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Exploring Algorithmic Limits of Matrix Rank
Minimization under Affine Constraints

Bo Xin and David Wipf

Abstract—Many applications require recovering a matrix of
minimal rank within an affine constraint set, with matrix com -
pletion a notable special case. Because the problem is NP-hard in
general, it is common to replace the matrix rank with the nuclear
norm, which acts as a convenient convex surrogate. While elegant
theoretical conditions elucidate when this replacement islikely to
be successful, they are highly restrictive and convex algorithms
fail when the ambient rank is too high or when the constraint
set is poorly structured. Non-convex alternatives fare somewhat
better when carefully tuned; however, convergence to locally
optimal solutions remains a continuing source of failure. Against
this backdrop we derive a deceptively simple and parameter-free
probabilistic PCA-like algorithm that is capable, over a wide
battery of empirical tests, of successful recovery even at the
theoretical limit where the number of measurements equal the
degrees of freedom in the unknown low-rank matrix. Somewhat
surprisingly, this is possible even when the affine constraint
set is highly ill-conditioned. While proving general recovery
guarantees remains evasive for non-convex algorithms, Bayesian-
inspired or otherwise, we nonetheless show conditions whereby
the underlying cost function has a unique stationary point located
at the global optimum; no existing cost function we are awareof
satisfies this same property. We conclude with a simple computer
vision application involving image rectification and a standard
collaborative filtering benchmark.

Index Terms—rank minimization, affine constraints, matrix
completion, matrix recovery, empirical Bayes.

I. I NTRODUCTION

Recently there has been a surge of interest in finding
minimum rank matrices subject to some problem-specific
constraints often characterized as an affine set [1], [2], [3],
[4], [5], [6]. Mathematically this involves solving

min
X

rank[X] s.t. b = A(X), (1)

whereX ∈ R
n×m is the unknown matrix,b ∈ R

p represents
a vector of observations andA : Rn×m → R

p denotes a linear
mapping. An important special case of (1) commonly applied
to collaborative filtering is the matrix completion problem

min
X

rank[X] s.t. Xij = (X0)ij , (i, j) ∈ Ω, (2)

whereX0 is a low-rank matrix we would like to recover,
but we are only able to observe elements from the setΩ
[1], [2]. Unfortunately however, both this special case and
the general problem (1) are well-known to be NP-hard, and
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the rank penalty itself is non-smooth. Consequently, a popular
alternative is to instead compute

min
X

∑

i

f(σi[X]) s.t. b = A(X), (3)

whereσi[X ] denotes thei-th singular value ofX and f is
usually a concave, non-decreasing function (or nearly so).In
the special case wheref(z) = I[z 6= 0] (i.e., an indicator
function) we retrieve the matrix rank; however, smoother
surrogates such asf(z) = log z or f(z) = zq with q ≤ 1 are
generally preferred for optimization purposes. Whenf(z) = z,
(3) reduces to convex nuclear norm minimization. A variety
of celebrated theoretical results have quantified specific condi-
tions, heavily dependent on the singular values of matricesin
the nullspace ofA, where the minimum nuclear norm solution
is guaranteed to coincide with that of minimal rank [1], [3],
[6]. However, these guarantees typically only apply to a highly
restrictive set of rank minimization problems, and in a practical
setting non-convex algorithms can succeed in a much broader
range of conditions [2], [5], [6].

In Section II we will summarize state-of-the-art non-convex
rank minimization algorithms that operate under affine con-
straints and point out some of their shortcomings. This will
be followed in Section III by the derivation of an alternative
approach using Bayesian modeling techniques adapted from
probabilistic PCA [7]. Section IV will then describe connec-
tions with nuclear norm minimization, convergence issues,and
properties of global and local solutions. The latter includes
special cases whereby any stationary point of the intrinsiccost
function is guaranteed to have optimal rank, illustrating an
underlying smoothing mechanism which leads to success over
competing methods. We next discuss algorithmic enhance-
ments in Section V that further improve recovery performance
in practice. Section VI contains a wide variety of numerical
comparisons that highlight the efficacy of this algorithm, while
Section VII presents a computer vision application involving
image rectification and a standard collaborative filtering bench-
mark. Technical proofs and algorithm update rule details are
contained in the Appendix.

Before proceeding, we highlight several main contributions
as follows:

• Bayesian inspiration can take uncountably many dif-
ferent forms and parameterizations, but the devil is in
the details and existing methods offer little opportunity
for both theoretical inquiry and substantial performance
gains solving (1). In this regard, we apply carefully-
tailored modifications to a veteran probabilistic PCA
model leading to systematic analytical and empirical
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insights and advantages. Model justification is ultimately
based on such meticulous technical considerations rather
than merely the presumed qualitative legitimacy of any
underlying prior distributions.

• Non-convex algorithms have demonstrated some im-
provement in estimation accuracy over the celebrated
convex nuclear norm; however, this typically requires
the inclusion of one or more additional tuning param-
eters to incrementally inject additional objective function
curvature and avoid bad local solutions. In contrast, for
solving (1) our non-convex Bayesian-inspired algorithm
requires no such parameters at all, and noisy relaxations
necessitate only a single, standard trade-off parameter
balancing data-fit and minimal rank.1

• Over a wide battery of controlled experiments with
ground-truth data, our approach outperforms all existing
algorithms that we are aware of, Bayesian, non-convex, or
otherwise. This includes direct head-to-head comparisons
using the exact experimental designs and code prepared
by original authors with carefully tuned parameters. In
fact, even whenA is ill-conditioned we are consistently
able to solve (1) right up to the theoretical limit of any
possible algorithm, which has never been demonstrated
previously.

II. RELATED WORK

Here we focus on a few of the latest and most effective
rank minimization algorithms, all developed within the last
few years and evaluated favorably against the state-of-the-art.

A. General Non-Convex Methods

In the non-convex regime, effective optimization strategies
attempt to at least locally minimize (3), often exceeding the
performance of the convex nuclear norm. For example, [6]
derives a family ofiterative reweighted least squares(IRLS)
algorithms applied tof(z) = (z2 + γ)q/2 with q, γ > 0 as
tuning parameters. A related penalty also considered isf(z) =
log(z2+γ), which maintains an intimate connection with rank
given that

log z = lim
q→0

q−1(zq − 1) and lim
q→0

zq = I[z 6= 0], (4)

whereI is a standard indicator function. Consequently, whenγ
is small,

∑

i log(σi[X]2 + γ) behaves much like a scaled and
translated version of the rank, albeit with nonzero gradients
away from zero.

The IRLS0 algorithm from [6] represents the best-
performing special case of the above, where

∑

i log(σi[X]2+
γ) is minimized using a homotopy continuation scheme
merged with IRLS. Here a fixedγ is replaced with a de-
creasing sequence{γk}, the rationale being that whenγk is
large, the cost function is relatively smooth and devoid of local
minima. As the iterationsk progress,γk is reduced, and the
cost behaves more like the matrix rank function. However,

1While not our emphasis here, similar to other Bayesian frameworks, even
this trade-off parameter can ultimately be learned from thedata if a true,
parameter-free implementation is desired across noise levels.

because now we are more likely to be within a reasonably
good basin of attraction, spurious local minima are more easily
avoided. The downside of this procedure is that it requires a
pre-defined heuristic for reducingγk, and this schedule may
be problem specific. Moreover, there is no guarantee that a
global solution will ever be found.

In a related vein, [5] derives a family ofiterative reweighted
nuclear norm(IRNN) algorithms that can be applied to virtu-
ally any concave non-decreasing functionf , even whenf is
non-smooth, unlike IRLS. For effective performance however
the authors suggest a continuation strategy similar to IRLS0.
Moreover, additional tuning parameters are required for differ-
ent classes of functionsf and it remains unclear which choices
are optimal. While the reported results are substantially better
than when using the convex nuclear norm, in our experiments
IRLS0 seems to perform slightly better, possibly because the
quadratic least squares inner loop is less aggressive in the
initial stages of optimization than weighted nuclear norm
minimization, leading to a better overall trajectory. Regardless,
all of these affine rank minimization algorithms fail well before
the theoretical recovery limit is reached, when the number of
observationsp equals the number of degrees of freedom in the
low-rank matrix we wish to recover. Specifically, for ann×m,
rank r matrix, the number of degrees of freedom is given by
r(m + n) − r2, hencep = r(m + n) − r2 is the best-case
boundary. In practice ifA is ill-conditioned or degenerate the
achievable limit may be more modest.

A third approach relies on replacing the convex nuclear
norm with a truncated non-convex surrogate [2]. While some
competitive results for image impainting via matrix com-
pletion are shown, in practice the proposed algorithm has
many parameters to be tuned via cross-validation. Moreover,
recent comparisons contained in [5] show that default settings
perform relatively poorly.

Finally, a somewhat different class of non-convex algo-
rithms can be derived using a straightforward application of
alternating minimization [8]. The basic idea is to assume
X = UV

T for some low-rank matricesU andV and then
solve

min
U ,V

‖b−A(UV
T )‖F (5)

via coordinate decent. The downside of this approach is thatit
requires thatU andV be parameterized with the correct rank.
In contrast, our emphasis here is on algorithms that requireno
prior knowledge whatsoever regarding the true rank.

B. Bayesian Methods

From a probabilistic perspective, previous work has applied
Bayesian formalisms to rank minimization problems, although
not specifically within an affine constraint set. For example,
[9], [10], [11] derive robust PCA algorithms built upon the
linear summation of a rank penalty and an element-wise
sparsity penalty. In particular, [10] applies an MCMC sampling
approach for posterior inference, but the resulting iterations
are not scalable, subjectable to detailed analysis, nor readily
adaptable to affine constraints. In contrast, [9] applies a similar
probabilistic model but performs inference using a variational
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mean-field approximation. While the special case of matrix
completion is considered, from an empirical standpoint its
estimation accuracy is not competitive with the state-of-the-
art non-convex algorithms mentioned above. Finally, without
the element-wise sparsity component intrinsic to robust PCA
(which is not our focus here), [11] simply collapses to a regular
PCA model with a closed-form solution, so the challenges
faced in solving (1) do not apply. Consequently, general affine
constraints really are a key differentiating factor.

From a motivational angle, the basic probabilistic model
with which we begin our development can be interpreted as
a carefully re-parameterized generalization of the probabilistic
PCA model from [7]. This will ultimately lead to a non-convex
algorithm devoid of the heuristic tuning strategies mentioned
above, but nonetheless still uniformly superior in terms of
estimation accuracy. We emphasize that, although we employ
a Bayesian entry point for our algorithmic strategy, final
justification of the underlying model will be entirely basedon
properties of the underlying cost function that emerges, rather
than any putative belief in the actual validity of the assumed
prior distributions or likelihood function. This is quite unlike
the vast majority of existing Bayesian approaches.

C. Analytical Considerations

Turning to analytical issues, a number of celebrated theoret-
ical results dictate conditions whereby substitution of the rank
function with the convex nuclear norm in (1) is nonetheless
guaranteed to still produce the minimal rank solution. For
example, ifA is a Gaussian iid measurement ensemble and
X0 ∈ R

n×n represents the optimal solution to (1) with
rank[X0] = r, then with high probability as the problem
dimensions grow large, the minimum nuclear norm feasible
solution will equalX0 if the number of measurementsp
satisfiesp ≥ 3r(2n− r) [12].

The limitation of this type of result is two-fold. First, in the
above situation the true minimum rank solution only actually
requires p ≥ r(2n − r) measurements to be recoverable
via brute force solution of (1), and the remaining difference
of a factor of three can certainly be considerable in many
practical situations (e.g., requiring 300 measurements isfar
more laborious than only needing 100 measurements). Sec-
ondly though, and far more importantly, all existing provable
recovery guarantees place extremely strong restrictions on the
structure ofA, e.g., strong restrictions on the singular value
decay of matrices in the nullspace ofA. Such conditions are
unlikely to ever hold in realistic application settings, including
the image rectification example we describe in Section VII-A
(in fact, these conditions are usually incapable of even being
checked). In contrast, the algorithm we propose is empirically
observed to only require the theoretically minimal number
of measurements even when such nullspace conditions are
violated in many cases. While a general theoretical guarantee
of this sort is obviously not possible, we do nonetheless
provide several supporting theoretical results indicative of why
such performance is at least empirically obtainable.

III. A LTERNATIVE ALGORITHM DERIVATION

In this section we first detail our basic distributional as-
sumptions followed by development of the associated update
rules for inference.

A. Basic Model

In contrast to the majority of existing algorithms organized
around practical solutions to (3), here we adopt an alterna-
tive, probabilistic starting point. We first define the Gaussian
likelihood function

p(b|X;A, λ) ∝ exp

[

−
1

2λ
‖A(X)− b‖22

]

, (6)

noting that in the limit asλ → 0 this will enforce the same
constraint set as in (1). Next we define an independent, zero-
mean Gaussian prior distribution with covarianceνiΨ on each
column ofX , denotedx:i for all i = 1, . . . ,m. This produces
the aggregate prior onX given by

p(X;Ψ,ν) =
∏

i

N (x:i;0, νiΨ) ∝ exp
[

x
⊤
Ψ̄

−1
x

]

,

(7)
whereΨ ∈ R

n×n is a positive semi-definite symmetric ma-
trix,2 ν = [ν1, . . . , νm]⊤ is a non-negative vector,x = vec[X]
(column-wise vectorization), and̄Ψ = diag[ν] ⊗ Ψ, with ⊗
denoting the Kronecker product. It is important to stress here
that we do not necessarily believe that the unknownX actually
follows such a Gaussian distribution per se. Rather, we adopt
(7) primarily because it will lead to an objective function with
desirable properties related to solving (1).

Moving forward, given both likelihood and prior are Gaus-
sian, the posteriorp(X|b;Ψ,ν,A, λ) is also Gaussian, with
mean given by an̂X such that

x̂ = vec[X̂] = Ψ̄A
⊤
(

λI +AΨ̄A
⊤
)−1

b. (8)

Here A ∈ R
p×nm is a matrix defining the linear operator

A such thatb = Ax reproduces the feasible region in (1).
From this expression it is clear that, ifΨ represents a low-rank
covariance matrix, then each column ofX̂ will be constrained
to a low-dimensional subspace resulting overall in a low-rank
estimate as desired. Of course for this simple strategy to be
successful we require some way of determining a viableΨ

and the scaling vectorν.
A common Bayesian strategy in this regard is to marginalize

over X and then maximize the resulting likelihood function
with respect toΨ andν [13], [11], [14]. This involves solving

max
Ψ∈H+,ν≥0

∫

p(b|X;A, λ)p(X ;Ψ,ν)dX , (9)

2TechnicallyΨ must be positive definite for the inverse in (7) to be defined.
However, we can accommodate the semi-definite case using thefollowing
convention. Without loss of generality assume thatΨ̄ = RR

⊤ for some
matrix R. We then qualify thatp(X;Ψ,ν) = 0 if x /∈ span[R], and
p(X;Ψ,ν) ∝ exp

[

x⊤(R⊤)†R†
x
]

otherwise. Equivalently, throughout
the paper for convenience (and with slight abuse of notation) we define
x⊤

Ψ̄
−1

x = ∞ when x /∈ span[R], and x⊤
Ψ̄

−1
x = x⊤(R⊤)†R†

x

otherwise. This will come in handy, for example, when interpreting the bound
in (12) below.
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whereH+ denotes the set of positive semi-definite and sym-
metric n × n matrices. After a−2 log transformation and
application of a standard convolution-of-Gaussians integration,
solving (9) is equivalent to minimizing the cost function

L(Ψ,ν) = b
⊤
Σ

−1
b b+ log |Σb| , (10)

where

Σb = AΨ̄A
⊤ + λI and Ψ̄ = diag[ν]⊗Ψ. (11)

HereΣb can be viewed as the covariance ofb given Ψ and
ν.

B. Update Rules

Minimizing (10) is a non-convex optimization problem, and
we employ standard upper bounds for this purpose leading
to an EM-like algorithm. In particular, we compute separate
bounds, parameterized by auxiliary variables, for both thefirst
and second terms ofL(Ψ,ν). While the general case can
easily be handled and may be applicable for more challenging
problems, here for simplicity and ease of presentation we
consider minimizingL(Ψ) , L(Ψ,ν = 1), meaning all
elements ofν are fixed at one (and such is the case for
all experiments reported herein, although we are currently
exploring situations where this added generality could be
especially helpful).

Based on [14], for the first term in (10) we have

b
⊤
Σ

−1
b b ≤

1

λ
‖b−Ax‖22 + x

⊤
Ψ̄

−1
x (12)

with equality wheneverx satisfies (8). For the second term
we use

log |Σb| ≡ m log |Ψ|+ log
∣

∣

∣
λA⊤

A+ Ψ̄
−1
∣

∣

∣

≤ m log |Ψ|+ tr
[

Ψ
−1∇Ψ−1

]

+ C,
(13)

where becauselog
∣

∣

∣
λA⊤

A+ Ψ̄
−1
∣

∣

∣
is concave with respect to

Ψ
−1, we can upper bound it using a first-order approximation

with a bias termC that is independent ofΨ.3 Equality is
obtained when the gradient satisfies

∇Ψ−1 =

m
∑

i=1

Ψ−ΨA
⊤
i

(

AΨ̄A
⊤ + λI

)−1

AiΨ, (14)

whereAi ∈ R
p×n is defined such thatA = [A1, . . . ,Am].

Finally given the upper bounds from (12) and (13) withX
and ∇Ψ−1 fixed, we can compute the optimalΨ in closed
form by optimizing the relevantΨ-dependent terms via

Ψ
opt = argmin

X
tr
[

Ψ
−1
(

XX
⊤ +∇Ψ−1

)]

+m log |Ψ|

=
1

m

[

X̂X̂
⊤
+∇Ψ−1

]

. (15)

By agnostically starting withΨ = I and then iteratively
computing (8), (14), and (15), we can then obtain an estimate
for Ψ, and more importantly, a corresponding estimate forX

3If Ψ is not invertible, an effectively equivalent form of bound can
nonetheless be derived. Regardless, the final update rules do not actually
depend onΨ−1 anyway, and hence the algorithm can progress even asΨ

may become low rank.

given by (8) at convergence. We refer to this basic procedure
as BARM for Bayesian Affine Rank Minimization. The next
section will detail why it is particularly well-suited for solving
problems such as (1).

IV. PROPERTIES OFBARM

Here we first describe a close but perhaps not intuitively-
obvious relationship between the BARM objective function
and canonical nuclear norm minimization. We then discuss
desirable properties of global and local minima before con-
cluding with a brief examination of convergence issues.

A. Connections with Nuclear Norm Minimization

On the surface, it may appear that minimizing (10) is
completely unrelated to the convex problem

min
X

‖X‖∗ s.t. b = A(X) (16)

that is most commonly associated with practical rank mini-
mization implementations. However, a close connection can
be revealed by considering the modified objective function

L′(Ψ) = b
⊤
Σ

−1
b b+ tr[Ψ̄], (17)

which represents nothing more than (10), withν = 1 and with
log |Σb| being replaced by tr[Ψ̄]. Now suppose we minimize
(17) with respect toΨ ∈ H+ obtaining someΨ∗. We then
go on to compute an estimate ofX using (8). Note that if we
apply the bound from (12) to the first term in (17), then this
estimate forX equivalently solves

min
Ψ∈H+,X

1

λ
‖b−Ax‖22 + x

⊤
Ψ̄

−1
x+ tr[Ψ̄], (18)

with x = vec[X ] as before. If we first optimize overΨ,
it is easily demonstrated that the optimal value ofΨ equals
(XX

⊤)1/2. Plugging this value into (18), simplifying, and
then applying the definition of the nuclear norm, we arrive at

min
X

1

λ
‖b−Ax‖22 + 2‖X‖∗, (19)

Furthermore, in the limitλ → 0 (applied outside of the
minimization), (19) becomes equivalent to (16).

Consequently, we may conclude that the central distinction
between the proposed BARM cost function and nuclear norm
minimization is an intrinsicA-dependent penalty function
log |Σb| which is applied in covariance space. In Section
IV-B we will examine desirable properties of this non-convex
substitution, highlighting our desire to treat the underlying
BARM probabilistic model as an independent cost function
that may be subject to technical analysis independent of its
Bayesian origins. For more information regarding the duality
relationship between variance/covariance space and coefficient
space, at least in the related context of compressive sensing
models, please refer to [14].
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B. Global/Local Minima Analysis

As discussed in Section II one nice property of the
∑

i log (σi[X]) penalty employed (approximately) by IRLS0
[6] is that it can be viewed as a smooth version of the matrix
rank function while still possessing the same set of minimum,
both global and local, over the affine constraint set, at least
if we consider the limiting situation of

∑

i log
(

σi[X]2 + γ
)

whenγ becomes small so that we may avoid the distracting
singularity of log 0. Additionally, it possesses an attractive
form of scale invariance, meaning that ifX∗ is an optimal
feasible solution, a block-diagonal rescaling ofA nevertheless
leads to an equivalent rescaling of the optimum (without the
need for solving an additional optimization problem using the
newA). This is very much unlike the nuclear norm or other
non-convex surrogates that penalize the singular values ofX

in a scale-dependent manner.
In contrast, the proposed algorithm is based on a very differ-

ent Gaussian statistical model with seemingly a more tenuous
connection with rank minimization. Encouragingly however,
the proposed cost function enjoys the same global/local min-
ima properties as

∑

i log
(

σi[X]2 + γ
)

with γ → 0. Before
presenting these results, we definespark[A] as the smallest
number of linearly dependent columns in matrixA [15]. All
proofs are deferred to the Appendix.

Lemma 1. Define r as the smallest rank of any feasible
solution to b = A vec[X], where A ∈ R

p×nm satisfies
spark[A] = p + 1. Then if r < p/m, any global mini-
mizer {Ψ∗,ν∗} of (10) in the limit λ → 0 is such that

x∗ = Ψ̄
∗
A

⊤
(

AΨ̄
∗
A

⊤
)†

b is feasible andrank[X∗] = r

with vec[X∗] = x∗.

Lemma 2. Additionally, let Ã = AD, where D =
diag[α1Γ, . . . , αmΓ] is a block-diagonal matrix with invertible
blocksΓ ∈ R

n×n of unit norm scaled with coefficientsαi > 0.
Then iff{Ψ∗,ν∗} is a minimizer (global or local) to (10) in
the limit λ → 0, then{Γ−1

Ψ
∗, diag[α]−1

ν
∗} is a minimizer

whenÃ replacesA. The corresponding estimates ofX are
likewise in one-to-one correspondence.

Remarks: The assumptionr = rank[X∗] < p/m in Lemma
1 is completely unrestrictive, especially given that a unique,
minimal-rank solution is only theoretically possible byany
algorithm if p ≥ (n + m)r − r2, which is much more
restrictive thanp > rm. Hence the bound we require is
well above that required for uniqueness anyway. Likewise the
spark assumption will be satisfied for anyA with even an
infinitesimal (continuous) random component. Consequently,
we are essentially always guaranteed that BARM possesses the
same global optimum as the rank function. Regarding Lemma
2, no surrogate rank penalty of the form

∑

i f(σi[X]) can
achieve this result except forf(z) = log z, or inconsequential
limiting translations and rescalings of thelog such as the
indicator functionI[z 6= 0] (which is related to the log via
arguments in Section II).

While these results are certainly a useful starting point, the
real advantage of adopting the BARM cost function is that
locally minimizing solutions are exceedingly rare, largely as a

consequence of the marginalization process in (9), and in some
cases provably so. A specialized example of this smoothing
can be quantified in the following scenario.

SupposeA is now block diagonal, with diagonal blocks
Ai such thatbi = Aix:i producing the aggregate observation
vector b = [b⊤1 , . . . , b

⊤
m]⊤. While somewhat restricted, this

situation nonetheless includes many important special cases,
including canonical matrix completion and generalized matrix
completion where elements ofZ0 , WX0 are observed after
some transformationW , instead ofX0 directly.

Theorem 1. Let b = A vec[X], whereA is block diagonal,
with blocks Ai ∈ R

pi×n. Moreover, assumepi > 1 for
all i and that ∩inull[Ai] = ∅. Then if minX rank[X] =
1 in the feasible region, any minimizer{Ψ∗,ν∗} of (10)
(global or local) in the limit λ → 0 is such thatx∗ =

Ψ̄
∗
A

⊤
(

AΨ̄
∗
A

⊤
)†

b is feasible andrank[X∗] = 1 with

vec[X∗] = x∗. Furthermore, no cost function in the form of
(3) can satisfy the same result. In particular, there can always
exist local and/or global minima with rank greater than one.

Remarks: This result implies that, under extremely mild
conditions, which do not even depend on the concentration
properties ofA, the proposed cost function has no minima
that are not global minima. (The minor technical condition
regarding nullspace intersections merely ensures that high-rank
components cannot simultaneously “hide” in the nullspace of
every measurement matrixAi; the actualA operator may still
be highly ill-conditioned.) Thus any algorithm with provable
convergence to some local minimizer is guaranteed to obtain
a globally optimal solution.4

Interestingly, such a guarantee is not possible with any other
penalty function of the standard form

∑

i f(σi[X]), which is
the typical recipe for rank minimization algorithms, convex or
not. Additionally, if a unique rank-one solution exists to (1),
then the unique minimizing solution to (10) will produce this
X via (8). Crucially, this will occur even when the minimal
number of measurementsp = n+m− 1 are available, unlike
any other algorithm we are aware of that is blind to the true
underlying rank.5 And importantly, the underlying intuition
that local minima are smoothed away nonetheless carries over
to situations where the rank is greater than one.

C. Visualization of BARM Local Minima Smoothing

To further explore the smoothing effect and complement
Theorem 1, it helps to visualize rank penalty functions re-
stricted to the feasible region. While the BARM algorithm
involves minimizing (10), its implicit penalty function onX
can nonetheless be numerically obtained across the feasible
region in a given subspace of interest; for other penalties such
as the nuclear norm this is of course trivial. Practically itis
convenient to explore a 1D feasible subspace generated by

4Note also that with minimal additional effort, it can be shown that no
suboptimal stationary points of any kind, including saddlepoints, are possible.

5It is important to emphasize that the difficulty of estimating the optimal
low-rank solution is based on the ratio of the d.o.f. inX to the number
of observationsp. Consequently, estimatingX even with r small can be
challenging whenp is also small, meaningA is highly overcomplete.
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X
∗ + ηV , whereX

∗ is the true minimum rank solution,
V ∈ null[A], and η is a scalar. We may then plot various
penalty function values asη is varied, tracing the corre-
sponding 1D feasible subspace. We chooseV = X

1 −X
∗,

whereX1 is a feasible solution with minimum nuclear norm;
however, random selections from null[A] also show similar
characteristics.

Figure 1 provides a simple example of this process.A

is generated randomly with all zeros and a single randomly
placed ’1’ in each row leading to a canonical matrix com-
pletion problem.X∗ ∈ R

5×5 is randomly generated as
X

∗ = uv⊤, whereu and v are iid N (0, 1) vectors, and
so X

∗ is rank one. Finally,p = 10 elements are observed,
and thereforeA has 10 rows and5 × 5 = 25 columns.η
is varied from−5 to 5 and the values of the nuclear norm,
∑

i log
(

σi[X]2 + γ
)

, and the implicit BARM cost function
are displayed.

From the figure we observe that the minimum of the nuclear
norm is not produced when the rank is smallest, which occurs
when η = 0; hence the convex cost function fails for this
problem. Likewise, the

∑

i log
(

σi[X]2 + γ
)

penalty used by
IRLS0 displays an incorrect global minimum when the tuning
parameterγ is large. In contrast, whenγ is small, while the
global minimum may now be correct, spurious local ditches
have appeared in the cost function.6 Therefore, any success of
the IRLS0 algorithm depends heavily on a carefully balanced
decaying sequence ofγ values, with the hope that initial
iterations can steer the trajectory towards a desirable basin
of attraction where local minima are less problematic. One
advantage of BARM then is that it is parameter free in this
respect and yet still retains the correct global minimum, often
without additional spurious local minima.

D. Convergence

Previous results of Section IV are limited to exploring
aspects of the underlying BARM cost function. Regarding
the BARM algorithm itself, by construction the updates gen-
erated by (8), (14), and (15) are guaranteed to reduce or
leave unchangedL(Ψ) at each iteration. However, this is not
technically sufficient to guarantee convergence to a stationary
point of the cost function unless, for example, the additional
conditions of Zangwill’s Global Convergence Theorem are
satisfied [16]. However, provided we add a small regularization
factor γ tr[Ψ−1], with γ > 0 to the BARM objective, then it
can be shown that any cluster point of the resulting sequenceof
iterations{Ψk} must be a stationary point. Moreover, because
the sequence is bounded, there will always exist at least one
cluster point, and therefore the algorithm is guaranteed toat
least converge to a set of parameters valuesS such that for
anyΨ∗ ∈ S, L(Ψ∗) + γ tr[(Ψ∗)−1] is a stationary point.

Finally, we should mention that this extraγ factor is akin
to the homotopy continuation regularizer used by the IRLS0
algorithm [6] as discussed in Section II. However, whereas

6Technically speaking, these are not provably local minima since we are
only considering a 1D subspace of the feasible region. However, it nonetheless
illustrates the strong potential for troublesome local minima, especially in high
dimensional practical problems.

IRLS0 requires a carefully-chosen, decreasing sequence{γk}
with γk > 0 both to prove convergenceand to avoid local
minimum (and without this factor the algorithm performs very
poorly in practice), for BARM a small, fixed factor only
need be included as a technical necessity for proving formal
convergence; in practice (and in our experiments) it can be
fixed to zero.

V. SYMMETRIZATION IMPROVEMENTS

Despite the promising theoretical attributes of BARM from
the previous section, there remains one important artifactof its
probabilistic origins not found in more conventional existing
rank minimization algorithms. In particular, other algorithms
rely upon a symmetric penalty function that is independent
of whether we are working withX or X

⊤. All methods
that reduce to (3) fall into this category, e.g., nuclear norm
minimization, IRNN, or IRLS0. In contrast, our method relies
on defining a distribution with respect to the columns ofX.
Consequently the underlying cost function is not identical
when derived with respect toX or X⊤, a difference which
will depend onA. While globally optimal solutions should
nonetheless be the same, the convergence trajectory could
depend on this distinction leading to different local minima
in certain circumstances. Although either construction leads to
low-rank solutions, we may nonetheless expect improvement
if we can somehow symmetrize the algorithm formulation.

To accomplish this, we consider a Gaussian prior onx =
vec[X] with a covariance formed using a block-wise averaging
of covariances defined over rows and columns, denotedΨr

andΨc respectively. The overall covariance is then given by
the Kronecker sum

Ψ̄ = 1/2 (Ψr ⊗ I + I ⊗Ψc) . (20)

The estimation process proceeds in a similar fashion as before
but with modifications and alternate upper-bounds that accom-
modate for this merger. For reported experimental results this
symmetric version of BARM is used, with complete update
rules listed in the Appendix and computational complexity
evaluated in Section VI-E.

VI. EXPERIMENTAL VALIDATION

This section compares BARM with existing state-of-the-art
affine rank minimization algorithms. For BARM, in all noise-
less cases we simply usedλ = 10−10 (effectively zero, the
exact value is not important), and hence no tuning parameters
are required. Likewise, nuclear norm minimization [1], [4]re-
quires no tuning parameters beyond implementation-dependent
control parameters frequently used to enhance convergence
speed (however the global minimum is unaltered given that
the problem is convex). For the IRLS0 algorithm, we used
our own implementation as the algorithm is straightforward
and no code was available for the case of generalA; we based
the required decreasingγk sequence on suggestions from [6].
IRLS0 code is available from the original authors for matrix
completion; however, the results obtained with this code are
not better than those obtained with our version.
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Fig. 1. Plots of different surrogates for matrix rank in a 1D feasible subspace. Here the convex nuclear norm does not retain the correct global
minimum. In contrast, although the non-convex

∑

i
log

(

σi[X]2 + γ
)

penalty exhibits the correct minimum whenγ is sufficiently small, it
also contains spurious minima. Only BARM smoothes away local minimum while simultaneously retaining the correct global optima.
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Fig. 2. Matrix completion comparisons (avg of 10 trials)

For the IRNN algorithm of [5], we did not have access
to code for generalA, nor specific details of how various
parameters should be set in the general case. Note also that
IRNN has multiple parameters to tune even in noiseless
problems unlike BARM. Therefore we report results directly
from [5] where available. Additionally, we emphasize that
both [5] and [6] show superior results to a number of other
algorithms; we do not generally compare with these others
given that they are likely no longer state-of-the-art and may
clutter the presentation.

As stated previously, our focus here is on algorithms that
do not require knowledge of the true rank of the optimal
solution, and hence we do not include comparisons with
[8]. Regardless, we have nonetheless conducted numerous
experiments with this algorithm, and even when the correct
rank is provided, results are far inferior to BARM. However,
we do show limited empirical results with the variational
sparse Bayesian algorithm (VSBL) from [9] because of its
Bayesian origins, although the underlying parameterization is
decidedly different from BARM. But these results are limited
to matrix completion as VSBL does not presently handle
general affine constraints. Results from VSBL were obtained
using publicly available code from the authors.

TABLE I
MATRIX COMPLETION RESULTS OFBARM WITH IRLS0 ON THE THREE

HARDEST PROBLEMS FROM[6]. PUBLISHED RESULTS IN[6] INCLUDED

FOR COMPARISON.

Problem IRLS0 IHT FPCA Opts BARM
FR n(=m) r FoS FoS FoS FoS FoS
0.78 500 20 0.9 0 0 0 1
0.8 40 9 1 0 0.5 0 1
0.87 100 14 0.5 0 0 0 1

A. Matrix Completion

We begin with the matrix completion problem from (2). For
this purpose we reproduce the exact same experiment from
[5], where a rankr matrix is generated asX0 = MLMR,
with ML ∈ R

n×r andMR ∈ R
r×m (n = m = 150) as iid

N (0, 1) random matrices. 50% of all entries are then hidden
uniformly at random. Therelative error (REL) is defined by
‖X0− X̂‖F/‖X0‖F for each trial. Thefrequency of success
(FoS) score, which measures the percentage of trials where the
REL is below 10−3, is then computed and averaged across
trials as r is varied. Results are shown in Figure 2 where
BARM is the only algorithm capable of reaching the theoret-
ical recovery limit, beyond whichp = 0.5 × 1502 = 11250
is surpassed by the number of degrees of freedom inX0, in
this case2× 150× 44− 442 = 11264. Note that FoS values
were reported in [5] over a wide range of non-convex IRNN
algorithms. The green curve represents the best performing
candidate from this pool as tuned by the original authors.
Interestingly, although VSBL is based on a probabilistic model
as is BARM, the underlying parameterization, cost function,
and update rules are entirely different and do not benefit from
any strong theoretical underpinnings. Hence performance does
not always match recent state-of-the-art algorithms.

Besides BARM, the IRLS0 algorithm also displayed better
performance than the other methods. This motivated us to
reproduce some of the matrix completion experiments from
[6] which presumably were designed to showcase difficult
regimes where IRLS0 is superior. For this purpose,X0 is
conveniently generated in the same way as above; however,
values ofn, m, r, and the percentage of missing entries are
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(a) 50× 50, A uncorrelated
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(b) 50× 50, A correlated
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(c) 100× 100, A uncorrelated
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(d) 100 × 100, A correlated

Fig. 3. Comparisons with general affine constraints (avg of 10 trials)

varied while evaluating reconstructions using FoS. While [6]
tests a variety of combinations of these values to explore
varying degrees of problem difficulty, here we only reproduce
the most challenging cases to see if BARM is still able
to produce superior reconstruction accuracy. In this respect
problem difficulty is measured by thedegrees of freedom ratio
(FR) given by FR= r(n + m − r)/p as defined in [6]. We
also only include experiments where algorithms are blind to
the true rank ofX0.7 Results are shown in Table I, where
we have also displayed the published results both IRLS0 and
three additional algorithms that were previously evaluated in
[6], namely, IHT [17], FPCA [18] and Optspace [19]. From the
table we observe that, in the most difficult problem considered
in [6], IRLS0 achieved only a 0.5 FoS score (meaning failure
50% of the time) while BARM still achieves a perfect 1.0.

B. GeneralA

Next we consider the more challenging problem involving
arbitrary affine constraints using the implementations we had
available for nuclear norm minimization, IRLS0, and BARM.
The desired low-rankX0 is generated in the same way as
above. We then consider two types of linear mappings where
A is generated as: (i) an iidN (0, 1), p × n2 matrix, and
(ii)

∑p
i=1 i

−1/2uiv
⊤
i , whereui ∈ R

p andvi ∈ R
n2

are iid
N (0, 1) vectors. The latter is meant to explore less-than-ideal
conditions where the linear operator displays correlations and
may be somewhat ill-conditioned. Figure 3 displays aggregate
results whenX0 is 50 × 50 and 100 × 100, including the
underlying REL scores for additional comparison. In both
casesp = 1000 observations are used, and therefore the
corresponding measurement matricesA are1000× 2500 and
1000 × 10000 respectively. We then varyr from 1 up to

7Note that IRLS0 can be modified to account for the true rank if such
knowledge were available.

the theoretical limit corresponding to problem size. Again
we observe that BARM is consistently able to work up to
the limit, even when theA operator is no longer an ideal
Gaussian. In general, we have explored a wide range of
empirical conditions too lengthly to report here, and it is only
very rarely, and always near the theoretical boundary, where
BARM occasionally may not succeed. We explore such failure
cases in the next section.

C. Failure Case Analysis

Thus far we have not shown any cases where BARM
actually fails. Of course solving (1) for generalA is NP-hard
so recovery failures certainly must exist in some circumstances
when using a polynomial-time algorithm such as BARM.
Although we certainly cannot explore every possible scenario,
it behooves us to probe more carefully for conditions under
which such errors may occur. One way to accomplish this is to
push the problem difficulty even further towards the theoretical
limit by reducing the number of measurementsp as follows.

With the number of observations fixed atp = 1000 and a
general measurement matrixA, the previous section examined
the recovery of50 × 50 and 100 × 100 matrices as the rank
was varied from 1 to the recovery limit (r = 11 for the50×50
case;r = 5 for the100×100 case). However, it is still possible
to make the problem even more challenging by fixingr at the
limit and then reducingp until it exactly equals the degrees
of freedom2n2 − r2. With {n = 50, r = 11} this occurs at
p = 979, for {n = 100, r = 5} this occurs atp = 975.

We examined the BARM algorithm under these conditions
with 10 additional trials using the uncorrelatedA for each
problem size. Encouragingly, BARM was still 30% successful
with {n = 50, r = 11}, and 40% successful with{n =
100, r = 5}. However, it is interesting to further examine the
nature of these failure cases. In Figure 4 we have averaged
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Fig. 4. Singular value averages of failure cases. In both cases solutions
of minimal rank are obtained even thougĥX 6= X0.

the singular values of̂X in all the failure cases. Here we
notice that, although the recovery was technically classified as
a failure since the relative error (REL) was above the stated
threshold, the estimated matrices are of almost exactly the
correct minimal rank. Hence BARM has essentially uncovered
an alternative solution with minimal rank that is nonetheless
feasible by construction. We therefore speculate that right
at the theoretical limit, whenA is maximally overcomplete
(p × n2 = 979 × 2500 or 975 × 10000 for the two problem
sizes), there exists multiple feasible matrices with singular
value spectral cut-off points indistinguishable from the optimal
solution. Importantly, when the other algorithms we tested
failed, the failure is much more dramatic and a clear spectral
cut-off at the correct rank is not apparent.

This motivates a looser success criteria than FoS to account
for the possibility of multiple (nearly) optimal solutionsthat
may not necessarily be close with respect to relative error.For
this purpose we define thefrequency of rank success(FoRS) as
the percentage of trials whereby a feasible solutionX̂ is found
such thatσr [X̂]/σr+1[X̂] > 103, whereσi[·] denotes thei-th
singular value of a matrix andr is the rank of the true low-
rank X0. In words, FoRS measures the percentage of trials
such that roughly a rankr solution is recovered, regardless of
proximity to X0.

Under this new criteria, all of the failure cases with respect
to FoS described above, for both problem sizes, become suc-
cesses; however, none of the other algorithms show improve-
ment under this criteria, indicating that their original failures
involved actual sub-optimal rank solutions. Something similar
happens when we revisit the matrix completion experiments.
For example, based on Table I the most difficult case involves
FR= 0.87; however, by further reducingp, we can push FR
towards 1.0 to further investigate the break-down point of
BARM. Results are shown in Table II. While IRLS0 (which
is the top performing algorithm in [6] and in our experiments
besides BARM) fails 100% of the time via both metrics,
BARM can achieve an FoS of0.7 even when FR= 0.99 and
an FoRS of1.0 in all cases.

We therefore adopt a more challenging measurement struc-
ture forA to better evaluate the algorithmic limits of BARM
performance and reveal potential failures using both FoSand
FoRS metrics. Specifically, we first applied 2-Ddiscrete cosine
transform(DCT) to X0 and then randomly sampledp of the
resulting DCT coefficients. Because both the DCT and the
sampling sub-process are linear operations on the entries of

TABLE II
FURTHER MATRIX COMPLETION COMPARISONS OFBARM WITH IRLS0

BY REDUCING THE NUMBER OF MEASUREMENTS IN THE HARDEST

PROBLEM FROM[6]. RESULTS WITH BOTHFOS AND FORSMETRICS ARE
REPORTED(AVG OF 10 TRIALS).

Problem IRLSO BARM
FR n(=m) r FoS FoRS FoS FoRS
0.9 100 14 0 0 1 1
0.95 100 14 0 0 0.8 1
0.99 100 14 0 0 0.7 1

X0, the whole process is representable via a matrixA, which
encodes highly structured information. Figure 5 depicts the
results using problem sizes consistent with Figure 3; note that
the FoRS metric has replaced the REL metric for comparison
purposes.

Two things stand out from the analysis. First, while the
other algorithms display almost identical behavior under either
metric, BARM failures under the FoS criteria are mostly
converted to successes by the FoRS metric by recovering a
matrix of near-optimal rank. Secondly, even with this struc-
tured DCT-based sampling matrix, BARM outperforms the
other algorithms using either metric.

To summarize, we have demonstrated that BARM is capable
of recovering a low-rank matrix right up to the theoretical limit
in a variety of scenarios using different types of measurement
processes. Moreover, even in cases where it fails, it often
nonetheless still produces a feasibleX̂ with rank nearly iden-
tical to the generative low-rankX0, suggesting that multiple
optimal solutions may be possible in challenging borderline
cases. But when true unequivocal failures do occur, such fail-
ures tend to be near the theoretical boundary, and with greater
likelihood when the dictionary displays significant structure
(or correlations). While certainly we envision that, out of
the infinite multitude of testing situations further significant
pockets of BARM failure can be revealed, we nonetheless feel
that BARM is quite promising relative to existing algorithms.

D. Additional Noisy Tests

We also briefly present results that demonstrate the ro-
bustness of BARM to noise. For this purpose we reproduce
the noisy experiment from [5] designed for validating IRNN
algorithms. The simulated data are generated in the exact same
way as was used to produce Figure 2, only now instead of
observing elements ofX0 directly, we observeX0+0.1×E,
where elements ofE are iid N (0, 1). Although in [5] a
heuristic strategy is introduced and tuned for adaptively setting
all parameters (four in total), we simply applied BARM with
λ = 10−3 (so only a single parameter need be adjusted,
and actually a wide range ofλ values produces similar
performance anyway). Results are shown in Figure 6 where
we compare BARM directly with the best result reported in [5]
over the ranger = 15 to r = 35. The nuclear norm solution
is also included for reference. Overall, the BARM solution is
stable and exhibits superior accuracy relative to the others.
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(a) 50× 50, A sub-sampled DCT
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(b) 100 × 100, A sub-sampled DCT

Fig. 5. Comparisons with structured affine constraints using both FoS and FoFS evaluation metrics (avg of 10 trials).
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E. Computational Complexity

Finally, regarding computational complexity, for generalA

the BARM updates can be implemented to scale linearly in the
elements ofX and quadratically in the number of observations
p (the special case of matrix completion is decidedly much
cheaper because of the special structure that can be exploited).
In our experiments, for relatively easy problems on the order of
10 iterations are required, while for difficult recovery problems
near the theoretical recovery boundary this may increase by
a factor of 10 or so. This is somewhat expected though
since as we near the theoretical limit,A becomes highly
overcomplete, and candidate solutions become much more
difficult to differentiate.

To show this effect empirically, we compare two separate
trials from Figure 3(a), the first whenr = 1 (relatively easy),
the second whenr = 11 (relatively hard).8 In Figure 7 we plot
the value of REL in both cases versus the iteration number of
BARM.

VII. A PPLICATION EXAMPLES

Many real-world problems from disparate fields can be
formulated as the search for a low-rank matrix under affine

8Note that r = 1 is only relatively easy here because the number of
observations is sufficient for the largerr = 11 case; if only the minimal
number of measurements are available then evenr = 1 can be challenging
for many algorithms.
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Fig. 7. Empirical convergence of BARM.

constraints [1], [3], [4], [20]. Here we briefly consider two
such examples: low-rank image rectification and collaborative
filtering for recommender systems. The former implicitly in-
volves a general sampling operatorA, while the latter reduces
to a standard matrix completion problem.

A. Low-rank Image Rectification

In [4], the transform invariant low-rank textures(TILT)
algorithm is derived for rectifying images containing low-
rank textures that have been transformed using an unknown
operatorτ from some group (e.g., a homography). For a given
observed imageY , the basic idea is to construct a first-order
Taylor series approximation around the current rectified image
estimateX̂ and solve

min
X ,δ

rank[X] s.t.X = Y +
∑

i

J i(X̂)δi, (21)

where J i(X̂) is the Jacobian matrix with respect toX
of the i-th parameterτi describing the transformation, with
τ = [τ1, τ2, . . .]

⊤. Optimization over the vector of first-
order differencesδ = [δ1, δ2, . . .]

⊤ can be accomplished in
closed form by projecting both sides of the constraint to the
orthogonal complement of the span of allJ i(X̂). Let PJ c

represent this projection operator. The feasible region in(21)
then becomes

PJ c (X) = PJ c (Y ) + PJ c

(

∑

i

J i(X̂)δi

)

= PJ c (Y )

(22)
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The resulting problem then reduces exactly to (1) when we
define A = PJ c and b = vec

[

PJ c (Y )
]

. Once X is
computed in this way, we then update eachJ i(X̂) and repeat
until convergence.

While the original TILT algorithm substitutes the nuclear
norm for rank[X], we embedded the BARM algorithm into
the posted TILT source code [4] for comparison purposes
(note that we disabled an additional sparse error term for both
algorithms to simplify comparisons, and it is not necessary
anyway in many regimes). Figures 8 and 9 display results on
both two easy examples, where the number of observationsp
is large, and two more difficult problems where the number
observations is small. While both algorithms succeed on
the easy cases, when the observations are constrained by a
small image window, only BARM is successful in accurately
rectifying the images. This may be due, at least in part, to the
fact that the implicitA operator contains significant structure
that is not consistent with the required nullspace properties
required for nuclear norm minimization success.

B. Collaborative Filtering of MovieLens Data

Collaborative filtering, a technique used by many recom-
mender systems, is a popular representative application oflow-
rank matrix completion. Typically the rows (or columns) of
X0 index users, the columns (or rows) denote items, and each
entry (X0)ij is the rating/score of useri applied to itemj.
Given that we can observe some subset of elements ofX0, the
task of collaborative filtering is to predict all or some of the
missing ratings. In general this would be impossible; however,
if we have access to some prior knowledge, e.g.,X0 is low-
rank, then estimation may be feasible.

While our interest here is not in recommender systems or
collaborative filtering per se, we nonetheless evaluate BARM
using the 1M MovieLens dataset9 as this appears to repre-
sent one of the most common evaluation benchmarks. We
emphasize at the outset that the strict validity of any low-
rank assumptions underlying this data is debatable, and it
remains entirely unclear whether the true globally optimalor
lowest rank solution consistent with the observations, even
if computable, would necessarily lead to the best prediction
of the unknown ratings. In fact, the reported performance of
various existing rank-minimization algorithms tends to cluster
around almost the same value, implying that collaborative
filtering may not provide the most discriminative data type
with which to compare. In most cases, it appears that tuning
parameters and other heuristic modifications play a larger role
than the underlying algorithmic distinctions fundamentalto
finding optimal low-rank estimates. Nonetheless, we apply
BARM for completeness and convention, adopting an addi-
tional simple mean-offset estimation term from [20] that is
particularly suitable for this problem.

In [6], IRLS0 is compared with only two other algo-
rithms on MovieLens data, but the performance is no better.
Therefore, we choose to compare directly with [20], which
both derives an IRLS-like algorithm and shows comparisons
with a much wider variety of alternative algorithms using

9http://www.grouplens.org/

TABLE III
COLLABORATIVE FILTERING ON 1M MOVIELENS DATASET. RESULTS

FROM [20] ARE IN ITALIC FOR COMPARISON PURPOSES.

Weak NMAE Hard NMAE
URP 0.4341 0.4444

Attitude 0.4320 0.4375
MMMF 0.4156 0.4203
IPCF 0.4096 0.4113

E-MMMF 0.4029 0.4071
GPLVM 0.4026 0.3994
NBMC 0.3916 0.3992

IRLS/GM 0.3959 0.3928
BARM 0.3942 0.3898

a strict evaluation protocol that is standard in the literature.
Specifically, the 1M MovieLens dataset, which contains 1
million ratings in the range{1, ..., 5} for 3900 movies from
6040 unique users, is assessed under two test-protocals:weak
generalization, which measures the ability to predict other
items rated by the same user, andstrong generalization, which
measures the ability to predict items by novel users. 5,000
users are randomly selected for the weak generalization, and
likewise 1,000 users are extracted for the strong generalization.
Each experiment is then run three times and the averaged
results are reported. The performance metric isnormalized
mean absolute error(NMAE) given as

NMAE =

(

∑

i,j∈supp(X0)
|(X0)ij−

ˆ
Xij |

|supp(X0)|

)

(rtmax − rtmin)
,

wherertmax and rtmin are the the maximum and minimum
ratings possible.

We followed the same setup and reported results using
BARM in Table III along with results from [20] for compar-
ison. This includes the additional algorithms URP [21], Atti-
tude [22], MMMF [23], IPCF [24], E-MMMF [25], GPLVM
[26], NBMC [27], and IRLS/GM [20], [6]. From this table we
observe that for the easier weak generalization problem BARM
is a close second best, while for the more challenging strong
generalization BARM is actually the best. Of course it is also
immediately apparent that all algorithms fall within a relatively
narrow performance range of approximately five percentage
points. Consequently, we cannot unequivocally conclude that
the attributes of BARM which make it suitable for optimally
minimizing rank necessarily translate into a truly significant
practical advantage on this collaborative filtering task. But we
would argue that the same holds for any matrix completion
algorithm.

VIII. C ONCLUSION

This paper explores a conceptually-simple, parameter-free
algorithm called BARM for matrix rank minimization under
affine constraints that is capable of successful recovery empir-
ically observed to approach the theoretical limit over a broad
class of experimental settings (including many not shown
here) unlike existing algorithms, and long after any nuclear
norm recovery guarantees break down. Our strategy in this
effort has been to adopt Bayesian machinery for inspiring a



12

(a) Nuclear norm (easy) (b) BARM (easy) (c) Nuclear norm (hard) (d) BARM (hard)

Fig. 8. Image rectification comparisons using a checkboard image.Top: Original image with observed region (red box) and estimated
transformation (green box).Bottom: Rectified image estimates.

(a) Nuclear norm (easy) (b) BARM (easy) (c) Nuclear norm (hard) (d) BARM (hard)

Fig. 9. Image rectification comparisons using a landmark photo.Top: Original image with observed region (red box) and estimated
transformation (green box).Bottom: Rectified image estimates.

principled cost function; however, ultimate model justification
is placed entirely in theoretical evaluation of desirable global
and local minima properties, and in the empirical recovery
performance that inevitably results from these properties.
Although in general non-convex algorithms are exponentially
more challenging to analyze, in this regard we have at least
attempted to contextualize BARM in the same manner as
convex optimization-based approaches such as nuclear-norm
minimization.

APPENDIX

Here we provide brief proofs of Lemmas 1 and 2 as well as
Theorem 1. We also address the augmented update rules that

account for the revised, symmetrized cost function discussed
in Section V.

A. Proof of Lemmas 1 and 2:

Regarding Lemma 1, this result mirrors related ideas from
[14] in the context of Bayesian compressive sensing. Hence,
while a more rigorous presentation is possible, here we de-
scribe the basic aspects of the adaptation. At any candidate
minimizer of (10) in the limitλ → 0, defineW such that
AΨ̄A

⊤ = WW
⊤. To be a minimizer, global or local,

it must be thatb ∈ span[W ]. If this were not the case,
then L(Ψ,ν) would diverge to infinity asλ → 0 because
b
T
Σ

−1
b b progresses to infinity at a faster rate thanlog |Σb|
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can compensate by approaching minus infinity. Intuitively,in
much the same wayargminz

1
z + log z = 1, meaning the

optimalz must lie in the ‘span’ of 1 else the overall objective
will be driven to infinity.

Consequently, the only way to minimize the cost in the
limit as λ → 0 is to consider low-rank solutions within the
constraint set thatb ∈ span[W ], and it is equivalent to requir-
ing that bTΣ−1

b b ≤ C for some constantC independent of
λ (which ultimately corresponds with maintainingA(X) = b

in the limit as well).
In this setting, while0 ≤ b

T
Σ

−1
b b ≤ C is bounded, the

second term inL(Ψ,ν) can be unbounded from below when
rank[Ψ] is sufficiently small. To see this note that

log |Σb| =

p
∑

i=1

log
(

σi[AΨ̄A
⊤] + λ

)

, (23)

where σi[·] denotes thei-th singular value of a matrix.
While the maximum rank ofAΨ̄A

⊤ is obviously p, if
r , rank[Ψ] < p/m andspark[A] = p+1 (maximal spark) as
stipulated in the lemma statement, thenrank[AΨ̄A

⊤] = mr
and (23) becomes

log |Σb| =
mr
∑

i=1

log
(

σi[AΨ̄A
⊤] + λ

)

+(p−mr) logλ. (24)

Note that the spark assumption accomplishes two objectives
in this context. First, it guarantees that a high rankΨ cannot
masquerade as a low rankΨ behind the nullspace of some
collection of columnsAi. Secondly, it ensures that after
assumingr < p/m, thenrank[AΨ̄A

⊤] = mr.
Consequently, in the limit whereλ → 0 (with the limit being

taken outside of the minimization), (23) effectively scales
as (p − mr) log λ, and hence the overall cost is minimized
when Ψ has minimal rank. This in turn ensures that the
correspondingX will also have minimal rank, completing the
proof sketch for Lemma 1.

Finally, Lemma 2 follows directly from the structure of the
L(Ψ,ν) cost function via simple reparameterizations. �

B. Proof of Theorem 1:

To begin we assume thatbi 6= 0, ∀i, where bi denotes
the sub-vector ofb such thatbi = Aix:i. If this were not
the case we can always collapseX by the corresponding
column (which is indistinguishable from zero) and achieve
an equivalent result. Given the assumptions of Theorem 1, the
BARM cost function becomes

L(Ψ,ν) =

m
∑

i=1

b
⊤
i

(

νiAiΨA
⊤
i

)−1

bi + log
∣

∣

∣
νiAiΨA

⊤
i

∣

∣

∣
.

(25)
If there exists a feasible rank one solution tob = A vec[X],
then there also exists a set ofΨ′

i = νiΨ such that
bib

⊤
i = AiΨ

′
iA

⊤
i for all i. To see this, note thatbib

⊤
i =

Aix:ix
⊤
:iA

⊤
i . Becauserank[X] = 1, it also follows that

bib
⊤
i = αiAiXX

⊤
A

⊤
i , where αi = ‖x:ix

⊤
:i ‖/‖XX

⊤‖.
ThereforeΨ′

i = νiXX
⊤ achieves the desired result with

νi = αi.

Now suppose we have converged to any solution{Ψ̂, ν̂}

with rank[Ψ] > 1 and associated¯̂Ψ = I ⊗ Ψ̂. Note that
sincebi 6= 0, νi > 0 for all i, otherwise a local minimum
is not possible (the cost function would be driven to positive
infinity).

DefineΣ̂bi = ν̂iAiΨ̂A
⊤
i . Additionally we can assume that

b
⊤
i Σ̂

−1

bi is finite, meaning thatbi lies in the span of the singular
vectors ofΣ̂bi . (If this were not the case, the cost would be
driven to infinity and we could not be at a minimizing solution
anyway.) If{Ψ̂, ν̂} is a local minimum, then{λ1 = 1, λ2 = 0}
must be a local minimum of the revised cost function

L(λ1, λ2) =

m
∑

i=1

b
⊤
i

(

λ1Σ̂bi + λ2bib
⊤
i

)−1

bi

+ log
∣

∣

∣
λ1Σ̂bi + λ2bib

⊤
i

∣

∣

∣
. (26)

This is becausebib
⊤
i represents a valid set of basis vectors for

updating the covariance per the construction above involving
Ψ

′
i. First consider optimization overλ1. If λ1 = 1 is a local

minimum, then by taking gradients and equating to zero, we
require that

m
∑

i=1

b
⊤
i Σ̂

−1

bi bi =
m
∑

i=1

rank[Σ̂bi ]. (27)

Likewise, taking the gradient with respect toλ2 we obtain

∂L(λ1, λ2)

∂λ2

∣

∣

∣

∣

λ1=1,λ2=0

=

m
∑

i=1

b
⊤
i Σ̂

−1

bi bi −
m
∑

i=1

(

b
⊤
i Σ̂

−1

bi bi

)2

.

(28)
The nullspace condition (a very mild assumption) ensures that
∑m

i=1 rank[Σ̂bi ] = k for somek > m whenrank[Ψ] > 1. To
see this, observe that to achieve

∑m
i=1 rank[Σ̂bi ] = m when

rank[Ψ] > 1 requires thatΨ = uu⊤ + WW
⊤ whereu

is a vector andW is a matrix (or vector) with columns in
null[Ai], ∀i. If any suchW is not in this nullspace for some
i, then given thatpi > 1, the associatedAiΨA

⊤
i will have

rank greater than one, and the overall rank sum will exceed
m.

Consequently, (28) will always be negative. This is because
if
∑m

i=1 zi = k for any set of non-negative variables{zi}, the
minimal value of

∑m
i=1 z

2
i occurs whenzi = k/m, ∀i. In our

case, this implies that
m
∑

i=1

(

b
⊤
i Σ̂

−1

bi bi

)2

≥
m
∑

i=1

(k/m)2 > k > m. (29)

Therefore we can add a small contribution ofbib
⊤
i to each

Σ̂bi and reduce the underlying cost function. Hence we cannot
have a local minimum, except whenΨ is equal to someΨ∗

with rank[Ψ∗] = 1. Moreover, we may directly conclude that

x∗ = Ψ̄
∗
A

⊤
(

AΨ̄
∗
A

⊤
)†

b is feasible andrank[X∗] = 1

with x∗ = vec[X∗].
Regarding the last part of the theorem, we consider only

f that are concave non-decreasing functions (this is the
only reasonable choice for shrinking singular values to zero,
and the more general case naturally follows anyway with
additional effort, but minimal enlightenment). Without loss of



14

generality we may also assume thatf(0) = 0 andf(1) = 1;
we can always apply an inconsequential translation and
scaling such that these conditions hold.10 Simple counter
examples then demonstrate thatf(ǫ) must be greater than
some constantC independent ofǫ for all ǫ sufficiently small.
To see this, note that we can always rescale elements ofA

such that a solution with rank greater than one is preferred
unless this condition holds. However, such anf , which
effectively must display infinite gradient atf(0) to guarantee
a global solution is always rank one, will then always display
local minima for certainA. This can easily be revealed
through simple counter-examples. �

C. Symmetrization Update Rules

These iterative update rules follow from alternative upper
bounds tailored to the symmetric version of BARM. When
both Ψr and Ψc are fixed,x is updated via the posterior
mean calculation

x̂ = vec[X̂]

=
1

2
(Ψ̄r + Ψ̄c)A

⊤

[

λI +A
1

2

(

Ψ̄r + Ψ̄c

)

A
⊤

]−1

b.
(30)

whereΨ̄r = Ψr ⊗ I andΨ̄c = I ⊗Ψc. Likewise we update
∇Ψ−1

r
and∇Ψ−1

c
using

∇Ψ−1
r

=
m
∑

i=1

Ψr−ΨrA
⊤
ri

(

AΨ̄rA
⊤ + λI

)−1

AriΨr, (31)

∇Ψ−1
c

=

n
∑

i=1

Ψc −ΨcA
⊤
ci

(

AΨ̄cA
⊤ + λI

)−1

AciΨc, (32)

where Ari ∈ R
p×m is defined such thatA =

[A⊤
r1, . . . ,A

⊤
rm]⊤ and Aci ∈ R

p×m is defined such that
A = [Ac1, . . . ,Acn]. Finally given these values, withX,
∇Ψ−1

r
and∇Ψ−1

c
fixed, we can compute the optimalΨr and

Ψc in closed form by optimizing the relevantΨr- andΨc-
dependent terms via

Ψ
opt
r =

1

n

[

X̂
⊤
X̂ +∇Ψ−1

r

]

, (33)

Ψ
opt
c =

1

m

[

X̂X̂
⊤
+∇Ψ−1

c

]

. (34)

In practice the simple initializationΨr = I andΨc = I is
sufficient for obtaining good performance.
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