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1 Introduction

There have been severa attempts recently to reconcile, or at least to understand the relationship be-
tween, traditional probabilistic models of information retrieval and the newer language models. Since
both treat the retrieval problem probabilistically, it might be expected that they can be formulated in
comparable terms. However, this has proved difficult. One question concerns the role of relevance,
which takes a central position in some traditional models (such as Robertson and Sparck Jones[1976],
referred to as RSJ), but does not appear explicitly in at least the early language models (e.g. Ponte and
Croft [1998]).

The present author and others [Sparck Jones et a. 2002] have recently claimed that the early
language models assume that there is only one relevant document per query. This claim is based on
the observation that language models ask the question of each document: What is the probability that
this document, or rather the model which generated this document, also generated the query? Since
each document is taken to have its own language model, if it turns out that a particular document is
relevant (that is, its model did indeed generate the query), it would seem that no other model could
have done.

Lafferty and Zhai [2002], on the other hand, in arecent paper, devel op a basic probabilistic model
from which they derive both the RSJ model and the simple language model. They claim in conclusion
that (a) RSJ and the simple language model are equivaent; and (b) that the language model requires
no such assumption as that there is only one relevant document per query.

The present paper discusses an issue underlying al probabilistic models, that of the event space
assumed, and draws in part from a pair of old papers [Robertson et a. 1982; Robertson et al. 1983].
| discuss possible views of the event space in case of documents, queries and relevance judgements,



and come to some different conclusions about the relationship between RSJ and the simple language
models. However, in order to illustrate the event space issues, the paper first introduces a rather
different example from the IR one, with different structural characteristics.

2 Random variables, conditional probabilities and event spaces

Suppose we have two random variables, X and Y, with some assumed relation between them. We can
imagine (though thisis not necessary) that there isacausal relation X — Y. Then we might consider
amodel which models the following quantities:

Model A: P(X), P(Y|X)
Can we now, without asking any further questions, apply such equations as:

P(Y) =) P(X)P(Y|X)? D)
X

Equation 1isone of the basic relationshipsin probability theory. These relationships imply that Model
A provides afull description of the event space involving these two random variables. that if we have
Model A, then we can infer any other quantity involving just these variables.

However, the following example will show that we cannot blindly apply equation 1 to a situation
in which we have all the information for Model A. There is, of course, a simple explanation for this
apparent contradiction of the laws of probability; however, the explanation needs to be investigated.

Example: we have stars S, and planets 7. Stars either have (X = 1) or do not have (X = 0)
magnetic fields. Planets either have (Y = 1) or do not have (Y = 0) magnetic fields. We have a
(complete) universe consisting of 2 stars and 3 planets. Star s, has z; = 1; it has two planets ¢
and t12 With 417 = 1 and y12 = 0. Star s5 has 2o = 0; it has one planet #5; with yo; = 0. In this
universe, the following probabilities may be calculated (not estimated, since the universe is complete,
but calculated exactly):

PX=1)=1

PY=1Xx=1)=1

PY=1X=0)=0
From these we would infer using equation 1 that P(Y = 1) =
which has amagnetic field, so actually we have P(Y = 1) = 3.

We could construct asimilar example using parents and children and some genetically-determined
property (such as eye colour). We could have amodel that specified (for a population) the probability
of each combination of the relevant genes (X); aso the probability of each eye colour in a child
conditional on the parents' genes (Y| X). But if we wanted to infer the probability of the parents
gene combination on the basis of the observed eye colour of a child (X|Y’), we would run into the
same problem.

i. But we have three planets, one of

2.1 Brief specification of the problem

What is the problem here? In short, it is the event space. The laws of probability are written in terms
of a single event space with a single probability measure defined on it; for historical reasons (which
| believe to be unfortunate), the standard notation P(.|.) does not provide for the denotation of the
event space. If we denote a probability for a particular event space £ as 12(.|.), then | should rewrite
the data | have for the example as:



Ps(X=1)=3

PriYy =1X=1) =4

Pr(Y =1X =0)=0,
referring to the event spaces of stars and planets. It is immediately obvious that we cannot apply
equation 1 to this data, because the probabilities are defined in different event spaces!

So the answer to my question above is. We emphatically cannot apply the equation without asking
any questions.

But this situation deserves much more detailed analysis. The combination of event spaces | have
exemplified, involving stars and planets, has a dightly complex but not particularly unusual structure
(that of every many-to-one relation in every relational database in the world). It is worth asking
guestions about what we can say about such combinations.

2.2 Overview of event spaces

The traditional view is that the event space is the set of al possible outcomes of an experiment, that
the probability measure is a measure satisfying certain properties on this event space, that a random
variable is a deterministic function of the outcome of an experiment. One could discuss this at length,
but it will do for the present discussion. |f we want to define a probability 22(X), we need to assume
that we do indeed have a well-defined event space £, probability measure P, and random variable X
defined on €. For P:(Y|X), we need both Y and X to be defined on £; the values of X are used to
induce a partition on £.

I will also observe that in afinite event space, the usual simplest probability measure assigns equal
probability to each elementary event. However, there are many circumstances in which that is simply
inappropriate, to the extent that one would not even consider it a candidate. For example: suppose the
experiment consists in tossing two coins, with outcomes HH,HT,TT. Our knowledge of the structure
of this event space is such that we would (probably without thinking) reject the simple probability
measure (1/3,1/3,1/3) and instead use (1/4,1/2,1/4). Our understanding of the structure of this event
space is enough to convince us that the simple one is simply bad.

3 Detailed analysis of the example

The full event space of the stars and planets example is a set of stars, a set of planets, and a one-to-
many relation between them. We have this knowledge of the structure, and we need to work out the
implications of this knowledge for any probabilistic statements about our models for the event space. |
will refer to thisfull event space as ST To help focus the discussion, | will imagine that one question
I might want to ask is the following:

What is the probability that a star has a magnetic field, given that | know that it has two
planets with magnetic fields?

This is a perfectly reasonable question to ask, though it may need some refining. But first | will
explore some possible ways of looking at the event space S7. We can consider several smpler event
spaces. Thefirstisjust S. Thisis easy: it stands on its own (does not need 7 to define it), has X

IWhat does it mean to refer to a set of objects as an event space? The simplest interpretation is that the basic event isto
choose one of the objects at random. In this case, the probability Ps(X = 1) = % means “if we choose a star at random
from this universe, thisis the probability that it has a magnetic field”. For the other two probabilities, we have to choose a
planet at random.



defined on it, and has no internal structure. It makes perfect sense to define a uniform probability
measure on it; this yields the above value for P(X = 1) = F5(X = 1) in the specified universe.

The second is 7. Thisis also moderately straightforward, if we look at Y alone; however, it
does have some internal structure (planets are siblings of each other or not), which treating it as a
straightforward uniform-probability event space will simply ignore. More on this later. But there is
another dlight complication: | want to consider X as a condition on this space. Is this valid? Well,
with avery slight extension, yes: we can ask of any planet, aswell as“ Do you have amagnetic field?’,
“Does your star have a magnetic field?’. This question is clear and unambiguous, so it is perfectly
reasonable to assert that X is defined on 7 aswell ason S. However, in order to be strictly accurate,
| should treat this as involving an extension of both the event space and the variable; we might refer
totheseas 7 and X'. In 7, we associate with each planet not only its own properties but those of
the star to which it belongs, and X is the property of the planet of belonging to a star with or without
amagnetic field. Then | should rephrase my data about the specified universe as.

Ps(X=1)=3

Pre(Y =1|1X'=1) =

Pri(Y=1X"=0)=0
—but it also becomes clear that | need more data to specify the probabilistic properties of this event
space more fully. For example, | may need Pr+(X'), which is not deducible from the above and
which is different from Ps(X). Thiswould then allow me to use equation 1.

Note that | cannot do the same trick the other way around: | cannot simply ask a star “Does
your planet have a magnetic field?’, because the question is ill-defined. | could define an S™ in a
different way, e.g. by defining a new random variable Y’ as the proportion of the star’s planets that
have magnetic fields, and construct a probabilistic model with this combination of event space and
random variables. As before, asimple uniform probability measure (on stars) is quite appropriate.

| now have five event spaces: ST, S, 7, ST, T+. 2 There are differences between them, some
minor, some significant. | have simple, straightforward probability measures on each of the last four
of these spaces. | do not, however, have aprobability measure of any kind on S7. Nor isit possible to
define one which (a) makes sense, and (b) allows me to express all probabilistic aspects of the space.

Does this mean that we cannot make probabilistic statements about S7? Of course not. Any
statement about any of the other event spaces is also about S7. However, none of the other spaces
captures all that we might want about S7". Given that we need event spaces with probability measures,
it follows that we need more than one event space to make probabilistic sense of ST

Now we may return to the question with which | started this section. Of the event spaces | have
considered, the one which comes closest to helping us with this question is St as defined; but this
does not quite do the trick. Answering the question would actually need a good understanding of the
full structured event space S7, and a combination of models which explicity took this structure into
account. It simply does not make sense in 7, because in this event space, there is no such thing as
an individual star. (In fact S* does not have individual planets, either.)

4 A small observation

None of the above problems arise if X and Y are initially defined on the same event space —in this
case Model A and equation 1 go together perfectly well. | believe this is the situation most theorists

2t would be possible to define other event spaces in addition to these five. For example, | could take each star and define
an event space of its own planets, giving me two more in this particular universe. | do not pursue this line for the present
example.



have in mind when they automatically assume equation 1. | also believe this assumption is dangerous.

5 Further analysisof 7

| said above that in 7 there is no such thing as an individual star. This statement deserves further
analysis.

T+ consists of a set of elementary events {(¢,s)} wheret € T isaplanet and s € S isa star
(together with a uniform probability measure on these events). That is, we take each planet ¢ and its
properties, and its associated star s and its properties, as the single event {(¢, s)} which gives us the
values of our random variables. Each such event is distinct as an event from every other; thisis the
nature of asimple event space. So in some sense there are individual stars; the concept that is missing
from this space is that of different planets sharing an individual star. To put it another way: if we take
T+ as our complete probabilistic model, we arein effect assuming that every star has just one planet.

At least, it isclear that the model 7 is consistent with such an assumption. Furthermore, | cannot
see any way of generating this model under a weaker assumption.

6 Queriesand documents: the crossproduct structure

The structure of the §7 example is not uncommon, but it is not the same as the query / document /
relevance case. | would like to discuss some aspects of this case.

We start with the set of al queries Q. Aswith stars, thisisthe set of all actual queries, representing
information needs, not the set of al values of some random variable. We may define one or more
random variables on this set, including (following Lafferty) the text of the query. Similarly we have
aset D of documents. Ignoring relevance for the moment, queries and documents have at first glance
no logical relationship. What this meansisthat we can pair any document with any query. Thelogical
structure of this space (QD) is across product of the two individual spaces Q and D.

In this case, there is a simple and fairly obvious probability measure on the space, namely one
that is uniform over pairs (¢, d) € Q x D. | shall refer to the probabilistic event space defined by this
measure over this set of events as QD,; the cross product on its own, without a probability measure, |
shall call @D onitsown. Inthe probabilistic event space OT), each pair isregarded as asingle event,
unrelated to any other, and every pair has the same probability.

It might be assumed that this uniform probability measure on pairs (Q1}) isin some sense equiv-
aent to treating the two separate spaces Q and D uniformly. However, this is not the case (or at
least, such equivalence has severe limitations). A consequence of choosing pairs as the basis for the
probability measurein QD isthat it loses part of the structure of the full space QD, in the same way
that 7+ loses part of the structure of S7". Consider the following structural aspects:

e OD is'striped — any property that a particular query has is shared across al pairs involving
this same query with any document (and vice-versa); QD has no such striped character.

e in QD every pair has one set of ¢-siblings (all the pairs sharing the same query-event) and
another set of d-siblings; there are no siblingsin 9Dy.

¢ the question ‘what can | say probabilistically about a query, if I know something about two of
the pairsto which it belongs? has meaning in @D, but none in Q7.

¢ the concept of an individual query or document is apparently meaningless in QTy (but see the
following section).



6.1 Individuality of documentsand queries

If wetake @D, asour complete probabilistic model of the query-document situation, we are assuming
auniform space of unit eventswhich are query-document pairs. Every such event isdistinct, and there
isno concept that two such events may share the sameindividual query event (say). Thisisequivaent
to assuming that every document (individual document event) has exactly one query and every query
has exactly one document. Note that this is independent of the relevance variable, which we have not
yet introduced.

6.2 Random variables

We may define as random variables in the space of query-document pairs the text of the query and the
text of the document. However, to be strictly accurate, we must acknowledge that (for example) the
random variable which is the text of the query, defined on the event space of all queries, is different
from the random variable which is the text of the query, defined on the event space of al query-
document pairs. Query-siblingsin @D share the same query event and therefore necessarily the same
query-text. No such relationship can exist in @D, — two query-document pairs may share the same
query text but only accidentally. Thus by reinterpreting the query-text variable as a random variable
in @Dy, we are at the same time changing its nature significantly.

A binary relevance variable may be defined as arandom variable on the space of individual query-
document pairs (but not, clearly, on individual documents or queries). Thus this variable naturally
resides in @Dy. However, since neither the text of the query nor the text of the document naturally
reside there, we have to be careful about modelsinvolving al three variables.

6.3 Samples

If we were to sample query-document pairs, the resulting sample would have the characteristics of
QD,. Onthe other hand, if we were to sample queries and documents separately, and then take all the
resulting pairs, we would have a space with all the above characteristics which QT lacks (stripes,
siblings, etc.). (Thisis close to what we actually do in experiments — for the very good reason that it
preserves aspects of the structure of the full space @D in which we are interested.) Thisis a perfectly
goaod form of sampling, but one which is simply not described by the probabilistic event space OTy.
We might consider constructing a composite space for a probabilistic model from auniform prob-
ability distribution on queries and a separate uniform probability distribution on documents. However,
this would not constitute a single probabilistic event space in the usual sense. Can we define asingle
probabilistic event space which preserves any of the above aspects? Aswith the ST example, it isnot
possible to find one which preserves everything, but different spaces preserve different things.

7 Possible event spacesfor IR

7.1 The event space of the RSJ model

The RSImodel [Robertson and Sparck Jones 1976] is formulated for asingle query. All probabilities
are about documents in relation to this single query. We can thus see the event space as the space of
documents (with auniform prior distribution); but this event space is reinterpreted for each query. In
terms of the discussion above, we have ¢-siblings as an implicit part of the model; however, the model
cannot see d-siblings. The model thus assumes that there is just one query for every document but
not vice versa. In effect, the document collection is reinvented for every query. This means that we
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can learn about the specific query (relevance feedback in the usual sense), but not about the specific
document over successive queries.

7.2 Theevent space of the simple language model

Thisisalittle more difficult to see. Since the language model expresses a probability of aquery given
a document, it is tempting to see it as the dual of the RSJ model. This would mean that the event
space was the space of queries, considered only in relation to this document. Thiswould be consistent
with the discussion in Robertson, Maron, and Cooper [1982], and would make the language model
equivalent to the original probabilistic IR model of Maron and Kuhns [1960].

However, it is clear that this is not the interpretation placed on the language model by its propo-
nents. The language model is commonly used to derive a score by which documents are ranked for
agiven query, in the usual fashion. But this requires that the scores for different documents, but for
the same query, are directly comparable. Under the above interpretation of the event space, the scores
cannot be comparable, since they come from probability distributions in different event spaces.

Itisunclear to mewhat should be taken asthe event space for the ssimple language model. Possible
solutions would be 9D, or that proposed by Lafferty and Zhai. Either of these would imply that
the ssimple language model is not capable of supporting per-query-event relevance feedback (that is,
relevance feedback in the usual sense), though it would support relevance feedback across al queries
(from different users) sharing the same text.

7.3 TheLafferty/Zhai model

The model proposed by Lafferty and Zhai [2002] is even simpler than Q7. They consider only the
cross-product of values of @ and D (i.e. the texts as above), not of individual events, with a uniform
probability distribution on the pairsin this cross-product. This has severa implications.

One is that replicated queries (multiple query-events with the same text) are regarded as having
the same probability, irrespective of their frequency of replication. This probably is of no importance,
for the same reason that the RSJ approach is reasonable: all comparisons which the model isintended
to allow are between documents for the same query. However, it would be important for inter-query-
event feedback.

A more serious implication is the following. If relevance is to be taken as a random variable on
this event space, it means that we must assume that relevance is determined only by the values (texts)
of @ and D. This means that (we assume) any two people who ask the same question and see the
same document will make the same relevance judgement. Since we know very well that many queries
are highly ambiguous, quite apart from subjective differences, this is a strong assumption.

Despite these qualifications, in many respects the Lafferty/Zhai model seems to be similar to
QDy. The event space refers to no individual events (either query-events or document-events). In
this space, it is ot possible to distinguish between query-document pairs which share the same query
text because they share the same query-event, and those which share the same query text by accident
(because a sampling process has happened to throw up the same value). The space cannot therefore
have any of the structural characteristics of QD discussed in section 6 above (striping, siblings etc.).
Thus it seems to assume implicitly with @D, that for every document-event there is exactly one
query-event and vice versa. The assumption isimplicit because it is not possible to express either this
assumption or its negation in terms of the event space, but it is required because of the absence of
structural characteristics.



The assumption of a one-to-one relationship between document and query eventsis even stronger
than the assumption attributed to the simple language model earlier, that each query has only one
relevant document.

The version of RSJ which Lafferty and Zhai derive from their model is a specia case of RS,
since the assumption that each query has just one document is not necessary for RSJ. Therefore the
conclusion that RSJ and the simple language model are equivalent is not a valid general inference
from this model.

8 Conclusions

1. Model A doesnot carry equation 1 as anecessary consequence under al conditions under which
it (Model A) can be defined.

2. When a probabilistic model is being constructed, the structure of the event space cannot be
ignored.

3. Sometimes an event space is of sufficient structural complexity that asingle probabilistic model
(based on asingle event space with asingle probability measure) would be unable to capture all
important statistical knowledge about it.

4. Thislast isthe case with queries, documents and relevance judgements.

5. RSJisnot equivalent to amodel based on uniform probabilities over query-document pairs.
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