates
(including inserts) require reads of the updated data. Hence, only
reads of versions not updated by the transaction need logging.
Reads for updated data are already logged via update |og records.

We only deal with user transactions that have performed at least
one write operation, as read-only transactions by default do not
make datainvalid.

In the rest of this section, we discuss two aspects of how best to
do thislogging:

e how to identify the dataitems being read;
e thenature of thelog records for reads.

3.2.2 ldentifying Data Items Read

Some database applications will do extensive amounts of reading
prior to changing some much smaller part of the database state.
This can make the size of the read log record very large. Further,
the size of the data structure needed to remember this information
during transaction execution until the moment of commit when
the read log record is written can likewise be very large. It is
always awkward to deal with large numbers of resources. Each
resource must be identified unambiguously. Maintaining such a
data structure is not difficult but it can put pressure on the
database system’ s kernel which adds to the costs involved.

The above problem, i.e., of a very large number of resources, is
not unique to our wanting to log transaction reads. It arises as
well when transactions need to lock resources so as to provide
transaction isolation. And we can deal with the issue in the same
way, namely by introducing multi-granularity resources.

We capture the information about a transaction’s activity at the
interface between the query processor and the underlying database
kernel. At that point, in our underlying system, we know about
individual record reads and about reads of record ranges. We
capture both forms of reads. Capturing key range accesses
provides us with the multi-granularity resource information that
permits us to avoid recording every record that is read in the
range. Furthermore, knowing about ranges is critical if we are to
deal correctly with phantoms (see the next subsection).

The solution we implemented in the current prototype is to
preserve ranges of records that have been read. In order to identify
the ranges that have been read, the system records the requests for
range reads that come from the upper parts of the system (i.e. the
query processor) and uses that in order to aggregate the
information whenever possible. The system can currently record
the reads at the granularity of single records, full table scans, and
as (closed, right open, left open) ranges. While recording the
reads we also make several checks, when those can be performed
cheaply so that we avoid recording duplicate information.

3.2.3 Phantoms

Some explanation is required to describe how phantoms arise
when tracking data invalidation. Consider an invalid transaction
that deletes a record. The deletion is invalid because the
transaction has read invalid data. Hence the deletion should not
have occurred. Were a transaction to read a range that includes
the deleted record, that read should make the transaction invalid.
However, if we were only recording record reads, we would not
“see this’. None of the records in the range that our transaction is
reading are invalid. What isinvalid is that the transaction should

have read the deleted record but did not. This deleted record is a
phantom. Fortunately, by recording the range that is read by this
transaction, we can detect that the invalid deletion occurred in this
range, and so make our “range reading” transaction invalid.

3.3 Writing Read L og Records

When a transaction that has performed user level updates is about
to commit and before writing its commit record to the log, the
system generates its read log record and writes it to the log. This
log record contains the information that has been accumulated for
the reads of this particular transaction. If the maximum size of the
log record is reached during the writing process, multiple read log
records may be created and written.

The format of the read log record is illustrated in Figure 6. The
read log record header includes all the information of a basic log
record structure (i.e. log record length, operation type, LSN of the
previous log record, ID of the transaction that created this record
etc) and in addition four more fields to denote the number of table
scans, left open ranges, right open ranges, closed ranges and
single record fields (in that order) that exist in the log record. This
ordering permits us to decode the information that exists in the
fields of the log record.

We chose to store the information in this particular order (i.e. first
table scans, then ranges, the single records) so as to put large
granularity ranges first. By checking the large granularity reads
(i.e, the large ranges) first when reading this record, we increase
the probability that we will discover that the transaction is an
invalid one without looking at all the data that has been read. Of
coursg, for valid transactions, which we expect to be the common
case, there is no avoiding examining all the entries of the read log
record.

The cost of logging reads is typically only avery small fraction of
the overal logging costs for installations that need the ability to
purge bad user transactions. These are typicaly enterprise
systems such as OLTP. Even simple transactions will usually
have severa updates, e.g. debit/credit. And these systems do only
a modest amount of additional reading of non-updated data
Adding one additiona log record to transactions for these
scenarios is a pretty most cost.

Variable Record Fields

HEADER

TABLE SCANS

Table ID

LEFT OPEN RANGES g Table ID | RIGHT END |

g

RIGHT OPEN RANGES —>| Table ID | LEFT END KEY |

CLOSED RANGES

—{ Tabiei> | LEFTEND | RIGHT END

\>| Table ID |RECORD KEY|

SINGLE RECORDS

Log Record for Reads

Figure6: Log Record for Reads

4. THE INVALIDATION PROCESS

In section 3.1, we defined invalid data as data written by an
invalid transaction (W(T.)) or data written by transactions that
have read invalid data (C(T.). This definition provides an
abstract algorithm for doing the computation. When we log reads
(see section 2.2) we have the information needed to compute the
data corrupted by an initia invalid transaction T.. In this section,
we describe how to execute our abstract algorithm in the context
of adatabase system.

4.1 ldentifying Invalid Record Versions
The process of identifying all the invalid record versions consists
of two steps.

1. identify theoriginal invalid transaction and its versions;

2. recursively identify asinvalid the versions that are written by
transactions that have read invalid data.

We treat delete stubs as we treat regular record versions, i.e. we
invalidate them exactly when the transaction that produced them
either was the invalid transaction or has read invalid data.

We maintain a main memory data structure to record versions
identified asinvalid. Subsequently, we use the versions identified
in this structure to mark the on disk versions in our transaction
time database.

4.1.1 ldentification of Initial Invalid Transaction

Step one is to identify the user transaction which produced the
initial invalid data. This part of removing invalid data cannot be
automated. A user who understands the applications being
served by the database needs to identify in some way when an
invalid transaction has executed. Recall that it is the user, not the
database system, which providesthe“C” in “ACID” transactions.

What we deal with here is the way in which the user identifies the
invalid transaction to our system. We are aware that there might
be several ways in which this might be done, and our invalidation
framework can accommodate severa methods. Some examples
might be for the user to:

1. provide arequest ID identifying the user level request that
resulted in the invalid transaction being executed. The
system might then map this request ID into a transaction
timestamp.

2. provide the precise timestamp of the invalid transaction.
Such a timestamp uniquely identifies the transaction within
our transaction time database.

3. point to a record version that the user identifies as
containing invalid data.

There are surely other methods that might also be employed.

It isthe third alternative above that we pursue here. We assumein
this that our knowledgeable user has executed an “as of” query
and has seen what he considers to be invalid data. Our problem
boils down to trandating this identification of an invalid version
into determination of the transaction on the log that wrote the
invalid version and its timestamp. We can then identify its
updates W(T) and initiate the invalidation agorithm to produce
We(T).

The transaction we want to identify is the one which touched
(with an insert, delete or update operation) the latest record whose
timestamp is less than or equal to the “as of” time used in the

query. Currently in our system, an “as of” query cannot read the
timestamp of the data, so we need to discover it. Then we will use
the log and our logged reads and writes to identify the rest of the
invalid data.

We scan the log backward, starting at the current end of the
recovery log for our transaction time database. During the scan
the set of all the committed transactions (called the CS or commit
set) is maintained in the form of a hash table, with transaction ID
as the hashed key. The following actions are performed during
the backward scan:

1. When a commit log record is encountered, the ID and
commit timestamp of the transaction which created this log
record is saved in the CS. The timestamp is given in the
immediately earlier record, where it is recorded as an update
to our transaction time table. Moreover, for reasons that
become obvious later, we also maintain the LSN of the start
record for this transaction in the CS. In Immortal DB, this
information is provided in the commit log record.

2. When any update, insert or delete log records is encountered,
the CS is probed and the transaction that performed this
action is identified (we use the transaction ID which is part
of the log record for any update log records for the probe
value). This information will reveal the timestamp for this
“modify” log record. If this timestamp is smaller or equal to
the “as of” time for the record version identified as invalid,
and the record has the same table and key values as the
invalid record of the “as of” query, then we have identified
the record version and its transaction that is the invalid one.

At the end of the first phase we have identified the invalid
transaction T, the transaction that “corrupted” the database. The
next step is to identify the set of all records that T, has updated
(which are aso invalid). This step is interleaved with the second
pass of the invalid record identification task, and is described in
the next section.

4.1.2 Trangitive closure of Invalid Record Versions
In the second phase of the identification of al the record versions
that are invalid, we perform a forward scan through the log,
starting from the smallest LSN of the start record for any
transaction that we have encountered with atimestamp that is later
than or egua to the timestamp for T.. All updates invalidated
both directly and transitively by T, must have log records with
LSNs later than that LSN, and hence occur later in the log. During
this step we maintain a volatile structure which holds the set of all
corrupted records that we identify during this forward scan. We
cal this set the IRS (Invalid Record Set). We also maintain the
information about committed transactions that we have identified
in the backward scan done in our first step, until we can decide
whether those transactions are invalid.

We do not maintain in IRS an enumeration of record versions that
we determine to be invalid. We assume that once arecord version
in our transaction time database isinvalid, al subsequent versions
of the record are invalid. With ARIES style recovery [6], with its
physiological log records, any modification of an existing record
is assumed to have also read the record. Hence, once a record
version isinvalid, al subsequent versions, which are produced as
a result of having read the invalid version, will also be invalid.
Thus, to identify corrupt versions of records, we need merely
identify the earliest version of a record that is invalid. All

subsequent versions will also beinvalid. This observation permits
us to keep the space required by the IRS much smaler than it
would be otherwise.

As a result, we need only maintain the key that identifies a
particular version, the table where this record resides and the
timestamp of the earliest associated version that was identified as
invalid. We proceed as follows:

1. Wei initidly include in the IRS the records updated by T,
(which we have identified in step one), adding them as we
encounter them in our now forward log scan. When we
encounter the commit log record of T, we know that we have
found al the record versions modified by that transaction.

2. Wenow identify the other invalid record versions as follows:

(& if a “modify” log record (i.e. denoting insert, update, or
delete) is encountered, we check whether there exists
within the IRS another version with the same key that
belongs to the same table. If so this version is dso invalid.
Hence the associated transaction and all its records are also
invalid, as well as the remaining records that have been
modified by that transaction.

(b) when a read log record is encountered we check whether
any of the reads that were performed by the associated
transaction contain any of the records in the IRS. If so,
then this transaction is invalid, and all its modifications to
the database need to be identified as invalid. Because this
check can only be done when we are at the end of a
transaction, we need to remember until the commit record
for each transaction is encountered, each update that a
transaction has made.

(c) at the end of each transaction encountered on the log, we
know whether the transaction as a whole is either valid or
invalid. If invaid, all the record versions modified by the
transaction are entered into the IRS. Otherwise, we discard
its temporarily remembered modified records.

Note that we know the validity or invalidity of al records read by
any transaction before we encounter the transaction’'s commit
record. Thus, when we do encounter a transaction’'s commit
record, we can with certainty decide on the validity of the
transaction.

4.2 Quarantining Invalid Record Versions

4.2.1 Handling Normal Record Versions

The last step of the data corruption recovery processis to mark as
invalid the data versions in the database itself, which are located
on disk. This permits us to quarantine the records from normal
data access. To denote a record as invalid, we use one bit in the
record header. Setting the bit marks the record version asinvalid.
During this process, the database is off-line, as it would be when
performing ordinary crash recovery.

Recall that the IRS contains the set of invalid records, each
identified by its primary key, together with the timestamp of the
earliest invalid version. All later versions of the record with the
given primary key are likewise invalid.

We need to mark each version of every record in the IRS as
invalid back to the timestamp of this earliest invalid version.
Thus, we search for each record’s current version, essentially
performing a current time query for it. Then we traverse the
associated record version chain backwards in time (using the
previous version pointer of each on-page record in order to

identify al its previous versions that reside in the same page and
the previous page pointer of the associated page for record
versions that reside in different pages). As we traverse this
version chain, we mark the versions as invalid until we identify a
record with timestamp equal to the earliest timestamp that we
have saved in the IRS for this record.

4.2.2 Handling Delete Stubs

In Immortal DB, arecord version deletion is denoted with a delete
stub. The delete stub records the fact that the record is deleted,
and provides an end time d.TT, for the immediate earlier version.
Recdll that we need the delete stub only in the page containing
this prior version. Any later pages will simply not have the record
present. That is, we do not propagate delete stubs the way we
propagate other versions across time split pages.

Not propagating the invalid delete stubs creates new problems.

1. When we look for a current version of a record in the IRS,
and it has been deleted in an older page, the delete stub is not
present in the current page. Hence there is no evidence of
the record in the current page. How do we reach the versions
of this IRS record so asto mark them asinvalid?

2. When we do norma queries later, we want the prior, valid
versions of the records requested to be part of the answer.
But records with invalid delete stubs in earlier pages might
not be present at all. So we would not even know that a
record that would satisfy arange query that is an extension of
the lifetime of an earlier valid record exists.

Here we address what we do during the invalidation process. This
will directly solve problem (1) above. And it will set us up to
solve problem (2), which is part of how we deal with the database
during normal processing after records are marked as invalid (see
section 5).

Recall that we do not want to propagate delete stubs for fear that
they end up diluting later database states, where the delete stubs
might be so large in number that the actua existing records
become only a small fraction of the total utilization of later pages.
However, we are prepared to mark the pages with a small and
bounded amount of extrainformation.

When we execute our current time query for arecord in the IRS
that has a delete stub that has not been propagated to the current
page and hence has an invisible invalid delete stub, we mark the
page with an IDS flag (using one bit in the page header) as
“containing” an invalid delete stub that was not propagated to it.
We then follow the page pointer (our time split pages are chained
from current time back, as we previously described) to the
immediate preceding page. We continue marking pages in this
way until we reach the page containing the invalid delete stub. At
that point, we mark the delete stub as invalid, and commence
traversing the record version chain as we did for ordinary record
versions, marking each as invaid until we reach the version
containing the timestamp of the earliest invalid version, as
recorded in the IRS.

The result of the prior processis that we have marked each invalid
version using one hit in the record header, including for versions
that are delete stubs. In addition, each page that would have
included delete stubs had they been propagated like normal record
versions has been marked by IDS in the page header as
“containing” unpropagated del ete stubs.

4.3 Making the Quarantine Durable

The durability of the data invalidation process is achieved by
marking al pages modified by invalidation as dirty pages in the
cache. Then, when we are finished with the process, we flush al
dirty pages to disk before making the database available for
regular processing. Thisisthe normal, non-failure case.

To guard against system crashes during invalidation requires that
we make invalidation “recoverable’. For this, we define two new
log records which denote the beginning and completion of the
datainvalidation process.

1. The begin invalidation log record is designated with a log
operation signifying this. It aso contains the ID of the
transaction which caused the invalidation. This log record is
written to the log when we have established this transaction’s
ID, and before starting the identification of the invalid record
versions. This permits us, upon system crash, to re-initiate
the invalidation process as part of recovery, and before the
system is made available for subsequent normal access.

2. Theend invalidation log record is written to the log after al
pages dirtied by the invalidation process have been flushed
back to disk. At this point, we know that all invalidation has
been done AND has been made stable. Hence, should the
system subsequently crash, during recovery we can
determine that we do not have to repeat the invaidation
process, but rather can make the database available for
normal processing.

5. DATABASE AFTER QUARANTINE

5.1 Normal Database Access

We want the effect of accessing our database after invalid data has
been quarantined to be asif the bad user transactions that resulted
in invalid database states had never been executed. Consider our
example of Figure 5. In that example, transaction T1 was
identified as invalid and its update of X produced an inconsistent
database state. Subsequently, transactions T3, T5, and T6 read
either X or other variables that had been made invalid by earlier
transactions. This resulted in the versions of W written by T6, X
written by T3 and Z written by T5 to also be invalid.

After our invalidation process, we want the effects of all the above
invalid transactions to “disappear” from the database, as if these
transactions had never executed. This quarantines them during
normal access. Thus we want the database to be as shown in
Figure 7. In that figure, the version preceding the invalid one has
its lifetime extended up to the current time.

Our invalidation process has not, however, actually removed the
invalid data. Nor has it propagated the prior valid versions of W,
X, and Z as suggested in Figure 7. Rather, it has merely marked
the versions shaded or striped in Figure 5 asinvalid. Itishow we
interpret the data following invalidation that permits us to achieve
the logical result suggested by Figure 7.

After data corruption recovery has taken place several data
manipulation operations need to be modified in order to return, or
operate on the database, as if the latter had no corrupted record
versions. We describe how various database operations need to be
changed in order to achieve the desired effect.

TO: W=10 TO: X=20 TO: Y=30 TO: Z=40 @

TL: R(Xo)
W(X:21)
T2: R(Wo,Yo)

T2: W=12 W(W-:12)
T3 R(X1,Y0)
W(X3:33)

T4 R(Y0,Z0)
W(Y.:34)
T5: R(Xs, Zo)
W(Z5:45)
T6: R(W2,Zs)
W(Ws:16)

T4:Y=34

Figure7: Versionsfrom Figure5 showing the logical view,
asif invalid versions were not present.

5.1.1 AS OF Point Query

This query requests record version in a transaction-time table
identified by the record’ s primary key as of a particular time or the
current time. The processing for that record proceeds as if data
invalidation recovery has not taken place, until the page that
contains the record version that would be returned if no data
invalidation recovery has taken place (if one exists) is identified.
At this point, what happens depends on what we find on the page.

Page contains a version of the record: If aversion of the record
is found, then we search, starting at the head of the chain for that
record’s version, and search the chain for the latest valid version
earlier than the “as of” time as the answer. This is the empty set
when that valid version found is adelete stub. If the later versions
are marked as invalid, we need to search this version chain,
potentially back through a number of pages until we encounter the
first valid version. That then becomes the result that we return.

Page does not contain a version of therecord: If wedo not find
aversion of the record on the page there are two cases:

e |f the page is not marked as IDS then we return the empty set
asthe answer. The requested version does not exist.

e For an IDS marked page, we follow our page chain backward
to earlier pages that contain earlier versions for the key space
of interest, repeating this process. That is, we look again for a
version of the record on the older page, etc. Eventualy we
either find a version of the record (whether valid or not) and
then switch to traversing the version chain instead of the
page chain. Or we encounter a page not marked as IDS at
which point we return the empty set as the answer.

5.1.2 AS OF Range Query

This query requests al records versions “as of” agiven timein a
specified table and that belong to a given range of keys. To
efficiently handle this query when invalid data might be present in
the range, we accumulate the vaid versions for the range in a
batch, rather than looking for each version individually. Thus, for
each data pages accessed by normal processing via our temporal
TSB-tree index, we identify the part of the key value range for
which it provides the answer. We then have a number of cases:

Page is NOT marked with IDS. We collect valid normal record
versions in the range and include them in ANSWER set. We
follow intra-page versions chains looking for and including valid
versions when the later version is marked as invalid. Versions

remaining as invalid in the range as of the time requested are put
in our PENDING set, including invalid delete stubs. The valid
delete stubs we encounter are ignored. We follow the page chain
back in time, and search each of these pages for members of
PENDING. When we find the latest (first encountered in the
backward chain) valid version for a member of PENDING, we
remove that record from PENDING and include this valid version
in ANSWER. When PENDING is empty, this process stops.
Should the latest valid version be a delete stub, we remove the
record from PENDING but do not include it in ANSWER.

Page is MARKED with IDS. We proceed as if the page is
unmarked, placing record versions either in ANSWER or
PENDING. However, it is possible that there are additional
record versions “hiding behind” unpropagated invalid delete
stubs. Thus when we traverse the page chain for the next older
page, we not only search for records in PENDING. We also
search for invalid delete stubs. When we find an invalid delete
stub in the query range, we add its record to PENDING. We
continue to traverse the page chain until PENDING is empty
AND the pageis not marked as IDS.

When collecting record versions in ANSWER, we make sure to
(a) preserve only the latest valid version of a specific record and
(b) preserve the record ordering, so that we do not disrupt
operations that rely on that ordering. When processing is
complete for the sub-range of the query range in a given page, we
return the subrange in ANSWER. This permits the range query to
be answered incrementally.

5.1.3 Update Record

In Immortal DB, the update of a specific record is realized as
follows: first the version of the record to be updated is identified
by performing a retrieval operation. We then copy this version to
a new version of the record and include it at the head of the
version chain. This becomes the basis for the new version, which
we then update in place. If the current version isinvalid, instead
using the current version as the basis for the new version, i.e,, as
the one that is updated in place, the system identifies the first
valid version (if one exists) and copies the content of this valid
version to the newly created record that is then updated.

For insertion of a new record, we need to make sure that an
existing record with the same key does not aready exist. Thisis
answered by doing aretrieve for the record prior to theinsert. An
existing record may be “hiding” behind an invalid delete, but the
retrieval will find it. When no prior record exists, the insert
process is the usual one for multi-versioned databases.

A delete also requires a retrieve prior to deletion to make sure
there is a record to delete. Such a record might also be “hiding”
behind an invalid delete, but retrieval will again find it. When a
prior record exists, delete involves creating a new delete stub in
the otherwise usual way.

We also need to maintain the version chain. In all cases, if there
is an immediate prior version in the current page, valid or not, the
back pointer of the new version (or delete stub) pointsto it. If the
immediate prior version is in the immediate prior page, we store
its slot number in the back pointer. If there is no prior version
(the insert case), the back pointer is set to null. Findly, if the
prior version is further back in the page chain, due to
unpropagated invalid delete stubs, we mark the back pointer with
aspecia non-null value indicating that.

5.2 Database Healing after Invalidation

Pages that are marked as having unpropagated invalid delete stubs
(IDS pages) are expensive to process. As our transaction time
table grows via splitting, we would like to remove the IDS mark
from new pages when the IDS mark is not needed. We call this
“healing” the database. Once the IDS mark is removed,
subsequent update performance and query performance for the
current database will return to the level prior to the invalidation.
Thus what we examine here is when the IDS mark needs to be
propagated through page splits and, importantly, when it does not.

We need to understand when we need the IDS mark on a page.
We need it exactly when there are records missing from a page
that should contain them. We do not need the IDS mark if we are
simply missing some versions on the version chain of a record.
The version chain will tell us about that condition.

Time splits: In Immortal DB, data pages can be split both by key
and by time. With time splits, both pages inherit the same record
set. Hence both pages must inherit the IDS mark since if records
are missing from the record set on the page prior to the split, they
will be missing in both history and current page after the split.

Key splits: A key split divides a page’s key range into two new
ranges. While at least one of the resulting pages must have an
IDS mark if the mark was present before the key split, one page
might not. Hence we check whether the resulting pages (i.e. the
origina split page or the new page or both) still need the IDS
mark. Thus, after we have performed a normal multi-version key
split, for each resulting page we (@) identify its range and (b) we
perform a backward search in its page version chain to determine
if thereis an invalid delete stub which belongs to this range. If we
find one we mark the page, otherwise we remove the marking.

Updates: When we update or delete a record in an IDS marked
page, we want to know if the new record version heals (removes)
the IDS marking. We do a range based on the key range of the
page. If there is only one invaid delete stub in this range and it
has the same key as specified in the update or delete, we remove
the IDS mark on the page, otherwise we leaveit.

Hedling operations are very important. Unpropagated invalid
delete stubs negatively affect the performance of subsequent
operations on an IDS marked page. Each time we may need to
traverse severa pages, to determine the valid contents of the page,
without which we could not reliably execute the operations
correctly. As aresult, we have taken steps to only propagate this
marking as necessary to avoid this search in later operations.

Last, in order to make the propagation of page marking
recoverable, Immortal DB provides two new log records, one to
set the IDS flag in a page, and the other to reset it. These permit
us to make the setting of this flag durable, avoiding the messy and
costly task of recomputing it after a system crash.

6. DISCUSSION

6.1 Controlling Costs

Not al database installations want or need the level of data
integrity provided by our technique. For that reason, we make it
optional both declaration of a table as immortal, and the logging
of reads. However, it is clear that many enterprises need the kind
of functionality that we provide. The existing technique, point-in-
time recovery, documents this need, and is used even though it
can result in very long availability outages.

For installations that need protection from bad user transactions,
doing our invalidation promises to substantially shorten outages.
The largest norma execution cost is in supporting the multi-
versioning implied by transaction time databases. This cost,
which is amost exclusively a storage cost, can be controlled by an
administrator deciding how long database states should be
maintained. Earlier states can be deleted at low cost, as Immortal
DB does now for snapshot isolation versioning [5].

6.2 Querying Quarantined Data

We have quarantined the invalid record versions but have not
shown how to query them. Querying is desirable as it permits
system administrators and perhaps auditors to examine everything
that has happened to the data in the database. To provide this
functionality, we might provide a special SQL Select statement
that indicates that INVALID data should be included. Perhaps one
might ask for only INVALID data, or simply, for the purposes of
this particular query, to treat invalid dataasif it were valid.

Less clear is whether changing invalid data, perhaps making it
valid again, is useful. For example, a bank account might have
become invaid by having had an erroneous withdrawal posted.
That may have resulted in the balance going negative. Were
subsequent transactions re-executed against the corrected state, it
would be possible to correct this erroneous state. However,
posting compensating actions, which is the technique used
currently may be a more effective may to deal with the problem.
For example, a negative balance may have triggered a bank
penalty, which now must be “undone” as well, presumably by
posting an appropriate corresponding credit.

6.3 Other Invalidation | mplementations
Dedling with unpropagated invaid delete stubs is the largest
complication introduced by our invalidation implementation. We
know of two different ways we might have proceeded, and discuss
them here. Building a system is about making choices, frequently
without complete knowledge. We made the choices described
above, but would like to share some insights into aternatives that
might have been used instead.

IDS Count Field: We use a one bit flag to mark pages as having
unpropagated invalid delete stubs. This restriction results from
SQL Server having a small number of remaining flags in a page
header. Without that limitation, we would have used a count of
the number of unpropagated invaid delete stubs. Using a count
would simplify the code for performing IDS propagation during
record updates. Instead of arange search for al recordsin the key
range on the page, we could have searched exactly for the key of
the modified record, and reduced the IDS count as appropriate. A
count of zero then indicates that the database pageis “healed”.

Instant Current State Healing: Without changing data on
history pages, we cannot entirely avoid IDS pages. But thereisa
compromise position, i.e., instantly hea the current state. This
avoids the complexity of dealing with invalid current states. This
involves searching once for the valid record versions of a current
page, and including them on the page during the invalidation
process. Then only historical versions can beinvalid. To do this,
the valid version for each invalid record is copied to the head of
its version chain in the current page. Where there is no record in
the current page because of an unpropagated invalid delete stub,
the missing valid version isinserted as a new record.

10

Including valid versions into a current page may cause a page to
split, and that increases cost and complexity. Further, one still has
to deal with the effects of unpropagated invalid delete stubs for
historical queries. But added complexity for data modification
operations, i.e. insert, delete and update, which only impact the
current database state, are completely avoided. Similarly, range
queries against the current database state never seeinvalid data.

6.4 Summary

We have dedlt with the problem of bad user transactions that
result in invalid data. Our method identifies the initia invalid
data and all subsequent data that depends on it. Only transactions
writing invalid data need to have their effects “de-committed”.
We identify this closure of invalid data, via logging data reads.
Our method then removes only the effects of invalid transactions.
Working with a transaction time database means that it is
unnecessary to restore a backup as the historical state needed is
already online. The bottom line is that our technique de-commits
far fewer transactions in order to remove invalid data from the
database, and the process for dealing with invalid dataresultsin a
much shorter outage than is currently the case for “point in time’
recovery, the current method of choice.

References

[1] Philip Bohannon, Rajeev Rastogi, S. Seshadri, Abraham
Silberschatz, and S. Sudarshan: Using Codewords to Protect
Database Data from a Class of Software Errors. ICDE 1999:
276-285

[2] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman:
Concurrency Control and Recovery in Database Systems.
Addison-Wesley 1987, ISBN 0-201-10715-5

[3] David Lomet and Betty Salzberg: Access methods for
Multiversion Data. SIGMOD Conference, Portland, OR
(May 1989) 315-324

[4] David Lomet and Betty Salzberg: Exploiting a History
Database for Backup. VLDB 1993: 380-390

[5] David Lomet, Roger Barga, Mohamed Mokbel, German
Shegalov, Rui Wang, and Y unyue Zhu: Transaction Time
Support Inside a Database Engine. ICDE 2006: (to appear).

[6] C.Mohan, Dondd J. Haderle, Bruce G. Lindsay, Hamid
Pirahesh, and Peter M. Schwarz: ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging. ACM Trans.
Database Syst. 17(1): 94-162 (1992)

[7] Oracle: Oracle Database 10g Release 2 High Availability.
http://www.oracle.com/technol ogy/depl oy/avail ability/pdf/T
WP_HA_10gR2 HA_Overview.pdf, May 2005.

[8] Michael Stonebraker: The Design of the POSTGRES Storage
System. VLDB, 289--300, 1987.

[9] Michael Stonebraker, Lawrence A. Rowe, and M. Hirohama.
The Implementation of Postgres. |EEE TKDE 2(1):125--142,
1990.

[10] Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil
Jajodia, Arie Segev, Richard T. Snodgrass. Temporal
Databases: Theory, Design, and Implementation
Benjamin/Cummings 1993

