
✸

Letter from the President

Dear EATCS members,

As usual this time of the year, I have the
great pleasure to announce the assignments
of this year’s Gódel Prize, EATCS Award and
Presburger Award.

The Gödel Prize 2012, which is co-sponsored
by EATCS and ACM SIGACT, has been awarded
jointly to Elias Koutsoupias, Christos H.
Papadimitriou, Tim Roughgarden, Éva Tardos,
Noam Nisan and Amir Ronen. In particular,
the prize has been awarded to Elias
Koutsoupias and Christos H. Papadimitriou
for their paper Worst-case equilibria,
Computer Science Review, 3(2): 65-69,
2009; to Tim Roughgarden and Éva Tardos for
their paper How Bad Is Selfish Routing?,
Journal of the ACM, 49(2): 236-259, 2002;
and to Noam Nisan and Amir Ronen for their
paper Algorithmic Mechanism Design, Games
and Economic Behavior, 35: 166-196, 2001.
As you can read in the laudation published
in this issue of the bulletin, these three
papers contributed highly influential
concepts and results that laid the
foundation for an explosive growth in
algorithmic game theory, a
trans-disciplinary combination of the
theory of algorithms and the theory of
games that has greatly enriched both
fields. The purpose of all three papers
was to improve our understanding of how the
internet and other complex computational
systems behave when users and service
providers in these systems act selfishly.
On behalf of this year’s Gödel Prize
Committee (consisting of Sanjeev Arora,
Josep Díaz, Giuseppe F. Italiano, Daniel

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✹

Spielman, Eli Upfal and Mogens Nielsen as
chair) and the whole EATCS community I
would like to offer our congratulations and
deep respect to all of the six winners!

The EATCS Award 2012 has been granted to
Moshe Vardi for his decisive influence on
the development of theoretical computer
science, for his pre-eminent career as a
distinguished researcher, and for his role
as a most illustrious leader and
disseminator. The laudation, also
published in this issue of the bulletin,
illustrates his distinguished scientific
career. Moshe Vardi has made fundamental
and lasting research contributions to the
development of mathematical logic as a
unifying foundational framework for
modeling computational systems. His
research has focused on applying and
developing logic in computing, and has
played a major role in our present
understanding and use of logic in
computing. Vardi has contributed to
several areas of theoretical computer
science: in particular, software and
hardware verification, databases,
complexity theory and distributed systems.
The proposal has been made by our selection
committee consisting of Leslie Ann
Goldberg, Friedhelm Meyer auf der Heide and
Eugenio Moggi (chair), and it has been
unanimously approved by the EATCS Council
members. On behalf of the whole EATCS
community I would like to offer our
congratulations to Moshe for this
well-deserved award!

The Presburger Award Committee 2012,
consisting of Monika Henzinger, Antonin
Kucera and Stefano Leonardi (chair) has

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✺

unanimously decided to propose Venkatesan
Guruswami and Mihai Patrascu as joint
recipients of the 2012 EATCS Presburger
Award for young scientists. This excellent
proposal has been approved by the EATCS
Council members. The laudation, also
published in this issue of the bulletin,
illustrates that these two outstanding
young scientists, both working in different
fields at different stages of their career,
are two of the most impressive researchers
in theoretical computer science of their
generation and ideal recipients for the
Presburger Award. Venkatesan Guruswami has
contributed cornerstone results to the
theory of list decoding of error correcting
codes. His work culminated in a
publication that settles one of the most
salient theoretical open problems in the
theory of communication since Shannon’s
invention of error correcting codes in
1949. Mihai Patrascu has contributed
fundamental results on lower bounds for
data structures. His work has broken
through many old barriers on fundamental
data structure problems, not only
revitalizing but also revolutionizing a
field that was almost silent for over a
decade. All our congratulations go out to
Venkatesan and Mihai!

Please note that all three prizes will be
presented in a ceremony that will take
place during ICALP 2012 in Warwick. On
behalf of the EATCS, I would like to offer
our sincere thanks to all members of the
Award Committees for their work and
excellent choices.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✻

The program of ICALP 2012 is now ready and
can be viewed in detail on the
corresponding website http://www2.warwick.
ac.uk/fac/cross_fac/dimap/icalp2012. Once
again it is an excellent program, due to
both the high quality of the contributed
papers and the large number of scientific
events, like the Turing Talk given by David
Harel, the presentation of the Awards
mentioned above and the five invited talks
that will be given this year by Gilles
Dowek, Kohei Honda, Stefano Leonardi,
Daniel A. Spielman and Berthold Vöcking.
Moreover, on Wednesday afternoon there will
be a Turing Excursion combined with a visit
of Bletchley Park which promises to be
another memorable highlight. We are all
convinced that the ICALP conference chaired
by Kurt Mehlhorn (track A), Andrew Pitts
(track B) and Roger Wattenhofer (track C)
will again be a great success. The
conference will be preceded by three
satellite workshops: APAC (Workshop on
Applications of Parameterized Algorithms
and Complexity), CL&C (Fourth International
Workshop on Classical Logic and
Computation), and WRAWN (Third Workshop on
Realistic models for Algorithms in Wireless
Networks). The Conference Chair, Artur
Czumaj, together with his team is doing an
excellent job and we are looking forward to
meeting you in Warwick. So, hurry up and
register now for this extraordinary event!

In Warwick, you will have also the
opportunity to see the first Call for
Papers for ICALP 2013 with the indication
of the program committees and the invited
speakers. In this context, I would like to
take this opportunity to invite you to
attend the EATCS General Assembly which

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✼

will take place on Tuesday evening during
the ICALP week in Warwick and where you
will be informed in detail about the EATCS
activities within the last year and the
plans for the next year.

Burkhard Monien, Paderborn
June 2012

✽

Letter from the Bulletin Editor

Dear Reader,

Welcome to the June 2012 issue of the Bulletin

of the EATCS.

I have some news to report. Starting from next

issue, Edgar Chávez will be in charge of informing

us on the novelties from Latin America. Chapter of

the EATCS. I want to thank Edgar Chávez for

accepting to take care of this section and express

my gratitude to Alfredo Viola for their great

contribution and for the effort devoted to the

Bulletin for so many years. My warmest thanks to

you.

Regarding the present issue, apart from the

interesting Columns contributions, our reporters

bring you news on EATCS and TCS activities all over

the world. Please, read them carefully!

I trust that you will find a lot of interesting

material to read in this issue.

Maria Serna, Barcelona
June 2012

❚❤❡ ❊❆❚❈❙ ❆✇❛)❞

▲❛✉❞❛$✐♦ ❢♦(▼♦*❤❡ ❱❛(❞✐

▼♦"❤❡ ❱❛'❞✐ ✐" ❛♥ ❡①,'❡♠❡❧② ❛❝,✐✈❡ ❛♥❞ ♣'♦❞✉❝,✐✈❡ '❡"❡❛'❝❤❡'✳ ❍✐" ✇♦'❦ "♦

❢❛' ❤❛" ❜❡❡♥ ✈❡'② ✐♥✢✉❡♥,✐❛❧✱ ❝❡',❛✐♥❧② ✐♥ "❝✐❡♥❝❡✱ ❜✉, ❛❧"♦ ✐♥ ❞✐""❡♠✐♥❛,✐♦♥

❛♥❞ ♣♦❧✐❝② ♠❛,,❡'"✳ ❲❡ ❛'❡ ♣❧❡❛"❡❞ ,♦ '❡❝♦❣♥✐"❡ ,❤❡"❡ ❝♦♥,'✐❜✉,✐♦♥" ✇✐,❤ ❛♥

❊❆❚❈❙ ❆✇❛'❞✳

❘❡"❡❛$❝❤ ❈♦♥*$✐❜✉*✐♦♥"

❱❛'❞✐ ❤❛" ♠❛❞❡ ❢✉♥❞❛♠❡♥,❛❧ ❛♥❞ ❧❛",✐♥❣ '❡"❡❛'❝❤ ❝♦♥,'✐❜✉,✐♦♥" ,♦ ,❤❡ ❞❡✲

✈❡❧♦♣♠❡♥, ♦❢ ♠❛,❤❡♠❛,✐❝❛❧ ❧♦❣✐❝ ❛" ❛ ✉♥✐❢②✐♥❣ ❢♦✉♥❞❛,✐♦♥❛❧ ❢'❛♠❡✇♦'❦ ❢♦'

♠♦❞❡❧✐♥❣ ❝♦♠♣✉,❛,✐♦♥❛❧ "②",❡♠"✳ ❍✐" '❡"❡❛'❝❤ ❤❛" ❢♦❝✉"❡❞ ♦♥ ❛♣♣❧②✐♥❣ ❛♥❞

❞❡✈❡❧♦♣✐♥❣ ❧♦❣✐❝ ✐♥ ❝♦♠♣✉,✐♥❣✱ ❛♥❞ ❤❛" ♣❧❛②❡❞ ❛ ♠❛❥♦' '♦❧❡ ✐♥ ♦✉' ♣'❡"❡♥, ✉♥✲

❞❡'",❛♥❞✐♥❣ ❛♥❞ ✉"❡ ♦❢ ❧♦❣✐❝ ✐♥ ❝♦♠♣✉,✐♥❣✳ ❱❛'❞✐ ❤❛" ❝♦♥,'✐❜✉,❡❞ ,♦ "❡✈❡'❛❧

❛'❡❛" ♦❢ ❈♦♠♣✉,❡' ❙❝✐❡♥❝❡✱ ✐♥ ♣❛',✐❝✉❧❛'✿ "♦❢,✇❛'❡ ❛♥❞ ❤❛'❞✇❛'❡ ✈❡'✐✜❝❛,✐♦♥❀

❞❛,❛❜❛"❡"❀ ❝♦♠♣❧❡①✐,② ,❤❡♦'②❀ ❛♥❞ ❞✐",'✐❜✉,❡❞ "②",❡♠"✳

❆✉"♦♠❛"❛✲"❤❡♦)❡"✐❝ ❛♣♣)♦❛❝❤ "♦ ❞❡.✐❣♥ ✈❡)✐✜❝❛"✐♦♥✳ ❱❛'❞✐ ❤❛" ❞❡♠♦♥✲

",'❛,❡❞ ,❤❛, H✉❡",✐♦♥" ❛❜♦✉, ❝♦''❡❝,♥❡"" ♦❢ ❤❛'❞✇❛'❡ ❛♥❞ "♦❢,✇❛'❡ ❞❡"✐❣♥" ❝❛♥

❜❡ '❡❞✉❝❡❞ ,♦ ❛❧❣♦'✐,❤♠✐❝ H✉❡",✐♦♥" ❛❜♦✉, ✜♥✐,❡ ❛✉,♦♠❛,❛ ♦♥ ✐♥✜♥✐,❛'② ✐♥✲

♣✉, ",'✉❝,✉'❡" ✭✐♥✜♥✐,❡ ✇♦'❞" ♦' ✐♥✜♥✐,❡ ,'❡❡"✮✳ ❈❛''②✐♥❣ ♦✉, ,❤✐" ❛♣♣'♦❛❝❤

'❡H✉✐'❡❞ ❛❞✈❛♥❝❡" ✐♥ ❜♦,❤ ❛✉,♦♠❛,❛ ,❤❡♦'② ❛♥❞ ,❤❡ ,❤❡♦'② ♦❢ ♣'♦❣'❛♠ ❧♦❣✐❝"✳

❚❤✐" ❝♦♥♥❡❝,✐♦♥ ❜'♦✉❣❤, ❛ ✇❡❛❧,❤ ♦❢ ♥❡✇ ,❡❝❤♥✐H✉❡" ,♦ ,❤❡ ,❤❡♦'② ♦❢ ♣'♦❣'❛♠

❧♦❣✐❝"✱ ❛♥❞ ,❤❡ ♥❡✇ ❛♣♣❧✐❝❛,✐♦♥ '❡✈✐✈❡❞ ,❤❡ ,❤❡♦'② ♦❢ ❛✉,♦♠❛,❛ ♦♥ ✐♥✜♥✐,❛'②

✐♥♣✉,"✳

❍✐" ✶✾✽✻ ♣❛♣❡'✱ ✏❆♥ ❛✉,♦♠❛,❛✲,❤❡♦'❡,✐❝ ❛♣♣'♦❛❝❤ ,♦ ❛✉,♦♠❛,✐❝ ♣'♦❣'❛♠ ✈❡'✲

✐✜❝❛,✐♦♥✑✱ ❤❛" ♦✈❡' ✶✸✺✵ ❝✐,❛,✐♦♥"✱ ✐, ✇♦♥ ❛♥ ■❇▼ ❖✉,",❛♥❞✐♥❣ ■♥♥♦✈❛,✐♦♥

❆✇❛'❞ ✐♥ ✶✾✽✾✱ ❛♥ ❆❈▼✲❊❆❚❈❙ ●♦❡❞❡❧ X'✐③❡ ✐♥ ✷✵✵✵✱ ❛ ▲■❈❙ ❚❡",✲♦❢✲❚✐♠❡

❆✇❛'❞ ✐♥ ✷✵✵✻✱ ❛♥❞ ❛♥ ❆❈▼ ❑❛♥❡❧❧❛❦✐" ❆✇❛'❞ ❢♦' ❚❤❡♦'② ❛♥❞ X'❛❝,✐❝❡ ✐♥

✷✵✵✻✳

❚❤✐" ❧✐♥❡ ♦❢ ✇♦'❦ ✐" ,❤❡ ❜❛"✐" ♦❢ "❡✈❡'❛❧ ❛❝❛❞❡♠✐❝ ❛♥❞ ✐♥❞✉",'✐❛❧ ❛✉,♦♠❛,❡❞

✈❡'✐✜❝❛,✐♦♥ ,♦♦❧"✱ "✉❝❤ ❛" ,❤❡ ♠♦❞❡❧ ❝❤❡❝❦❡' ❙X■◆ ,❤❛, ✇♦♥ ,❤❡ ✷✵✵✶ ❆❈▼✬"

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✶✵

❙♦❢#✇❛&❡ ❙②)#❡♠ ❛✇❛&❞✳ ❚❤❡ ✇♦&❦ ❤❛) ❛❧)♦ ✐♥✢✉❡♥❝❡❞ ❡♠❡&❣✐♥❣)♣❡❝✐✜❝❛✲

#✐♦♥ ❧❛♥❣✉❛❣❡)✱)✉❝❤ ❛) #❤❡ ■❊❊❊ ❙#❛♥❞❛&❞ =&♦♣❡&#② ❙♣❡❝✐✜❝❛#✐♦♥ ▲❛♥❣✉❛❣❡

✭=❙▲✮ ❢♦& ✇&✐#✐♥❣ &❡A✉✐&❡♠❡♥#) ♦❢ ❤❛&❞✇❛&❡ ❞❡)✐❣♥)✱ ❛♥❞ #❤❡ ♠❛♥♥❡& ✐♥ ✇❤✐❝❤

)♣❡❝✐✜❝❛#✐♦♥) ❛&❡ ❝❤❡❝❦❡❞ ❜② ✐♥❞✉)#&✐❛❧ ♠♦❞❡❧ ❝❤❡❝❦❡&)✳

❚❤❡♦$② ♦❢ ❞❛)❛❜❛+❡ ,✉❡$✐❡+✳ ❉❛#❛❜❛)❡ ♠❛♥❛❣❡♠❡♥#)②)#❡♠) ❤❛✈❡ ❡✈♦❧✈❡❞

❢&♦♠ ✉♥)♦♣❤✐)#✐❝❛#❡❞ ❞❛#❛❜❛)❡)✱ ✇❤✐❝❤ ❛&❡ ❡))❡♥#✐❛❧❧②)#&✉❝#✉&❡❞ ❝♦❧❧❡❝#✐♦♥)

♦❢ ❞❛#❛✱ #♦✇❛&❞ ♠❛#$ ❞❛#❛❜❛)❡) ♣♦))❡))✐♥❣ ❞❡❞✉❝#✐✈❡ ❝❛♣❛❜✐❧✐#✐❡)✳

❱❛&❞✐ ❤❛) ✐♥✈❡)#✐❣❛#❡❞ #❤❡ #❤❡♦&② ♦❢ ❞❛#❛❜❛)❡ A✉❡&✐❡)✱ ✇✐#❤ ❛ ❢♦❝✉) ♦♥ #❤❡

#&❛❞❡✲♦✛ ❜❡#✇❡❡♥ ❡①♣&❡))✐✈❡♥❡)) ❛♥❞ ❝♦♠♣✉#❛#✐♦♥❛❧ ❝♦♠♣❧❡①✐#②✳ ❍✐) &❡)❡❛&❝❤

❧❛✐❞ #❤❡ ❢♦✉♥❞❛#✐♦♥) ✐♥ #❤❡ ❢♦❧❧♦✇✐♥❣ ❛&❡❛)✿ ✐♥#❡❣&✐#② ❝♦♥)#&❛✐♥#)✱ ❝♦♠♣❧❡①✲

✐#② ♦❢ A✉❡&② ❡✈❛❧✉❛#✐♦♥✱ A✉❡&②✐♥❣ ✐♥❝♦♠♣❧❡#❡ ✐♥❢♦&♠❛#✐♦♥✱ ❞❛#❛❜❛)❡ ✉♣❞❛#❡)✱

✉♥✐✈❡&)❛❧✲&❡❧❛#✐♦♥ ✐♥#❡&❢❛❝❡)✱ ❛♥❞ ❞❛#❛❜❛)❡ ❧♦❣✐❝ ♣&♦❣&❛♠♠✐♥❣✳

■♥ ❤✐) ✶✾✽✷ ♣❛♣❡& ✏❚❤❡ ❝♦♠♣❧❡①✐#② ♦❢ &❡❧❛#✐♦♥❛❧ A✉❡&② ❧❛♥❣✉❛❣❡)✑✱ ❱❛&❞✐

)❤♦✇❡❞ #❤❛# #❤❡&❡ ❛&❡ #✇♦ ❢✉♥❞❛♠❡♥#❛❧❧② ❞✐✛❡&❡♥# ✇❛②) #♦ ♠❡❛)✉&❡ #❤❡ ❝♦♠✲

♣❧❡①✐#② ♦❢ A✉❡&✐❡)✱ &❡❢❡&&❡❞ #♦ ❛) ❞❛$❛ ❝♦♠♣❧❡①✐$② ❛♥❞ ❡①♣#❡ ✐♦♥ ❝♦♠♣❧❡①✐$②✱

❛ ❝❧❛))✐✜❝❛#✐♦♥ #❤❛# ✐) #♦❞❛② ✇✐❞❡❧② ❛❝❝❡♣#❡❞✳ ❚❤✐) ♣❛♣❡& ❤❛) ♦✈❡& ✶✶✺✵

❝✐#❛#✐♦♥)✳

❍✐) ✶✾✾✽ ♣❛♣❡&✱ ✏❈♦♥❥✉♥❝#✐✈❡✲A✉❡&② ❝♦♥#❛✐♥♠❡♥# ❛♥❞ ❝♦♥)#&❛✐♥#)❛#✐)❢❛❝#✐♦♥✑✱

✇❤✐❝❤ ❡①❤✐❜✐#❡❞ ❛ ❞❡❡♣ ❝♦♥♥❡❝#✐♦♥ ❜❡#✇❡❡♥ ❝♦♥❥✉♥❝#✐✈❡✲A✉❡&② ❡✈❛❧✉❛#✐♦♥ ❛♥❞

❝♦♥)#&❛✐♥#✲)❛#✐)❢❛❝#✐♦♥)♦❧✈✐♥❣✱ &❡❝❡✐✈❡❞ ❛♥ ❆❈▼ =❖❉❙ ▼❡♥❞❡❧③♦♥ ❚❡)#✲♦❢✲

❚✐♠❡ ❆✇❛&❞ ✐♥ ✷✵✵✽✳ ■♥ ✷✵✵✽ ❱❛&❞✐ &❡❝❡✐✈❡❞ #❤❡ ❆❈▼ ❊❞❣❛& ❋✳ ❈♦❞❞ ■♥♥♦✲

✈❛#✐♦♥) ❆✇❛&❞✱ #❤❡ #♦♣ &❡❝♦❣♥✐#✐♦♥ ❢♦& ❞❛#❛❜❛)❡ &❡)❡❛&❝❤ ❛❝❝♦♠♣❧✐)❤♠❡♥#)✳

❉❡+❝$✐♣)✐✈❡ ❝♦♠♣❧❡①✐)②)❤❡♦$②✳ ❈♦♠♣✉#❛#✐♦♥❛❧ ❈♦♠♣❧❡①✐#② ❢♦❝✉)❡) ♦♥

❝❧❛))✐❢②✐♥❣ ❝♦♠♣✉#❛#✐♦♥❛❧ ♣&♦❜❧❡♠) ❛❝❝♦&❞✐♥❣ #♦ #❤❡✐& ✐♥❤❡&❡♥# ❞✐✣❝✉❧#② ✐♥

#❡&♠) ♦❢ &❡)♦✉&❝❡ ✭)✉❝❤ ❛) #✐♠❡ ♦&)♣❛❝❡✮ &❡A✉✐&❡♠❡♥#)✳

❉❡)❝&✐♣#✐✈❡ ❝♦♠♣❧❡①✐#② #❤❡♦&② ✐) ❛ ❜&❛♥❝❤ ♦❢ ❝♦♠♣✉#❛#✐♦♥❛❧ ❝♦♠♣❧❡①✐#② #❤❡✲

♦&② #❤❛# ❝❤❛&❛❝#❡&✐③❡) ❝♦♠♣❧❡①✐#② ❝❧❛))❡) ❜② #❤❡ #②♣❡ ♦❢ ❧♦❣✐❝ ♥❡❡❞❡❞ #♦

❡①♣&❡)) #❤❡♠✳ ❆♥ ❡①❛♠♣❧❡ ✐) ❛ ❝❧❛))✐❝❛❧ &❡)✉❧#✱ ♣&♦✈❡❞ ❜② ❱❛&❞✐ ✭❛♥❞ ✐♥✲

❞❡♣❡♥❞❡♥#❧② ❜② ■♠♠❡&♠❛♥✮ ✐♥ ✶✾✽✷✱ #❤❛# ❝❤❛&❛❝#❡&✐③❡) #❤❡ ❝♦♠♣❧❡①✐#② ❝❧❛))

=❚■▼❊ ✐) #❡&♠) ♦❢ ✜&)#✲♦&❞❡& ❧♦❣✐❝ ❡♥&✐❝❤❡❞ ✇✐#❤ #❤❡ ✜①♣♦✐♥# ♦♣❡&❛#♦&✳ ✭❚❤✐)

✇♦&❦ ✇♦♥ ❛♥ ■❇▼ ❖✉#)#❛♥❞✐♥❣ ■♥♥♦✈❛#✐♦♥ ❆✇❛&❞ ✐♥ ✶✾✾✷✳✮

❍✐) ✶✾✾✸ ♣❛♣❡&✱ ✏▼♦♥♦#♦♥❡ ♠♦♥❛❞✐❝ ❙◆= ❛♥❞ ❝♦♥)#&❛✐♥#)❛#✐)❢❛❝#✐♦♥✑✱ ✉)❡❞

❧♦❣✐❝✱ ❣&❛♣❤ #❤❡♦&②✱ ❛♥❞ ❛❧❣❡❜&❛✱ #♦)#✉❞② #❤❡ ❝♦♠♣✉#❛#✐♦♥❛❧ ❝♦♠♣❧❡①✐#② ♦❢

❝♦♥)#&❛✐♥#✲)❛#✐)❢❛❝#✐♦♥ ♣&♦❜❧❡♠)✳ ❚❤❡ ✶✾✾✽ ♣❛♣❡&✱ ✏❚❤❡ ❝♦♠♣✉#❛#✐♦♥❛❧)#&✉❝✲

#✉&❡ ♦❢ ♠♦♥♦#♦♥❡ ♠♦♥❛❞✐❝ ❙◆= ❛♥❞ ❝♦♥)#&❛✐♥#)❛#✐)❢❛❝#✐♦♥✿ ❛)#✉❞② #❤&♦✉❣❤

❉❛#❛❧♦❣ ❛♥❞ ❣&♦✉♣ #❤❡♦&②✑✱ ❤❛) ♠♦&❡ #❤❛♥ ✺✵✵ ❝✐#❛#✐♦♥)✳ ❚♦❣❡#❤❡&✱ #❤❡)❡

♣❛♣❡&) ❢♦&♠ #❤❡ ❜❛)✐) ❢♦& ✇♦&❦ ♦♥ #❤❡ ❝♦♠♣❧❡①✐#② ♦❢ ❝♦♥)#&❛✐♥#)❛#✐)❢❛❝#✐♦♥✳

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶

❑♥♦✇❧❡❞❣❡ ✐♥ ♠✉❧+✐✲❛❣❡♥+ .②.+❡♠.✳ ❘❡❛#♦♥✐♥❣ ❛❜♦✉* ❦♥♦✇❧❡❞❣❡ ❤❛# ❛♣✲

♣❧✐❝❛*✐♦♥# ✐♥ #✉❝❤ ❞✐✈❡4#❡ ✜❡❧❞# ❛# ❡❝♦♥♦♠✐❝#✱ ❧✐♥❣✉✐#*✐❝#✱ ❛4*✐✜❝✐❛❧ ✐♥*❡❧❧✐❣❡♥❝❡

❛♥❞ ❝♦♠♣✉*❡4 #❝✐❡♥❝❡✳ ■♥ ❛ ❞✐#*4✐❜✉*❡❞ #②#*❡♠ ❛ ♣4♦❝❡## ♠❛② ♥❡❡❞ *♦ ❦♥♦✇

✇❤❡*❤❡4 ♦*❤❡4 ♣4♦❝❡##❡# ❦♥♦✇ *❤❛* ❛ ♠❡##❛❣❡ ❤❛# ❜❡❡♥ ❧♦#*✳

❚♦❣❡*❤❡4 ✇✐*❤ ❤✐# ❝♦❧❧❛❜♦4❛*♦4#✱ ❱❛4❞✐ ❞❡✈❡❧♦♣❡❞ ❛♥ ❡①*❡♥#✐✈❡ *❤❡♦4② ♦❢ 4❡❛✲

#♦♥✐♥❣ ❛❜♦✉* ❦♥♦✇❧❡❞❣❡✳ ❚❤✐# ✇♦4❦ ❢♦❝✉#❡# ♦♥ ✉#✐♥❣ 4❡❛#♦♥✐♥❣ ❛❜♦✉* ❦♥♦✇❧✲

❡❞❣❡ *♦ ❞❡#✐❣♥✱ ❛♥❛❧②③❡ ❛♥❞ ✈❡4✐❢② *❤❡ ❝♦44❡❝*♥❡## ♦❢ ♠✉❧*✐✲❛❣❡♥* #②#*❡♠#✳

❚❤❡ ✇♦4❦ ♣4♦✈✐❞❡# ❣♦♦❞ ❢♦4♠❛❧ ♠♦❞❡❧# ♦❢ ❦♥♦✇❧❡❞❣❡ *❤❛* ❛4❡ ❛♣♣4♦♣4✐❛*❡ ❢♦4

♠✉❧*✐♣❧❡ ❛♣♣❧✐❝❛*✐♦♥#✳ ❚❤✐# ✇♦4❦ ✇♦♥ ❛♥ ■❇▼ ❖✉*#*❛♥❞✐♥❣ ■♥♥♦✈❛*✐♦♥ ❆✇❛4❞

✐♥ ✶✾✽✼✳ ❚❤❡ ❜♦♦❦ ❡♥*✐*❧❡❞ ✏❘❡❛#♦♥✐♥❣ ❛❜♦✉* ❑♥♦✇❧❡❞❣❡✑ ❜② ❋❛❣✐♥✱ ▼♦#❡#✱

❍❛❧♣❡4♥ ❛♥❞ ❱❛4❞✐✱ ✜4#* ♣✉❜❧✐#❤❡❞ ❜② ▼■❚ M4❡## ✐♥ ✶✾✾✺✱ ✐# ♥♦✇ ❝♦♥#✐❞❡4❡❞

❛ ❝❧❛##✐❝✱ ✇✐*❤ ♦✈❡4 ✷✾✵✵ ❝✐*❛*✐♦♥#✳

■♥ ❛❞❞✐*✐♦♥❛❧ *♦ ❢✉♥❞❛♠❡♥*❛❧ ❝♦♥*4✐❜✉*✐♦♥#✱ ❱❛4❞✐ ❛❧#♦ #❤❛♣❡❞ *❤❡ ✜❡❧❞ ❜②

♣♦✐♥*✐♥❣ ♦✉* ♣4♦♠✐#✐♥❣ 4❡#❡❛4❝❤ ❞✐4❡❝*✐♦♥#✳

❙❝✐❡♥%✐✜❝ ❉✐((❡♠✐♥❛%✐♦♥ ❛♥❞ ■♠♣❛❝%

❱❛4❞✐✬# #❝✐❡♥*✐✜❝ ♦✉*♣✉* ✐# ✐♠♣4❡##✐✈❡ ❛♥❞ ✈❡4② ✐♥✢✉❡♥*✐❛❧✳

• ❍❡ ✐# ❛✉*❤♦4 ♦4 ❝♦✲❛✉*❤♦4 ♦❢ ♦✈❡4 ✹✵✵ ♣✉❜❧✐❝❛+✐♦♥.✱ ✐♥❝❧✉❞✐♥❣ ✷ ❜♦♦❦.✿

✏❘❡❛#♦♥✐♥❣ ❛❜♦✉* ❑♥♦✇❧❡❞❣❡✑ ❛♥❞ ✏❋✐♥✐*❡ ▼♦❞❡❧ ❚❤❡♦4② ❛♥❞ ✐*# ❆♣♣❧✐❝❛✲

*✐♦♥#✑✳

• ❍❡ ❤❛# ♠♦4❡ *❤❛♥ ✷✵✵✵✵ ❝✐+❛+✐♦♥. ❛♥❞ ❛♥ ❤✲✐♥❞❡① ❛❜♦✈❡ ✼✺✳

• ❍❡ ❤❛# ❛ ❤✉❣❡ ♥✉♠❜❡4 ♦❢ ❝♦❧❧❛❜♦4❛*✐♦♥#✱ ❡✳❣✳ ♦♥ ♣✉❜❧✐❝❛*✐♦♥# ❤❡ ❤❛# ❛❧♠♦#*

✷✵✵ ❝♦✲❛✉+❤♦=.✳

▲❡❛❞❡0(❤✐♣ ❛♥❞ ❙❡0✈✐❝❡

❱❛4❞✐ ❤❛# ❛ ❧♦♥❣ #❡4✈✐❝❡ 4❡❝♦4❞ ❛♥❞ ❛ #*4♦♥❣ ❧❡❛❞❡4#❤✐♣ ✐♥ *❤❡ ✜❡❧❞✱ ✐♥ ♣❛4✲

*✐❝✉❧❛4✿

• ❍❡ ❤❛# ♣❧❛②❡❞ ❛ ❝❡♥*4❛❧ 4♦❧❡ ✐♥ *❤❡ ■❊❊❊ ❙②♠♣♦#✐✉♠ ♦♥ ▲♦❣✐❝ ✐♥ ❈♦♠♣✉*❡4

❙❝✐❡♥❝❡ ✭▲■❈❙✮✱ ❢♦4 ✇❤✐❝❤ ❤❡ #❡4✈❡❞ ❛# ●❡♥❡4❛❧ ❈❤❛✐4 ❢♦4 #❡✈❡4❛❧ ②❡❛4#✱

❛♥❞ ❤❡ ❤❛# ❜❡❡♥ *❤❡ ♠❛❥♦4 ❢♦4❝❡ ❜❡❤✐♥❞ *❤❡ ❝4❡❛*✐♦♥ ♦❢ *❤❡ ❋❡❞❡4❛*❡❞

▲♦❣✐❝ ❈♦♥❢❡4❡♥❝❡# ✭❋▲♦❈✮✳

• ❆# ❊❞✐*♦4✲✐♥✲❈❤✐❡❢✱ ❤❡ ❤❛# ♣❡4❢♦4♠❡❞ ❛❞♠✐4❛❜❧② ✐♥ 4❡*❤✐♥❦✐♥❣ ❛♥❞ ❧❡❛❞✐♥❣

❈♦♠♠✉♥✐❝❛+✐♦♥. ♦❢ +❤❡ ❆❈▼✳ ❚❤✐# #❡4✈✐❝❡ *♦ *❤❡ ✇❤♦❧❡ ❝♦♠♠✉♥✐*②

✐# ❝♦♠♠❡♥❞❛❜❧❡ ✐♥ ✐*# ♦✇♥ 4✐❣❤*✱ ❜✉* ❤✐# ✈✐#✐♦♥ ❧❡❞ *♦ ✐♠♣♦4*❛♥* ❝❤❛♥❣❡#✱

❧✐❦❡ *❤❡ ✐♥*4♦❞✉❝*✐♦♥ ♦❢ *❤❡ ❡①❝❡❧❧❡♥* ♥❡✇ #❡❝*✐♦♥ ♦♥ 4❡#❡❛4❝❤ ❤✐❣❤❧✐❣❤*#✳

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✶✷

❈♦♥❝❧✉&✐♦♥&✳ ❋♦" ❛❧❧ %❤❡ ❛❜♦✈❡ "❡❛*♦♥*✱ %❤❡ ❊❆❚❈❙ ❛✇❛"❞* ❈♦♠♠✐%%❡❡

✉♥❛♥✐♠♦✉*❧② ❞❡❝✐❞❡❞ %♦ ❣✐✈❡ %❤❡ ❊❆❚❈❙ ❛✇❛"❞ %♦ :"♦❢❡**♦" ▼♦*❤❡ ❱❛"❞✐✳

❚❤❡ ❊❆❚❈❙ ❛✇❛"❞* ❈♦♠♠✐%%❡❡ ✷✵✶✷

▲❡*❧✐❡ ❆♥♥ ●♦❧❞❜❡"❣

❋"✐❡❞❤❡❧♠ ▼❡②❡" ❛✉❢ ❞❡" ❍❡✐❞❡

❊✉❣❡♥✐♦ ▼♦❣❣✐ ✭❝❤❛✐"✮

T G̈ P 2012
L

E K, C H. P, T R,

É T, N N A R

The Gödel Prize 2012 for outstanding papers in Theoretical Computer Science is
awarded jointly to the following three papers:

E K C H. P
Worst-case equilibria
Computer Science Review, 3(2): 65-69, 2009.

T R É T

How Bad Is Selfish Routing?
Journal of the ACM, 49(2): 236-259, 2002.

N N A R

Algorithmic Mechanism Design
Games and Economic Behavior 35: 166-196, 2001.

These three papers, appearing in their conference versions around the turn of the
millennium, contributed highly influential concepts and results that laid the foun-
dation for an explosive growth in algorithmic game theory, a transdisciplinary
combination of the theory of algorithms and the theory of games that has greatly
enriched both fields.

All three papers aimed to improve our understanding of the behavior of the inter-
net and other complex computational systems, when users and service providers
in those systems act selfishly. The paper by Koutsoupias and Papadimitriou intro-
duced what is today known as the price of anarchy, the first quantitative measure

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✶✹

of the degree of inefficiency of equilibria in games, formally defined as the worst-
case ratio between the social cost of a Nash equilibrium and the optimal social
cost. The paper by Roughgarden and Tardos revealed the power and depth of the
price of anarchy concept, providing striking and remarkably complete results on
the relationship between centralized optimization and selfish routing in network
traffic. Finally, the paper by Nisan and Ronen introduced a whole new range of
applications of the theory of mechanism design within computer science, in the
process also transforming and significantly enriching the theory of mechanism de-
sign by introducing algorithmic resource bounds as well as notions of approximate
optimality.

Sanjeev Arora, Princeton
Josep Díaz, Universitat Politecnica de Catalunya
Giuseppe Italiano, UniversitÃă di Roma Tor Vergata
Mogens Nielsen, Aarhus University
Daniel Spielman, Yale University
Eli Upfal, Brown University (chair)

T P A 2012
L

V G M P

The Presburger Award Committee 2012, consisting of Monika Henzinger, An-

tonin Kucera, and Stefano Leonardi (chair) has unanimously decided to propose

V G (Carnegie Mellon University, Pittsburgh) and

M P (AT&T Labs, New York)

as joint recipients of the 2012 EATCS Presburger Award for young scientists.

Venkatesan Guruswami, born in 1976, has contributed cornerstone results to the

theory of list decoding of error correcting codes. His work culminated in a pub-

lication with his former student Artri Rudra that gave constructions of error-

correcting codes with a list-decoding algorithm that achieve minimum possible

redundancy.

It settles one of the most salient theoretical open problem in the theory of

communication since Shannon’s invention of error correcting codes in 1949.

The first major result of Venkatesan Guruswami in the field was given in his

PhD dissertation where together with his advisor Madhu Sudan he showed how

to list-decode Reed-Solomon codes beyond the traditional bound (1-R)/2. On

the way to his more recent results, he developed, jointly with Piotr Indyk, new

constructions of error correcting codes that allowed list decoding in nearly lin-

ear time. All these results were possible by establishing novel unexpected deep

connections between computational complexity, coding theory, randomness and

computation. Venkatesan Guruswami also contributed fundamental results to the

theory of inapproximability and probabilistically checkable proofs.

Mihai Patrascu, born in 1982, has contributed fundamental results on lower bounds

for data structures.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ▼❆❚❚❊❘❙

✶✻

Despite his very young age, Mihai Patrascu’s work has broken through many

old barriers on fundamental data structure problems, not only revitalizing but also

revolutionizing a field that was almost silent for over a decade.

The first cornerstone result was the logarithmic lower bound for dynamic

search trees in the cell probe model published at SODA 2004 together with his

advisor Erik Demaine. This result was followed at STOC 2004 with the logarith-

mic lower bound for dynamic trees, thus matching the upper bound of Sleator and

Tarjan from 1983.

(Mihai Patrascu is the non-alphabetic first author in both papers.)

Key to these and later progresses was the deep information-theoretic under-

standing of computation developed in Mihai’s work, which views the source of

hardness in many problems as the same fundamental barrier in the representation

and movement of information. In his work at FOCS 2008, Mihai Patrascu gave

a simple common proof for many of his previous cell-probe lower bounds, con-

necting problems ranging from computational geometry to graph algorithms, by

reduction from a well-identified hard computational core.

The committee has recommended the EATCS Council to share the 2012 Pres-

burger Award between Venkatasan Guruswami and Mihai Patrascu. These two

outstanding young scientists, both working in different fields at a different stage

of their career, fully deserve the award. This decision has been approved by the

EATCS Council.

Key to these and later progresses was the deep information-theoretic under-

standing of computation developed in Mihai’s work, which views the source of

hardness in many problems as the same fundamental barrier in the representation

and movement of information. In his work at FOCS 2008, Mihai Patrascu gave

a simple common proof for many of his previous cell-probe lower bounds, con-

necting problems ranging from computational geometry to graph algorithms, by

reduction from a well-identified hard computational core.

The committee has recommended the EATCS Council to share the 2012 Pres-

burger Award between Venkatasan Guruswami and Mihai Patrascu. These two

outstanding young scientists, both working in different fields at a different stage

of their career, fully deserve the award. This decision has been approved by the

EATCS Council.

✷✸

R J C

R. Uehara (JAIST)

EATCS-JP/LA Workshop on TCS and Presentation Awards

The tenth EATCS/LA Workshop on Theoretical Computer Science was held at Re-

search Institute of Mathematical Sciences, Kyoto University, January 30 to Febru-

ary 1, 2012. Dr. Akio Fujiyoshi (Ibaraki University) who presented the following

paper, was selected at the tenth EATCS/LA Presentation Award.

Minimum connected spanning subgraph problem with label selection

and its application to chemical structural OCR by Akio Fujiyoshi

(Ibaraki University) and Masakazu Suzuki (Kyushu University).

The award will be given him at the Summer LA Symposium held in July 2012.

>From this time, we establish another presentation award, named “EATCS/LA

Student Presentation Award” to encourage students. Mr. Tamotsu Kobayashi

(Saitama University) who presented the following paper, was selected at the first

EATCS/LA Student Presentation Award.

Minimum Enclosing Rectangle with Fixed Aspect Ratio by Tamotsu

Kobayashi and Takashi Horiyama (Saitama University).

The award has been given him at the last day, February 1, 2012.

Congratulations!

This workshop is jointly organized with LA, Japanese association of theoreti-

cal computer scientists. Its purpose is to give a place for discussing topics on all

aspects of theoretical computer science. That is, this workshop is an unrefereed

meeting. All submissions are accepted for the presentation. There should be no

problem of presenting these papers in refereed conferences and/or journals. We

hold it twice a year (January/February, and July/August). If you have a chance,

I recommend you to attend it. You can find the program of the last workshop in

Appendix of this report.

New Web page of EATCS Japan Chapter

The web page of EATCS Japan Chapter was on

http://www.misojiro.t.u-tokyo.ac.jp/EATCS-J/index.html, but it has

been moved to http://www.jaist.ac.jp/~uehara/EATCS-J/. Please update

your links.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✷✹

Appendix: Program of EATCS-JP/LA workshop on TCS (January 30 to

February 1, 2012)

In the following program, each [Sx] means student talk, while [x] means or-

dinary talk (student talks are shorter). Each “**” indicates a student speaker, and

“*” indicates just a speaker. Talks are given in the following order:

[1] On a Faster Algorithm for Counting Perfect Matchings

*Taisuke Izumi, Tadashi Wadayama (Nagoya Institute of Technology)

[2] Formula Decomposition into Ternary Majorities

*Kenya Ueno (Kyoto University)

[3] A Satisfiability Algorithm for Formulas over the Full Binary Basis

Kazuhisa Seto, *Suguru Tamaki (Kyoto University)

[4] Enumerating Separating Families of Bipartitions

**Takahisa Toda (Kyoto University), Ivo Vigan (The City University of New York)

[5] Hybrid-Automata-Theoretic Verification of CPU-DRP Reconfigurable Systems

**Ryo Yanase, gaoying, Shota Minami, Satoshi Yamane (Kanazawa University)
[6] Formal Verification of Probabilistic Timed System Based on an Abstraction Re-

finement
**Takaya Shimizu, Atsushi Morimoto, Satoshi Yamane (Kanazawa University)

[7] On limit cycle of composited cellular automata
*Toshikazu Ishida (kyushu sangyo university), Shuichi Inokuchi (Kyushu Univer-

sity)
[8] Classification of spherical tilings by congruent quadrangles

*Yohji Akama (Mathematical Institute, Tohoku University), Yudai Sakano (JICA),

Kosuke Nakamura (Department of Chemistry, Tohoku University)
[S1] Heuristic Algorithms for Rectilinear Block Packing

**Yannan Hu, Hideki Hashimoto, Shinji Imahori, Mutsunori Yagiura (Nagoya

University)
[S2] Heuristic algorithm for a vertex pricing problem

**Sakaki Nakamura, Akiyoshi Shioura (Graduate School of Information Sci-

ences, Tohoku University)
[S3] A Randomized Algorithm for Finding Frequent Elements in Streams Using

O(log log N) Space
**Masatora Ogata (Kyushu University), Yukiko Yamauchi (Kyushu University),

Shuji Kijima, Masafumi Yamashita (Kyushu University)
[S4] An algorithm for the Hamiltonian circuit problem on bipartite distance-

hereditary graphs
**Masahide Takasuka, Tomio Hirata (Nagoya University)

[9] Earley’s parsing algirithm and Petri net controlled grammars
*Tashin Nishida (Department of Information Sciences, Toyama Prefectural Uni-

versity)
[10] The relationship between language classes in terms of insertion and locality

*Kaoru Fujioka (Kyushu University)
[11] A Polynomial-Time Algorithm for Checking the Equivalence of Deterministic

Restricted One-Counter Transducers Which Accept by Final State
*Mitsuo Wakatsuki (The University of Electro-Communications), Kazushi Seino

(Toshiba Solutions Corporation), Etsuji Tomita, Tetsuro Nishino (The University

of Electro-Communications)

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✷✺

[12] Efficient Reduction of Square Factors in Strings

*Peter Leupold (Universitat Rovira i Virgili)

[13] Decremental construction of seaweed bijections

*Yoshifumi Sakai (Tohoku University)

[14] Minimum Enclosing Rectangle with Fixed Aspect Ratio

**Tamotsu Kobayashi, Takashi Horiyama (Saitama University)

[15] Complexity of Smooth Ordinary Differential Equations
**Hiroyuki OTA (University of Tokyo), Akitoshi Kawamura (University of

Tokyo), Martin Ziegler, Carsten Rösnick (Technische Universität Darmstadt)
[16] On QMA Protocols with Two Short Quantum Proofs

Francois Le Gall (The University of Tokyo), **Shota Nakagawa, Harumichi

Nishimura (Osaka Prefecture University)
[17] Limiting Negations in Probabilistic Circuits

*Hiroki Morizumi (Shimane University)
[18] Greedy Algorithms for Multi-Queue Buffer Management Policies with Class

Segregation
Toshiya Itoh, **Seiji Yoshimoto (Tokyo Institute of Technology)

[19] Memory Efficient Path Finding Algorithm

**Tatsuya Imai (Tokyo Institute of Technology)

[20] An Efficient Algorithm for General-purpose Computation on GPU

**Hidetoki Tanaka, Osamu Watanabe (Tokyo Institute of Technology)

[21] Probabilistic stabilization under probabilistic schedulers
*Yukiko Yamauchi (Kyushu University), Sébastien Tixeuil (Paris 6), Masafumi

Yamashita (Kyushu University)
[S5] Hierarchy of reversible logic elements with memory

**Yuuta Mukai, Kenichi Morita (Hiroshima University, Graduate School of En-

gineering)
[S6] A Study of Selection Method of Separate Points Set for mm-GNAT

**Pingfang Xie (Graduate School of Sciences, Tokai University), Kensuke Onishi

(School of Sciences, Tokai University)
[S7] Automata inspired by biochemical reaction

**Fumiya Okubo (Waseda University), Satoshi Kobayashi (University of

Electro-Communications), Takashi Yokomori (Waseda University)
[S8] Complexity and winning ways of trick taking games

**Kenichiro Nakai, Yasuhiko Takenaga (Department of Communication Engi-

neering and Informatics, Graduate School of Informatics and Engineering, The

University of Electro-Communications)
[S9] On the compressibility of concatenated sequence

**Toshihiko Yusa (Tokyo Institute of Technology)

[S10] A graph class of unit disk graphs with chain-like structure
**Hayashi Takashi, Kino Toru, Kuwabara Yuto, Nagasawa Ryosuke, Shibata

Yuka, Yamazaki Koichi (Gunma University Department of Computer Science)
[22] The Matroid Intersection Problem with Priority Constraints

*Naoyuki Kamiyama (Kyushu University)
[23] Minimum connected spanning subgraph problem with label selection and its

application to chemical structural OCR
*Akio Fujiyoshi (Ibaraki University), Masakazu Suzuki (Kyushu University)

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✷✻

[24] Row/column operation of tables with the octgrid model
Shinji Koka (Nihon University), *Takaaki Goto (UEC), Kensei Tsuchida (Toyo

University), Tetsuro Nishino (UEC), Takeo Yaku (Nihon University)
[25] On the base-line location problem for the maximum weight region decomposable

into base-monotone shapes
Takashi Horiyama (Saitama University), Takehiro Ito (Tohoku University), Hiro-

taka Ono (Kyushu University), *Yota Otachi (Tohoku University), Ryuhei Uehara

(Japan Advanced Institute of Science and Technology), Takeaki Uno (National

Institute of Informatics)
[26] Cover time of multiplex random walks on random graphs

**Yusuke Hosaka, Yukiko Yamauchi, Shuji Kijima (Department of Informat-

ics Kyushu University), Hirotaka Ono (Department of Economic Engineering

Kyushu University), Masafumi Yamashita (Department of Informatics Kyushu

University)
[27] Approximating Steiner Tree and Tree Cover in Directed Graphs

**Hibi Tomoya, Fujito Toshihiro (Toyohashi University of Technology)

[28] On the Unit-length Embedding of Graphs on a Square Grid

**Kenji Takada, Kazuyuki Amano (Gunma University)

[S11] Pattern Formation by Asynchronous Mobile Robots
**Nao Fujinaga, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Gradu-

ate School of ISEE, Kyushu University)
[S12] Hiding an Image into Different Images

**Yuko Moriyama, Tomomi Matsui (Chuo University)

[S13] Optimization Model for Mosaic Art Construction

**Ryo Nakatsubo, Tomomi Matsui (Chuo University)

[S14] Efficient Sampling Method for Monte Carlo Tree Search Problem
**Kazuki Teraoka, Kohei Hatano, Eiji Takimoto, Masayuki Takeda (Kyushu Uni-

versity)

The Japanese Chapter

Chair: Osamu Watanabe

V.Chair: Kazuhisa Makino

Secretary: Ryuhei Uehara

email: eatcs-jp@is.titech.ac.jp

URL: http://www.jaist.ac.jp/~uehara/EATCS-J/

✷✼

News from Latin America

by

Alfredo Viola

Instituto de Computación, Facultad de Ingeniería

Universidad de la República

Casilla de Correo 16120, Distrito 6, Montevideo, Uruguay

viola@fing.edu.uy

In this issue I present the report of LATIN 2012 by Igor Shparlinski, and the

announcement of SPIRE 2012. At the end I present a list of events in Theoretical

Computer Science to be held in Latin America in the following months.

This is my last column. I thank very much to all the collaborators who have

given me most of the information needed to write this column. I also thank very

much to all the researchers who have written reports of several important scientific

events held in our region. The next editor is Edgar Chávez.

Report of LATIN 2012 (by Igor Shparlinski)

LATIN 2012 was held during 16-20 March in Arequipa, a very nice and friendly

town about 1000 km South-East of Lima. The conference location, Universidad

Católica San Pablo, was a 10 minutes walk from the town center which allowed to

interleave conference attendance with occasional escapes to town with all it could

offer in historical, cultural and gastronomical aspects.

The program was very smoothly run by the PC Chair David Fernández-Baca

and local organizers. Certainly regular lubrication with Pisco Sour was a con-

tributing factor as well.

LATIN 2012 received 153 submissions from authors from 42 different coun-

tries. Out of these, 55 papers (i.e. 36%) were accepted after very carefully review-

ing (by at least 3, typically by 4, and in one case by 7, referees). The accepted

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✷✽

papers were published by Springer in LNCS, vol. 7256. Overall, the program was

well balanced, although I personally would like to see more papers addressing

algebraic and number theoretic problems and algorithms.

An underlying motif behind many talks of this conference was dedication to

the memory of Philippe Flajolet, who passed away 13 months before the con-

ference, but continues to influence and motivate many different generations of

researchers in discrete mathematics and theoretical computer science.

This LATIN 2012 also established a new award, namely, the Imre Simon

Test-of-Time award (to be given to the most influential LATIN paper published

at least ten years prior to the current conference). The selection committee (Ian

Munro (chair), Sergio Rajsbaum, and Yoshiharu Kohayakawa). gave this award

to a LATIN 2000 paper by Michael A. Bender and Martin Farach-Colton: "The

LCA Problem Revisited".

LATIN 2012 also took part in the world-wide commemoration of the Alan

Turing Year. The core of the celebration were the invited talks by Scott Aaronson

and Martin Davis. Besides these talks, there were four more invited talks by Luc

Devroye, Marcos Kiwi, Kirk Pruhs and Dana Randall, all of exceptionally high

quality.

SPIRE 2012

SPIRE 2012 is the 19th edition of the International Symposium on String Process-

ing and Information Retrieval. It will be held in Cartagena de Indias, Colombia

from 21-25 October 2012. The conference will be organized by the Information

Technology Research Group of the Universidad Autónoma de Bucaramanga.

The scope of the SPIRE series of symposia includes not only fundamental

algorithms in string processing and information retrieval, but also SP and IR tech-

niques as applied to areas such as computational biology, DNA sequencing, and

Web mining. Given its interdisciplinary nature, SPIRE offers a unique opportunity

for researchers from these different areas to meet and network.

For more information you can visit http://catic.unab.edu.co/spire/.

Regional Events

• October 7 - 10, 2012, Santiago, Chile: Second International Conference

on Cryptology and Information Security in Latin America (LATINCRYPT

2012). http://2012.latincrypt.org/.

• October 21 - 25, 2012, Cartagena, Colombia: International Symposium on

String Processing and Information Retrieval (SPIRE 2012).

http://catic.unab.edu.co/spire/.

✷✾

News from New Zealand

by

C. S. Calude

Department of Computer Science, University of Auckland

Auckland, New Zealand

cristian@cs.auckland.ac.nz

1 Scientific and Community News

0. The latest CDMTCS research reports are (http://www.cs.auckland.ac.

nz/staff-cgi-bin/mjd/secondcgi.pl):

417. R. Nicolescu and H. Wu. New Solutions for Disjoint Paths in P Systems.

03/2012

418. J. Hertel. Inductive Complexity of Goodstein’s Theorem. 04/2012

419. L. Staiger. A Correspondence Principle for Exact Constructive Dimension.

04/2012

420. M. McKubre-Jordens and R. Sainudiin (eds.). Construmath South 2012.

04/2012

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✸✵

2 A Dialogue with Yuri Gurevich about Mathemat-

ics, Computer Science and Life

Yuri Gurevich is well-known to the readers of this Bulletin. He is a Principal

Researcher at Microsoft Research, where he founded a group on Foundations

of Software Engineering, and a Professor Emeritus at the University of Michi-

gan. His name is most closely associated with abstract state machines but he is

known also for his work in logic, complexity theory and software engineering. The

Gurevich-Harrington Forgetful Determinacy Theorem is a classical result in game

theory. Yuri Gurevich is an ACM Fellow, a Guggenheim Fellow, and a member of

Academia Europaea; he obtained honorary doctorates from Hasselt University in

Belgium and Ural State University in Russia.

Cristian Calude: Your background is in mathematics: MSc (1962), PhD (under

P. G. Kontorovich, 1964) and Dr of Math (a post-PhD degree in Russia), all at Ural

State University. Please reminisce about those years.

Yuri Gurevich: I grew up in Chelyabinsk, an industrial city in the Urals, Russia,

and was in the first generation of my family to get systematic education. In 1957,

after ten boring years in elementary + middle + high school, I enrolled in the

local Polytechnic. I enjoyed student life, but I couldn’t draw well, and I hated

memorizing things. In the middle of the second year, one math prof advised me

to transfer — and wrote a recommendation letter — to the Math Dept of the Ural

State University in Ekaterinburg (called Sverdlovsk at the time), about 200 km to

the north of Chelyabinsk. One of the Math Dept profs there examined me, and

I joined the class of 1962, on the condition that I pass all the math exams taken

during the last 1.5 years by my new classmates.

The Math Dept, formally the Dept of Mathematics and Mechanics, was de-

manding. Typically only a quarter of a class graduated after the five years of

study. I did my first little research in classical analysis, with Prof. V.K. Ivanov,

the best known Ekaterinburg mathematician. Ivanov was a good man but a busy

one, the “prorector” of science. He advised me to go to computational math, be-

cause of its potential, or to join an active seminar. “You need interaction,” he told

me. Computational math seemed pedestrian to me at the time, and I joined the

group-theory seminar of Prof. P.G. Kontorovich, the most active and competitive

seminar in the Dept, with many enthusiastic participants and a list of open prob-

lems prominently posted on the wall. In my 1962 diploma thesis (article #1 at my

website1) I solved the second problem on the problem list.

1Here and below, references #n are to the Annotated Articles list at http://research.

microsoft.com/~gurevich/annotated.htm

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✸✶

CC: P.G. Kontorovich, did he win a Nobel prize in economics?

YG: No, the Nobel prize winner was L.V. Kantorovich. But my Kontorovich

was remarkable in his own way. He went from an orphanage to founding the Eka-

terinburg algebra school that is active to this very day. His humor was legendary,

and he knew seemingly all the languages. Once I found him reading some text and

complaining that he understands the text but does not recognize the language it is

written in. It turned out that the language was Esperanto, forbidden as a “product

of bourgeois internationalism and cosmopolitanism” in the USSR.

Maybe I can use this occasion to say a few words about Ural State University.

Compared to other Soviet institutions, my alma mater (at least the hard sciences

part of it) was a rare oasis of good will. Senior professors, like Ivanov and Kon-

torovich, created an atmosphere of decency. Even our philosophical seminars, a

necessary fixture in Soviet universities, were different. Typically a philosophical

seminar would be devoted to the study of the latest documents of the Central Com-

mittee of the Communist Party. The philosophical seminar of our Math Dept was

devoted — surprise! — to philosophy, more exactly to the philosophical aspects

of mathematics and mechanics. Later in my career, I spoke there about logic.

But I am getting ahead of myself. Upon getting my university diploma, I

wanted to do math research at a university or the Academy of Sciences which

offered better conditions. Conveniently the famous Steklov Math Institute of the

Academy of Sciences opened a branch in Ekaterinburg and was hiring, and I ap-

plied there. But my chances were slim to none.

CC: Why? You probably were one of the best students or even the best student

of your class.

YG: I might have been but Steklov was Judenfrei. Even Ural State University

had limitations. They accepted me only as a PhD student by correspondence, but

they hired me also as a lecturer. It actually worked well for me. I taught about 20

hours a week and did my math. Today it sounds exhausting to me, but at the time I

enjoyed it all and had time left to hang out with my dissident friends. I remember

even feeling somewhat guilty for being paid to have fun.

CC: What does it mean “PhD student by correspondence”?

YG: This is for people who have regular jobs. They may correspond with the

university by mail.

CC: How did you move to mathematical logic? Did you study it at Ural State

University?

YG: No, mathematical logic wasn’t taught there. In fact there were few math

logicians in the whole USSR. Formal (as opposite to dialectical) logic had hard

time in the USSR. However things were improving during the 1960s. Kleene’s

“Introduction to Metamathematics” was translated into Russian, and I got it as a

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✸✷

birthday present in May 1962. I studied it and fell in love with logic. But what

could an algebraist do in logic?

In the 1962–63 winter, a guest lecturer from Novosibirsk told us that a Pol-

ish student of Alfred Tarski, called Wanda Szmielew, proved the decidability of

the first-order theory of abelian groups. A natural problem arose whether the

first-order theory of ordered abelian groups is decidable. Szmielew and Tarski an-

nounced the decidability of that theory but then withdrew their claim. I worked on

the problem. A big part of it was to understand when two ordered abelian groups

have the same first-order properties. After a long chain of incremental advances,

I proved that the theory is indeed decidable (#3). That became my PhD thesis

which I defended in the spring of 1964 in Novosibirsk.

CC: Why Novosibirsk? Ural State University is not in Novosibirsk.

YG: By Soviet rules, you could defend your thesis in a science area X only at

an institution with sufficient expertise in X. My choice was restricted to Moscow,

Leningrad and Novosibirsk. Because of Maltsev’s “Algebra and Logic” seminar,

Novosibirsk was the best fit for me.

The 1964-65 academic year I was teaching at a new Krasnoyarsk State Uni-

versity in Siberia. By the way the word “State” in the names of Soviet universities

meant simply “of the Soviet state”. In the middle of that academic year I attended

an algebraic winter school near Ekaterinburg. There I met a third-year Ural State

University student Zoe, and I returned to Krasnoyarsk with a wife. We sought

to move back to Ekaterinburg, and Ural State University accommodated us; the

1965-66 academic year I was already teaching there. My obsession with logic

was contagious, and the logic seminar attracted the brightest students. During the

winter breaks, we would rent a little house in the country to study but also to ski,

play charades, etc.

CC: It sounds like scientific life in Soviet Union was similar to that in the West.

YG: It was similar, at least where hard sciences were concerned. But there were

important differences. We were poorer. For example, Ural State University had

no foreign currency, and western books and journals were not available in the

library. More importantly, the totalitarian state was never far away. Here is an

incident from one of those winter schools. One morning I woke up to much noise

in another room, with none of my roommates in my room. I went to investigate.

Two boys, surrounded by all the other students, were arguing whether there was

state anti-Semitism in the USSR. Now all the eyes were upon me. What could

I say? The safe lie of denial was out of the question, but publicly accusing the

state of anti-Semitism was too dangerous, especially for a teacher. The chances

were that there was an informant present. I spoke and spoke trying to humor my

audience. I used whatever parables and jokes occurred to me leaving it up to

the students to interpret things. Eventually passions subsided, and the attention

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✸✸

deviated to other topics. And I remember wishing to be able speak my mind

safely.

But science and life interacted also independently of politics. Upon our return

to Ekaterinburg, I had a bad motorcycle accident. In the hospital, they sewed me

up but inadvertently infected me with hepatitis. As a result, I was quarantined for

a month. No visitors were allowed in, and there were few books to read there.

I used the time to think about the classical decision problem — classify infinite

fragments of first-order predicate logic, given by restrictions on quantifier pre-

fixes and the vocabulary, into decidable (for satisfiability) and undecidable. The

problem attracted the attention of great logicians including Gödel, and there had

been much progress in the early 1960s. If only one could prove that the ∀∃∀∃∗

fragment with one binary relation is undecidable, the classification would be com-

plete. The ∀∃∀∃∗ problem was uniquely appropriate to my confinement. While

the decision problem for ordered abelian groups required a long sustained effort

and a long sequence of lemmas, each building upon the previous ones, the ∀∃∀∃∗

problem seemed to require just a clever combinatorial trick. It was like jumping

over a barrier. You give it a try and you fall, then another try and another fall, over

and over again. Indeed, by the end of my quarantine, I got lucky and jumped over

that barrier. The fame of the problem helped me to defend my Dr. of Math thesis

later, in 1968.

CC: What is the Dr. of Math degree for? The Russian system of academic

degrees seems different from that in English-speaking countries.

YG: It is different. The first Russian postgraduate academic degree, an equiva-

lent of PhD, is Candidate of Science, and the second is Doctor of Science. Here

“Science” is a variable to be replaced with “Mathematics”, “Physics”, etc. The

Dr. of Science degree was a big deal at the time. If you taught at a university, the

degree was a necessary and, in practice, sufficient condition for getting a full pro-

fessorship. All academic degrees in Russia were — and are — subject to approval

by the Central Attestation Committee of Russia.

CC: This was and continue to be also the system in Romania: nowadays, this

Committee includes also Romanians from diaspora.

YG: The system is supposed to impose some standards but of course it can be

abused.

CC: Did you go to Novosibirsk to defend your Dr. of Math thesis.

YG: No, the atmosphere in Novosibirsk changed for the worse, and a “Jewish

dissertation” had little chance there. My dissertation had also a large algebraic

component and thus qualified as algebraic. I defended it in Ekaterinburg, and the

degree was eventually approved by the Central Attestation Committee.

CC: Your scientific activity splits into three periods: Soviet (up to 1973), Israeli

(1974–1981), and American (since 1982). Let’s visit them in that order.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✸✹

YG: During the Soviet period I worked primarily on two subjects. One was

related to the classical decision problem. The complete classification mentioned

above comprised nine minimal undecidable classes and three maximal decidable

ones. I wanted to understand whether there was an a priori reason that the classifi-

cation resulted in a finite table. It turned out that indeed there was a rather general

reason. That encouraged me to work on the extensions of the classification to first-

order logic with equality or function symbols or both. I made a good progress, and

the Institute of Philosophy of the Russian Academy of Sciences asked me to write

a book on the subject. I write too slow to produce a book, but I wrote a survey.

It was withdrawn from publication upon our emigration from the USSR. Later

the survey became the core of the 1997 Springer book “The Classical Decision

Problem” by Egon Börger, Erich Grädel and myself.

The other subject was the decidability of algebraic theories. In particular, I

continued my work on ordered abelian groups. It bothered me that theorems in the

literature on the subject were not first-order; they were mostly in terms of so-called

convex subgroups. I extended my analysis to the variant of the monadic second-

order theory of ordered abelian groups where the set variables ranged over convex

subgroups. Somewhat miraculously, the decision procedure not only survived but

simplified. The extended theory (and its easy further extensions) accounted for

virtually all theorems in the literature. My attempts to publish these results in the

USSR were unsuccessful (which is a separate story) but I published them after my

departure (#25).

I also did some applied work. In my later undergraduate years, I worked at the

university computing center. Later I worked with the transportation industry on

linking railway transportation to trucks. All that work influenced me and changed

my attitude on pure vs. applied science. You may have heard about a mathemati-

cian working on a difficult four-legged table problem. He generalized the problem

to n-legged tables and solved the cases n ≤ 2, the case n = ∞ and the case of suf-

ficiently large n. In the process he advanced his career but the original problem

remained open. That’s pure science ⌣̈

CC: Now tell me about the Israeli period.

YG: That period started with a touch of drama, or comedy. The first few months

we lived in Jerusalem and studied Hebrew. During my first trip to Hebrew Uni-

versity, I met a young logician, Saharon Shelah. “Do you have an open problem,”

he asked me. I told him my conjecture that the ∃∗∀∃∗ fragment of first-order logic

with equality, one unary function and infinitely many unary relations is decidable

for satisfiability. When I saw him again, a week or two later, he told me that he

confirmed my conjecture. I smiled: “Tell me about it.” He did. I could not follow

his explanation, partially because my Hebrew was still insufficient and my English

nonexistent, but I realized that he had all the intuition that led me to the conjec-

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✸✺

ture and more. I was stunned. The first Israeli mathematician that I had a serious

discussion with confirmed my conjecture. Maybe I should not seek a university

position in Israel. I asked Shelah whether he had an open problem. He gave me

his paper on the monadic second-order theory of the real line; it was submitted to

Annals of Mathematics and had many open conjectures.

The paper was full with original ideas, but it was difficult to read. It took me

months just to understand the paper. After a year or so of hard work, I confirmed

or refuted most of Shelah’s conjectures. He was most kind; as he proofread his

paper, he added footnotes announcing my results. The incident resulted in a fruit-

ful collaboration with Shelah on monadic (second-order) theories. Survey #64

reflects a large initial segment of the results of the monadic project.

CC: Give me some flavor of that work.

YG: Shelah conjectured that countability is not definable in the monadic

second-order theory MT(R) of the real line R with just the order relation (and

no addition or multiplication). In this connection I thought of the known and un-

successful attempts to define countability in measure-theoretic terms. Of course

sets of Lebesgue measure zero can be uncountable, but also sets of universal mea-

sure zero (defined by Hausdorff) can be uncountable, and sets of strong measure

zero (defined by Borel) can be uncountable under the continuum hypothesis. I

expected the conjecture to be true but it turned out, somewhat surprisingly, that

countability was definable in MT(R) under the continuum hypothesis. The con-

struction built heavily on the methods developed by Shelah in his original paper.

One of the main results in Shelah’s original paper was the undecidability of

MT(R). The proof was a clever interpretation of first-order arithmetic in MT(R).

In #57, Shelah and I interpreted second-order arithmetic in MT(R). Later, in

apparent contradiction with these results, we discovered that first-order arithmetic,

let alone second-order arithmetic, cannot be interpreted in MT(R) (#79). A closer

examination of Shelah’s original reduction revealed that it (and our generalization

of it) went beyond the standard model-theoretic notion of interpretatibility. And

there was an interesting connection to set theory. If W is a model of ZFC, let

W ′ be the model of ZFC resulting from the extension of W with a Cohen real, a

real number that does not exist in W. Paul Cohen discovered a technique, forcing,

that allows one to do things like that. Think of W as the current set-theoretic

world, and of W ′ as the next world. Our reduction in #57 was a reduction of the

next-world second-order arithmetic to the current-world MT(R).

CC: Not too many mathematicians or computer scientists have a theorem bear-

ing their name. Tell me about the Gurevich-Harrington Forgetful Determinacy

Theorem and how did you arrive at it.

YG: The 1980–81 academic year was a logic year at Hebrew University. Both

Leo Harrington and I were there and proved the theorem independently; we talked

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✸✻

about that, and I volunteered to write the theorem up for publication. I do not

know Leo’s motivation. On my side, laziness played a role. In 1969, Michael

Rabin used nondeterministic finite automata on infinite (colored) trees to prove the

decidability of S2S, the monadic second-order theory of two successor relations. I

understood the proof except for the complementation lemma according to which,

for every tree automaton A, there is a complementary tree automaton that accepts

exactly the trees that A doesn’t. I kept thinking about the lemma but was reluctant

to go through the difficult proof. And one day it occurred to me that it all, not

only the complementation lemma but the whole paper of Rabin, was really about

games. Things simplify (and become amenable to new useful generalizations)

if you see them that way. For the games in question, the players can restrict

themselves to “forgetful” strategies so that, at every point, the players need to

remember only boundedly many bits about the history of the current play. Even

finite automata are able to execute forgetful strategies; hence Rabin’s result.

CC: Eventually you moved to the United States and to computer science. How

did that happen?

YG: I had been contemplating more applied research already at the end of my

Russian period but the Jerusalem logic seminar enthralled me. In spite of solving

some high-profile logic problems, I was really a logic ignoramus. The seminar

allowed me to learn cutting-edge logic developments. It was so much more ef-

ficient and so much more fun to learn things from seminar presentations than by

reading papers. It was in Israel that I really became a logician, thanks to the logic

seminar and joint work with Shelah. When the monadic project with Shelah began

to wind down, I applied to computer science departments at some Israeli and US

universities. All offers came from the US. I accepted a good offer from the Univer-

sity of Michigan, and in the summer of 1982 we moved to Ann Arbor, Michigan.

There was another reason to choose the University of Michigan. Andreas Blass,

the logician, was there, albeit in the Math Dept. Andreas and I have been actively

collaborating ever since.

CC: Tell me about your work in finite model theory.

YG: Let me restrict myself to just one little story. At my first computer science

conference, I heard a presentation by Moshe Vardi. He applied the interpolation

theorem of first-order logic to relational databases viewed as first-order structures.

I asked him whether his databases can be infinite, and he said yes. But naturally

databases are finite of course. I looked into the issue. As I suspected, most clas-

sical theorems of first-order logic, including the interpolation theorem, fail in the

finite case (#60). I had a sense of déjà vu. First-order logic wasn’t right for

ordered abelian groups, and it wasn’t right for finite structures in the computer

science context (#74).

Later on, a realization came that real databases are not necessarily finite af-

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✸✼

ter all. For a simple example, consider a salary database of some organization.

The organization may use a popular database-query language SQL to query the

salary database. In addition to relational-algebra operations, SQL has so-called

grouping and aggregation operations. This allows the organization to compute

various statistics over the database, e.g. the average salary and the total salary

expense of the organization. Note that the average salary may not occur in the

database and, ignoring degenerate cases, the total salary surely does not occur.

Thus the database gives us a function from the employees to numbers, say ratio-

nal numbers, and has rational arithmetic in the background. In that sense, it is not

truly finite. To formalize this phenomenon of finite foreground and infinite back-

ground, Erich Grädel and I introduced metafinite structures (#109). The metafinite

phenomenon is not restricted to databases. The states of an algorithm often are

metafinite. Most classical theorems of first-order logic, including the interpolation

theorem, fail in the metafinite case.

CC: Finite model theory has intimate relations with computational complexity

but your complexity work went beyond that.

YG: It did. In particular I worked on the average-case reduction theory pio-

neered by Leonid Levin. Consider NP complete problems equipped with prob-

ability distributions on the instances. Some such problems turn out to be easy

on average but others remain complete even for the average case. Proving such

average-case completeness results is difficult, and the reason is this. While the

range of a worst-case reduction may consist of very esoteric and unrepresentative

instances of the target problem, the range of an average-case reduction should be

of non-negligible probability. A popular article #85 argues in favor of an alter-

native, based on the average-case complexity, to the P=?NP question. Consider a

game between Challenger and Solver where Challenger repeatedly picks instances

of a given NP problem (with a fixed probability distribution), and Solver solves

them. The idea is to measure Solver’s time in terms of Challenger’s rather than in

terms of the instance size. It may take a long time to produce hard instances.

CC: Tell me about your work on abstract state machines. In particular what

motivated it?

YG: Right upon starting at Michigan, I volunteered to teach “Introduction to

Computer Science with Pascal” to computer science majors. The Dept chair did

not like the idea (“We hired you to teach theory.”) but agreed that I teach the course

once. Preparing that course was instructive. I had not realized how much I fell

behind in programming technology. At Ural State University, I programmed on

the naked machine (01 for addition, 02 for substraction, etc.), and Pascal seemed

advanced. The troubling part was that Pascal wasn’t sufficiently documented. The

interpreter on my Macintosh and the compiler on the university mainframe often

disagreed on whether a given program is legal. Which, if either, of them was

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✸✽

right? What was I supposed to tell my 250 or so students? That was scary and

brought home the problem of the semantics of programming languages.

In this connection, I studied denotational and algebraic semantics but found

them wanting. It seemed infeasible to use them to specify the “dirty parts” of

software. The celebrated declarativeness of denotational and algebraic specifi-

cations did not impress me. The advancers of the computer revolution weren’t

shy to program, specify and reason imperatively. There is a persistent confusion

between declarative and high-level. Declarative specifications tend to be high-

level, and executable specifications tend to involve unnecessary details. However I

saw no reason why high-level specifications cannot be imperative and executable,

amenable to testing and experimentation.

By Turing’s thesis, every algorithm can be simulated by an appropriate Turing

machine. Are Turing machines executable? In principle yes but of course this

may be impractical. A bigger problem is that Turing machines work on the level

of single bits. Are there more general state machines that specify algorithms on

their natural abstraction level? Maybe that was too much to ask. But if yes then the

reward would be high, for theory and practice. It would open a road to formalizing

the notion of algorithms. On the practical level, it would enable us to specify

software on whatever abstraction level is desired.

It was that line of thought that led me eventually to abstract state machines

(ASMs). By the ASM thesis, every algorithm can be faithfully simulated by an

ASM. We attempted to verify the thesis, which led to practical applications. There

was also theoretical advances. The notion of sequential algorithms was formal-

ized in #141; this formalization was used later by Nachum Dershowitz and myself

to derive Turing’s thesis from first principles (#188). Parallel and interactive algo-

rithms were also formalized (#162).

CC: How did you get attracted to Microsoft?

YG: I was convinced that the ASM approach was more practical than other

formal methods but all methods work on small examples, and my attempts to

find an industrial partner were unsuccessful. In the summer of 1998, I visited

Microsoft Research (MSR), in Redmond, WA, by an invitation of their crypto

group. On that occasion I volunteered an ASM lecture. The lecture went rather

well. There were many good questions. One of the MSR directors, Jim Kajiya,

asked particularly astute and pointed questions. He said that he was surprised

to see a formal specification method that seemed scalable. He proposed me to

start a new MSR group on foundations of software engineering, and I jumped

at the opportunity. The atmosphere and conditions at MSR are great, and the

geographical area is spectacular. But what attracted me most was of course the

opportunity to apply ASMs.

CC: Did it work? Could you apply ASMs at Microsoft?

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✸✾

YG: It was tough. I was lucky to hire the right people, and we built a tool, Spec

Explorer, that facilitated writing executable specifications and playing with them.

In particular, one could test the conformance between a spec and implementation.

Spec Explorer was kept compatible with the Microsoft technology stack which

consumed a lot of time and effort. The tech transfer was the biggest challenge. It is

relatively easy to “sell” an incremental improvement to product groups. But Spec

Explorer required learning and training, and product groups are busy. For a while

we had only a few courageous groups here and there using Spec Explorer with our

help. At a certain point, the European Union required from Microsoft high-level

executable specifications of numerous communication protocols. The Windows

division took over Spec Explorer and used it extensively and successfully.

CC: How applied is your work at Microsoft now? Do you use some theoretical

results you proved as a “blue-sky researcher”?

YG: When Spec Explorer left MSR, I spend a couple of years catching up with

theoretical work but then I returned to applications. Microsoft is an engineering

place, and you catch the bug and want to influence technology. From time to time,

I do internal consulting, developing efficient algorithms for various purposes. But

my main current occupation is with Distributed Knowledge Authorization Lan-

guage (DKAL). With the advent of cloud computing, a policy-management prob-

lem arises. In a brick-and-mortar setting, many policies may be unwritten. Clerks

learn them from their peers. If they don’t know a policy, they know whom to ask.

In the cloud, the clerks disappear. The policies have to be handled automatically.

The most challenging aspect is how to handle the interaction of policies, especially

in federated scenarios where there is no central authority. DKAL was created to

deal with such problems. The DKAL project has a large logic component so my

logic expertise is useful.

CC: If you could dream about the year 3012, which result or concept would you

like to see still “alive”?

YG: Hmm. “It’s tough to make predictions, especially about the future,” said

Yogi Berra, the famous American baseball player and a philosopher of a kind.

We live in quickly changing times. In the computer industry, long-term refers to

just a few years ahead. It is an interesting question to what extent the future is

predictable, even probabilistically. Let me just express the hope that the humanity

will survive till 3012 and that the scientific method will survive as well. It may

seem that the second is obvious given the first, but it is not necessarily so. Lucio

Russo convincingly argues in “The Forgotten Revolution: How Science Was Born

in 300 BC and Why it Had to Be Reborn” (2004) that the scientific method was not

invented but reinvented by Galileo, Newton and their contemporaries, that science

was discovered in the Hellenistic period and then was forgotten.

CC: How do you see the relevance of theoretical computer science for the com-

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❊❆❚❈❙ ◆❊❲❙

✹✵

puter technology?

YG: Theory made weighty contributions to computer technology. Think of

Alan Turing, John von Neumann, modern cryptography. The search technology

that made Google rich is based on clever algorithms. One important theoretical

contribution is for some reason less known to theorists than it deserves; I searched

for it in vain in computation theory books. It is the 1965 discovery of LR(k) lan-

guages by Donald Knuth: “A language can be generated by an LR(k) grammar

if and only if it is context-free and deterministic, if and only if it can be gener-

ated by an LR(1) grammar.” LR(k) grammars can be parsed in time essentially

proportional to the length of string, and their discovery revolutionized compiler

construction.

But it is hard to influence computer technology by advancing theory, espe-

cially if the result is a non-incremental change in technology. “Nothing is more

difficult than to introduce a new order,” writes Niccolo Machiavelli in The Prince,

“Because the innovator has for enemies all those who have done well under the

old conditions and lukewarm defenders in those who may do well under the new.”

I lifted this quotation from a 2006 book “The Change Function: Why Some Tech-

nologies Take Off and Others Crash and Burn.” The author, Pip Coburn, argues

that the chances of adoption of a new disruptive technology is given by

pain of the crises

pain of adoption

To achieve successful technology transfer starting from just a theoretical advance

is harder yet (though one may get lucky).

CC: Many thanks.

©

The Computational Complexity Column

by

V. Arvind

Institute of Mathematical Sciences, CIT Campus, Taramani

Chennai 600113, India

arvind@imsc.res.in

http://www.imsc.res.in/~arvind

Ever since Reingold’s deterministic logspace algorithm [66] for undirected graph

reachability, logspace algorithms for various combinatorial problems have been

discovered and it is now a flourishing area of research. Notable examples in-

clude special cases of directed graph reachability and planar graph isomor-

phism [23].

In this interesting article, Johannes Köbler, Sebastian Kuhnert and Oleg

Verbitsky discuss the structural properties of interval graphs and other tech-

nical ingredients that go into their recent logspace isomorphism algorithm for

interval graphs, along with some generalizations and new directions.

Around and Beyond the Isomorphism Problem

for Interval Graphs

Johannes Köbler Sebastian Kuhnert∗ Oleg Verbitsky†

Humboldt-Universität zu Berlin, Institut für Informatik

{koebler,kuhnert,verbitsk}@informatik.hu-berlin.de

Abstract

The class of problems solvable in logarithmic space has recently replen-

ished with the isomorphism testing for interval graphs. We discuss this re-

sult, prospects of its extension to larger classes of graphs, and related issues

such as constructing canonical models of intersection graphs and solving the

Star System Problem for restricted classes of graphs.

1 Introduction

Graph Isomorphism (GI for short) is the problem of determining whether or not

two given graphs are isomorphic. The problem is in the class NP, but its com-

plexity status is open since decades; see, e.g., the surveys [64, 31, 77, 4, 48].

Structural complexity theory provides good evidence showing that GI is hardly

NP-complete; see the monograph [51]. The best known algorithm for GI, worked

out by Babai, Luks, and Zemlyachenko [6], has moderately exponential running

time 2O(
√

n log n). Here and throughout, n denotes the number of vertices in an input

graph. The best known lower bound is also surprisingly weak. Currently we do

not even know if GI is P-hard under logspace reductions. Torán [71] shows that

the problem is at least as hard as computing the determinant of an integer matrix

(which in terms of complexity classes implies DET-hardness.)

In view of the fact that the general graph isomorphism problem has so far

resisted all efforts to solve it more efficiently, it is natural to investigate its restric-

tions to particular classes of graphs or to reconsider the problem in other compu-

tational paradigms. An example of research in the latter direction is the search for

∗Supported by DFG grant KO 1053/7–1.
†Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied Problems of

Mechanics and Mathematics, Lviv, Ukraine.

parameters making GI fixed-parameter tractable [46, 28, 76, 70, 52, 68]. An inter-

esting open problem in this area is whether or not GI is fixed-parameter tractable

with respect to tree-width [45].

GI for particular classes of graphs has a rich literature. A systematic overview

can be found in the monograph [69]. Like in the theory of NP-completeness, two

cases can be distinguished: isomorphism-complete graph classes, for which the

problem remains as hard as in general, and isomorphism-tractable graph classes,

for which it is solvable in polynomial time. As another resemblance to the the-

ory of NP-completeness, a dichotomic phenomenon can be observed: just a few

classes of graphs are discussed in the literature for which neither isomorphism-

completeness nor polynomial-time solvability is known; the most prominent ex-

amples are the classes of circular-arc and trapezoid graphs (see [41, 21] for dis-

cussions of the former and [69, 75] for the latter).

Well-known examples for isomorphism-complete classes include bipartite and

chordal graphs; see [13] for a comprehensive list of other basic examples and [7,

8, 75, 74] for some more advanced results.

A very powerful tractability result is recently obtained by Grohe and Marx [36]

who showed that GI is solvable in polynomial time for each class of graphs exclud-

ing a fixed topological subgraph. This includes graphs of bounded vertex degree

and graphs excluding a fixed minor. The polynomial-time algorithm by Luks [58]

for the former case is used in [36] as a subroutine. An earlier polynomial-time al-

gorithm for the latter case was designed by Ponomarenko [63]; see also [35]. Fur-

thermore, examples of minor-free classes include graphs embeddable into a fixed

surface (earlier polynomial-time algorithms are due to [29, 60, 34]) and graphs of

bounded tree-width (an earlier polynomial-time algorithm is due to [12]).

The tractable cases of GI admit a finer classification through the computa-

tional concepts of polylogarithmic parallel time or logarithmic space (logspace

for short). The first, and very important, logspace isomorphism algorithm was

designed by Lindell for trees [56].

Let L denote the class of recognition problems solvable in logspace. Recall

the hierarchy of low-complexity classes:

NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ TC1 ⊆ NC2, NL ⊆ DET ⊆ TC1.

Note that L occupies a lower position than DET. Thus, Lindell’s algorithm for

trees, together with Torán’s lower DET-bound for the general isomorphism prob-

lem, implies that isomorphism of trees is strictly easier than isomorphism of all

graphs unless, for instance, NL = L. Somewhat surprisingly, the same conclusion

holds for a number of much broader classes of graphs, in particular, for planar and

interval graphs.

A graph is interval if its vertices can be assigned to intervals such that two

vertices are adjacent if and only if their intervals have non-empty intersection.

Interval graphs have received persistent interest over the decades, finding appli-

cations (amongst others) in scheduling and computational biology; see e.g. [33].

Recognition of interval graphs played for example a role in establishing the linear

structure of DNA (Benzer [10]).

Classifying classes of graphs as isomorphism-complete or polynomial-time

solvable, an interesting phenomenon occurs: Once a particular isomorphism prob-

lem is put in P, it can often be put also in NC and, even more, in L. Exam-

ples of such a double jump are given by two classical classes of graphs, namely

planar graphs (polynomial-time algorithm by Hopcroft and Tarjan [39], parallel

AC1 algorithm by Miller and Reif [61], logspace algorithm by Datta et al. [23];

see also survey [72]) and interval graphs (linear-time algorithm by Lueker and

Booth [57], parallel AC2 algorithm by Klein [47], logspace algorithm by Köbler

et al. [49]). For graphs with bounded tree-width, the transition from P (Bodlaen-

der [12]) to TC1 was made by Grohe and Verbitsky [37], while the membership of

this problem in L remains open. An important step towards this goal was made by

Das, Torán, and Wagner [22] who put the problem in LOGCFL. A logspace iso-

morphism algorithm is known in the particular case of k-trees (Arvind et al. [2]).

The “new wave” of logspace results on GI includes also the isomorphism test

in [24] for graphs excluding one of the Kuratowski graphs K5 and K3,3 as a minor.

Note that in all cases where the isomorphism problem is solvable in logspace,

we actually have an L-completeness result. For trees it was obtained by Jenner

et al. [43].

A linear-time algorithm is also known for the isomorphism problem of planar

graphs (Hopcroft and Wong [40]). It should be stressed that linear-time bounds are

formally incomparable with L or NC bounds. On the other hand, the membership

of a computational problem in L implies the existence of logarithmic time parallel

algorithms for this problem (and then the next, practically important task is to

minimize the number of processors in such an algorithm).

The remaining part of this survey is organized as follows. In Section 2 we

establish several useful connections between graphs and hypergraphs. In Section 3

we describe recent logspace algorithms for computing canonical representations

for interval graphs, proper interval graphs and some special classes of circular-arc

graphs. We conclude this survey with a study of the Star System Problem and its

connections to isomorphism testing. In Section 4 we observe that some known

polynomial-time tractable cases of the Star System Problem can even be solved in

logspace.

2 Graphs and hypergraphs

Recall that a hypergraph is a pair (V,H), where V is a set of vertices and H is a

family of subsets of V , called hyperedges. A graph is a hypergraph whose hyper-

edges are all of size 2. We will use the same notation H to denote a hypergraph

and its hyperedge set; this causes no ambiguity if V has no isolated vertex (i.e.,

a vertex that is not contained in any hyperedge). The vertex set V of H will be

denoted by V(H). An isomorphism from a hypergraphH to a hypergraph K is a

bijection φ : V(H) → V(K) such that X ∈ H if and only if φ(X) ∈ K for every

X ⊆ V(H). We allow multiple hyperedges; therefore, φ must also respect the

multiplicity of every hyperedge X.

Hypergraphs can be used to represent certain graphs in a succinct way. For

example, we can associate with a hypergraph H the intersection graph I(H) on

vertex set H where X ∈ H and Y ∈ H are adjacent if and only if they have a

non-empty intersection. We call a hypergraph connected if its intersection graph

is connected. Of course,

H � K =⇒ I(H) � I(K), (1)

but the converse implication does not hold in general.

Another graph that can be derived from a hypergraphH is the incidence graph

I(H). This is a colored bipartite graph with the class of red vertices V(H), the

class of blue vertices H , and edges between all v ∈ V(H) and X ∈ H such

that v ∈ X. A hyperedge X of multiplicity k contributes k blue vertices in I(H)

(with the same adjacency pattern to the red part of the graph). In contrast to

the intersection graph, the incidence graph contains full information about the

underlying hypergraph, as we have

H � K ⇐⇒ I(H) � I(K). (2)

This equivalence reduces testing isomorphism of hypergraphs with n vertices and

m hyperedges to testing isomorphism of colored graphs with n+m vertices (where

colors can, in fact, be removed by using standard gadgets, for example, by con-

necting all red vertices to an auxiliary triangle). Although hypergraph isomor-

phism reduces to GI, in many cases it is preferable to solve it directly; see [59, 5, 3]

for the currently best algorithms. Though these algorithms have an exponential

running time, it turns out that some interesting cases of GI can be solved effi-

ciently by reducing them to the isomorphism problem for related hypergraphs.

An inclusion-maximal clique in a graph G will be called maxclique. The bun-

dle hypergraph B(G) has one node for each maxclique of G, and for each vertex v

of G a hyperedge Bv consisting of all maxcliques that contain v. We call Bv the

(maxclique) bundle of v. Since two vertices are adjacent if and only if they are

contained in a common maxclique, G is isomorphic to the intersection graph of

the bundle hypergraph I(B(G)). Hence, (1) implies that

G � H ⇐⇒ B(G) � B(H). (3)

Unlike (2), the equivalence (3) does not yield an efficient reduction in general

(because a graph can have up to 3n/3 maxcliques [62]). However, it does in the

case of interval graphs; see Section 3.1.

We notice that the bundle hypergraphB(G) is the dual of the clique hypergraph

of G. The clique hypergraph C(G) of a graph G has the same vertex set as G and

the maxcliques of G as its hyperedges. The dual of a hypergraphH is the hyper-

graph H∗ = {v∗ : v ∈ V(H)} on vertex set H , where v∗ = {X ∈ H : v ∈ X} con-

sists of all hyperedges in H containing v. Thus, taking the dual of a hypergraph

corresponds to transposing its incidence matrix.

Twins in a hypergraph are two vertices such that every hyperedge contains

either both or none of them. A hyperedge X ∈ H of multiplicity k contributes

k twin vertices in the dual hypergraphH∗. Conversely, if v and u are twins inH ,

then v∗ = u∗, and therefore, any class of k twins in H contributes a hyperedge of

multiplicity k in H∗. Clearly, the duals of isomorphic hypergraphs are again iso-

morphic. Since the two hypergraphsH and (H∗)∗ are isomorphic via the mapping

x 7→ x∗, it follows that the converse implication is also true, implying that

H � K ⇐⇒ H∗ � K ∗. (4)

Other useful hypergraphs that can be associated with a graph G are the open

and closed neighborhood hypergraphs, denoted byN(G) andN[G], respectively.

The open neighborhood of a vertex v in G consists of all vertices adjacent to v and

is denoted by N(v), whereas the vertex set N[v] = N(v) ∪ {v} is called the closed

neighborhood of v. Both hypergraphs N(G) and N[G] have the same vertex set

as G and the open (resp. closed) neighborhoods of these vertices as hyperedges,

i.e., N[G] = {N[v]}v∈V(G) and N(G) = {N(v)}v∈V(G). Note that in contrast to N[G],

which never contains isolated vertices,N(G) inherits all isolated vertices from G.

If N[u] = N[v], we call the vertices u and v twins in the graph G. Note that

u and v are twins in G if and only if they are twins in N[G]. Note also that the

closed neighborhoods of twins are equal and form a hyperedge of multiplicity

greater than one in the hypergraph N[G]. Twins in a graph are always adjacent

and their bundles Bu = Bv coincide, implying that the hyperedge Bu = Bv in B(G)

is also of multiplicity greater than one. Of course,

G � H =⇒ N[G] � N[H]. (5)

The converse implication is not true in general; for an example see Section 4.2.

However, it holds true (and is useful) for proper interval graphs; see Corollary 4.4.

The applicability of the relationship N[G] � N[H] vs. G � H (stated in the

language of matrices) for isomorphism testing for particular graph classes was

discovered and exploited by Chen [16, 17, 18].

In more generality we will discuss the conditions under which implication (5)

can be reversed in Section 4.

3 Canonical representations for intersection graphs

We call a hypergraph H an intersection model of a graph G, if G is isomorphic

to the intersection graph I(H). Any isomorphism from G to I(H) is called a rep-

resentation of G by an intersection model. Every graph possesses an intersection

model since, as mentioned above,

G � I(B(G)) (6)

via the isomorphism v 7→ Bv. When we put natural restrictions to intersection

models, we obtain special classes of intersection graphs. Classical examples are

interval graphs (having intervals on a line as their intersection models), circular-

arc graphs (arcs on a circle), circle graphs (chords of a circle), permutation graphs

(segments with endpoints in two opposite parallel lines), and trapezoid graphs

(trapezoids with sides in two opposite parallel lines).

In order to represent interval graphs and circular-arc graphs by intersection

models it is more convenient to use integer intervals and arcs on a discrete cycle.

We refer to these intersection models as interval models and arc models, respec-

tively. It is not hard to see that this convention does not affect the resulting graph

classes.

The canonical representation problem for a class C of intersection graphs is

defined as follows: For a given graph G, either compute a representation ρG of G

by an appropriate intersection model (if G ∈ C) or determine that no such model

exists (if G < C). Moreover, it is required that isomorphic graphs G � H in C re-

ceive identical intersection models ρG(G) = ρH(H). For a specified algorithm, we

call its output ρG on input G ∈ C a canonical representation of G and the resulting

model ρG(G) a canonical model of G. Note that such an algorithm simultaneously

solves both the recognition (even model construction) and the isomorphism (even

canonical labeling) problems for C.

We quickly recall the canonical labeling problem for a graph class C. Given a

graph G ∈ C with n vertices, we have to compute a map λG : V(G)→ {1, . . . , n} so

that the graph λG(G), the image of G under λG on the vertex set {1, . . . , n}, is the

same for isomorphic input graphs. Equivalently, for any graph G ∈ C we have to

compute an isomorphism λG from G to a graph G⋆ so that

G � H =⇒ G⋆ = H⋆.

In fact, the condition V(G⋆) = {1, . . . , n} requires no special care as the vertices

of G⋆ can be sorted and renamed. We say that λG is a canonical labeling and

λG(G) is a canonical form of G.

Note the similarity between the pairs of notions canonical labeling/canonical

form and canonical representation/canonical model for a class of intersection

graphs. Obviously, the former can be obtained from the latter by taking the in-

tersection graph of the canonical model.

3.1 Interval graphs

In this section we describe the logspace algorithm of [49] that computes a canoni-

cal interval model for any given interval graph G. The algorithm first transforms G

into its bundle hypergraph B(G) over the vertex set consisting of all maxcliques

of G. The maxcliques of G can be found in logspace by applying the following

lemma.

Lemma 3.1 (Laubner [54]). Every maxclique C of an interval graph G contains

vertices u and v such that C = N[u] ∩ N[v].

For adjacent vertices u and v in an arbitrary graph holds: If N[u] ∩ N[v] is a

clique, it is maximal. Lemma 3.1 shows that any maxclique in an interval graph

is of this kind and, hence, can be represented by a pair of vertices u and v (that

are adjacent and satisfy the condition that N[u] ∩ N[v] is a clique). An explicit

representation of the bundle hypergraph B(G) of G can be computed in logspace

by listing, for each bundle Bv, the maxcliques that contain v.

The following lemma shows that the bundle hypergraphB(G) is indeed a good

starting point for constructing an interval model for a given graph G. We call an

interval model I of G minimal if G admits no interval model that has fewer points

than I.

Lemma 3.2 ([49, Lemma 2.3]). Every minimal interval model I of an interval

graph G is isomorphic to the bundle hypergraph B(G).

Lemma 3.2 implies that the minimal interval model of G is unique up to hy-

pergraph isomorphism, and any such model can be obtained from the bundle hy-

pergraph B(G) by renaming its vertices to integers; Fig. 1 shows an example.

Given a hypergraph H , call a linear order < on V(H) interval if every hyper-

edge ofH forms an interval w.r.t. <. IfH admits an interval order, then it is called

an interval hypergraph. Equivalently, an interval hypergraph is a hypergraph iso-

morphic to a system of intervals of integers, which is then called an interval model

of this hypergraph. For an interval order < of H , let r<(v) denote the rank of a

vertex v ∈ V(H) w.r.t. <, and let H< denote the image of H under the map r<.

G:

c

b

d

a
e

f

I:

Ib

Ia

Ic Id Ie I f

B(G) {b, c} {a, b, d} {a, e} {a, f }
Ba 0 1 1 1

Bb 1 1 0 0

Bc 1 0 0 0

Bd 0 1 0 0

Be 0 0 1 0

B f 0 0 0 1

Figure 1: An interval graph G, a minimal interval model I of G, and the bundle

hypergraph B(G) of G. The latter is given by its incidence matrix with columns

indexed by vertices (i.e., maxcliques) and rows indexed by hyperedges (i.e., bun-

dles).

Clearly, < is an interval order of H if and only if H< is an interval model of H
on the segment of integers {1, . . . , n}.

A binary matrix has the consecutive-ones property if its columns can be per-

muted so that in each row the ones are consecutive. Viewing the matrix as inci-

dence matrix of a hypergraph shows that testing for the consecutive-ones property

is equivalent to recognizing interval hypergraphs. Dom [26] surveys algorithmic

aspects of the consecutive-ones property.

The following theorem is an immediate consequence of Lemma 3.2 and the

general relation (6).

Theorem 3.3 (cf. [33, Theorems 8.1 and 8.3]). G is an interval graph if and only

if B(G) is an interval hypergraph.

Hence, in order to decide whether G is interval, it suffices to check whether

the bundle hypergraph B(G) is interval.

Moreover, from any interval ordering < of B(G), we an easily construct an

interval representation ρG. For any vertex v ∈ V(G), define ρG(v) = r<(Bv). Since

the mapping v 7→ Bv is a graph isomorphism from G to I(B(G)) and r< is a hy-

pergraph isomorphism from B(G) to the interval system B(G)<, the map ρG is an

isomorphism from G to I(B(G)<). Hence, ρG is indeed an interval representation

of G.

Since the bundle hypergraph B(G) and the map v 7→ Bv are constructible in

logspace due to Lemma 3.1, it follows that ρG is computable in logspace, provided

that an interval ordering <H for a given interval hypergraph H is computable in

logspace. Moreover, this reduction even gives a canonical interval representa-

tion ρG of G, if <H is a canonical ordering of H , meaning that H<H = K<K
whenever H � K are isomorphic interval hypergraphs. Indeed, G � H implies

thatB(G) � B(H) and hence the resulting interval systemsB(G)<B(G) andB(H)<B(H)

are equal.

Lemma 3.4. The canonical representation problem for interval graphs is re-

ducible in logspace to the canonical ordering problem for interval hypergraphs.

Computing an interval ordering for interval hypergraphs

In this subsection, we describe an algorithm for computing an interval ordering

for a given interval hypergraphH (or detecting thatH is not interval).

PQ-trees, introduced by Booth and Lueker [14], provide a succinct way to

represent all possible interval orderings of an interval hypergraph H . A PQ-tree

forH is an ordered rooted tree. Its leaves are the vertices ofH and its inner nodes

are classified as either P- or Q-nodes. Clearly, the ordering of the tree induces a

unique linear order on the leaves of the tree. It is possible to change the tree order

of a PQ-tree according to the following rules. The children of a P-node can be

reordered arbitrarily, while the ordering of the children of a Q-node can only be

reversed. A tree order is permissible if it can be obtained from a combination of

such reorderings. A PQ-tree represents the set of all linear orders on its leaves

which are induced by a permissible tree order.

Booth and Lueker [14] showed that a PQ-tree encoding all interval orderings

of a given interval hypergraph can be computed in linear time. Their algorithm

starts with the PQ-tree T for the empty hypergraph (where all leaves are attached

to a single P-node). Then it iteratively incorporates into T the restrictions caused

by each hyperedge. Klein [47] reduced the number of iterations from linear to

logarithmic by incorporating several hyperedges in one step. This results in a

parallel AC2 algorithm. In [49] it was shown that a PQ-tree for a given interval

hypergraph H can even be computed in logspace. The key observation behind

this is that the overlap component tree of H can be viewed as PQ-tree and is

constructible in logspace. This tree comprises of slot nodes, which are interpreted

as P-nodes, and overlap component nodes, which are interpreted as Q-nodes. To

give its precise definition we need some more notation.

We say that two sets A and B overlap and write A ≬ B if A and B have

a nonempty intersection but neither of them includes the other. The overlap

graph O(H) of a hypergraph H is the subgraph of the intersection graph I(H),

where the vertices corresponding to the hyperedges A and B are adjacent if and

only if they overlap. Of course, O(H) can be disconnected even if I(H) is con-

nected. A subset O of the hyperedges of H spanning a connected component

of O(H) will be referred to as an overlap component of H . This is a subhyper-

graph ofH and should not be confused with the corresponding induced subgraph

of O(H). Note that a hyperedge of an overlap component inherits the multiplic-

ity that it has in H . In the case that O(H) is connected, H will be called an

overlap-connected hypergraph.

Lemma 3.5 (Chen and Yesha [19]). Let H be an interval hypergraph. If H is

overlap-connected, then it has, up to permutation of twins and reversing, a unique

interval ordering.

Since the resulting interval model does not depend on the ordering of twins

inside a slot, it follows that an overlap-connected interval hypergraph has at most

two different interval models inside the range {1, . . . , n} and that these models are

mirror symmetric to each other.

In fact, such a model can be constructed in logspace as follows. In a pre-

processing step, compute a walk X1, . . . , XN in the overlap graph O(H) that visits

every hyperedge ofH at least once (this can be done in logspace using Reingold’s

universal exploration sequences [66]). Then iterate over the hyperedges Xi in this

walk, computing an interval Ii for each Xi. Once the first interval I1 = [1, |Xi|]
is fixed, the cardinality of X1 ∩ X2 leaves only two possibilities for I2 (resulting

in reflected representations), and once Ii−2 and Ii−1 are fixed, Ii is uniquely deter-

mined; see Fig. 2. As only the two previous intervals have to be remembered, this

computation is possible in logspace. In a post-processing step, verify that the re-

sult is indeed an interval model ofH and shift the model into the range {1, . . . , n}
if necessary.

A slot of H is an inclusion-maximal set S of twins, i.e., the slots are the

equivalence classes of the twin relation.

IfO andO′ are different overlap components, then either every two hyperedges

A ∈ O and A′ ∈ O′ are disjoint or all hyperedges of one of the two components are

contained in a single slot of the other component. (This follows from the simple

observation that the conditions B ⊂ A, B ≬ B′, and ¬(B′ ≬ A) imply B′ ⊂ A.) This

containment relation determines a tree-like decomposition of H into its overlap

components. Specifically, let S be a slot of an overlap component O of H . We

say that an overlap component Q of H is located at slot S of O if V(Q) ⊆ S and

there is no “intermediate” overlap component O′ , O such that V(O′) ⊆ S and

Q is contained in some slot of O′. Furthermore, a vertex v ofH is located at slot S

of O if v ∈ S and there is no overlap component O′ located at slot S of O such that

v ∈ V(O′).
Now we are ready to give a precise definition of the overlap component tree

of an interval hypergraph H . We assume that H is connected: To ensure this,

we add an additional hyperedge B0 = V(H) (this has no influence on the possible

interval orderings ofH).

The nodes of the overlap component tree of H are the overlap components

of H , their slots, and the vertices of H . Since a slot S of O may belong also to

another overlap component, we denote the corresponding slot node by SO. The

children of an overlap component node O are the slots of O. The children of a

slot node SO are the vertices and the overlap components located at the slot S

Ii−2

Ii−1

Ii

Figure 2: Proof of Lemma 3.5: Let Xi ≬ Xi−1 ≬ Xi−2. If Ii−1 is already determined,

only two positions for Ii satisfy |Ii| = |Xi| and |Ii−1 ∩ Ii| = |Xi−1 ∩ Xi|. If also Ii−2 is

given, at most one of them additionally satisfies |Ii−2 ∩ Ii| = |Xi−2 ∩ Xi|.

of O. As H is connected, there is an overlap component O0 with V(O0) = V(H).

Thus, O0 is the root of the overlap component tree. An example for an overlap

component tree can be found in Fig. 3.

Suppose thatH is an interval hypergraph. To interpret its overlap component

tree as PQ-tree, treat all slot nodes as P-nodes, and all overlap component nodes

as Q-nodes. By Lemma 3.5, the slots of each overlap component can be ordered

uniquely up to reversing; this defines the order on the children of Q-nodes. It is

easy to verify that every rearrangement of this PQ-tree again induces an interval

ordering ofH . Using the uniqueness given by Lemma 3.5 and a simple inductive

argument on the depth of the overlap component tree, one can show that every

interval representation ofH can be obtained in this way (cf. [42]).

It is not hard to verify that the overlap component tree (and hence a PQ-tree)

for a given interval hypergraph H can be computed in logspace. Thus, we can

compute an interval ordering for H in logspace. In order to compute a canonical

interval ordering forH we have to do some more work.

Of course, isomorphic interval hypergraphs have isomorphic overlap compo-

nent trees (when considered as rooted trees but ignoring the order on the children).

As shown in Fig. 3, the converse is not true, since the overlap component tree does

not contain enough information on the underlying hypergraph. The idea is to re-

flect this missing information by coloring the nodes of the tree in such a way that

the underlying hypergraph can be reconstructed up to isomorphism from the re-

sulting tree. Roughly speaking, we will refine the tree in such a way that only

rearrangements of the corresponding PQ-tree become isomorphic to the refined

tree. Then selecting an interval ordering in a canonical way corresponds to select-

ing an isomorphic copy of the refined tree in a canonical way. For the latter task

we can use Lindell’s tree canonization algorithm.

Computing a canonical ordering for interval hypergraphs

In this subsection, we describe an algorithm for computing canonical orderings for

interval hypergraphs. Together with Lemma 3.4 this gives us a logspace algorithm

for computing a canonical representation for interval graphs.

H1:

a b c d e f g h

A
B

C

D E F G H

H2:

a b c d e f g h

A
B

C

D EF G H

A, B,C

a, b

D

a, b

a b

c, d

E

c, d

c d

e, f

F

e

e

G

f

f

g, h

H

g

g

h

Figure 3: An interval hypergraph H1 and its overlap component tree. In the tree,

the node of an overlap component O is given by listing the hyperedges in O; a

slot node SO is given by listing the vertices contained in S (we omit the refer-

ence to O as it is understood from the tree structure). The hypergraph H2 is not

isomorphic toH1; yet both have isomorphic overlap component trees.

Theorem 3.6 ([49, Theorem 4.6]). The canonical ordering problem for interval

hypergraphs can be solved in logspace.

Corollary 3.7. The canonical representation problem for interval graphs is solv-

able in logspace.

As explained above, we reduce the task of computing a canonical interval or-

dering for H to computing a canonical labeling of an associated tree T(H). This

tree has the property thatH � K if and only if T(H) � T(K). To construct T(H)

from the overlap component tree ofH , we first compute canonical interval models

for each overlap component (using the lexicographically smaller of the at most two

that are possible by Lemma 3.5) and assign these models as colors to the overlap

component nodes. For an asymmetric overlap component, the chosen model al-

ready fixes the order of its slots, which can be enforced by assigning ascending

colors to the slot nodes. For a symmetric overlap component with at most two

slots, any ordering of its slots is fine; for one with more than two slots, we employ

a small gadget to ensure that the order of its slots can only be reflected: Between

the overlap component node O and its slots, we introduce three connector nodes

loO, miO and hiO. Fix an arbitrary interval order < of O; it induces an order <∗ on

the slots of O. For each slot S of O, denote its position from the left and right by

lO(S) = |{S ′ : S ′ is a slot of O with S ′ ≤∗ S }|
rO(S) = |{S ′ : S ′ is a slot of O with S ′ ≥∗ S }|

A slot node SO becomes a child of loO if lO(S) < rO(S), a child of miO if

lO(S) = rO(S), and a child of hiO if lO(S) > rO(S). (Choosing a different interval

H a b c d e f g h

A 1 1 1 1 1 1 0 0

B 1 1 1 0 1 1 0 1

C 0 1 0 0 0 0 0 0

D 0 1 0 0 1 0 0 0

E 0 0 1 0 0 1 0 0

F 0 0 0 1 0 0 1 0

G 0 0 0 0 0 0 1 0

I :

g d a b e f c h

H C

F
A

B
D

G
E

T(H) : F, A, B {[1, 2], [2, 7], [3, 8]}

g 1

H{[1, 1]}

g 1

g

d 2

d

a, b, c, e, f 3

a D,G, E {[1, 2], [2, 3], [3, 4]}

lo

b 1

C{[1, 1]}

b 1

b

e 2

e

mi hi

f 2

f

c 1

c

h 4

h

Figure 4: An interval hypergraphH and its tree representation T(H). Gray areas

in T(H) indicate the color of overlap components and their slots . An overlap

componentO is represented by listing the hyperedges inO (sorted, for the reader’s

convenience, by their corresponding intervals in the canon of O). We omit the

references from slot and connector nodes to their overlap components as they are

understood from the tree structure. The interval system I � H can be derived

from T(H) by reading the vertex nodes from left to right.

ordering for O would only result in exchanging the nodes loO and hiO, yielding

an isomorphic tree.) Fig. 4 shows an example for a tree representation T(H).

As indicated above, this construction ensures that a canonical labeling of T(H)

specifies a canonical rearrangement of the PQ-tree, which in turn determines a

canonical interval order ofH (see [49] for details).

3.2 Proper interval graphs

An intersection modelH is proper if the sets inH are pairwise incomparable by

inclusion. G is called a proper interval graph if it has a proper interval model. In

this section, we describe a logspace algorithm for computing a canonical proper

interval model for a given proper interval graph.

As a consequence of the following theorem, we can reduce the problem of

recognizing proper interval graphs to the problem of recognizing interval hyper-

graphs.

Theorem 3.8 (Roberts [67, 27]). G is a proper interval graph if and only if

N[G] is an interval hypergraph.

Theorem 3.8 does not provide us with an appropriate interval model for a

proper interval graph, since N[G] need not even be an intersection model for G.

However, it is possible to convert an interval ordering of N[G] into a proper in-

terval model for G, if G is a proper interval graph. This is done via a tight interval

model for G.

An interval system is tight if the intervals have the following property: when-

ever A = [a−, a+] includes B = [b−, b+], we have a− = b− or a+ = b+. It is

not hard to see that any tight interval model for a graph G can be converted to a

proper interval model for G (cf. Tucker [73]): If several intervals start (resp. end)

at the same point, introduce new points to extend the shorter intervals so that

none is contained in the other anymore. In fact, this transformation is possible

in logspace (see [50] for details). Thus, the following lemma provides us with a

proper interval representation of G.

Lemma 3.9. Given an interval ordering of N[G], a tight interval representation

of G can be constructed in logspace.

Proof. Given an interval ordering < of N[G], for each vertex v of G we let

v− and v+ denote the two endpoints of the interval N[v] = [v−, v+] w.r.t. <. Define

ρ(v) = N+[v] = [v, v+]. The map ρ is an interval representation of G. Indeed, if

u and v are adjacent, either u ∈ N+[v] (if v < u) or v ∈ N+[u] (if u < v) holds. In ei-

ther case N+[u]∩N+[v] , ∅. If u and v are not adjacent, u < N+[v] and v < N+[u],

which implies that the intervals N+[u] and N+[v] are disjoint. See Fig. 5 for an

example.

Next we show that ρ is tight. Suppose that N+[u] ⊆ N+[v]. Since v ∈ N[v+],

we have also u ∈ N[v+]. Therefore, N+[u] = [u, u+] contains v+ and u+ = v+.

Finally, given G and an interval ordering < of N[G], the map ρ can be easily

computed in logspace. �

To obtain a canonical proper interval representation for the class of proper

interval graphs, we can combine any canonical labeling for this class with the

proper interval representation of the resulting canon. To compute a canonical

labeling for proper interval graphs we can for example use the algorithm provided

by Corollary 3.7 (which even works for all interval graphs). Alternatively, since

we anyway have to compute an interval ordering of N[G], we can also make use

of the following lemma.

Lemma 3.10 (cf. [25, Corollary 2.5]). If G is a connected proper interval graph,

then N[G] has, up to reversing and up to permutation of twins, a unique interval

ordering.

This result can also be derived from Lemma 3.5 and the fact that, for a con-

nected proper interval graph G, the hypergraphN[G]\{V(G)} is overlap-connected;

see [49].

G:

a

b

c

d

e

f

g

N[G]:
N+[G]:

a b c d e f g

N[a]
N[b]
N[c]

N[d]
N[e]

N[f]
N[g]

N+[a]
N+[b]

N+[c]
N+[d]
N+[e]

N+[f]
N+[g]

Figure 5: From an interval ordering ofN[G] to a tight interval modelN+[G] of G.

As the interval order of N[G] can be computed in logspace by Theorem 3.6,

Lemma 3.10 implies that we can easily compute canonical labelings for the con-

nected components of a given proper interval graph G and combine them to a

canonical labeling of the whole graph in a straightforward way.

This proves the following theorem.

Theorem 3.11 ([49, Theorem 6.3]). The canonical representation problem for

proper interval graphs can be solved in logspace.

A graph is a unit interval graph if it has an interval model over rationals in

which every interval has unit length. It is well known [67] that the class of proper

interval graphs is equal to the class of unit interval graphs. Corneil et al. [20]

show that unit interval representations of proper interval graphs can be computed

in linear time. Based on their methods, it has been shown in [49] that this task can

also be performed in logspace.

3.3 Circular-arc graphs

Though circular-arc graphs may at first glance appear close relatives of interval

graphs, essential differences between the two classes are well known. For exam-

ple, an interval graph has at most n maxcliques, and we used a succinct represen-

tation for each of them given by Lemma 3.1. For circular-arc graphs this is no

longer possible, because these graphs can have exponentially many maxcliques;

see Fig. 6 for an example. Note also that, unlike interval graphs, currently there

is no characterization of the class of circular-arc graphs in terms of forbidden in-

duced subgraphs; see [55] for an overview of circular-arc graphs and subclasses.

These facts may serve as some excuse for the status of GI for circular-arc graphs

staying open: Recently, Curtis et al. [21] published a counter-example to Hsu’s

algorithm [41], raising the following question.

Problem 3.12. Is the isomorphism problem for circular-arc graphs in P?

Furthermore, proper interval and proper circular-arc graphs also show struc-

tural distinctions. For example, while every proper interval graph is known to be

A4:

Figure 6: The complement graph Gm of m disjoint edges is circular-arc and has

2m maxcliques. A4 is a circular-arc model for G4.

representable by an intersection model consisting of unit intervals, the analogous

statement for proper circular-arc graphs is not true. Another difference, very im-

portant in our context, lies in relationship to interval and circular-arc hypergraphs

that we will explain shortly.

A circular ordering of a hypergraphH is a circular successor relation ≻ such

that all hyperedges X ∈ H are consecutive points w.r.t. ≻. A hypergraph is

circular-arc if it admits a circular ordering.

By Theorem 3.8, G is a proper interval graph if and only ifN[G] is an interval

hypergraph. The circular-arc world is more complex. While N[G] is a circular-

arc hypergraph if G is a proper circular-arc graph, the converse is not always

true. Proper circular-arc graphs are properly contained in the class of those graphs

whose neighborhood hypergraphs are circular-arc. Graphs with this property are

called concave-round by Bang-Jensen, Huang, and Yeo [9] and Tucker graphs by

Chen [16]. The latter name is justified by Tucker’s result [73] saying that all these

graphs are circular-arc (even though not necessarily proper circular-arc). Fig. 7

shows a circular-arc graph that is not concave-round.

In the context of hypergraphs, however, the similarity between circular-arc and

interval hypergraphs can be directly exploited, as first observed by Tucker [73].

For a circular-arc hypergraphH and a vertex v ∈ V(H), define the hypergraph

Hv = {X : v < X ∈ H} ∪ {V(H) \ X : v ∈ X ∈ H} .

This corresponds to complementing all hyperedges that contain v. Tucker ob-

served that Hv is interval if and only if H is circular-arc. The following theorem

is proved by iterating over all v ∈ V(H) and distinguishing non-complemented

and complemented hyperedges inHv with two different colors.

Theorem 3.13 ([50]). The canonical ordering problem for circular-arc hyper-

graphs can be solved in logspace.

In [50] we use the algorithm of Theorem 3.13 as a starting point to design

logspace algorithms for computing canonical proper circular-arc models of proper

circular-arc graphs and canonical circular-arc models of concave-round graphs.

G:

f

a

b

c d

e

A: Aa

Ab

Ac

Ad

Ae

A f

N[G] a b c d e f

N[a] 1 1 0 0 1 1

N[b] 1 1 1 0 0 1

N[c] 0 1 1 1 0 1

N[d] 0 0 1 1 1 1

N[e] 1 0 0 1 1 1

N[f] 1 1 1 1 1 1

Figure 7: A circular-arc graph G = I(A) that is not concave-round: Its closed

neighborhood hypergraph N[G] is not circular-arc.

4 Realizing Star Systems

The Star System Problem (to be abbreviated as SSP) consists in finding, for a

given hypergraph H , a graph G such that H = N[G]. We call any such graph G

a solution to the SSP on inputH . Note thatH can only have an SSP solution ifH
has an equal number of vertices and hyperedges. The terms star and star system

are synonyms for the closed neighborhood of a vertex and the closed neighbor-

hood hypergraph of a graph, respectively. The problem occurs in the literature

also under the name Closed Neighborhood Realization. The question on the com-

putational complexity of the SSP was posed by Sabidussi and Sós in the mid-70s.

Shortly afterwards, Babai observed that the problem is at least as hard as GI;

see [30] for a historical overview. Subsequently, Lalonde [53] showed that its

decision version is in fact NP-complete.

In the complementary version of the SSP, called co-SSP here and also known

as Open Neighborhood Realization problem in the literature, on inputH we have

to find a graph G with N(G) = H . Recall that the complement G of a graph G

has the same vertex set as G, and two vertices are adjacent in G if and only if they

are not in G. The complementH of a hypergraphH also has the same vertex set

as H , but hyperedges complementing the hyperedges of H , i.e., X ∈ H if and

only if V(H) \ X ∈ H . Now it is easy to verify that

N[G] = N(G) and N(G) = N[G]. (7)

Hence, finding for a given hypergraphH a graph G withN[G] = H is equivalent

to finding forH a graph G′ withN(G′) = H . Thus, the SSP and the co-SSP have

the same complexity.

The following simple observation characterizes open neighborhood hyper-

graphs of bipartite graphs.

Lemma 4.1. Suppose that G is a connected bipartite graph with vertex classes

U and W. Then the open neighborhood hypergraph N(G) is split into two con-

nected componentsU andW, on the vertex sets U and W, respectively, such that

U �W∗.

In the notation of the lemma, note that the incidence graphs I(U) and I(W)

become isomorphic after interchanging the colors red and blue in one of them.

Moreover, the uncolored versions of both I(U) and I(W) are isomorphic to G.

4.1 Case study: NP-hardness, GI-completeness, and efficient

solvability

If we restrict the SSP to a particular graph class C, we only seek for a solution G

in the class C. As mentioned above, the restriction of the SSP to C is equivalent

to the co-SSP restricted to the co-class of C (consisting of the complements of all

graphs in C).

Fomin et al. [30] study the restrictions of the SSP to H-free graphs, that is, to

graph classes that are characterized by forbidding a single induced subgraph H.

They show that the SSP restricted to H-free graphs remains NP-hard if H is a path

or a cycle of at least 5 vertices, the claw graph, or any other graph obeying a set

of conditions specified in [30].

Aigner and Triesch [1] showed that the SSP for co-bipartite graphs is equiv-

alent to GI, provided that the bipartition of the vertices is given along with the

input hypergraph H . Boros et al. [15] observed that this remains true, if only H
is given as input.

Theorem 4.2 ([1, 15]). The SSP for co-bipartite graphs is equivalent to GI.

Proof-sketch. We show the equivalent statement that the co-SSP for bipartite

graphs is equivalent to GI. Recall that GI is equivalent with its restriction to con-

nected graphs (because G � H if and only if G � H, and if G is disconnected, then

its complement G must be connected). Consider an even more general problem

of deciding whether two connected hypergraphsH andK are isomorphic. By (4)

and Lemma 4.1,

H � K ⇐⇒ H∗ � K ∗ ⇐⇒ H ∪K ∗ = N(G) for a bipartite graph G,

and hence, the reduction (H ,K) 7→ H ∪ K ∗ shows that the co-SSP for bipartite

graphs is at least as hard as (hyper)graph isomorphism.

In order to show a reduction in the other direction, assume first thatH consists

of two connected componentsU andW. By Lemma 4.1,

H = N(G) for a bipartite graph G ⇐⇒ U �W∗,

giving the desired reduction of the co-SSP for bipartite graphs to hypergraph iso-

morphism. Moreover, we can also compute a solution G to the co-SSP instanceH ,

since G is isomorphic to the incidence graph G′ = I(U) � I(W), where the red-

blue coloring is disregarded. In order to compute G, it suffices to establish an

isomorphism π from N(G′) toH and take the image of G′ under π.

In general, H = N(G) for a bipartite G if and only if the components of H
can be arranged into pairs U1,W1, . . . ,Um,Wm such that Ui � W∗

i . Thus, the

co-SSP for bipartite graphs is no harder than GI.

In several cases the SSP is known to be efficiently solvable. Polynomial-

time algorithms are worked out for H-free graphs with H being a cycle or a

path on at most 4 vertices (Fomin et al. [30]) and for bipartite graphs (Boros et

al. [15]). In [50] we give a logspace solution for the SSP for proper circular-arc

and concave-round graphs. An analysis of the algorithms in [30] for C3- and C4-

free graphs shows that the SSP for these classes is also solvable in logspace, and

the same holds true for the class of bipartite graphs.

C3-free graphs and bipartite graphs. The approach of Fomin et al. [30] to

C3-free graphs is based on the following observation. If G is C3-free, then for any

pair of vertices u and v adjacent in G there are exactly two hyperedges X and Y

in N[G] containing both u and v. Moreover, N[v] ∈ {X,Y} and the assumption

that N[v] = X forces the equality N[u] = Y .

Let us show how to derive from here the logspace solvability of the SSP

for C3-free graphs. Since the composition of logspace computable functions is

logspace computable, we can split the whole algorithm into a few steps, each

doable in logspace. We can assume that the input hypergraphH is connected; oth-

erwise we apply the procedure below to each of its components. We first construct

an auxiliary graph F. The vertices of F are all pairs (v, X) such that v ∈ X ∈ H .

Two vertices (v, X) and (u,Y) are adjacent in F if and only if v , u, X , Y , and

X and Y are the only two hyperedges ofH containing both v and u.

Fix an arbitrary vertex v ofH . For each vertex of the form (v, X) of F, we now

try to construct a vertex-hyperedge assignment AX as follows. Assign X to v. To

each other u we assign an Y such that (u,Y) is reachable from (v, X) along a path

in F. At this step we use the Reingold reachability algorithm [66]. For some u,

the choice of Y may be impossible or ambiguous.

For each successfully constructed one-to-one assignment AX, we then try to

construct a graph GX by connecting each u with all other vertices in the as-

signed hyperedge Y . For each successfully constructed GX, it remains to check

ifN[GX] = H and if GX is C3-free. We will succeed at least once, unless the SSP

onH has no C3-free solution. This completes the description of the algorithm.

Note a useful fact that follows from the above discussion: If a hypergraph H

is connected, then for any hyperedge X ∈ H and vertex v ∈ X there is at most

one C3-free graph G such that H = N[G] and X = N[v]. Thus, the SSP on H
has at most minX∈H |X| triangle-free solutions, and all of them can be computed in

logspace. It readily follows that the SSP is solvable in logspace for any logspace

recognizable class consisting of C3-free graphs. In particular, this applies to the

class of bipartite graphs.

C4-free graphs. The algorithm of Fomin et al. [30] for C4-free graphs is im-

plementable in logspace in a straightforward way. It is based on the following

argument.

Suppose that G is C4-free. Given two vertices u and v in G, let X1, . . . , Xt be

all hyperedges in N[G] containing both u and v. If u and v are adjacent, then

2 ≤
∣

∣

∣

⋂t
i=1 Xi

∣

∣

∣ ≤ t. (8)

This follows from the observation that u and v have exactly t − 2 common neigh-

bors, and every vertex in
⋂t

i=1 Xi ⊆ N[u] ∩ N[v] must be one of them or one of u

and v.

If u and v are not adjacent, then

t = 0 or
∣

∣

∣

⋂t
i=1 Xi

∣

∣

∣ ≥ t + 2.

Indeed, in this case u and v have exactly t common neighbors. Let t > 0. By the

assumption that G is C4-free, these t vertices form a clique. Therefore,
⋂t

i=1 Xi

contains all of them as well as u and v themselves.

Thus, the graph G can be reconstructed from the hypergraph H = N[G] by

joining two vertices u and v by an edge whenever the condition (8) is true for this

pair. Solving the SSP on an input H , we first construct G by this rule and then

check ifH = N[G] and if G is C4-free. In the case of failure, no solution among

C4-free graphs exists.

Proper interval graphs. As we will discuss in more detail in Section 4.2, the

SSP for proper interval graphs is solvable in logspace because these graphs form

a logspace-recognizable subclass of C4-free graphs. We now outline a different

argument exemplifying our approach from [50] to the SSP for the broader classes

of proper circular-arc and concave-round graphs.

Three important ingredients of our argument already appeared in Section 3.1.

By Theorem 3.8, G is a proper interval graph if and only if N[G] is an inter-

val hypergraph, i.e., this hypergraph admits an interval order of its vertices. By

Lemma 3.10, if G is, moreover, connected, then such an interval order is unique

(up to reversing and up to permutation of twins). The interval order of N[G] can

be computed in logspace by Theorem 3.6. We now state another key element of

our analysis. Given a linear order < on a set V , we introduce the linear order <∗ on

the set of all intervals in V by comparing the endpoints of intervals lexicographi-

cally w.r.t. <.

Lemma 4.3 (cf. [50, Lemma 5.8.1]). Suppose that a graph G (and hence N[G])

is twin-free. If < is an interval order for N[G], then

u < v ⇐⇒ N[u] <∗ N[v]. (9)

Putting it together, we come to the following logspace algorithm for the SSP

for proper interval graphs on input hypergraph H . We first consider the case that

H is twin-free.

Compute an interval order < for H . If this fails, no solution among proper

interval graphs exists; otherwise, any solution will be surely a proper interval

graph.

Next, sort the hyperedges of H according to the lexicographic order <∗. The

equivalence (9) allows us to establish the v-to-N[v] correspondence, that is, for

each hyperedge X ∈ H , to find a vertex v such that N[v] = X (assuming that a

solution G to the SSP onH exists).

Finally, we have to check that this correspondence really defines a graph, that

is, whenever two vertices v and v′ receive hyperedges X and X′ as their neighbor-

hoods, we have to check that v ∈ X and that v ∈ X′ if and only if v′ ∈ X. If this is

not true, the SSP on inputH has no solution.

The general case, when H may have twins, reduces to the twin-free case by

considering the quotient-hypergraph H ′ w.r.t. the equivalence relation of being

twins, where the vertices are the twin-classes of H , and a set of twin-classes is

a hyperedge in H ′ if and only if the union of these twin-classes is a hyperedge

inH .

4.2 Uniqueness of a solution

The argument employed in the proof of Theorem 4.2 leads us to the following

observation: If we know that a graph is bipartite, then it is reconstructible from

its open neighborhood hypergraph up to isomorphism. More precisely, if two

graphs G and H are both bipartite, then the equality N(G) = N(H) implies the

isomorphism G � H. (See Fig. 8 below for an example of an hypergraph that

is the open neighborhood hypergraph of a bipartite and of a non-bipartite graph.)

Equivalently, if G and H are both co-bipartite, then

N[G] = N[H] =⇒ G � H. (10)

In other words, any instance of the SSP for co-bipartite graphs has at most one

solution up to isomorphism. The argument of Fomin et al. [30] presented above

leads to the same conclusion in the case that both G and H are C4-free. Moreover,

in this case the equality N[G] = N[H] even implies the equality G = H. For

a smaller class of chordal graphs this was observed earlier by Harary and Mc-

Kee [38]. Due to Boros et al. [15], the implication (10) is also known to be true if

both G and H are bipartite.

Chen [16, 18] showed an even stronger fact for any concave-round graph G:

for any graph H, N[G] = N[H] =⇒ G � H. (11)

In other words, each concave-round graph is reconstructible from its closed neigh-

borhood hypergraph up to isomorphism. Earlier such a reconstructibility result

was shown for complements of forests by Aigner and Triesch [1].

Our treatment of the SSP for proper interval graphs reveals a fact that is yet

stronger than (11).

Corollary 4.4. Let G be a proper interval graph. Then, for any graph H,

N[G] = N[H] =⇒ G = H.

In this stronger form, the reconstructibility from the closed neighborhood hy-

pergraph was earlier known only for complete graphs; see Aigner and Triesch [1].

The implication (10) can be rephrased as the equivalence of the isomorphisms

G � H and N[G] � N[H]. This provides the shortest way to testing isomor-

phism of concave-round graphs in logspace, if we do not care of coming up with a

canonical arc model. Given concave-round graphs G and H, it suffices to compute

the canons of N[G] and N[H] by the algorithm of Theorem 3.13 and to check if

they are equal.

Moreover, the implication (10) has important consequences for the SSP. In

general, the logspace solvability of the SSP for a class of graphs C does still not

imply the logspace solvability of the SSP for any subclass C′ of C. However, it

does if C′ is recognizable in logspace and (10) holds true for all G and H in C. This

observation applies to the classes of chordal, interval, and proper interval graphs,

which are subclasses of C4-free graphs. Each of these classes is recognizable in

logspace by Reif [65] in combination with Reingold [66] or by methods of [49].

Therefore, the results of Fomin et al. [30] about C4-free graphs imply that the

SSP for the classes of chordal, interval, and proper interval graphs is solvable in

logspace.

While the case of interval graphs is therewith efficiently solvable, note that the

complexity status of the SSP for circular-arc graphs remains open.

Problem 4.5. Is the SSP for circular-arc graphs solvable by a poly-time algo-

rithm?

H :
a

b

c

d

e

f

C6:
a

b

c

d

e

f

C3 +C3:
a

b

c

d

e

f

Figure 8: The open neighborhood hypergraph H of the two non-isomorphic

graphs C6 and C3 +C3.

By Corollary 4.4 and Theorem 3.8, the SSP on a given interval hypergraph

has either none or exactly one solution. In general, the problem can have different

solutions. For example, on a given set of 4 vertices we can draw a cycle C4 in

3 different ways, and all three graphs will have the same closed neighborhood

hypergraph. Moreover, the SSP can even have non-isomorphic solutions. This is

especially easy to see after switching to the co-SSP. Fig. 8 shows an example of

two non-isomorphic graphs with the same open neighborhood hypergraph.

This is an instance of the following general construction in Aigner and Tri-

esch [1]. Given an arbitrary graph G, take two copies of its vertex set, V =

{v1, . . . , vn} and V ′ = {v′
1
, . . . , v′n}, and define two graphs on the 2n vertices. Let

G +G consist of two disjoint copies of G, one on V and the other on V ′. Further-

more, let G ×G be a bipartite graph with vertex classes V and V ′, where vi and v′j
are adjacent if and only if vi and v j are adjacent in G. ThenN(G+G) = N(G×G).

Call a hypergraph H uniquely realizable if there is a unique G such that

H = N[G], that is, the SSP has a unique solution on H . Thus, any realizable

interval hypergraph is uniquely realizable.

The recognition problem of uniquely realizable hypergraphs belongs to the

complexity class US (abbreviated from Unique Solution) introduced by Blass and

Gurevich [11].

Problem 4.6. Is the unique realizability problem US-complete?

A related hardness result is obtained by Aigner and Triesch [1]: Given a con-

nected bipartite graph G, deciding whether or notN(G) = N(H) for some H � G

is NP-complete.

References

[1] M. Aigner and E. Triesch. Reconstructing a graph from its neighborhood lists. Com-

binatorics, Probability & Computing, 2:103–113, 1993.

[2] V. Arvind, B. Das, J. Köbler, and S. Kuhnert. The isomorphism problem for k-trees

is complete for logspace. Information and Computation, 217:1–11, 2012.

[3] V. Arvind, B. Das, J. Köbler, and S. Toda. Colored hypergraph isomorphism is fixed

parameter tractable. In Proc. 30th FSTTCS, volume 8 of LIPIcs, pages 327–337,

Dagstuhl, 2010. Leibniz-Zentrum für Informatik.

[4] V. Arvind and J. Torán. Isomorphism testing: Perspective and open problems. Bul-

letin of the EATCS, 86:66–84, 2005.

[5] L. Babai and P. Codenotti. Isomorhism of hypergraphs of low rank in moderately

exponential time. In Proc. of the 49th Annual IEEE Symposium on Foundations of

Computer Science, pages 667–676. IEEE Computer Society, 2008.

[6] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the 15-th

Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[7] L. Babel and S. Olariu. On the isomorphism of graphs with few P4s. In M. Nagl, ed-

itor, Proceedings of the 21st International Workshop on Graph-Theoretic Concepts

in Computer Science, volume 1017 of LNCS, pages 24–36. Springer, 1995.

[8] L. Babel, I. N. Ponomarenko, and G. Tinhofer. The isomorphism problem for di-

rected path graphs and for rooted directed path graphs. J. Algorithms, 21(3):542–

564, 1996.

[9] J. Bang-Jensen, J. Huang, and A. Yeo. Convex-round and concave-round graphs.

SIAM J. Discrete Math., 13(2):179–193, 2000.

[10] S. Benzer. On the topology of the genetic fine structure. Proceedings of the National

Academy of Sciences of the United States of America, 45(11):1607–1620, 1995.

[11] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and

Control, 55(1–3):80–88, 1982.

[12] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. J. Algorithms, 11(4):631–643, 1990.

[13] K. Booth and C. Colbourn. Problems polynomially equivalent to Graph Isomor-

phism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo, 1979.

[14] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,

1976.

[15] E. Boros, V. Gurvich, and I. E. Zverovich. Neighborhood hypergraphs of bipartite

graphs. Journal of Graph Theory, 58(1):69–95, 2008.

[16] L. Chen. Graph isomorphism and identification matrices: Parallel algorithms. IEEE

Trans. Parallel Distrib. Syst., 7(3):308–319, 1996.

[17] L. Chen. Graph isomorphism and identification matrices: Sequential algorithms. J.

Comput. Syst. Sci., 59(3):450–475, 1999.

[18] L. Chen. A selected tour of the theory of identification matrices. Theor. Comput.

Sci., 240(2):299–318, 2000.

[19] L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with

applications. J. Algorithms, 12(3):375–392, 1991.

[20] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear

time recognition of unit interval graphs. Inform. Proc. Lett., 55:99–104, 1995.

[21] A. Curtis, M. Lin, R. McConnell, Y. Nussbaum, F. Soulignac, J. Spinrad, and

J. Szwarcfiter. Isomorphism of graph classes related to the circular-ones property.

E-print, http://arxiv.org/abs/1203.4822v1, 2012.

[22] B. Das, J. Torán, and F. Wagner. Restricted space algorithms for isomorphism on

bounded treewidth graphs. In J.-Y. Marion and T. Schwentick, editors, Proceedings

of the 27th International Symposium on Theoretical Aspects of Computer Science,

volume 5 of LIPIcs, pages 227–238, Dagstuhl, 2010. Leibniz-Zentrum für Infor-

matik.

[23] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar Graph

Isomorphism is in Log-Space. In Proceedings of the 24th Annual IEEE Conference

on Computational Complexity, pages 203–214. IEEE Computer Society, 2009.

[24] S. Datta, P. Nimbhorkar, T. Thierauf, and F. Wagner. Graph Isomorphism for K3,3-

free and K5-free graphs is in Log-Space. In R. Kannan and K. N. Kumar, editors,

Proceedings of the IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, volume 4 of LIPIcs, pages 145–156,

Dagstuhl, 2009. Leibniz-Zentrum für Informatik.

[25] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper

circular-arc graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403,

1996.

[26] M. Dom. Algorithimic aspects of the consecutive-ones property. Bulletin of the

EATCS, 98:27–59, 2009.

[27] P. Duchet. Classical perfect graphs. An introduction with emphasis on triangulated

and interval graphs. Perfect graphs, Ann. Discrete Math. 21, 67–96 (1984)., 1984.

[28] S. Evdokimov and I. N. Ponomarenko. Isomorphism of coloured graphs with slowly

increasing multiplicity of jordan blocks. Combinatorica, 19(3):321–333, 1999.

[29] I. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the isomor-

phism of graphs of fixed genus (working paper). In Proceedings of the 12th Annual

ACM Symposium on Theory of Computing, pages 236–243, 1980.

[30] F. V. Fomin, J. Kratochvíl, D. Lokshtanov, F. Mancini, and J. A. Telle. On the

complexity of reconstructing H-free graphs from their Star Systems. Journal of

Graph Theory, 68(2):113–124, 2011.

[31] G. Gati. Further annotated bibliography on the isomorphism disease. J. Graph

Theory, 3:95–109, 1979.

[32] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357–369, 1974.

[33] M. C. Golumbic. Algorithmic graph theory and perfect graphs. 2nd ed. Amsterdam:

Elsevier, 2004.

[34] M. Grohe. Isomorphism testing for embeddable graphs through definability. In

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages

63–72, 2000.

[35] M. Grohe. From polynomial time queries to graph structure theory. Commun. ACM,

54(6):104–112, 2011.

[36] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs

with excluded topological subgraphs. In Proceedings of the 44th Annual

ACM Symposium on Theory of Computing, 2012. To appear. Preprint at

http://arxiv.org/abs/1111.1109.

[37] M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a

game. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Proceedings

of the 33rd International Colloquium on Automata, Languages and Programming,

Part I, volume 4051 of LNCS, pages 3–14. Springer, 2006.

[38] F. Harary and T. A. McKee. The square of a chordal graph. Discrete Mathematics,

128(1–3):165–172, 1994.

[39] J. Hopcroft and R. Tarjan. A V2 algorithm for determining isomorphism of planar

graphs. Inf. Process. Lett., 1:32–34, 1971.

[40] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs (preliminary report). In Proceedings of the 6th Annual ACM Symposium on

Theory of Computing, pages 172–184, 1974.

[41] W.-L. Hsu. O(m · n) isomorphism algorithms for circular-arc graphs and circle

graphs. In R. Kannan and W. R. Pulleyblank, editors, Proceedings of the 1st In-

teger Programming and Combinatorial Optimization Conference, pages 297–311.

University of Waterloo Press, 1990.

[42] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrangements. Theo-

retical Computer Science, 296(1):99–116, 3 2003.

[43] B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph

isomorphism. J. Comput. Syst. Sci., 66(3):549–566, 2003.

[44] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwarcfiter. Linear

time recognition of Helly circular-arc models and graphs. Algorithmica, 59(2):215–

239, 2 2011.

[45] K.-I. Kawarabayashi and B. Mohar. Graph and map isomorphism and all polyhedral

embeddings in linear time. In Proc. of the 40th Ann. ACM Symp. on Theory of

Computing, pages 471–480, 2008.

[46] M. Klawe, D. Corneil, and A. Proskurowski. Isomorphism testing in hookup classes.

SIAM J. Algebraic Discrete Methods, 3:260–274, 1982.

[47] P. N. Klein. Efficient parallel algorithms for chordal graphs. SIAM J. Comput.,

25(4):797–827, 1996.

[48] J. Köbler. On graph isomorphism for restricted graph classes. In A. Beckmann,

U. Berger, B. Löwe, and J. V. Tucker, editors, Logical Approaches to Computational

Barriers, Proceedings of the 2nd Conference on Computability in Europe, volume

3988 of LNCS, pages 241–256. Springer, 2006.

[49] J. Köbler, S. Kuhnert, B. Laubner, and O. Verbitsky. Interval graphs: Canonical

representations in Logspace. SIAM J. on Computing, 40(5):1292–1315, 2011.

[50] J. Köbler, S. Kuhnert, and O. Verbitsky. Solving the canonical representation

and star system problem for proper circular-arc graphs in logspace. E-print,

http://arxiv.org/abs/1202.4406, 2012.

[51] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Struc-

tural Complexity. Progress in Theoretical Computer Science. Birkhäuser, 1993.

[52] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex

set number. In H. Kaplan, editor, Proc. of the 12th Scandinavian Symposium and

Workshops on Algorithm Theory, volume 6139 of LNCS, pages 81–92. Springer,

2010.

[53] F. Lalonde. Le probleme d’etoiles pour graphes est NP-complet. Discrete Mathe-

matics, 33(3):271–280, 1981.

[54] B. Laubner. Capturing polynomial time on interval graphs. In Proceedings of the

25th Annual IEEE Symposium on Logic in Computer Science, 2010.

[55] M. C. Lin and J. L. Szwarcfiter. Characterizations and recognition of circular-arc

graphs and subclasses: A survey. Discrete Mathematics, 309(18):5618–5635, 2009.

[56] S. Lindell. A logspace algorithm for tree canonization. In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing, pages 400–404, 1992.

[57] G. Lueker and K. Booth. A linear time algorithm for deciding interval graph iso-

morphism. J. ACM, 26(2):183–195, 1979.

[58] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[59] E. M. Luks. Hypergraph isomorphism and structural equivalence of boolean func-

tions. In J. S. Vitter, L. L. Larmore, and F. T. Leighton, editors, Proc. of the 31st

Ann. ACM Symposium on Theory of Computing, pages 652–658. ACM, 1999.

[60] G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of

the 12th Annual ACM Symposium on Theory of Computing, pages 225–235, 1980.

[61] G. L. Miller and J. H. Reif. Parallel tree contraction. Part 2: Further applications.

SIAM J. Comput., 20(6):1128–1147, 1991.

[62] J. Moon and L. Moser. On cliques in graphs. Isr. J. Math., 3:23–28, 1965.

[63] I. Ponomarenko. The isomorphism problem for classes of graphs that are invari-

ant with respect to contraction. In Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.

Steklov., 174 (Teor. Slozhn. Vychisl. 3), pages 147–177. LOMI, 1988. Translation

from Russian in J. Soviet Math. 55(2):1621–1643 (1991).

[64] R. C. Read and D. G. Corneil. The graph isomorphism disease. J. Graph Theory,

1:339–363, 1977.

[65] J. Reif. Symmetric complementation. J. ACM, 31(2):401–421, 1984.

[66] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[67] F. Roberts. Indifference graphs. Proof Tech. Graph Theory, Proc. 2nd Ann Arbor

Graph Theory Conf. 1968, 139-146 (1969)., 1969.

[68] P. Schweitzer. Isomorphism of (mis)labeled graphs. In Proc. of the 19th Ann. Euro-

pean Symposium on Algorithms, volume 6942 of LNCS, pages 370–381. Springer,

2011.

[69] J. Spinrad. Efficient graph representations. Number 19 in Field Institute Mono-

graphs. AMS, 2003.

[70] S. Toda. Computing automorphism groups of chordal graphs whose simplicial com-

ponents are of small size. IEICE Transactions, 89-D(8):2388–2401, 2006.

[71] J. Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–

1108, 2004.

[72] J. Torán and F. Wagner. The complexity of planar graph isomorphism. Bulletin of

the EATCS, 97:60–82, 2009.

[73] A. Tucker. Matrix characterizations of circular-arc graphs. Pac. J. Math., 39:535–

545, 1971.

[74] R. Uehara. Simple geometrical intersection graphs. In S.-I. Nakano and M. S.

Rahman, editors, Proceedings of the 2nd International Workshop on Algorithms and

Computation, volume 4921 of LNCS, pages 25–33. Springer, 2008.

[75] R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal

bipartite graphs and strongly chordal graphs. Discrete Applied Mathematics,

145(3):479–482, 2005.

[76] K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for

graphs of bounded distance width. Algorithmica, 24(2):105–127, 1999.

[77] V. Zemlyachenko, N. Kornienko, and R. Tyshkevich. Graph isomorphism problem.

J. Sov. Math., 29:1426–1481, 1985.

❇✉❧❧❡$✐♥ ♦❢ $❤❡ ❊❆❚❈❙ ♥♦ ✶✵✼✱ ♣♣✳ ✼✷➊✾✹✱ ❏✉♥❡ ✷✵✶✷

©❝
❊✉;♦♣❡❛♥ ❆==♦❝✐❛$✐♦♥ ❢♦; ❚❤❡♦;❡$✐❝❛❧ ❈♦♠♣✉$❡; ❙❝✐❡♥❝❡

T D C C

P F

Department of Computer Science, University of Crete

P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and

Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)

N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr

P STM

Tim Harris

Microsoft Research

tharris@microsoft.com

Aleksandar Dragojević

I&C, EPFL

aleksandar.dragojevic@epfl.ch

Abstract

In this paper we examine the use of “mini” transactions. An implementation

of mini-transactions supports small sequences of memory accesses as atomic

transactions (perhaps 1–4 accesses). When building a shared memory data

structure using mini transactions, the programmer must either stay within

the limits of a single mini transaction, or split the operation across a series

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✼✸

of mini transactions. Mini transactions therefore provide a greater degree

of atomicity than single-word compare and swap (CAS), but they do not

provide the full features of a general-purpose transactional memory (TM).

We illustrate how hashtables and skip lists can be built over the SpecTM

API for mini transactions. We discuss the advantages and disadvantages

of the SpecTM API over a general-purpose TM. To address some of these

limitations, we discuss techniques for integrating SpecTM with a general-

purpose STM.

1 Introduction

In this paper we examine the use of “mini” transactions to implement shared-

memory hashtables and skip lists. In this approach, an operation on a data struc-

ture is split across a series of short transactions, rather than using a single trans-

action encompassing the entire operation. There are several reasons for studying

the use of mini transactions:

First, practical implementations of hardware transactional memory

(HTM [17]) limit the size of transactions. Some proposals, such as AMD

ASF [5], provide a guarantee that a transaction that follows various programming

rules will be able to commit eventually if it accesses only 1–4 locations. Recent

HTM implementations do not provide such a guarantee [7, 22]. However,

irrespective of whether or not a guarantee is given, it is likely that shorter

transactions will be more likely to commit than longer ones.

The second reason for studying mini transactions is that, in recent work, we

showed that implementations of data structures using mini transactions can per-

form well [10]. We showed how parts of the implementation could be special-

ized in cases such as transactions that access a small fixed number of locations.

Our preliminary results suggested that data structures built using this system were

much faster and more scalable than those built using a general-purpose STM sys-

tem (we used one based on SwissTM [9] and the STM described by Spear et

al. [25]).

Finally, Attiya showed recently that, under various assumptions, a series of

short transactions can be more efficient than a single long transaction [1]. At-

tiya’s work derived lower bounds on the operations that need to be performed

by an STM implementation, given assumptions about the progress-properties and

safety-properties that the STM should satisfy.

In Section 2 we review the SpecTM API and describe, in outline, the imple-

mentation techniques that we use. We designed the SpecTM API to let us stream-

line much of a traditional STM system’s book-keeping—the result is an API that

is more cumbersome to use than a general-purpose STM, but which still provides

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✼✹

// Transaction management operations

void Tx_Start(TX_RECORD *t);
void Tx_Abort(TX_RECORD *t);
bool Tx_Commit(TX_RECORD *t);
bool Tx_Validate(TX_RECORD *t);

// Data access operations

Ptr Tx_Read(TX_RECORD *t, Ptr *addr);

void Tx_Write(TX_RECORD *t, Ptr *addr, Ptr val);

Figure 1: A traditional STM interface (pseudo-code).

the key abstraction of multi-word atomic memory accesses.

In Sections 3–4 we illustrate the use of SpecTM in practice in implementing a

hashtable and a skip list. We take an informal approach in this paper. We aim to

illustrate the use of SpecTM through examples, but we do not attempt to quantify

exactly how much easier SpecTM is to use than single-word CAS, or exactly

how much more difficult SpecTM is to use than a general-purpose TM. Based on

these examples, we discuss the difficulties that we have encountered in using the

SpecTM API (Section 5).

In Section 6 we discuss how SpecTM can be integrated with general-purpose

TM. An advantage of such integration is that SpecTM can be used to accelerate

the common cases in a data structure’s implementation. General-purpose TM can

be used as a fall-back for cases whose performance is not critical, or for cases

which appear impractical to split into mini transactions. The main challenge is

integrating the conflict detection algorithms used in different TM systems—some

techniques from existing software-hardware hybrid TM systems can be applied.

2 Programming Models

Figure 1 sketches the kind of interface typically exposed by general-purpose STM

systems. There are operations to start transactions, abort transactions, and to com-

mit them. If Tx_Commit returns true then we say that the transaction has “suc-

ceeded”, and its effects appear to take place atomically at some point during its

execution. Otherwise, Tx_Commit returns false, we say that the transaction has

“failed”, and the transaction’s effects are not made visible to other threads. There

is a validation operation to detect whether or not a transaction has already experi-

enced a conflict. There are operations to read a memory location, and to update a

memory location with a new value. (For brevity we focus on an interface in which

all of the locations read and written contain pointers.)

Note that, throughout the paper, we study implementations that provide only

weak isolation [3], meaning that there is no conflict detection between transac-

tional and non-transactional memory accesses. This is sufficient to implement

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✼✺

programming models that distinguish between transactional and non-transaction

locations (e.g., STM-Haskell [14]). Alternative programming models are often

proposed, such as ones that allow privatization idioms. Existing mechanisms

could be used to support such models over the basic systems we describe here

(Harris et al. survey many techniques [15]).

Although TM interfaces such as Figure 1 are widespread, they can be seen as

one option in a broader set of alternative abstractions for writing atomic operations

on shared memory. One possible characterization of these abstractions is in terms

of the following properties:

• Size—Are operations of unbounded size permitted, or is there a maximum

size? General-purpose TM is unbounded, as are multi-word compare-and-

swap operations (CASN). “Strong” LL/SC is unbounded. A CAS operation

has a bound of 1. Practical implementations of LL/SC have a bound of 1.

DCAS has a bound of 2.

• Dynamic access—Can the locations to access be selected dynamically: i.e.,

selecting the next location to access based on the values seen in previous

locations. Recent STM systems support dynamic accesses. CAS, DCAS,

and CASN, support only static accesses—that is, the entire set of locations

to access is supplied as a parameter to the operation. Shavit and Touitou’s

original STM supported only static accesses [24].

• Inconsistency hidden—Does the programmer have to consider the possi-

bility of seeing a mutually inconsistent view of a set of locations? Alter-

natively, does the abstraction provide a property such as opacity [12] or

TMS1 [8] that precludes this? HTM designs typically hide inconsistency.

Many STM designs do, whereas others do not. The question does not arise

with many CAS, DCAS, and CASN abstractions which provide only a suc-

cess/failure response, rather than a snapshot of the locations accessed.

• Fallback required—Can the programmer use the abstraction without need-

ing to write alternative code using a different abstraction? Best-effort HTM

systems do not guarantee that any transaction will ever commit successfully

(even if the transaction is short and does not experience contention). Conse-

quently, an alternative code path is needed—e.g., based on locking, or based

on STM. Typical STM systems do not need a fallback code path.

Figure 2 compares the properties of various practical implementations of pro-

gramming abstractions along these axes. Concretely, for HTM, we consider a

best-effort system. Note that, the size in this table is listed as unbounded (because

the API does not prevent unbounded-size transactions from being written), but a

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✼✻

Best-effort
CAS DCAS CASN STM HTM SpecTM

Size 1 2 n n n 4
Dynamic access n/a Static Static Dynamic Dynamic Dynamic

Inconsistency hidden n/a n/a n/a Usually Yes No
Fallback required No No No No Yes No

Figure 2: Comparison of typical implementations of different abstractions.

fallback is required because a best-effort implementation is not required to be able

to run any specific size of transaction successfully. Figure 2 also characterizes the

behavior of our SpecTM system for writing mini transactions.

Unlike general-purpose STM, SpecTM supports only a limited number of

memory accesses within a single transaction (4, in the current implementation).

Unlike CASN, it provides a dynamic interface.

Unlike many STM implementations, SpecTM exposes inconsistent views of

memory to the programmer. To prevent possible problems that could result

from execution with inconsistent reads, SpecTM includes functions that allow

the programmer to explicitly check for the inconsistencies if needed. Further-

more, some implementation strategies, such as write-locking on reads in short

read-write transactions, might guarantee consistency of reads for subsets of the

SpecTM API [10].

Unlike best-effort HTM, or bounded-sized HTM, a program using SpecTM

does not require a fallback path.

2.1 SpecTM

Our earlier paper expands on the rationale for designing SpecTM, and for provid-

ing this combination of features [10]. In outline, the overriding goal is to help

us build high-performance implementations on current multi-socket multi-core

shared-memory machines. Figure 3 shows the current SpecTM API:

Transactionally-managed locations are held in TmPtr structures. Section 2.2

discusses how different SpecTM implementations use different concrete repre-

sentations for a TmPtr. However, from the programmer’s viewpoint, a TmPtr

encapsulates a pointer-typed value.

The Tx_Single_* functions perform transactions that access a single loca-

tion: either read, write, or compare-and-swap. These accesses synchronize cor-

rectly with concurrent SpecTM transactions. Using a separate interface for these

operations allows the implementation to optimize this frequent special case (e.g.,

avoiding initializing a transaction record).

The Tx_RW_R* operations are used for transactions that read from a series

of locations, and then write new values to them all. Tx_RW_R1 starts a trans-

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✼✼

// Single read/write/CAS transactions:

Ptr Tx_Single_Read(TmPtr *addr);

void Tx_Single_Write(TmPtr *addr, Ptr newVal);
Ptr Tx_Single_CAS(TmPtr *addr, Ptr oldVal, Ptr newVal);

// Read-write short transactions:

Ptr Tx_RW_R1(TX_RECORD *t, TmPtr *addr_1);

Ptr Tx_RW_R2(TX_RECORD *t, TmPtr *addr_2);

...

bool Tx_RW_1_Is_Valid(TX_RECORD *t);
bool Tx_RW_2_Is_Valid(TX_RECORD *t);
...

void Tx_RW_1_Commit(TX_RECORD *t, Ptr val1);
void Tx_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);

...

void Tx_RW_1_Abort(TX_RECORD *t);
void Tx_RW_2_Abort(TX_RECORD *t);
...

// Read-only short transactions:

Ptr Tx_RO_R1(TX_RECORD *t, TmPtr *addr_1);

Ptr Tx_RO_R2(TX_RECORD *t, TmPtr *addr_2);

...

bool Tx_RO_1_Is_Valid(TX_RECORD *t);
bool Tx_RO_2_Is_Valid(TX_RECORD *t);
...

void Tx_RO_1_Abort(TX_RECORD *t);
void Tx_RO_2_Abort(TX_RECORD *t);
...

// Commit combined read-only & read-write transactions:

bool Tx_RO_1_RW_1_Commit(TX_RECORD *t, Ptr val1);
bool Tx_RO_1_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);

...

// Upgrade a location from RO to RW:

bool Tx_Upgrade_RO_1_To_RW_2(TX_RECORD *t);
...

Figure 3: SpecTM API for short transactions (pseudo-code).

action, and performs its first read. Tx_RW_R2 performs its second read, and

so on. Using explicit sequence numbers on the operations avoids the need for

the SpecTM implementation to track the current size of the read-write set. The

Tx_RW_*_Is_Valid functions validate a transaction that has performed the speci-

fied number of reads. The Tx_RW_*_Commit functions commit such a transaction,

taking the new values to store at each of the locations accessed (e.g., taking 2 val-

ues in a 2-word transaction). This API forces all of a transaction’s writes to be

deferred until its commit point (allowing the implementation to be streamlined

because a read does not need to consult a log of preceding writes).

The Tx_RO_* operations manage read-only transactions, in a similar manner

to read-write transactions. A single transaction may mix the Tx_RO_* operations

for the locations that it only reads, and the Tx_RW_* operations for the locations

that it both reads and writes. The two sets of locations must be disjoint. A set

of commit functions with names such as Tx_RO_x_RW_y_Commit is provided to

commit these transactions: x refers to the number of locations read, and y to the

number of locations written. As with the Tx_RW_*_Commit functions, the values

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✼✽

to write are supplied to the commit operation.

Finally, if a transaction wishes to “upgrade” a location from read-only access

to read-write access, then the function Tx_Upgrade_RO_x_To_RW_y function in-

dicates that index x amongst the transaction’s existing reads has been upgraded

to form index y in its writes—x may be any of the locations read previously, and

y must be the next write index. Aside from locations that are upgraded, each

Tx_RW_R* call and Tx_RO_R* call must access a distinct address.

To illustrate the use of these operations, a double-compare single-swap opera-

tion can be implemented as follows:

bool DCSS(TmPtr *a1, TmPtr *a2,
Ptr o1, Ptr o2, Ptr n1) {

TX_RECORD t;

restart:

if (Tx_RO_R1(&t, a1) == o1 &&
Tx_RO_R2(&t, a2) == o2 &&

Tx_Upgrade_RO_1_To_RW_1(&t)) {

if (Tx_RO_2_RW_1_Commit(&t, n1)) return true;
} else if (Tx_RO_2_Is_Valid(&t)) return false;
goto restart;

}

The DCSS function reads from the two locations supplied (a1, a2). If the values

match those expected (o1, o2), then the first access is upgraded to a read-write

access, and the new value (n1) written during commit. The transaction is repeated

until either the commit succeeds, or a valid mismatch is seen.

2.2 SpecTM Implementations

We have built three variants of SpecTM. They each implement the interface in

Figure 3, but they differ in how a TmPtr is represented:

SpecTM-ORec. SpecTM-ORec follows the design of many general-purpose

STMs in using a table of “ownership records” (ORecs) to hold the meta-data used

by the STM system. A hash function maps heap addresses onto slots in a fixed-

sized table of ORecs. This approach allows the STM’s meta-data to be kept com-

pletely separate from the application’s data. A TmPtr contains simply an ordinary

pointer: the application’s data structures do not need to be modified. A downside

of this approach is that each transactional load will touch two cache lines: one

to load the data, and a second to load the meta-data. Figure 4(a) illustrates this

structure.

SpecTM-TVar. SpecTM-TVar follows the approach of STM-Haskell [14] by

limiting the pointers passed to the STM functions to be references to specific

“TVar” structures. Each TmPtr is a two-word TVar, holding a piece of STM meta-

data alongside the piece of application data that it manages. With care, this allows

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✼✾

Application data Ownership record table

W1

W2

W3

W4

...

Version / Owner L

Version / Owner L

...

(a) SpecTM-ORec: Meta-data held in a table of

ownership records (ORecs), indexed by a hash function.

W1 Version / Owner L

W2 Version / Owner L

W3 Version / Owner L

W4 Version / Owner L

TVars, incorporating application data and STM meta-data

(b) SpecTM-TVar: Meta-data co-located

with application data in TVars.

W1

W2

W3

W4

Combining lock-bits with application data

L

L

L

L

(c) SpecTM-LB: One lock bit of meta-data

held in each data item.

Figure 4: Organization of STM meta-data in variants of SpecTM.

both words to be held on the same cache-line. However, it requires that an appli-

cation’s data structure be changed to accommodate the extra words. Figure 4(b)

illustrates this scheme.

SpecTM-LB. SpecTM-LB reduces the meta-data used by the STM down to a

single “lock bit” held in the same memory word as the application data that it

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✽✵

controls1. A TmPtr is a single word, within which this lock bit is held as the LSB.

Figure 4(c) illustrates this structure. Using a single lock bit, in place of a TVar or

ORec, reduces the memory consumption of the system.

However, in order for an algorithm using SpecTM-LB to be correct, the pro-

grammer must be careful about the structure of the transactions that are used: (i) at

most one “normal” location can be accessed by Tx_RO_* operations, (ii) any num-

ber of locations can be accessed via Tx_RW_* operations, and (iii) any number of

additional read-only locations can be accessed by Tx_RO_* operations provided

that these locations satisfy a “non-repeated value” property (NRV).

In order to satisfy NRV, the program must ensure that any particular value

v is stored into a each location x at most once between the start and end of

any transaction. This might be satisfied if v contains a sequence number that is

incremented on each store to x (and is large enough to prevent wrapping), or if v

is a pointer to a dynamically allocated object that is placed in a data structure, and

then de-allocated using a mechanism such as those of Michael [21] and Herlihy et

al. [16]. (Forms of NRV property have been used to support multi-word atomic

snapshot algorithms, and to avoid A-B-A problems in lock-free algorithms. We

use the name NRV from Lev and Moir [19].)

Our earlier paper [10] examines the performance of these different implementa-

tions of SpecTM. For the data structures we have studied, SpecTM-LB performs

best, then SpecTM-TVar, then SpecTM-ORec. We believe this primarily reflects

the decreasing storage requirements, with SpecTM-LB requiring the least stor-

age, and requiring the fewest cache lines to be accessed. Conversely, SpecTM-LB

places the greatest burden on the programmer by requiring the programmer to

ensure that the NRV property is satisfied.

In the next two sections we illustrate the use of SpecTM to implement a

hashtable and a skip list (Sections 3–4). These two designs are both correct with

all of the SpecTM implementations, including SpecTM-LB. Then, in Section 5

we discuss some of the limitations of programming using SpecTM. In Section 6

we discuss how some of these limitations can be overcome by integrating SpecTM

with an general-purpose STM system.

3 Hashtable

In this section we illustrate the use of SpecTM to build a hash table. For brevity,

we simplify the data structure to store only integer values and to provide search,

insert, and delete operations. We also omit memory-management code from

1Note that the SpecTM-LB implementation is called “version-free” or “value-based” in our

earlier paper [10].

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✽✶

the pseudo-code—many conventional techniques are available, as discussed in our

earlier paper [10].

The overall approach is based on Fraser’s design [11]. We assume a fixed size

array of buckets, each of which is the head of a singly linked list of elements. One

value is stored in each element. The lists can be of unbounded size. Consequently,

depending on the loading of the hash table, we cannot rely on using a single

SpecTM transaction to traverse an entire list.

Figure 5 provides pseudo-code. The hash table is implemented as an array of

TmPtrs (line 3) that point to the sorted lists of nodes (line 5). Each node stores

a single integer value and the TmPtr to the next node in the list. The hash table

code internally uses an iterator that stores the address of the pointer to the current

node and the address of the current node during the iteration (line 9).

We structure each list using the “mark bit” technique [13]. With this tech-

nique, we reserve a bit within the “next” pointer of each node in the list, and

if this bit is set then the node itself is considered to have been deleted from the

lists. Comparing the SpecTM implementation of the hash table with Fraser’s orig-

inal lock-free design, the main benefit from using SpecTM is in the handling of

deletions. SpecTM lets us simplify deletion by using a 2-word transaction to

atomically (i) mark a node as deleted, and (ii) unlink the node from the list. This

atomicity avoids the need for concurrent traversals of the list to consider nodes

that have been marked as deleted, but not yet excised from the list. In more detail:

The main internal function of the hashtable is the function for searching for a

node with a specified value (line 14). The search function is invoked by all three

public hashtable functions. The arguments of the function are used to pass the

identifier of the node that is being searched for and the reference of the iterator

used to return the position of the node. The search first locates the bucket the

element belongs to and stores the address of the bucket list head into the iterator

(line 15). Next, it traverses the bucket list by following the forward pointers of

the nodes in the list (line 17). While traversing the list, the search does not need

to consider marked nodes (line 18). The search can only access a marked node

if it already held the reference to the node before the node was marked because

the node gets marked and removed in the same transaction. This means that it is

safe to just read through the marked pointers as they can only be marked by the

concurrent remove operation. The traversal of the list stops when either the end of

the list is reached or the element with the higher or equal value is found (line 19).

To check whether the hash table contains a particular value (line 25) it is

enough to search for the value (line 27). If the search stops before reaching the end

of the list and the element has the value that is being looked for then the function

returns true. Otherwise, the element is not in the hash table and it returns false.

There is no need to check whether the node returned by the search is marked or

not. If the node is marked and the lookup returns true it simply means that it is

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✽✷

1 const int BUCKETS = 1024;
2 struct Hashtable {
3 TmPtr buckets[BUCKETS];

4 };

5 struct Node {
6 int id;
7 TmPtr next;

8 };

9 struct Iterator {
10 TmPtr *prev;

11 Ptr curr;

12 };

13

14 void Search(Hashtable *htable, int id, Iterator *it) {
15 it->prev = GetBucket(htable, id);

16 while(true) {
17 it->curr = Tx_Single_Read(it->prev);

18 it->curr = Unmark(it->curr);

19 if(it->curr == NULL || it->curr->id >= id) {
20 break;
21 }

22 it->prev = &(it->curr->next);

23 }

24 }

25 bool Contains(Hashtable *htable, int id) {
26 Iterator it;

27 Search(htable, id, &it);

28 return (it.curr != NULL && it.curr->id == id);
29 }

30 bool Add(Hashtable *htable, Node *node) {
31 Iterator it;

32 retry:

33 Search(htable, data->id, &it);

34 if(it.curr != NULL && it.curr->id == node->id) {
35 return false;
36 }

37 TmPtrWrite(&(node->next), it.curr);

38 if(Tx_Single_CAS(it.prev, it.curr, node) != it.curr) {
39 goto retry;
40 }

41 return true;
42 }

43 bool Remove(Hashtable *htable, int id) {
44 Iterator it;

45 TX_RECORD t;

46 retry:

47 Search(htable, id, &it);

48 if(it.curr == NULL || it.curr->id != id) {
49 return false;
50 }

51 retry_tx:

52 Ptr prevNext = Tx_RW_R1(&t, it.prev);

53 if(prevNext != it.curr) {
54 Tx_RW_1_Abort(&t);

55 goto retry;
56 }

57 TmPtr *nextPtr = &(it.curr->next);

58 Ptr nextVal = Tx_RW_R2(&t, nextPtr);

59 if(!Tx_RW_2_Is_Valid(&t)) {
60 goto retry_tx;{
61 }

62 Tx_RW_2_Commit(&t, nextVal, Mark(nextVal));

63 return true;
64 }

Figure 5: Hashtable algorithm using SpecTM.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✽✸

linearized before the concurrent remove operation.

To add a new element (line 30), a search is first performed for the node with

the same value as the element being added (line 33). If the node with the same

value is found (line 34), the new element is not added to the hash table. If the

element is not found, the iterator points at the successor of the new element. The

next pointer of the new node is updated (line 37) and the SpecTM compare-and-

swap transaction is executed to try to link the new element into the list (line 38).

If the compare-and-swap does not succeed the whole operation is retried. There

is no need to explicitly check whether the state of the nodes where the search

stopped has changed. If it has, the compare-and-swap will fail and the operation

will be restarted.

To remove a node with a particular value (line 43), a search is first performed

to find the node to remove (line 47). If the node is not in the hash table, the remove

returns false immediately, indicating that the operation could not be performed.

If the element is found, a SpecTM transaction is executed to unlink the node that

is being removed and to mark it atomically (lines 51–62). The transaction first

re-reads the pointer to the node to remove (line 52) and checks whether it has

changed. If it has (line 53), that means that the state of the nodes has changed

since the search and the whole operation is restarted (line 55). Otherwise, the

transaction reads the next pointer of the node that is being removed (line 58). If

the transaction aborts at this point (line 59) the SpecTM transaction is restarted

(line 60). If the read is successful, then the transaction can commit the new values

of the previous and removed nodes’ next pointers (line 62).

4 Skip List

The pseudo-code of the skip list algorithm is shown in Figure 6. Each skip list

node stores an integer value, and an array of forward pointers. The array holds

one pointer for each level of the skip list the node belongs to (line 2). The skip

list is represented by a head node that points to the first node in each level of the

list (line 7). To iterate along the list, a window of pointers for all skip list levels is

used (line 10).

Similarly to the hashtable, we structure skip list using the “mark bit” tech-

nique, as in Fraser’s lock-free skip list [11]. When a node is removed from

the list, “mark bits” at all levels of the node are set, indicating that the node is

deleted. Comparing the SpecTM implementation of the skip list with Fraser’s

original lock-free design, the main benefit from using SpecTM is in the handling

of deletions. SpecTM lets us simplify deletion by using a transaction to atomi-

cally (i) mark a node as deleted, and (ii) unlink it from the list. Similarly to the

hashtable, this atomicity avoids the need for concurrent traversals of the list to

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✽✹

1 const int MAX_LEVEL = 32;
2 struct Tower {
3 int id;
4 TmPtr next[MAX_LEVEL]

5 int lvl;
6 };

7 struct Skiplist {
8 Tower head;

9 };

10 struct Iterator {
11 Tower *prev[MAX_LEVEL];

12 Tower *next[MAX_LEVEL];

13 };

14

15 Tower *Skiplist::Search(int id, Iterator *it, int lvl) {
16 Tower *curr, *prev = &head;

17 while(--lvl >= 0) {
18 while(true) {
19 curr = Tx_Single_Read(&(prev->next[lvl]));

20 curr = Unmark(curr);

21 if(curr == NULL || curr->id >= id)
22 break;
23 prev = curr;

24 }

25 it->prev[lvl] = prev;

26 it->next[lvl] = curr;

27 }

28 return curr;
29 }

30 bool Skiplist::Add(Tower *data) {
31 Iterator it;

32 bool restartFlag;
33 restart:

34 int headLvl = PtrToInt(Tx_Single_Read(&head.lvl));
35 Tower *curr = Search(data->id, &it, headLvl);

36 if(curr != NULL && curr->id == id)
37 return false;
38 data->lvl = GetRandomLevel();

39 if(data->lvl == 1)
40 restartFlag = !AddLevelOne(data, &it))

41 else
42 restartFlag = !AddLevelN(data, &it);

43 if(restartFlag)
44 goto restart;
45 return true;
46 }

47 bool Skiplist::AddLevelOne(Tower *data, Iterator *it) {
48 TmPtrWrite(&(data->next[0]), it->next[0]);

49 return Tx_Single_CAS(&iter->prev[0]->next[0],
50 it->next[0], data) == it->next[0];

51 }

52 bool Skiplist::AddLevelN(Tower *data, Iterator *it) {
53 bool ret;
54 STM_START_TX(); // Using general-purpose STM

55 int headLvl = STM_READ_INT(&(head.lvl));
56 if(data->level > headLvl) {
57 STM_WRITE_INT(&(head.lvl), data->level);

58 for(int lvl = headLvl;lvl < data->level;lvl++) {
59 it->prev[lvl] = head;

60 it->next[lvl] = NULL;

61 }

62 }

63 for(int lvl = 0;lvl < data->level;lvl++) {
64 Ptr nxt = STM_READ_PTR(&win->prev[lvl]->next[lvl]);

65 if(nxt != it->next[lvl]) {
66 ret = false;
67 STM_ABORT_TX();

68 }

69 STM_WRITE_PTR(&(it->prev[lvl]->next[lvl]), data);

70 TmPtrWrite(&(data->next[lvl]), win->next[lvl]);

71 }

72 ret = true;
73 STM_END_TX();

74 return ret;
75 }

Figure 6: Skiplist implementation using SpecTM.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✽✺

consider nodes that have been marked as deleted, but not yet excised from the

list. The skip list algorithm is further simplified as the atomicity of insert and re-

move operations eliminates races between a concurrent insertion and removal of

the same node: atomicity allows a node to be inserted/deleted at all levels as a sin-

gle atomic action. In contrast, Fraser’s lock-free skip list is further complicated by

handling partially-inserted/partially-deleted nodes, and ensuring correctness when

multiple operations are in progress on the same node at the same time. In more

detail:

The function for searching the skip list (line 15) traverses the nodes by reading

their forward pointers (line 19). It starts at the highest level in the skip list, moving

successively lower whenever the level would skip over the integer being sought.

The search function ignores deleted notes (line 20). The search terminates once it

reaches the bottom level.

Adding a new node (line 30) starts with a search for the value being inserted

(line 35). The skip list does not permit duplicate elements, so false is returned

if the value is found (line 36) Otherwise, the search returns an iterator that can

be used for the insertion. The level of the new node is generated randomly, with

the probability of node being assigned a level l equal to 1
2l . The node is then

inserted atomically into all of the lists up to this level. The nodes with level one are

inserted using a short specialized transaction (lines 40) and the nodes with higher

levels are inserted using an ordinary transaction (line 42). If the insertion does

not succeed due to the concurrent changes to the skip list, the whole operation is

restarted (line 44). Otherwise, the insert succeeds and true is returned to indicate

its success.

Removals proceed in a similar manner to insertions. The node is first located

using the search function. A single transaction is used to atomically mark the node

at all levels, and to remove it from all of the lists it belongs too. Removal of nodes

at level one is performed using a short specialized transaction, and the removal of

nodes with higher levels is performed using ordinary transactions.

These insertion and removal operations typify the way we use SpecTM. The

common cases are expressed using SpecTM transactions, and less frequent cases

are expressed with more general, but slower, ordinary transactions. If develop-

ers see the need to further improve performance, they can further specialize the

implementations.

5 Limitations of SpecTM

Broadly speaking, there are two difficulties when using SpecTM. First, there is

the difficulty of writing an operation using short transactions, as opposed to us-

ing transactions of arbitrary length. This is an algorithmic problem, and we do

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✽✻

not yet understand the trade-offs very well. Aspects of this problem might be

interesting to consider from a theoretical viewpoint, as well as in terms of ease-

of-programming.

Second, there is the difficulty of expressing short transactions correctly using

the SpecTM API: even if an algorithm has been decomposed correctly into a series

of short transactions, there is a risk that the more complex SpecTM API will admit

new kinds of error when writing mini transactions. The main difficulties we have

encountered are:

Sequencing. SpecTM requires operations to be invoked in the correct

sequence—e.g., Tx_RW_R1 should be called before Tx_RW_R2, and the

Tx_RW_*_Commit function that is called should match the number of data ac-

cesses that have been made. To detect sequencing bugs we need only track the

size of the transaction’s read-set and write-set, to ensure that the addresses in dif-

ferent elements in the sets are disjoint, and to check that an “upgrade” operation

is performed at most once on any location.

Note that the Tx_RO_*_Abort functions exist solely to enable this form of

sequencing check. These functions are empty in non-debug builds. However,

when debugging, they delimit the boundaries between SpecTM transactions and

their implementation resets the statistics maintained for sequence checks.

We have not yet built a tool for checking the use of the SpecTM API statically.

However, a number of aspects of the design of SpecTM should help here. First,

the correctness of a series of calls to the SpecTM API depends primarily on the

names of the function being called, and on the set of functions that have previously

been called. This means that a simple intra-procedural forwards data-flow analysis

should be sufficient for tracking most usage. Note that this tool would not check

the disjointness between the items in the read-set and write-set.

Validation. A more difficult aspect of the SpecTM API is the requirement to

include calls to the Tx_*_Is_Valid functions whenever it is necessary to ensure

that a transaction has seen a consistent view of memory. This dangers of working

with inconsistent data have been reported in many earlier STM systems [15]. In

part, these dangers led to the proposal for opacity as a correctness criteria for

transactional memory. Approaches taken in earlier systems have included implicit

validation as part of every transactional read [15], timestamp-based mechanisms

to eliminate some of these validation steps [23, 27], along with static analyses to

identify “safe” regions during which validation can be deferred [26]. For instance,

if a thread performs a series of independent reads then validation may be deferred

to the end of the sequence.

When programming using SpecTM, we rely on the programmer placing vali-

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✽✼

dation calls where necessary. Unfortunately, characterizing precisely what “where

necessary” means is not straightforward. There are two broad options:

• First, we could place a very strong requirement on the part of the program-

mer, and permit all Tx_RW_* and Tx_RO_* operations to return any value.

Validation must return false if the values returned by these operations do

not represent a consistent view of memory.

This definition allows a debug build to return “spurious” values which,

in the absence of validation, are likely to lead to crashes—for instance,

pointer-typed operations could probabilistically return addresses that are not

mapped to valid memory. This definition is reminiscent of “catch fire” se-

mantics for programs with data races (as in, for instance, the C/C++ mem-

ory model [4]). An advantage of this approach is that it provides a clear

definition to the programmer of the behavior of invalid programs, and it

makes it likely that crashes in debugging implementations of SpecTM will

identify missing validation operations.

Even with this definition, a programmer using SpecTM can still optimize

the placement of validation calls. For instance, a single validation call may

be used after a series of unrelated memory reads. Validation must be per-

formed before de-referencing a pointer read from within a transaction, or

before access an address computed from a value read.

• Second, we could define the semantics of Tx_RW_* and Tx_RO_* more

strongly, and constrain exactly what they should do in the presence of

invalidity—for instance, we might require that a value that was present in

the location at some time in the past is returned, or we might require that a

value present during the current transaction is returned.

This second style of definition may allow the programmer to use slightly

fewer validation operations, and hence obtain some performance improve-

ment.

A disadvantage of this approach is that the requirements on programmers

are less clear, and it seems more difficult to build checking tools. The crux

of the problem is distinguishing between cases in which validation has been

missed accidentally, from cases where validation has been omitted delib-

erately to exploit a particularly subtle optimization. It is unclear how to

distinguish these cases without a specification of the intended higher-level

behavior of the program.

There are many plausible definitions for the behavior of reads in invalid

transactions—in contrast, the extreme approaches of “catch fire” and “opac-

ity” are both relatively straightforward.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✽✽

We currently take the “catch fire” approach, and have transactions in debug builds

probabilistically appear invalid spuriously. We are not currently aware of any

optimization opportunities that we are missing through this approach.

Non-repeating values (NRV). The final difficulty we highlight with SpecTM

is the NRV property required of some locations in transactions in SpecTM-LB.

In effect, NRV is shifting the responsibility of managing version numbers from

the STM system to the programmer using the STM. A direct way to support NRV

would be for each value to include a version number field that is incremented upon

every write. This is typical of most STM algorithms, and SpecTM-LB’s support

for general NRV locations can be seen as a mechanism to exploit other forms of

non-re-use, rather than just using a version number.

We do not currently have a good way to test that a program’s use of memory

satisfies NRV. The approaches that we have considered seem prohibitively costly,

even for use in debugging builds. For instance, one could adapt the transactional

write operations to maintain a history log for each location, and arrange that each

SpecTM-LB transaction checks for re-use of values in these logs for the locations

that it has read from. The cost of logging and checking is likely to be very high.

It might be possible to adapt this approach to perform checking

probabilistically—either in terms of whether or not to log an update, or in terms

of whether or not to perform checks at commit-time. It is not yet clear if these re-

duced checks would be sufficient to catch re-use. Equally, it is not clear if even the

full checking regime would catch re-use bugs—it relies on spotting an occurrence

of re-use, and so will not be useful for detecting problems that occur rarely. A fur-

ther alternative would be to log additional information about the synchronization

between threads, and to use this to spot “near miss” occasions of re-use, where a

program contains a re-use bug, but where this is not witnessed by a SpecTM-LB

transaction in a given run.

6 Integration with General-Purpose TM

From a pragmatic viewpoint, the main way in which we address the limitations in

Section 5 is to enable inter-operation between transactions written with SpecTM

and transactions written through a general-purpose TM interface. This reduces

the amount of code that must be written using SpecTM: the programmer can

use SpecTM to optimize performance-critical transactions, and use the general-

purpose interface for code that is more complex.

Integration between SpecTM and a general-purpose TM can be implemented

either by having both TM systems manage disjoint sets of memory locations, or

by designing mechanisms to allow the two types of transaction to access the same

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✽✾

data correctly. In the former case, transactions written with SpecTM and with the

general-purpose STM can be composed in a manner similar to two-phase commit:

both transactions are first prepared for commit and, only after the prepare is suc-

cessful, they are committed together. If one of the transactions aborts, then the

other transaction gets aborted as well. In this manner the composite transaction

is also atomic. With this approach, the general-purpose transaction can benefit

from optimized implementations of data structures with SpecTM, but the data

structures cannot be implemented with a mix of specialized and general-purpose

transactions. The latter approach enables the programmer to have the specialized

and general-purpose transaction access the same data concurrently. For instance,

one could use a general-purpose transaction to re-size a hash table, while using

SpecTM transactions for the common cases of data accesses. We focus on the

latter form of inter-operability as it is more general and more interesting when

implementing concurrent data structures.

In SpecTM we use two kinds of specialization to attempt to streamline the

implementation: (i) the SpecTM API requires more work on the part of the soft-

ware using STM, in an attempt to reduce the work needed within the SpecTM

implementation, (ii) the representation of TmPtr structures in SpecTM-TVar and

SpecTM-LB attempts to reduce the space occupied by the TM meta-data.

The different TmPtr representations introduce different constraints on integra-

tion between SpecTM and a general-purpose STM. Concretely, we use a general-

purpose STM we refer to as “BaseTM”. This uses similar techniques to Swis-

sTM [9] and the STM described by Spear et al. [25].

SpecTM-ORec. Our SpecTM-ORec implementation uses the same protocol for

managing the ORecs as the BaseTM system. No additional work is required,

either on the SpecTM-ORec transactions, or on the BaseTM transactions.

SpecTM-TVar. SpecTM-TVar changes the way in which transactional data is

represented. This prevents BaseTM from being used directly on the same data:

the SpecTM transactions would be using ORecs held alongside the data in trans-

actional variables in TmPtr structures (Figure 4(b)), whereas the BaseTM trans-

actions would be using ORecs held in the usual ORec table (Figure 4(a)).

There are two main approaches for integrating SpecTM-TVar with general-

purpose transactions.

Hybrid-TM-style. The first approach is to build on earlier techniques for hy-

brid HTM/STM systems [18, 6]. In Hybrid-TM models, the HTM is used to

provide good performance, while an STM serves as a backup to handle situations

where the HTM could not execute the transaction successfully. This approach

may reduce the pressure on HTM implementations to provide features such as

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✾✵

long-running transactions, or conditional blocking.

Unfortunately, many Hybrid-TM techniques are not good fits for SpecTM. The

problem is that the SpecTM-TVar transactions would be required to monitor the

BaseTM transactions for conflicts (because the BaseTM transactions are unaware

of the TVars being used by SpecTM-TVar). This additional monitoring would

harm the performance of SpecTM transactions.

One hybrid technique that is practical to use is Lev et al.’s Phased TM system

(PhTM, [20]). Instead of requiring hardware transactions to check for conflicts

with concurrent software transactions, PhTM prevents HW and SW transactions

from executing concurrently. The PhTM system maintains a counter of currently-

executing SW transactions. Every HW transaction checks this counter, and if

non-zero, the HW transaction aborts itself. Since the counter is also read inside

the HW transaction, any subsequent modifications to this counter also trigger an

abort. This approach reduces overheads for HW transactions, but it results in

increased aborts (as discussed by Baugh et al. [2]): an overflow of even a single

HW transaction aborts all other concurrently executing HW transactions.

Haskell-STM-style. An alternative to a phased-TM system is to adapt the

BaseTM interface to use TVars. Unlike SpecTM, these general-purpose trans-

actions can access an unbounded number of locations, and they do not need to

provide sequence numbers on their accesses, or to distinguish read-only locations

from read-write locations. However, as with SpecTM-TVar, all of a transaction’s

data accesses must be to locations with associated TVars. With this interface, the

meta-data used by the STM system is the same as the meta-data used by SpecTM-

TVar.

Whether or not this approach is practical will depend on the setting. It seems

most palatable when writing new data structures using transactions: it requires

the representation of the data to be able to be adapted to include TVars, and so it

would be inappropriate for existing data structures, or those which are sometimes

used inside transactions and sometimes used outside.

SpecTM-LB. SpecTM-LB uses only a single lock bit within each of the loca-

tions managed by the STM. The problem now is not that SpecTM’s meta-data is

in a different place to BaseTM’s, but that the actual format of the meta-data is

different. Again, two approaches are possible:

Phased-TM. As with SpecTM-TVar, we can use the techniques of Lev et al. to

ensure that SpecTM-LB and BaseTM transactions do not run concurrently [20].

An advantage of this approach is that the only overhead on SpecTM-LB transac-

tions is to ensure that execution is in a “SpecTM phase”. A disadvantage is that, if

even a single thread wishes to use general-purpose transactions, then all SpecTM-

LB transactions must be prevented from running, irrespective of the data that they

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✾✶

are accessing.

Locked-by-Software. The intuition behind Phased-TM is that two different TM

systems can co-exist without shared conflict detection mechanisms so long as they

are separate in time. An alternative form of STM integration for SpecTM-LB is to

keep the locations managed by SpecTM separate in space from those managed by

BaseTM. That is, both kinds of STM can co-exist, so long as they are accessing

disjoint sets of locations.

If lock bits can be reserved in all transactional data, then these can be used

to control the separation between SpecTM-LB and BaseTM. If the bit is set then

either (i) the location is currently part of a current SpecTM transaction’s write set,

or (ii) the location is currently owned for writing by BaseTM. If the bit is clear,

then the location is available for reading by either kind of transaction.

This approach avoids intruding on the fast path of SpecTM-LB transactions

that run and commit without conflict—all of the locations that they encounter will

have the lock bit clear, and all of the additional work to integrate with BaseTM

will be on the existing slow-path for when the lock bit is set. Conversely, BaseTM

must ensure that it has ownership of all of the locations it is accessing by setting

the lock bit before accessing them.

The main complexity with this use of the lock bit is how to arrange for BaseTM

to release the lock bit in order to allow SpecTM-LB transactions to acquire it. Our

current design is:

• BaseTM eagerly acquires the lock bit when executing a transaction.

• BaseTM releases the lock bit only when requested by a SpecTM-LB trans-

action that wishes to access the same location.

• If a SpecTM-LB transaction finds that the lock bit is held by a BaseTM

transaction, then the thread running the SpecTM-LB transaction executes

a “dummy” BaseTM transaction on the location. The dummy transaction

synchronizes with other BaseTM transactions (ensuring no other writers

are present) before releasing the lock bit back to SpecTM-LB’s use.

This approach avoids repeated updates to the lock bit when a location is accessed

by a series of BaseTM transactions.

7 Discussion

In this paper we have discussed the design of the SpecTM interface, illustrated

its use in constructing shared memory data structures, and discussed some of

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✾✷

the shortcomings of SpecTM, along with techniques for integrating the different

forms of SpecTM with general-purpose STM systems.

The limitations in Section 5 all reflect additional requirements that are placed

on the programmer when using the SpecTM API rather than when using a tradi-

tional TM API. We believe that two of these limitations are relatively straightfor-

ward for the programmer to handle: The problem of sequencing the invocation of

SpecTM operations correctly is straightforward to check dynamically, and appears

relatively amenable to static analysis. The problem of calling validation functions

correctly follows the existing problem of correctly sandboxing programs using

TM systems without opacity in languages such as C/C++. In addition, in each of

these two cases, it seems likely that straightforward testing tools could check that

a program is constructed correctly, or that a compiler could target the SpecTM

API correctly for programs whose workloads are suitable.

However, it is unclear if the additional performance benefits of exploiting the

non-repeating value property (NRV) are sufficient for the additional complexity

in using SpecTM-LB. This is the one setting in which we do not have a good

checking tool (static or dynamic), and in which there seems to be a great risk of

programmers making accidental errors in their use of SpecTM. In future work we

would like to study this problem more closely—e.g., is it possible to provide a

sufficiently expressive set of “NRV-safe” abstractions that guarantee that the NRV

property will be satisfied, and is it possible to develop checking techniques that

are sufficiently lightweight to be used in practice?

References

[1] Hagit Attiya. Invited paper: The inherent complexity of transactional memory and

what to do about it. In Distributed Computing and Networking, volume 6522 of

Lecture Notes in Computer Science, pages 1–11. 2011.

[2] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protec-

tion to build a high-performance, strongly atomic hybrid transactional memory. In

ISCA ’08: Proc. 35th Annual International Symposium on Computer Architecture,

pages 115–126, June 2008.

[3] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties of transac-

tional memory atomicity semantics. Computer Architecture Letters, 5(2), November

2006.

[4] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory

model. In PLDI ’08: Proc. 2008 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 68–78, June 2008.

[5] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Mar-

tin Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✾✸

Marlier, and Etienne Riviere. Evaluation of AMD’s advanced synchronization facil-

ity within a complete transactional memory stack. In EuroSys ’10: Proc. 5th ACM

European Conference on Computer Systems, April 2010.

[6] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and

Dan Nussbaum. Hybrid transactional memory. In ASPLOS ’06: Proc. 12th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 336–346, October 2006.

[7] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with

a commercial hardware transactional memory implementation. In ASPLOS ’09:

Proc. 14th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 157–168, March 2009.

[8] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards for-

mally specifying and verifying transactional memory. Formal Aspects of Computing,

pages 1–31, 2012.

[9] Aleksandar Dragojević, Rachid Guerraoui, and Michał Kapałka. Stretching transac-

tional memory. In PLDI ’09: Proc. 2009 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 155–165, June 2009.

[10] Aleksandar Dragojević and Tim Harris. STM in the small: trading generality for

performance in software transactional memory. In EuroSys ’12: Proc. 7th European

conference on Computer systems, April 2012.

[11] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer

Laboratory, 2003. Also available as Technical Report UCAM-CL-TR-579.

[12] Rachid Guerraoui and Michał Kapałka. On the correctness of transactional memory.

In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 175–184, February 2008.

[13] Tim Harris. A pragmatic implementation of non-blocking linked-lists. In DISC ’01:

Proc. 15th International Conference on Distributed Computing, 2001.

[14] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon Peyton Jones. Composable

memory transactions. In PPoPP ’05: Proc. ACM Symposium on Principles and

Practice of Parallel Programming, June 2005. A shorter version appeared in CACM

51(8):91–100, August 2008.

[15] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd edition.

Morgan & Claypool, 2010.

[16] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Nonblock-

ing memory management support for dynamic-sized data structures. TOCS: ACM

Transactions on Computer Systems, 23(2):146–196, May 2005.

[17] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural sup-

port for lock-free data structures. In ISCA ’93: Proc. 20th Annual International

Symposium on Computer Architecture, pages 289–300, May 1993.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✾✹

[18] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony

Nguyen. Hybrid transactional memory. In PPoPP ’06: Proc. 11th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, March 2006.

[19] Yossi Lev and Mark Moir. Lightweight parallel accumulators using C++ templates.

In IWMSE ’11: Proc. 4th International Workshop on Multicore Software Engineer-

ing, 2011.

[20] Yossi Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased transactional memory.

In TRANSACT ’07: 2nd Workshop on Transactional Computing, August 2007.

[21] Maged M. Michael. Hazard pointers: safe memory reclamation for lock-free objects.

IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[22] James Reinders. Transactional synchronization in Haswell, February 2012. http:

//software.intel.com/en-us/blogs.

[23] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with

eager validation. In DISC ’06: Proc. 20th International Symposium on Distributed

Computing, volume 4167 of Lecture Notes in Computer Science, pages 284–298,

September 2006.

[24] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Proc.

14th ACM Symposium on Principles of Distributed Computing, pages 204–213, Au-

gust 1995.

[25] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A

comprehensive strategy for contention management in software transactional mem-

ory. In PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, pages 141–150, February 2009.

[26] Michael F. Spear, Virendra J. Marathe, William N. Scherer III, and Michael L. Scott.

Conflict detection and validation strategies for software transactional memory. In

DISC ’06: Proc. 20th International Symposium on Distributed Computing, Septem-

ber 2006.

[27] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai.

Code generation and optimization for transactional memory constructs in an unman-

aged language. In CGO ’07: Proc. International Symposium on Code Generation

and Optimization, pages 34–48, March 2007.

❇✉❧❧❡$✐♥ ♦❢ $❤❡ ❊❆❚❈❙ ♥♦ ✶✵✼✱ ♣♣✳ ✾✺➊✶✷✼✱ ❏✉♥❡ ✷✵✶✷

©❝
❊✉;♦♣❡❛♥ ❆==♦❝✐❛$✐♦♥ ❢♦; ❚❤❡♦;❡$✐❝❛❧ ❈♦♠♣✉$❡; ❙❝✐❡♥❝❡

The Logic in Computer Science Column

by

Yuri Gurevich

Microsoft Research

One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

Classes of Algorithms:

Formalization and Comparison

Serge Grigorieff

LIAFA, CNRS & Université Paris 7

seg@liafa.jussieu.fr

Pierre Valarcher

LACL, Université Paris-Est

pierre.valarcher@u-pec.fr

Abstract

We discuss two questions about algorithmic completeness (in the opera-

tional sense). First, how to get a mathematical characterization of the classes

of algorithms associated to the diverse computation models? Second, how

to define a robust and satisfactory notion of primitive recursive algorithm?

We propose solutions based on Gurevich’s Abstract State Machines.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✾✻

Contents

1 Introduction

2 Computation models as simple classes of ASMs

2.1 The problem

2.2 Relaxing the time unit

2.3 ASMs in a nutshell

2.4 Intrinsic ASM characterization of computation models

2.5 Slight background modification, big consequences

2.6 ASM reserve and types with Cartesian product ranges

3 Turing completeness vs algorithmic completeness

3.1 Resource complexity theory reveals operational gaps

3.2 Operational gaps and primitive recursive functions

3.3 Denotational semantics reveals operational gaps

4 Operational equivalence of classes of algorithms

4.1 A new problem

4.2 Lambda calculus and ASMs

4.3 The imperative language Loopω

4.4 Translating Loopω programs into system T terms

5 What is a primitive recursive algorithm?

5.1 Primitive recursive running time

5.2 Basic arithmetical primitive recursive algorithms

5.3 Apra and the imperative programming language Loophalt

5.4 Functional implementation of Apra.

1 Introduction

• From Church Thesis to Gurevich’ Sequential Thesis

Since Gurevich introduced Abstract State Machines (aka Evolving Algebras) in

the 80’s [24, 25], there is now a formal mathematical notion of small-step (i.e.

non parallel) algorithm working in discrete time.

This answers a question raised by Turing in his celebrated 1936 paper:

The real question at issue is “What are the possible processes which

can be carried out in computing a [real] number?" [38], page 20

and Donald Knuth’s concern for the question in his famous books [28]:

The notion of an algorithm is basic to all of computer programming,

so we should begin with a careful analysis of this concept.

(The Art of Computer Programming, vol. 1, p. 1, §1.1 “Algorithms")

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✾✼

As a formalization of an intuitive notion, there can be no formal proof that

ASMs (Abstract State Machines) truly formalize what they are intended to. Ex-

actly as there can be no formal proof that the mathematical notion of recursive

functions truly formalizes the intuitive notion of computable function.

Nevertheless, as is well-known, all the approaches to the notion of computabil-

ity considered up to now have been proved to be equivalent to or included in that

of recursive function. This carries water for the famous Church Thesis. The same

holds with ASMs. The algorithms of all (small-step, discrete time) computa-

tion models considered up to now have been proved to be faithfully emulated by

ASMs. This has lead to Gurevich’ Sequential Thesis [25] which is to algorithms

what is Church Thesis to computable functions.

• Classes of algorithms associated to computation models

In §2 we propose a formalization of classes of algorithms associated to computa-

tion models in terms of classes of ASMs defined by purely mathematical con-

ditions on the ASM framework (namely, fixing the static background and the

vocabulary of the dynamic foreground, cf. detailed explanations in §2) with no

condition on ASM programs except typing constraints.

This last requirement may seem to be quite a challenge. Indeed, there is a

small price to fulfill this requirement: computation models have to be closed un-

der constant speedups. We consider that this last condition as a normalization

which removes contingencies while preserving the core ideas of the computation

model. Though the reader may not buy that such a closure property is a virtue

in itself, we expect him to admit that it is a small price for a truly mathematical

characterization.

• Algorithmic gaps in computation models

For a computation model, Turing completeness does not ensure algorithmic com-

pleteness: though all computable functions are obtained, maybe some algorithms

are missing.

In §3.1 we recall how resource complexity may reveal algorithmic incomplete-

ness. In §3.2, 3.3 we recall Colson’s remarkable theorem about the limitations

of primitive recursive definitions as algorithms for primitive recursive functions.

This result is the motivation for Definition 5.2 in §5.

• Operational equivalence

In §4, we discuss operational equivalence of computation models, i.e. equality of

the associated classes of algorithms.

First, in §4.2, we recall a recent result [20] about the operational complete-

ness of lambda calculus. In §4.3, 4.4, we consider an imperative programming

language for algorithms associated to (the inherently functional) Gödel system T .

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✾✽

•What is a primitive recursive algorithm?

The algorithmic gaps discovered by Colson (cf. §3.2) show that the obvious an-

swer to that question is totally unsatisfactory. In §5, we recall the solution pro-

posed in [39] and describes an imperative programming language Loophalt which

is algorithmically complete with respect to the simplest natural class of primitive

recursive algorithms Apra.

The rest of the paper is a dialog between the authors and Yuri Gurevich’s

imaginary student Quisani.

2 Computation models as simple classes of ASMs

2.1 The problem

Q: I heard that you showed that usual sequential-time non-parallel computation

models correspond to very simple classes of Abstract State Machines.

A: Yes, this appears in [21, 23]. Recall that the Gurevich Sequential Thesis [25]

ensures that any sequential time small step algorithm is modeled step by step by

an ASM.

Q: “Small step algorithm": do you mean that a bounded amount of work is per-

formed at each step?

A: Yes, this is what it means. The simplest way to associate a class of ASMs to

a computation model is as follows. Consider all ASMs which model step by step

the algorithms associated to the machines or programs of that computation model.

Alas, this correspondence is not effective at all: in general, it is undecidable to test

if an ASM models a particular algorithm.

Q: A usual phenomenon. Maybe you can take a subclass of that.

A: Yes. In fact, this is what is usually done. For each particular machine or

program of the computation model, one devises a particular ASM which models

step by step the associated algorithm. This gives a simple and effective class of

ASMs. In particular, since it is effective, this class is necessarily a proper subclass

of the previous largest one.

Q: Ok, but the obtained class has no intrinsic ASM characterization.

A: You are right. Indeed, given a computation model C, what we do is to define

a classM of ASMs which has an intrinsic ASM definition and gives exactly the

same algorithms as machines or programs in the computation model C.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✾✾

2.2 Relaxing the time unit

A: But let us start with a word of caution. This approach does not work with the

computation models as they are usually considered. We have to generalize them

by letting the time unit be chosen arbitrarily.

Q: What does this mean?

A: Consider a Turing machine M. It is usual to consider its instantaneous de-

scriptions at times 0, 1, 2, . . . up to time t ifM halts at time t. Instead of that, fix

some k ≥ 1 and consider the instantaneous descriptions at times 0, k, 2k, . . . up to

time ⌈ t
k
⌉k ifM halts at time t. Looking atM this way, we get another machine

M(k) which “runs k times faster". The generalization of the model we consider is

to add allM(k)’s, k ≥ 1, for everyM.

Q: Relaxing the time unit. . . Is this generalization so benign? Don’t you loose

some important feature of a computation model?

A: Choosing a time or space unit carries some arbitrariness. An elementary action

or piece of code can always be seen as a family of more atomic ones. On the

opposite, some groups of several elementary actions or pieces of code can be

considered as what is truly significant.

For instance, a transition of a Turing machine is considered as one compu-

tation step. But, you could view it as six computation steps corresponding to

different actions of the machine: 1) read the scanned cell, 2) decide how to over-

write its contents, 3) overwrite the scanned cell, 4) decide how to move the head,

5) move the head, 6) change state.

Another example with space rather than time. It is common to say that com-

puters work in base 2. But bits are usually grouped eight by eight into bytes. So

computers can also be said to work in base 256.

We view the considered generalization of computation models as a normaliza-

tion which removes contingencies and preserves the core features of the models.

Q: Hum. . . What is a contingency? What is a core feature?

A: Some examples will clarify our claim.

2.3 ASMs in a nutshell

A: But, first, let us briefly recall how Gurevich devised ASMs according to his

analysis of the constituents of an algorithm. Let us consider only sequential-time

small-step algorithms. Gurevich [25, 26] views an algorithm as a transition system

and points four basic constituents.

(1) The data structures involved in the algorithm. They constitute the multisort

domain of the ASM.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✵✵

(2) The operations or relations over these data structures which are given for

free: the so-called static framework. Observe that these operations and re-

lations are typed. Together, the multisort domain and the associated static

framework constitute the background of the computation.

(3) A dynamic vocabulary to name the elements and functions over the data

structures which form the foreground of the computation. In the conven-

tional programming, this role is played by the variables. The foreground is

dynamic: it may vary at each step of the execution of the algorithm. This

dynamic vocabulary is also typed.

A state of the algorithm is the static framework over the multisort domain, aug-

mented with interpretations of the symbols of the dynamic vocabulary.

(4) The fourth ingredient of an algorithm is the program which determines the

state change, i.e. the evolution of the dynamic foreground.

The run of an ASM halts if and when either some special value of a dynamic

symbol is obtained or the ASM has reached a fixed point, so that two successive

states are identical.

Q: So, the algorithm does not tell anything about how the values of static func-

tions are obtained. This departs from the a priori intuition that algorithms tell

everything about what they do.

A: Static functions have to be considered as oracles. The algorithm decomposes

its global input/output action into a succession of atomic steps. These atomic steps

are the limit of the algorithmic process: they use static functions totally ignoring

their operationality.

Q: Thus, algorithms are intrinsically oracular!

A: Right. This is an essential feature.

For instance, with Turing machines, moving the head, reading the scanned

symbol, changing state are static operations given for free. The machine knows

how to do that though there is nothing about that in the transition table. However,

as anyone can experience, if you want to write a program to emulate a Turing

machine in any programming language, there will be lines of code devoted to these

operations. . . As another example, with Blum-Shub-Smale machines [5], one can

even check for free if a real number is zero or not. A test known to be non-

computable since 1954 (Rice [34]) but given for free in the static framework!

Q: So, there is no absolute notion of algorithm.

A: Well, there is a smallest “effective" notion of algorithm: the one obtained by

restricting to computable backgrounds. This means to restrict to computable data

structures and to require all static functions to be computable.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✵✶

Q: Going back to the brief overview of ASMs, what are ASM programs?

A: An ASM program is built with conditionals and updates. Updates are of the

form f (τ1, . . . , τk) := τ where f is a dynamic symbol and τ1, . . . , τk, τ are any

terms. These are in fact ground terms: there is no variable hence all terms are

ground. The meaning of such an update is as follows: let a1, . . . , ak, a be the

values of the τi and τ terms computed at step t; then at step t + 1, the new value of

f at a1, . . . , ak is a.

Q: I remember that when I first learned about ASMs, I was really surprised that

there is no explicit loop instruction in ASM programs.

A: It is the run of the ASM, obtained by applying again and again the ASM

program, which constitutes kind of a meta loop.

2.4 Intrinsic ASM characterization of computation models

A: Let us go back to computation models and ASMs. Our idea is as follows:

Usual computation models are obtained by fixing the three first con-

stituents of ASMs: namely, the data structures, the static framework

and the dynamic vocabulary. As for the fourth constituent, the ASM

program, there is no constraint except for the type constraint in the

syntactic construction of terms.

Q: Oh! You require the program to be subject to no constraint but typing re-

strictions. All emulating programs I ever saw code a lot of information about the

emulated computation model: they are very particular programs! How is it pos-

sible not to discriminate among ASM programs? You are setting yourself such a

high bar that it seems impossible to jump over it.

A: This is possible if you relax the time unit.

Q: How does this work for Turing machines?

A: Consider Turing machines with one tape infinite in both directions. There are

three data types involved: an infinite set of states Q, an infinite set of letters A and

the set Z of integers to denote the cells on the tape.

Q: Sorry, there are only finitely many states and letters!

A: Yes, but arbitrarily large. So let them be infinite sets. Finiteness will come as a

side effect of the ASM program: being a finite object, it will mention only finitely

many states and letters.

Q: Nice trick.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✵✷

A: The static framework for one-tape Turing machines is as follows. Infinitely

many nullary function symbols to denote the diverse states and letters and two

unary function symbols to denote the successor and predecessor functions on Z.

That’s all.

Q: Nullary function symbols? You mean constant symbols.

A: Yes. But we shall also deal with dynamic symbols and “dynamic constant"

sounds quite awkward. This is why the term “nullary function" is preferred.

Q: So you consider an infinite static vocabulary.

A: Not a big deal. Any ASM program will use only a finite part of this infinite

vocabulary.

The dynamic vocabulary consists of three symbols σ, π and γ. The two first

ones are nullary function symbols of respective types Q and Z, they are used to

denote the current state and position of the head. The last one is a unary function

symbol of type Z→ A, it is used to denote the current contents of the tape.

Q: Ok, any Turing machine obviously corresponds to such an ASM. Now, given

such an ASM, how do you get a Turing machine?

A: Look at what the program can express. You can update the current state σ to

any new value. The position of the head π can also be updated to a new value. But

this new value has to be defined by an ASM term of type Z. Look at the static and

dynamic vocabulary: there is only one way to get a term of type Z, by applying

the successor and predecessor functions to the dynamic constant π. Thus, you

can move the head a bounded number of cells, say m, left or right. You can also

update the dynamic function γ, henceforth modifying the contents of the current

tape. But this can be done at a bounded number of places around the position of

the head, say at distance ≤ n. These bounds m, n depend on the length of terms in

the ASM program. Thus, in one step of the ASM you get what is done in m + 4n

steps of an appropriate Turing machine.

Q: So this ASM simulates some Turing machine considered with a m + 4n times

larger time unit. This is why you extend the computation model by relaxing the

time unit. By the way, why 4n ?

A: You may have to modify the contents of the n cells right of the head and the n

cells left of the head. So, n steps to modify cells on one side of the head, n steps

to move back the head and n steps to modify cells on the other side of the head.

Finally, at most n + m steps are necessary to move the head to the new scanned

cell. With some no move transitions, this last phase requires exactly n + m steps.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✵✸

2.5 Slight background modification, big consequences

Q: A question. There is no static symbol for the integer 0.

A: No, and this is no accident. If you add a symbol 0 then the update π := 0 resets

the head at cell 0 in one step. Thus, we would model “reset Turing machines".

Which is another computation model.

Q: Right. Is it as easy for any computation model as it is for Turing machines?

2.6 ASM reserve and types with Cartesian product ranges

A: For multi-tape Turing machines, for RAMs, for grammars, for automata, etc.

it does work with no real difficulty. But there is a problem with Kolmogorov-

Uspensky machines and with Schönhage Storage Modification Machines. Their

tapes are graphs which can grow.

Q: So you have to appeal to some “reserve set" to pick a new vertex.

A: Here comes the problem. When you pick a new element in the reserve, you

have to do two actions: add the picked element to the graph and remove it from

the reserve.

Q: Easy to tell in an ASM program. What is the problem?

A: The problem is that this is a constraint on programs: if the program adds a

fresh node then it should also remove it from the reserve. But our approach puts

no constraint on ASM programs except typing!

Q: How do you get around the problem?

A: We generalize typing. We want two simultaneous actions. In other words, we

want to fire two functions at the same time. A solution is to introduce types with

Cartesian product ranges. Instead of considering two functions f : C → D and

g : C → E we consider a function (f , g) : C → D × E.

Q: Are you kidding? This is the same thing!

A: Not for the way we use it. First, given f and g separately, you can fire f and

g on different arguments whereas if you fire (f , g) then you must fire f and g on

the same argument. Second, there are far fewer possibilities of composition with

a function of type C → D × E than with two functions, one of type C → D and

the other one of type C → E.

Let us detail the case of Schönhage machines. The data structures are Q, A for

states and letters, an abstract infinite set X for the nodes of the graph-tape (current

nodes and “reserve" nodes) and the data structure P<ω(X) (the family of finite

subsets of X) for the current set of nodes. There are static constants for states and

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✵✹

letters and a static function new : P<ω(X) → X × P<ω(X) with Cartesian product

range such that, for any Z ∈ P<ω(X), new(Z) is of the form (a,Z ∪ {a}) where

a < Z. The dynamic symbols are σ of type Q for the current state, π of type X for

the current position of the head, U of type P<ω(X) for the current set of nodes of

the graph-tape, γ of type X → A for the labels of the nodes (with a default value

for nodes not in U) and f1, . . . , fk of type X → X for the partial functions giving

the nodes pointed by a given node.

Now, since U is the unique term of type P<ω(X), any use of new will involve

U in an update (τ,U) := new(U) where τ is either π or a composition of the

fi’s applied to π. Such an update simultaneously picks a fresh element from the

reserve (which is the difference set X \ U) and removes it from the reserve, as

wanted.

Q: In conventional programming languages like Java, one would not need such

function pairs since a new object is created and then is worked upon during the

same computation step.

A: Yes, this generalization of typing is done for ASM programming in order to

fulfill our ASM characterization of computation models with no constraints on

program except for the type constraints in the syntactic construction of terms.

Q: So the price to pay for this ASM characterization of computation models is

1) the extension of computation models by relaxing the time unit,

2) the generalization of typing.

A: Exactly. In our opinion, 1) is forgetting contingencies and 2) is reviving a

forgotten (or underrated) feature of functions: coarity, i.e. the number of items

constituting the output.

3 Turing completeness vs algorithmic completeness

Q: What are the tools to prove that the step-by-step behaviour of an algorithm is

different from that of any algorithm in a given class of algorithms?

A: Tools to reveal operational gaps in computation models and programming

languages, even in Turing complete ones?

3.1 Resource complexity theory reveals operational gaps

A: For sure, the simplest tool is computational complexity. For instance, some

problems are much harder to solve with one-tape Turing machines than with two-

tapes Turing machines. An example is palindrome recognition which requires

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✵✺

quadratic time with one tape Turing machine but is obviously solvable in linear

time with two tapes.

Q: Yes, with one-tape there is no way but sweep back and forth through the tape to

check that a first group of letter coincides with the last one, then a second group of

letters next to the first one coincides with the penultimate one and so on. One can

do this for groups of one, two or more letters but necessarily uniformly bounded

groups. So we get time about 2n+2(n−k)+2(n−2k)+ . . ., which isΩ(n2) indeed.

A: Yet the formal proof that the idea works involves some technique. Crossing

sequences in Hennie’s original proof [27], or Kolmogorov complexity in Wolf-

gang J. Paul’s very elegant proof [32].

By the way, this result has been extended to multidimensional one-tape Turing

machines with a time lower bound Ω(n2/ log(n)), cf. [4].

Q: Such resource complexity lower bounds appear with a lot of different models.

The more powerful the computation model, the more high-performing are the

algorithms it implements to solve a fixed problem.

A: Sure. In ASM terms, your observation can be rephrased: with more powerful

(static) background and richer dynamic vocabulary, ASM programs simulate step-

by-step more sophisticated and high-performing algorithms.

Q: Is there such a substantial difference between the static backgrounds and dy-

namic vocabularies of one-tape and two-tape Turing machines?

A: Let us see. With two-tape Turing machines, there are two copies of Z, say

Z
(ε), ε = 0, 1, one for each tape, and on each copy, the successor and predecessor

operations. This is where lies the difference: one or two copies of the structure

(Z, x 7→ x + 1, x 7→ x − 1). And for each such copy Z(ε) there is a symbol πε of

type Z(ε) for the position of the head, and a symbol γε : Z(ε) → A for the current

contents of the tape.

Q: Is this redundancy really necessary?

A: Yes! An example, different but similar to the above, illustrates the strength of

duplication of structures in the ASM framework. Consider one counter machines.

Modeled as ASMs, we have the sort Q for states, the sort N for contents of the

counter, the static structure (N, x 7→ x+ 1, x 7→ x− 1) and two dynamic constants:

σ for the current state and γ for the current contents of the counter. Observe that γ

has type N. Consider now two-counter machines. The ASM model is analog with

two copies (N(ε), x 7→ x + 1, x 7→ x − 1) and γ(ε).

Now, the duplication of (N, x 7→ x+1, x 7→ x−1) and γ witnesses a spectacular

classical result: the halting problem is decidable for one-counter machines, but it

is undecidable for two-counter machines!

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✵✻

3.2 Operational gaps and primitive recursive functions

Q: By the way, what about intentional behavior of programming languages? A

subject initiated by Loïc Colson in the 1990’s.

A: The primary goal of his research was to look at the algorithms associated to

programs in some programming languages. The question was to find operational

properties of such algorithms computing very simple and usual functions.

In particular, in [9], L. Colson considers the particular primitive recursive

function min which computes the minimum of two non negative integers. Very

elementary function, isn’t it?

Q: Sure. A simple way to compute this function is to decrement x, y in parallel

as long as none is 0. This runs in time O(min(x, y)).

A: The natural algorithm that you describe is based on a definition of the function

min by the following equations:

min(0, y) = 0 , min(x, 0) = 0 , min(x + 1, y + 1) = min(x, y) + 1.

Though these equations constitute an inductive definition of min, this is not a

primitive recursive definition since the induction proceeds with two variables si-

multaneously.

Colson looks at computations which use exclusively the equations involved

in a primitive recursive definition of min. He proves that each such computation

takes time O(x) or O(y) to compute min(x, y). When x and y are not of the same

magnitude, this does not match the previous O(min(x, y)) time algorithm.

Q: What does it mean that a computation uses exclusively the equations involved

in a primitive recursive definition?

A: The equations are considered as reduction rules and the computation is a suc-

cession of applications of these rewriting rules. Formally, Colson considers PR

combinators which formalize primitive recursive definitions of functions.

(i) The basic PR combinators are 0, S, πk,i (where k, i ∈ N, 1 ≤ i ≤ k). They

have respective types N, N → N and Nk → N and represent the integer 0,

the successor function over N and the projections Nk → N.

(ii) If c is a PR combinator of type Nk → N and c1, . . . , ck are PR combinators

of type Nℓ → N then 〈c; c1, . . . , ck〉 is a PR combinator of type Nℓ → N.

If c, c1, . . . , ck represent functions g : Nk → N, h1, . . . , hk : Nℓ → N then

〈c; c1, . . . , ck〉 represents the function ~x = (x1, . . . , xℓ) 7→ g(h1(~x), . . . , hk(~x)).

(iii) Given two PR combinators c and d of respective types Nk → N and Nk+2 →

N, we get another PR combinator recc,d of type Nk → N. If c and d rep-

resent functions g : Nk → N and h : Nk+2 → N then recc,d represents

the function f : Nk+1 → N such that f (0, ~y) = g(~y) and f (x + 1, ~y) =

h(x, f (x, ~y), ~y).

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✵✼

Q: Well, this describes PR combinators and their denotational semantics. But,

how do you compute with a combinator?

A: To get the operational semantics, we define reduction rules:

(i) (πk,i; t1, . . . , tk){ ti,

(ii) recc,d(0,~t){ c(~t) , recc,d(S(u),~t){ d(t, recc,d(u,~t),~t),

(iii) c{ c for every c,

(iv) if u { u′, t1 { t′
1
, . . . , tk { t′

k
then 〈u; t1, . . . , tk〉 { 〈u

′; t′
1
, . . . , t′

k
〉 and

recc,d(u, t1, . . . , tk){ recc,d(u′, t′
1
, . . . , t′

k
).

To any combinator c representing a function f : Nk → N, we associate a non-

deterministic algorithm which works as follows: on input (a1, . . . , ak) ∈ N
k, itera-

tively apply reduction rules to the PR combinator 〈c; S (a1)(0), . . . , S (ak)(0)〉 (which

has type N) until no reduction rule applies. It is routine to check that we then get

a PR combinator of the form S(n)(0) where n = f (a1, . . . , ak).

Q: So, a confluence property holds for this calculus.

A: Yes. Now, a given PR combinator may contain many redexes, i.e. , there

may be many sub-combinators to which a reduction can be applied. Thus, there

are many computations to get the value of the function f represented by the PR

combinator c on an input (x1, . . . , xk) ∈ N
k. In particular, there are computations

corresponding to a call-by-name or a call-by-value strategy or any mixing, pos-

sibly a random one, of these strategies. What Colson proves is that every one of

these computations takes time O(x1) or . . . or O(xk).

3.3 Denotational semantics reveals operational gaps

Q: Could you recall the argument in Colson’s proof?

A: Colson uses a non-standard denotational semantics, namely lazy natural inte-

gers. Formally, this model contains two kinds of objects: for every n ∈ N, there

is the integer S (n)(0) and the “in progress" integer S (n)(⊥) which stands for “being

≥ n ". There is also a limit element S (∞)(⊥). The ordering relations are reduced to

S (n)(⊥) ≤ S (n+k)(⊥) ≤ S (∞)(⊥) and S (n)(⊥) ≤ S (n+k)(0).

Q: Yes, I remember. Colson processes the PR combinators on such lazy in-

tegers. And the core argument was an “ultimate obstinacy" result: on the pair

(S (∞)(⊥), S (∞)(⊥)), the computation of min gets stuck, decrementing the same ar-

gument again and again. This prevents any alternation between arguments.

A: As it is, the proof can be viewed as non-constructive since it involves an infinite

object S (∞)(⊥). A constructive variant is given in [13].

Q: On lazy integers, what are the functions computed by PR combinators?

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✵✽

A: Looking on the sole true integers S (n)(0), PR combinators obviously compute

all primitive recursive functions. Now, on the S (n)(⊥)’s, they give exactly the

subclass of primitive recursive functions obtained with definitions by inductions

with null base case [39], i.e. inductions of the form
{

f (⊥, S (y1)(⊥), . . .) = ⊥

f (S (x+1)(⊥), S (y1)(⊥), . . .) = h(S (x)(⊥), f (S (x)(⊥), S (y1)(⊥), . . .), S (y1)(⊥), . . .)
.

Q: I see. The base case involves ⊥, i.e. S (0)(⊥), as the induction input. Since ⊥

means no information at all, when the induction input has value ⊥, it is reasonable

that the function gets value ⊥.

How far have such arguments been pushed?

A: If the data is enriched with lists, the argument breaks down. In fact, René

David [16] proves that the best algorithm for the min function can be obtained

from a primitive recursive definition of min involving recursion over lists. Going

to second-order primitive recursive definitions, i.e. working at level 1 of Gödel

system T , one can also obtain the best algorithm for the min function, cf. [9].

Let us stress that this requires a call-by-name strategy. On the opposite side, [12]

proves that call-by-value strategies for higher order primitive recursive definitions

of min, (i.e. working at any level of Gödel system T) do not allow to get the best

algorithm for min.

Q: Could you remind me of system T ?

A: Instead of considering primitive recursive definitions for the sole functions

N
k → N, extend such definitions to functionals. Formally, you consider a typed

lambda calculus with types obtained from the basic type nat via the type construc-

tor A, B 7→ (A→ B). Augment this calculus with

(1) constants 0, S and recα,β (for integer zero, the successor function over N

and the recursion operator defining functions of type α→ β).

(2) Besides the usual beta reduction, consider new reduction rules for each

recα,β such that, for any terms t, u, n with respective types α → β, N →

((α→ β)→ (α→ β)) and N,

recα,β t u 0{ t , recα,β t u (sn){ u n (recα,βtun)

With the usual notations for functions, the above reductions correspond to a higher

order definition by induction: H(0) = t , H(n + 1) = u(n,H(n)) where H has type

N→ (α→ β).

Q: Please, forget the recursion combinators. . . What about an example expressed

with higher order primitive recursive definitions of functionals?

A: Sure. Let us show how the best algorithm for min is second-order primitive

recursive. Consider the following second-order primitive recursive definitions of

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✵✾

functionals G : NN × N→ N and F : N→ NN :

{

G(f , 0) = 0

G(f , y + 1) = f (y) + 1
,

{

F(0) = λy . 0

F(x + 1) = λy . G(F(x), y)

These equations yield

F(0)(y) = 0

F(x + 1)(0) = G(F(x), 0) = 0

F(x + 1)(y + 1) = G(F(x), y + 1) = F(x)(y) + 1

.

Letting ϕ(x, y) = F(x)(y), we have

ϕ(0, y) = 0

ϕ(x + 1, 0) = 0

ϕ(x + 1, y + 1) = ϕ(x, y) + 1

.

These are exactly the equations for the best algorithm for the min function!

Q: Very nice definition. And beyond the min function?

A: Recall Stein’s algorithm for the greatest common divisor of two integers. To

take full benefit of the binary representation of integers in computers, Stein con-

siders the following recursive equations for the gcd:

gcd(x, y) = 0 if min(x, y) = 0

gcd(2x, 2y) = 2 gcd(x, y) if min(x, y) > 0

gcd(2x, 2y + 1) = gcd(x, 2y + 1) if x > 0

gcd(2x + 1, 2y) = gcd(2x + 1, y) if y > 0

gcd(2x + 1, 2y + 1) = gcd(|x − y|,min(2x + 1, 2y + 1))

Stein’s algorithm has time complexity O(log(x) + log(y)). Moschovakis [31]

proves that this complexity cannot be matched by any algorithm based on prim-

itive recursive definitions of the gcd and using a call-by-value strategy. In fact,

he gets an O(x + y) lower bound for call-by-value computations even if addition,

subtraction, division by 2, parity and order comparison are basic functions in such

primitive recursive definitions.

4 Operational equivalence of classes of algorithms

4.1 A new problem

A: Besides all these new complexity results, a new problem emerged around the

behavior of programs and especially functional programs. Instead of looking for

missing algorithms in some computation model, we try to compare the families

of algorithms associated to programming languages. Are they equal? Is one of

them larger than the other? In this way, one can compare the operational strength

of programming languages.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✶✵

4.2 Lambda calculus and ASMs

Q: By the way, I remember Yuri told me that Kolmogorov-Uspensky machines

and Schönhage Storage Modification Machines enriched with a pairing function

encode all ASMs.

A: Yes. Such a pairing function allows to encode any data structure on the set of

nodes, so that by adding a static framework on the set of nodes, you get any ASM

static framework. And any dynamic vocabulary can be encoded by the dynamic

successors of nodes in these models. You could also consider hyper-machines à

la Kolmogorov-Uspensky or à la Schönhage: replace graph tapes by k-uniform

hypergraph tapes for some k ≥ 3.

Q: What is a k-uniform hypergraph?

A: An undirected graph can be seen as a pair (V,E) where V is a set of nodes

and E is a collection of node sets of cardinality 2. A k-uniform hypergraph is a

generalization where E is a collection of node sets of cardinality k.

Q: So we get two computation models which are operationally equivalent to

ASMs. Well, adding a pairing function on the set of nodes seems to be an ad

hoc device which was never considered seriously. Is there any other computation

model which gives all sequential time small step algorithms?

A: Yes, lambda calculus. This is done in [20].

Q: How is that possible? Beta reduction is such a low level operation! Some con-

sider it as an instruction on the level of an assembly language. Moreover, though

all countable data structures can be encoded in lambda calculus, such encodings

are time consuming: an unbounded number of beta reductions are necessary to

mimic any basic operation in data structures.

A: Concerning your first objection, it is true that beta reduction is a very crude

operation. But remember that the time unit is not really an intrinsic notion. In fact,

the simulation of one step of an ASM corresponds to a succession of k beta reduc-

tions in lambda calculus for some fixed k which depends only on the simulated

ASM.

As for the second objection, there is a fairness argument: the static framework

is for free in ASMs, hence it should also be for free in lambda calculus. This

leads us to add constants in lambda calculus to represent elements of the data

structures and the diverse static operations. And also, of course, to add a new

kind of reductions. For instance, with the N data structure, if constants a, b, c

represent integers m, n, p and constant d represents a function f : N2 → N such

that f (m, n) = p then there is a reduction d(a, b){ c.

Q: Adding constants in lambda calculus is a much studied topic.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶✶

A: Yes, but what is done in [20] is very peculiar. There is no variable involved in

the new reductions, only ground terms with no lambda.

Q: Do you count these new reductions in your simulation?

A: As you wish. If you want to count them, this is no problem. There is a fixed ℓ

(depending on the simulated ASM) such that one step of the ASM run corresponds

to exactly k beta reductions plus ℓ “new" reductions.

Q: So lambda calculus is operationally equivalent to ASMs.

A: No. In lambda calculus, a beta reduction is not always a small step action since

the number of redexes in a lambda term can be arbitrarily large! Beta reduction is

a parallel action which goes beyond small step algorithms. Thus, the operational

strength of lambda calculus lies somewhere between that of small step ASMs and

that of parallel ASMs.

Q: When you simulate an ASM step by a fixed amount of successive beta reduc-

tions and “new" reductions, do these beta reductions have small step action or do

they reduce arbitrarily large number of redexes simultaneously?

A: They reduce a bounded number of redexes. So they do have small step action.

No problem, the simulation is fair.

4.3 The imperative language Loopω

A: Non-Turing complete programming languages can also be compared relative

to their operational strength. The first such result [14] is relative to the Loop

language of Ritchie and Meyer [29] and to T0, the level 0 of system T (which is

equivalent to classical primitive recursion, extensionally as well as intentionally

[10]). Loop and T0 have the same operational strength. One step in any one of

these languages can be simulated by one step in the other language.

Q: How do you prove that?

A: Well, this result has been extended in [15] to the whole system T and to an

extension Loopω of the programming language Loop with first-class procedures

(true closures) and mutable procedural variables (aka function pointers). We shall

rather present this extended result.

Q: So you consider an imperative language Loopω. That is exciting. Is it a usual

one?

A: Loopω can easily be written using C# syntax (where anonymous first-class

procedures are called delegates [ISO, 2003]) and then compiled with a C# com-

piler.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✶✷

In Loopω, instructions are as follows: block of commands, bounded loop, as-

signment, incrementation, decrementation and procedure call. In Backus-Naur

notation, this can be written

(command) c ::= {s}

| for y := 1 to e {s}

| y := e | inc(y) | dec(y)

| p(~e;~y)

In a sequence, one can declare mutable variables and constant variables:

(sequence) s ::= ǫ

| c; s

| cst y = e; s

| var y := e; s

In the declaration of a procedure, arguments are of two kinds : readable only (in)

and writable only (out). This distinction is similar to ADA syntax and semantics:

(anonymous procedure) a ::= proc(in ~y; out ~z) {s}

Q: Looks like usual imperative programming languages. Do you have some

examples of programs?

A: Sure. Here is an a Loopω program that computes the Ackermann function.

proc (in m: int, n: int; out r: int) {

proc next(in y: int, n: int; out p: int) {

p:=y;

inc(p);

}p

var g: proc (in int; out int);

g:=next;

for i:= 1 to m {

cst h = g;

proc aux(in y: int; out p: int) {

h(1,p);

for j:= 1 to y {

h(p; p);

}p;

}p;

g:=aux;

}p;

g(n; r);

}r;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶✸

Q: A few comments would be welcome. . .

A: Recall Ackermann’s equations:

Ack(0, n) = n + 1

Ack(m + 1, 0) = Ack(m, 1)

Ack(m + 1, n + 1) = Ack(m,Ack(m + 1, n))

.

Introduce A(x) = λy.Ack(x, y) and observe that A(m) is defined by induction on

m in such a way that the induction step defines A(m + 1) = λn.Ack(m + 1, n) by

induction on n using function A(m).

All procedures in the program are functional so that we shall write g(x) = y

instead of g(x, y) and the same with h and aux. Procedure next in lines 2-5 is

the successor function. In case m = 0, the loop in lines 8-17 vanishes. Hence

the output is g(n; r) (line 18), i.e. the successor function (line 7). Thus, we get

the basic case of the induction giving A(0). For m > 0, we argue by induction

on m and assume that the loop in lines 8-17 makes g be the function A(m) after m

iterations of the loop. Then an m+1-th iteration defines a function aux which takes

value A(m)(1) = Ack(m, 1) on 0 (line 11). Which is the base case of the induction

on n to get Ack(m + 1, n). For n > 0, we argue by induction and assume that the

loop in lines 12-14 makes aux be the function λn.Ack(m + 1, n) after n iterations

of the loop. So that the value of p is aux(n) = Ack(m + 1, n). Then an n + 1-th

iteration makes aux(n+1) equal to A(m)(Ack(m+1, n)) = Ack(m,Ack(m+1, n)) =

Ack(m + 1, n + 1) (cf. line 13).

Q: Of course, you can similarly program the best time algorithm for the min

function in Loopω. Just follow Colson’s definition of min at level 1 of system T .

A: No, no. In T , you get the best algorithm for min with the call-by-name strategy.

And Loopω only simulates the call-by-value strategy.

Let us mention that, as far as we know, Loopω is the first total imperative

language in which the Ackermann function can be programmed.

Back to the definition of Loopω. Of course, some constraints are imposed by

the type system [15] and allow us to give a simple operational semantics in terms

of transition systems which we prove to be equivalent to the natural semantics.

Also, every variable has a default value which depends only on its type.

Another operational semantics is given through the translation of a program of

Loopω into a term of system T . This translation preserves the operational seman-

tics. This is how we obtain a step-by-step simulation.

4.4 Translating Loopω programs into system T terms

First, let us write let (x1, . . . , xn) = u in t as an abbreviation for the redex

λ(x1, . . . , xn).t u. The intuition behind the translation is as follows: if ~x denotes

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✶✹

the variables of the environment then the block {c1; . . . ; cn} is translated into

let ~x = c∗1 in . . . let ~x = c∗n in ~x

where the ∗ operation is defined below.

We may be more precise, cf. [15], and annotate blocks by the sets of vari-

ables that get modified. For instance, the block {inc(x); inc(x)} is annotated

{inc(x); inc(x)}x.

The translation is defined as follows.

Definition 4.1. The stars e∗ and {s}∗
~x

of an expression e and a block {s}~x in a term

of system T are defined by mutual induction:

n̄∗ is S n(0)

y∗ is y

{}∗
~x

is ~x

(proc(in ~y; out ~z){s}~z)
∗ is λ~y.{s}∗

~z
[~z0/~z]

where ~z0 denotes the default value for each type of z variables

{var y := e; s}∗
~x

is {s}∗
~x
[e∗/y]

{cst y = e; s}∗
~x

is let y = e∗ in {s}∗
~x

{y := e; s}∗
~x

is let y = e∗ in {s}∗
~x

{inc(y); s}∗
~x

is let y = succ(y) in {s}∗
~x

{dec(y); s}∗
~x

is let y = pred(y) in {s}∗
~x

{p(~e;~z); s}∗
~x

is let ~z = p∗ ~e∗ in {s}∗
~x

{{s1}~z; s2}
∗

~x
is let ~z = {s1}

∗

~z
in {s2}

∗

~x

{for y := 1 to e {s1}~z; s2}
∗

~x
is let ~z = rec(e∗,~z, [~z, y]{s1}

∗

~z
)

in {s2}
∗

~x

Observe that in the imperative program some instructions cost one computa-

tion step but other ones, namely, declaring a variable and managing a loop counter,

do not cost any computation step. The instructions that do cost are mapped into

let expressions.

The following theorem ensures that the translation gives a step by step simu-

lation.

Theorem 4.2. For any well-typed state (c, µ) (where c is a program and µ is the

environment), if ~x = dom(µ) then

(c, µ)→ (c′, µ′) implies c∗[µ(~x)∗]{ c′∗[µ′(~x)∗]

where → denotes one step reduction of the Loopω language and { denotes one

step reduction in the system T language.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶✺

Q: Does your imperative language capture all functions of system T ?

A: Yes, this is the first result. Let us recall a major result concerning system T :

functions over N that are definable in this system correspond exactly to functions

that are provably total in first-order Peano arithmetic (see Schütte’s book [37]).

More precisely, consider the syntactic hierarchy of fragments Tn of system T as-

sociated to type order where o(nat) = 0 and o(A → B) = max(o(B), 1 + o(A)).

Then the class of functions representable in Tn is identical to the class of func-

tions provably recursive in the fragment of Peano arithmetic where induction is

restricted to Σn+1 sentences. In particular, T0 corresponds to the class of prim-

itive recursive functions. We define a similar hierarchy of fragments Loopn of

Loopω and we show that both translations relate programs of Loopn and terms of

Tn. The particular case n = 0 shows that functions representable in a language

with higher-order procedures but without procedural variables (which is a sub-

language of Loop0) are primitive recursive. This corollary generalizes a previous

result presented in [14] where Meyer and Ritchie’s Loop language was translated

into T0.

Now, the fundamental result of [15] is that all properties about complexity of

programs in system T with call-by-value are retrieved in our Loopω language, so

they are algorithmically equivalent.

Q: Of course, call-by-value is sine qua non.

A: Sure. Recall that the best algorithm for min can be obtained in system T with

call-by-name.

Q: So, this also corroborates results about system T such as the fact that the best

algorithm for min is not captured by Loopω (which was proved in [12] for system

T with call-by-value).

Well, the striking point is that the two languages you describe, namely Loopω

and system T with call-by-value not only compute the same class of functions but

also the same class of algorithms.

5 What is a primitive recursive algorithm?

5.1 Primitive recursive running time

A: Let us consider the class of primitive recursive functions and the question

“What is a primitive recursive algorithm?".

Q: There is an answer with Turbo ASMs [6].

A: The Turbo approach to define primitive recursive ASMs constrains the syn-

tax of ASM programs to be a clone of primitive recursive definitions. And this

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✶✻

constraint has far reaching consequences. In fact, what Colson proves can be

transferred to this approach. In particular, the best algorithm for the min function

is missing. Now, we want these missing algorithms to be considered as primitive

recursive algorithms.

The solution proposed in [39] is based on a classical theorem about primitive

recursive functions:

Theorem 5.1. A function f is primitive recursive if and only if there exists a Tur-

ing machine which computes f in time bounded by a primitive recursive function.

Q: One of my teachers used to call it an analog of Lebesgue’s dominated conver-

gence theorem. . .

A: This theorem ensures the equivalence of two conditions. The first one is about

the function itself whereas the second one is about how to compute that function

hence about algorithms.

Q: Turing machines are not a very good model for algorithms. I guess your next

step is to replace them by Abstract State Machines.

A: Yes, you guessed right! The above statement which is a theorem involving

Turing machines will now become a definition involving ASMs.

Definition 5.2. An algorithm is said to be primitive recursive if and only if it

corresponds to an ASM which halts in primitive recursive time.

It’s very simple! Based on the identification of algorithms to ASMs. And it

captures the best algorithm for the min function.

Q: I presume that the output of an ASM run is the value of some dynamic symbol

α when the ASM halts. Let t(input) be the running time. Do you require the ASM

to halt exactly at time t(input) or do you consider the value of α at time t(input) ?

In the first case, the ASM halts “naturally" whereas in the second case you just

ignore subsequent states.

A: There is no difference: just add t(input) as a static function! A simple counter

will ensure halting in due time. This is easy to be done in an ASM program.

Nevertheless, we shall prefer the approach which ignores subsequent states. The

reason is that we do not want to spoil the clarity of ASM programs by the man-

agement of a counter to get halting at the proper time.

Q: I see a problem with Definition 5.2. Every function f admits a primitive

recursive algorithm: just put f itself in the background of the ASM! Moreover,

such an ASM computes any value of f in exactly one step.

A: Right. There are trivial algorithms which carry no operational contents. This

is the price to pay to the oracular nature of algorithms: oracles are what is in the

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶✼

background. You just considered the trivial case where the oracle is the function

itself.

Now, there is more to answer your observation. Taking the background into

consideration, we can define a notion of primitive recursive algorithm relative to

a fixed background.

Q: Well, well. So, the most natural way of defining primitive recursive functions

is inadequate to capture a reasonable notion of primitive recursive algorithm. You

base the notion of primitive recursive algorithm on primitive recursive bounds on

the length of runs of ASMs.

A: Runs and length of runs are at the root of the formalization given by ASMs:

the first ASM postulate is that algorithms are discrete time transition systems!

Q: Which makes your approach an intrinsic one.

5.2 Basic arithmetical primitive recursive algorithms

Q: So, you have defined from scratch a class of algorithms to compute primitive

recursive functions (cf. Definition 5.2). This class is large enough to contain

all known natural algorithms to get these functions using a reasonably simple

background. You consider this class as the natural candidate for the desired notion

of primitive recursive algorithm. Now, the definition makes no reference to any

programming language. An interesting question then arises: find a programming

language that implements this class of algorithms.

A: In this approach to primitive recursive algorithms, we are led to consider

a computation of an algorithm as a triple (A, I, c) where A is an abstract state

machine, I is an initial state and c is a function that represents the length of the

part of the ASM run that we consider (ignoring all subsequent states).

Q: Oh! I heard about something like that thirty years ago, a program is equivalent

to the pair of a sequential function and a computation strategy for it. As I remem-

ber this was called sequential algorithms on concrete data structures (cf. [3]). I

think it’s not sufficient to consider similar pairs. You have to require that static

functions and initial interpretations of dynamic symbols be primitive recursive.

Else, you would capture non-primitive recursive functions! Wouldn’t you?

A: Sure. Now, there is another point to consider. To focus on programming

languages, we have to compare a theoretical set of algorithms with the set of algo-

rithms of a programming language. So, in fact, we have to look at the expressive

power (in term of algorithms) of control structures in programming languages.

Q: On that matter, no doubt that ASMs have the smallest set of control structures:

the conditional and nothing else.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✶✽

A: Though there is no loop instruction in ASMs, it is no problem to simulate the

successive steps of a loop by the successive steps of the ASM run. In fact, the

ASM run is a big loop which somehow externalizes all loop instructions. Indeed,

this externalization is one of the main ideas of ASMs.

Q: Simultaneous updates are allowed with ASMs, a rather uncommon feature in

imperative programming languages.

A: There are two ways to cope with simultaneous updates. First, by simply al-

lowing them in the programming language. But, as you said, this would badly

depart from “real" programming languages. So we exclude simultaneous instruc-

tions (or evaluations) in our programming language and keep, as is usual, com-

pletely sequentialized computations. Now, the number of simultaneous updates

is bounded. Though we cannot simulate step-by-step, we can simulate one ASM

step by a fixed number of computation steps of the program. Again, we appeal to

a flexible time unit.

Q: I see still another problem related to the ASM background. To balance the

poorness of the control structure, ASMs allow powerful data structures: first order

logical data structures. And this is not allowed in most programming languages.

Of course, programming languages can emulate such data structures but there is a

price for the emulation!

A: You are right. In order to stay close to real programming languages, we restrict

the family of data structures of ASMs to the ones usually allowed in programming

languages. This leads to the following definitions.

Definition 5.3. An ASM is N-typed if its multisort domain is reduced to {0, 1} and

N, that is Booleans and integers.

Now, the (static) background of an N-typed ASM consists of some Boolean

and integer elements and some functions with Boolean and integer inputs and out-

puts. And its dynamic vocabulary contains constant (i.e. arity zero) and function

symbols to represent such elements and functions.

This is still too much to match any existing programming language. First, as

mentioned in §5.1, we shall fix a reasonably simple background on data structures

{0, 1} and N. We shall also introduce another constraint on the dynamic vocabu-

lary: no function symbol of arity ≥ 1.

Definition 5.4. An N-typed ASM A is called basic arithmetical if

i. its static framework is reduced to constants, Boolean operations on {0, 1}

and the predecessor and successor functions on N,

ii. and its dynamic vocabulary contains only nullary symbols.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✶✾

Q: This is a very restricted family of ASMs.

A: Since static functions in an ASM are evaluated for free, as concerns resource

complexity, the restriction to basic arithmetical ASMs may be seen as a reason-

able choice. But, first, let us give a basic arithmetical ASM program for the best

algorithm to compute min(m, n) :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if x = 0 then res := n

if x , 0 ∧ y = 0 then res := m

if x , 0 ∧ y , 0 then

∣

∣

∣

∣

∣

∣

x := x − 1

y := y − 1

Q: So there are four dynamic constants: m, n contain the inputs and are not mod-

ified, x, y take values m, n in the initial state and are the core of the computation.

A: Yes.

Q: Basic arithmetical ASMs seem to be very close to the Loop language.

A: It is true that a single computation step of basic arithmetical ASMs is a very

rudimentary action. Now, the run of the ASM is an external loop which is an

unbounded loop, not a bounded one like those in the Loop language. This makes

basic arithmetical ASMs far more powerful than Loop. In fact, extensionally, basic

arithmetical ASMs are Turing complete!

Q: How do you see that?

A: Simulate any two counter machine C. Consider static constants of type N to

encode the finitely many states of C. Use three dynamic constants of type N to

encode the state and the contents of the counters.

Q: It seems that basic arithmetical ASMs are exactly multicounter machines.

A: No. Counter machines are not able to compare the contents of two counters in

a single computation step. Such a comparison requires a computation involving

parallel decrementations very similar to the best computation of the min function.

On the opposite, an equality test between two dynamic constants is an elemen-

tary instruction for basic arithmetical ASMs. So, basic arithmetical ASMs are

operationally more powerful than multicounter machines.

Q: So you are going to define a class of primitive recursive algorithms using basic

arithmetical ASMs.

A: Yes, we consider a variant of Definition 5.2.

Definition 5.5. Basic arithmetical primitive recursive algorithms (in short Apra)

are the algorithms associated to basic arithmetical ASMs which halt in time bounded

by a primitive recursive function.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✷✵

Thus, a basic arithmetical primitive recursive algorithm can be viewed as a

pair (A, f) where A is a basic arithmetical ASM and f is a primitive recursive

function which bounds the lengths of the runs of A.

Q: Of course, due to Theorem 5.1, halting in primitive recursive time is equivalent

to halting in time bounded by a primitive recursive function.

A: Sure. However, you may ignore the exact halting time and merely know a

primitive recursive bound.

5.3 Apra and the imperative programming language Loophalt

Q: Why is Apra a reasonable class?

A: We hope to convince you that this class is the good one. Let us show you some

programming language that satisfactorily implements Apra. Recall that we really

care about programming languages.

We start with the the sub-language Loop of Loopω with no high-order pro-

cedural variables. It is similar to the Meyer-Ritchie Loop language [29] which

extensionally expresses only primitive recursive functions. Add to this language

Loop a command to force the program to halt:

c ::= ... | halt;

This gives an imperative language Loophalt.

Q: Is halt really an earth-shaking command?

A: Recall that the best time algorithm for min cannot be programmed in Loop (cf.

[14] for a direct proof). But we have seen an N-typed ASM program for that min

algorithm. Now, here is a Loophalt program for it.

if m=0 then min := 0 and halt;

if n=0 then min := 0 and halt;

x := m;

y := n;

for i := 1 to m do

x := x - 1;

y := y - 1;

if y=0 then min := n and halt;

end for;

min := m;

1

2

3

4

5

6

7

8

9

10

Q: Nice and so simple. So halt adds new algorithms. Now, how do Loophalt
and Apra operationally compare?

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✷✶

A: The easy direction is to associate a basic arithmetical ASM to a Loophalt
program. Attach dynamic constants of type N to the variables in the program,

including the counter variables of loop instructions and the counter for the line

currently executed. For instance, the above Loophalt for the min function becomes

the following ASM program (where ‖ separates the instructions in a block):

if c = 1 ∧ m = 0 then (min := 0 ‖ c := 11) else c := 2

if c = 2 ∧ n = 0 then (min := 0 ‖ c := 11) else c := 3

if c = 3 then (x := m ‖ c := 4)

if c = 4 then (y := n ‖ c := 5)

if c = 5 ∧ i = m then c := 10 else c := 6

if c = 6 then (x := x − 1 ‖ c := 7)

if c = 7 then (y := y − 1 ‖ c := 8)

if c = 8 ∧ y = 0 then (min := n ‖ c := 11) else c := 9

if c = 9 then (i := i + 1 ‖ c := 5)

if c = 10 then (min := m ‖ c := 11)

1

2

3

4

5

6

7

8

9

10

Observe that when c = 11 the ASM program does nothing. Thus, the ASM

assignment c := 11 corresponds to the halt command.

Q: Ok, it is an easy exercise to devise an ASM program such that the obtained

basic arithmetical ASM simulates step by step the execution of any Loophalt pro-

gram. So every algorithm associated to some Loophalt program is in Apra. What

about the converse inclusion?

A: Let A be a basic arithmetical ASM with ASM program πA and running time

bounded by a primitive recursive function f . To get a Loophalt program which

captures the operational contents of A, we proceed in three main steps: 1) define

a shell program, 2) get a core program, 3) “inject" the shell program into the core

program.

To get the shell program, we first translate the ASM program πA into a Loophalt
program. Then we duplicate the variables associated to the ASM dynamic con-

stants. These new variables will represent the state before an update. Thus, com-

paring old and new values, we can detect a fixed point of the ASM run.

Q: But there is nothing but conditionals and updates in πA. So this is quite a

degenerate Loop program!

A: Yes, this is a sequence of conditionals and updates that mimic the πA program.

This is, in fact, the best simulation we can manage since we simulate simultaneous

updates by sequences. Thus, we loosen the step by step simulation: for some fixed

k, one ASM step is simulated by ≤ k steps of the Loop program. We can also get

exactly k steps if we want.

Q: So far, there is still no loop. And what you get is not a very attractive program.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✷✷

A: We agree, this is not the usual way to construct programs (for the time being!).

But we just want to show that this programming language is expressive enough as

concerns primitive recursive algorithms.

Now, we introduce the core program.

Recall that the running time of the ASM run is bounded by some primitive

recursive function f . The core program is any Loop program with running time

greater than or equal to f . There are such core programs: since f is primitive

recursive there exists a Loop program that computes f ; complete this program

with a loop bounded by the value of f just computed.

Q: The running time of the core program can be far much greater than f since f

may not have good implementations in Loop.

A: This is where the magic command halt comes in!

We “inject" the shell program into the core program. This means that at each

step of the core program we also execute the shell program to mimic one step of

the run of the given basic arithmetical ASM. Using the duplicated variables, we

know when the ASM run halts. Besides the shell program we also inject in the

core program some conditional instruction

if C then halt

where condition C uses the variables associated to the ASM (plus their duplicates)

to check whether the simulated ASM run halts or not.

Q: Summing up, the core program has a running time long enough so that the

shell program can be iteratively executed a number of times at least equal to the

ASM running time. And the command halt allows to stop the execution of the

core program at the right time. Now, how do you define this “injection" of the

shell program into the core program?

A: Let P be a Loop program and Q be a Loophalt program. We define the insertion

P[Q] of Q in P by induction on the length of P:

P ≡ x := e; coms

P[Q] ≡ Q x := e; coms[Q]

P ≡ if e then com1 else com2 endif; coms

P[Q] ≡ Q if e then com1[Q] else com2[Q] endif; coms[Q]

P ≡ loop exprint do com endloop; coms

P[Q] ≡ Q loop exprint do com[Q] Q endloop; coms[Q]

Q: Semicolons are missing after Q in your table.

A: No. In fact, Q represents a piece of code ending with a semicolon!

Q: Ok. You do not obtain exact operational simulation. The environment of the

Loophalt program is richer than that of the simulated basic arithmetical ASM.

Q: Right. We obtain the following result.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✷✸

Theorem 5.6. Let g be a function fromNk toN and A be an Apra algorithm which

computes g in time bounded by a primitive recursive function f . Then there is a

Loophalt program that simulates A and runs in time O(f).

This leads to consider escape commands as good control structure for pro-

gramming languages (see [35] for a pedagogical discussion on that subject). Be-

sides halt, one can consider kind of “escape from a loop" or “escape from a

k-nested loop" or introduce more sophisticated control structures such that excep-

tion (see [1] for instance).

5.4 Functional implementation of Apra

Q: Well, what you showed me makes good use of the fact that the Loop lan-

guage is close to ASMs with the update (or assignment) notion. But what about a

functional implementation of Apra?

A: Following [14] and [15], we extract from Gödel system T the core of the

functional language that simulates the class Apra. The fragment of system T

which captures Apra is exactly the language induced by the definition of primitive

recursion with variable parameters (see [33]) with a mixed call-by strategy (by

value on β–reduction and by-name for rec and if reductions).

Q: Hum. . . A functional language with two kinds of reductions. Do you know

any language which truly shares such a feature?

A: In fact, in each usual functional language designers have added a way to use

the opposite reduction strategy. For instance, Haskell for call-by-need and Ocaml

for call-by-value for instance. This is no coincidence.

Q: So, you start from a Loophalt program and you translate it to a system T term?

A: No. Roughly speaking, a halting command does not go well with functional

programming nor with a mathematical model. The simulation relies on another

control structure related to the bounded loop itself that can be called conditional

bounded loop and denoted by LoopC.

Q: This kind of control structure has been used in PL/1.

A: This control structure can also be viewed as a conditional exit from a loop

which can appear anywhere among the instructions inside the loop.

For convenience, we shall consider down-to bounded loops: loops which go

downto 1.

command ::= ... | for xi := t downto 1 onlyIf b {s}

The informal operational semantics is “loop until 1 is reached or b is false".

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✷✹

Before entering the translation, let us mention the definition of expressions in

LoopC :
e ::= eint | ebool

eint ::= n̄ | x | x − 1 | x + 1

ebool ::= true | false | xi = x j | ¬b | b1 ∧ b2

The desired translation is as follows.

Definition 5.7. The translation (denoted by +) of a LoopC program with variables

~x = (x1, . . . , xn) into a term in system T is defined by induction on expressions and

commands as follows:

n̄∗ is S n(0)

true
+

is true

false
+

is false

x+i is xi

(xi + 1)+ is succ(xi)

(xi − 1)+ is pred(xi)

{}+ is ~x

{xi = e; s}+ is let xi = e+ in {s}+

{c; s}+ is let ~x = c+ in {s}+

if c is not an assignment

(if b {s1} else {s2})
+ is if(b+, {s1}

+, {s2}
+)

(for xi in e downto 1 onlyIf b {s})+ is

recN,N(e+, λ~x.~x, [y, xi]λ~x.if(b
+, let ~x = {s}+ in y ~x, ~x)) ~x

Q: I don’t understand, your translation of the conditional bounded loop gives a

term in the system T at level 1 (due to recN,N). Is the target language beyond

primitive recursion?

A: A priori, you’re right! But if you analyze the term you will see that it doesn’t

use the full power of level one of system T . In fact, the translated term encodes

a primitive recursive schema called primitive recursion with variable parameters

which has the form

f (0, ~y) = g(~y)

f (x + 1, ~y) = h(x, f (x, j(x, ~y)), ~y)

where g, h and j are also defined by primitive recursion with variable parameters.

Q: This looks much like the second-order primitive recursion to get the best

algorithm for min, cf. §3.3.

A: This recursion schema offers a new control structure for the functional lan-

guage (of primitive recursion). Though it is not expressible as such in system

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✷✺

T , using level 1 of system T , we can mimic it. Now, observe that we do not use

level 1 for its extensional power but we use it for its operational power which goes

beyond that of level 0 even for primitive recursive functions.

Q: Ok, but in system T with call-by-value strategy, you mentioned earlier that

there is no way to obtain the good algorithm for the min function!

A: Yes, with such kind of language call-by-value is an handicap. Other strategies

may enlarge the algorithmic expressive power. The good strategy is the one that

reduces rec by-name and let by-value.

Q: So, your result is similar to that of Theorem 4.2 relative to the translation of

Loopω into system T . One reduction step in LoopC is simulated by one reduction

step in T . Is that correct?

A: In fact, the simulation is only lockstep: one step in LoopC is translated by one

or two steps in the rec term.

Theorem 5.8. If 〈c, (~x, ~n)〉 → 〈c1, (~x, ~n1)〉 then c+[~n+/~x] {≤2 c+
1
[~n1
+
/~x] where→

denotes one reduction step of the LoopC language and{≤i denotes a sequence of

at most i reduction steps in the system T language.

Acknowledgments.

Many thanks to Yuri Gurevich for numerous illuminating discussions. Many

thanks too to Charles R. Wallace and Benjamin Rossman for suggestions and

corrections to the first draft of this paper.

References

[1] Consolidated ADA Reference Manual: Language and Standard Libraries,

Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[2] Ph. Andary, B. Patrou, and P. Valarcher. A representation theorem for primitive

recursive algorithms, Fundamenta Informaticae, 107(4): 313-330 (2011).

[3] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data

structures. Theoretical Computer Science, 20(3):265–321, 1982.

[4] Therese C. Biedl, Jonathan F. Buss, Erik D. Demaine, Martin L. Demaine, Mo-

hammad Taghi Hajiaghayi and Tomás Vinar. Palindrome recognition using a mul-

tidimensional tape. Theoretical Computer Science, 302(1-3):475–480, 2003.

[5] Lenore Blum, Mike Shub and Steve Smale. On a theory of computation and

complexity over the real numbers: NP-completeness, recursive functions and uni-

versal machines. Bulletin American Mathematical Society, 21(1):1–46, 1989.

[6] E. Börger and R. Stärk, Abstract state machines: a method for high-level system

design and analysis, Springer-Verlag, 2003.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❍❊ ❊❆❚❈❙ ❈❖▲❯▼◆❙

✶✷✻

[7] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça and Emmanuel Hainry.

Polynomial differential equations compute all real computable functions on com-

putable compact intervals. Journal of Complexity, 23(3):157–166, 2007.

[8] Stephen Brookes and Denis Dancanet. Sequential algorithms, deterministic par-

allelism, and intensional expressiveness. 22nd Symposium on Principles of Pro-

gramming Languages (POPL’95), 13–24, 1995.

[9] Loïc Colson. About primitive recursive algorithms. Theoretical Computer Sci-

ence, 83(1):57–69, 1991. Preliminary version in Proceedings ICALP 1989, Lec-

ture Notes in Computer Science, 372:194–206, 1989.

[10] Loïc Colson. Représentation intensionnelle d’algorithmes dans les systèmes fonc-

tionnels. Thèse de doctorat, Université Paris 7, 1991.

[11] Loïc Colson. A unary representation result for system T . Annals of Mathematics

and Artificial Intelligence, 16:385–403, 1996.

[12] Loïc Colson and Daniel Fredholm. System T , call-by-value and the minimum

problem. Theoretical Computer Science, 206:301–315, 1998.

[13] Thierry Coquand. Une preuve directe du thérorème d’ultime obstination. Comptes

Rendus de l’Académie des Sciences, Série I, 314:389–392, 1992.

[14] Tristan Crolard, Samuel Lacas, and Pierre Valarcher. On the expressive power of

the Loop language. Nordic Journal of Computing, 13(1-2):46–57, 2006.

[15] Tristan Crolard, Emmanuel Polonowski and Pierre Valarcher. Extending the loop

language with higher-order procedural variables. ACM Transactions on Compu-

tational Logic 10(4):1–37 (2009)

[16] René David. Un algorithme primitif récursif pour la fonction Inf. Comptes Rendus

de l’Académie des Sciences, Série I, 317:899–902, 1993.

[17] René David. The Inf function in the system F. Theoretical Computer Science,

135:423-431, 1994.

[18] René David. On the asymptotic behaviour of primitive recursive algorithms. The-

oretical Computer Science, 266(1-2):159–193, 2001.

[19] René David. Decidability results for primitive recursive algorithms. Theoretical

Computer Science, 300(1-3):477–504, 2003.

[20] Marie Ferbus and Serge Grigorieff. ASMs and Operational Algorithmic Com-

pleteness of Lambda Calculus. Fields of Logic and Computation, Nachum Der-

showitz, Wolfgang Reisig editors. Lecture Notes in Computer Science 6300:301–

327, Springer, 2010.

[21] Serge Grigorieff and Pierre Valarcher. Evolving multialgebras unify all usual se-

quential computation models. STACS 2010, 301–327, Jean-Yves Marion, Thomas

Schwentick, editors, 2010.

[22] Serge Grigorieff and Pierre Valarcher. Functionals using Bounded Information

and the Dynamics of Algorithms. LICS 2012.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✷✼

[23] Serge Grigorieff and Pierre Valarcher. Computation models and ASM frame-

works. In preparation.

[24] Yuri Gurevich. Evolving algebras: an attempt to discover semantics. Bulletin of

EATCS, 43:264–284, June 1991.

[25] Yuri Gurevich. The Sequential ASM Thesis. Bulletin of EATCS, 43:264–284,

February 1999.

[26] Yuri Gurevich. What Is an Algorithm? SOFSEM, Lecture Notes in Computer

Science, 7147:31–42, 2012.

[27] F. C. Hennie. One-Tape, Off-Line Turing Machine Computations. Information

and Control, 8(6):553–578, 1965.

[28] Kurt Schütte. Fundamental algorithms. The Art of Computer Programming,

volume 1. Addison-Wesley, 1968.

[29] Albert R. Meyer and Dennis M. Ritchie. The complexity of loop programs Proc.

22nd National ACM Conference, 465–470, 1976.

[30] David Michel and Pierre Valarcher. A total functional programming language

that computes APRA. Studies in Weak Arithmetic, CSLI Lecture Notes, 196:1–

19, Stanford, 2009.

[31] Yiannis Moschovakis. On primitive recursive algorithms and the greatest common

divisor function. Theoretical Computer Science, 301 (1-3):1–30, 2003 .

[32] Wolfgang J. Paul. Kolmogorov Complexity and Lower Bounds. Proc. Fun-

damentals of Computation Theory (FCT), Budach, L., editor, pages 325–334,

Berlin/Wendisch-Rietz Akademie-Verlag, 1979.

[33] Rózsa Péter. Recursive Functions. Academic Press, 1967.

[34] H. G. Rice. Recursive real numbers. Proceedings American Mathematical Soci-

ety, 5:784–791, 1954.

[35] Eric S. Roberts. Loop exits and structured programming: reopening the debate.

SIGCSE’95: Proceedings of the twenty-sixth SIGCSE technical symposium on

Computer Science Education, 268–272, 1995.

[36] Hartley Rogers Jr. Theory of recursive functions and effective computability.

McGraw-Hill, 1967.

[37] Kurt Schütte. Proof theory. Springer, 1977.

[38] Alan Mathison Turing. On Computable Numbers, with an application to the

Entscheidungsproblem. Proceedings London Math. Soc., series 2, 42:230–265,

1936. Correction ibid. 43, pp 544-546 (1937).

[39] Pierre Valarcher. A complete characterization of primitive recursive intensional

behaviours. Theoretical Informatics and Applications, 42(1):62–82, 2008.

❇✉❧❧❡$✐♥ ♦❢ $❤❡ ❊❆❚❈❙ ♥♦ ✶✵✼✱ ♣♣✳ ✶✸✶➊✶✹✷✱ ❏✉♥❡ ✷✵✶✷

©❝
❊✉;♦♣❡❛♥ ❆==♦❝✐❛$✐♦♥ ❢♦; ❚❤❡♦;❡$✐❝❛❧ ❈♦♠♣✉$❡; ❙❝✐❡♥❝❡

S U

Dane Henshall

School of Computer Science

University of Waterloo

Waterloo, ON N2L 3G1

Canada

dslhensh@uwaterloo.ca

Narad Rampersad

Department of Math/Stats

University of Winnipeg

515 Portage Avenue

Winnipeg, MB, R3B 2E9

Canada

narad.rampersad@gmail.com

Jeffrey Shallit

School of Computer Science

University of Waterloo

Waterloo, ON N2L 3G1

Canada

shallit@cs.uwaterloo.ca

Abstract

We consider various shuffling and unshuffling operations on languages

and words, and examine their closure properties. Although the main goal

is to provide some good and novel exercises and examples for undergradu-

ate formal language theory classes, we also provide some new results and

mention some open problems.

1 Introduction

Two kinds of shuffles are commonly studied: perfect shuffle and ordinary shuffle.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✸✷

For two words x = a1a2 · · · an, y = b1b2 · · · bn of the same length, we de-

fine their perfect shuffle xx y = a1b1a2b2 · · · anbn. For example, termx hoes =

theorems. Note that xx y need not equal yx x. This definition is extended to

languages as follows:

L1 x L2 =
⋃

x∈L1 , y∈L2
|x|=|y|

{xx y}.

If xR denotes the reverse of x, then note that (xx y)R = yRx xR.

It is sometimes useful to allow |y| = |x|+1, where x = a1 · · · an, y = b1 · · · bn+1,

in which case we define xx y = a1b1 · · · anbnbn+1.

The ordinary shuffle xX y of two words is a finite set, the set of words ob-

tainable from merging the words x and y from left to right, but choosing the next

symbol arbitrarily from x or y. More formally,

xX y = {z : z = x1y1x2y2 · · · xnyn for some n ≥ 1 and

words x1, . . . , xn, y1, . . . , yn such that x = x1 · · · xn and y = y1 · · · yn}.

This definition is symmetric, and xX y = yX x. The definition is extended to

languages as follows:

L1 X L2 =
⋃

x∈L1, y∈L2

(xX y).

Shuffle is associative; we have

(L1 X L2)X L3 = L1 X (L2 X L3)

for all languages L1, L2, L3.

(As a mnemonic, the symbol X is larger than x in size, and similarly X

generally produces a set larger in cardinality than x .)

As is well-known, the shuffle (resp., perfect shuffle) of two regular languages

is regular, and the shuffle (resp., perfect shuffle) of a context-free language with

a regular language is context-free. Perhaps the easiest way to see all these results

is by using morphisms and inverse morphisms, and relying on the known closure

properties of these transformations, as follows:

If L1, L2 ⊆ Σ
∗, create a new alphabet Σ′ by putting primes on all the letters

of Σ. Define h1(a) = h2(a
′) = a and h1(a

′) = h2(a) = ǫ for a ∈ Σ. Define

h(a) = h(a′) = a for a ∈ Σ. Then

L1 X L2 = h(h
−1
1 (L1) ∩ h

−1
2 (L2)).

In a similar way,

L1 x L2 = h(h
−1
1 (L1) ∩ h

−1
2 (L2) ∩ (ΣΣ

′)∗).

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✸✸

However, the shuffle (resp., perfect shuffle) of two context-free languages need

not be context-free. For example, if L1 = {a
mbm : m ≥ 1} and L2 = {c

ndn : n ≥

1}, then L := L1 X L2 is not a CFL. If it were, then L ∩ a
+c+b+d+ = {amcnbmdn :

m, n ≥ 1} would be a CFL, which it isn’t (via the pumping lemma).

Similarly, if L3 = {a
mb2m : m ≥ 1} and L4 = {a

2nbn : n ≥ 1}, then

L3 x L4 = {a
2n(ba)nb2n : n ≥ 1}, which is clearly not a CFL.

For these, and other facts, see [1].

2 Self-shuffles

Instead of shuffling languages together, we can take a language and shuffle (resp.,

perfect shuffle) each word with itself. Another variation is to shuffle each word

with its reverse. This gives four different transformations on languages, which we

call self-shuffles:

ss(L) =
⋃

x∈L

{xX x}

pss(L) =
⋃

x∈L

xx x

ssr(L) =
⋃

x∈L

{xX xR}

pssr(L) =
⋃

x∈L

xx xR.

We would like to understand how these transformations affect regular and

context-free languages. We obtain some results, but other questions are still open.

Theorem 1. If L is regular, then ss(L) need not be context-free.

Proof. We show that ss({0, 1}∗) is not a CFL. Suppose it is, and consider L′ =

ss({0, 1}∗) ∩ R, where R = {01a0b+11c+10d1 : a, b, c, d ≥ 1}. Since R is regular, it

suffices to show that L′ is not context-free.

Now consider an arbitrary word w ∈ L′. Then w = 01a0b+11c+10d1 for some

a, b, c, d ≥ 1, and there exists a y ∈ {0, 1}∗ such that w ∈ yX y. The structure of w

allows us to determine y. Let y1 and y2 be copies of y such that w ∈ y1 X y2, and

the first letter of w is taken from y1.

The first symbol of y is evidently 0. It follows that the prefix 01a of w is taken

entirely from y1, since the 0 is taken from y1 by definition and the first symbol of

y2 is 0. Therefore 01
a is a prefix of y1.

It follows that y2 also contains 01
a as a prefix, and since a ≥ 1 this is only

possible if the first 0 of y2 is located in the 0
b+1 block of w. Otherwise, y2 would

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✸✹

be a subsequence of 0d1 and y1 would have 01
a0b+11c+1 as a prefix (implying that

y1 , y2). Furthermore, the second symbol of y2 being 1 implies that exactly one

of the 0’s in the 0b+1 block is from y2. Thus the rest are from y1 and 01
a0b is a

prefix of y1.

Note that y1 and y2 both end in 1, and w ends in 0d1. By the same logic as

before, we can conclude that 0d1 is a suffix of exactly one of them, and that the

other ends in the 1c+1 block. Thus y2 contains 0
d1 as a suffix and y1 ends in the

1c+1 block (otherwise, y1 , y2).

Finally, since the second last symbol of y1 is 0 and y1 ends in the 1
c+1 block,

we can conclude that y1 contains exactly one 1 from the 1c+1 block and that y1 =

01a0b1. Unshuffling y1 from w yields y2 = 01
c0d1.

Recall that y1 = y2. So,

y1 = 01
a0b1 = 01c0d1 = y2

and since a, b, c, d ≥ 1 we know that

a = c and b = d.

If w ∈ L′ then

w = 01a0b+11c+10d1

= 01a0d+11a+10d1

= 01a0d(01)1a0d1.

Since w was arbitrary, we have

L′ = {01a0b+11c+10d1 : a = c, b = d, and a, d ≥ 1}

= {01n0m(01)1n0m1 : m, n ≥ 1},

which is clearly not a CFL, using the pumping lemma. �

Remark 2. In a previous version of this paper, proving that ss({0, 1}∗) is not context-

free was listed as an open problem. After this was solved by D. Henshall, a solu-

tion was given by Georg Zetzsche independently.

Similarly, we can show

Theorem 3. L =
⋃

w∈{0,1}∗(wXwXw) is not context-free.

Proof. We use Ogden’s lemma. Consider

L = {wXwXw : w ∈ {0, 1}∗} ∩ 0∗10∗10∗1.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✸✺

Pick s = 0n10n10n1 in L to pump. Write s = uvxyz and mark the middle

block of 0’s. If v begins in the middle block of 0’s, then pump up to obtain

s′ = 0n10 j10k1, where n < j and n ≤ k. We can’t have s′ ∈ wXwXw because

the first w (the one ending at the first 1) is too short. If v begins in the first

block of 0’s, then y occurs in the middle block, so now pump down to obtain

s′ = 0i10 j10n1, where i ≤ n and j < n. Again, we can’t have s′ ∈ wXwXw,

because the third w (the one ending at the third 1) must contain all of the 0’s

immediately preceding the final 1, and hence is too long. �

Clearly ss({0, 1}∗) is in NP, since given a word w we can guess x, guess the

order in which x is shuffled with itself, and hence test if w ∈ xX x. However, we

do not know whether we can solve membership for ss({0, 1}∗) in polynomial time.

This question is apparently originally due to Jeff Erickson [2], and we learned

about it from Erik Demaine.

Open Problem 4. Is ss({0, 1}∗) in P?

We mention a few related problems. Using dynamic programming, Mans-

field [4] showed that given words w, x, y, one can decide in polynomial time

if w ∈ xX y: for each i and j, determine if w[1..i + j] is in the shuffle of

x[1..i] with y[1.. j]. Later, the same author [5] and, independently, Warmuth

and Haussler [6] showed that, given n and words w, x1, x2, . . . , xn, deciding if

w ∈ x1 X x2 X · · ·X xn is NP-complete. However, the decision problem im-

plied by Open Problem 4 asks something different: given w, does there exist x

such that w ∈ xX x?

Open Problem 5. Determine a simple closed form for

ak(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(xX x)

∣

∣

∣

∣

∣

∣

∣

.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9

a2(n) 1 2 6 22 82 320 1268 5102 20632 83972

a3(n) 1 3 15 93 621 4425 32703 248901

a4(n) 1 4 28 244 2332 23848 254416

a5(n) 1 5 45 505 6265 83225

a6(n) 1 6 66 906 13806 225336

Clearly ai(0) = 1, ai(1) = i, and ai(2) = 2i2 − i. Empirically we have ai(3) =

5i3−5i2+ i, ai(4) = 14i
4−21i3+5i2+3i, and ai(5) = 42i

5−84i4+32i3+21i2−10i.

This suggests that ai(n) =
(2nn)
n+1
in −

(

2n−1

n+1

)

in−1 + O(in−2), but we do not have a proof.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✸✻

3 Perfect self-shuffle

We can consider the same question for perfect shuffle. We define

pss(L) =
⋃

x∈L

{xx x}.

Theorem 6. Both the class of regular languages and the class of context-free

languages are closed under pss.

Proof. Use the fact that pss(L) = h(L), where h is the morphism mapping a→ aa

for each letter a. �

4 Self-shuffle with reverse

We now characterize those words y that can be written as a shuffle of a word with

its reverse; that is, as a member of the set xX xR.

An abelian square is a word of the form xx′ where x′ is a permutation of x.

Theorem 7. (a) If there exists x such that y ∈ xX xR, then y is an abelian square.

(b) If y is a binary abelian square, then there exists x such that y ∈ xX xR.

We introduce the following notation: if w = a1a2 · · · an, then by w[i.. j] we

mean the factor aiai+1 · · · a j.

Proof. (a) If y is the shuffle of x with its reverse, then the first half of y must

contain some prefix of x, say x[1..k]. Then the second half of y must contain the

remaining suffix of x, say x[k + 1..n]. Then the second half of y must contain,

in the remaining positions, some prefix of x, reversed. But by counting we see

that this prefix must be x[1..k]. So the first half of y must contain the remaining

symbols of x, reversed. This shows that the first half of y is just x[1..k] shuffled

with x[k + 1..n]R, and the second half of y is just x[k + 1..n] shuffled with x[1..k]R.

So the second half of y is a permutation of the first half of y.

(b) It remains to see that every binary abelian square can be obtained in this

way. To see this, note that if x contains j 0’s and n − j 1’s, then we can get y by

shuffling 0 j1n− j with its reverse. We get the 0’s in x by choosing them from 0 j1n− j,

and we get the 1’s in x by choosing them from (0 j1n− j)R. �

Remark 8. The word 012012 is an example of a ternary abelian square that cannot

be written as an element of wXwR for any word w.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✸✼

Remark 9. The preceding proof gives another proof of the classic identity

(

2n

n

)

=

(

n

0

)2

+ · · · +

(

n

n

)2

.

To see this, we use the following bijections: the binary words of length 2n having

exactly n 0’s (and hence n 1’s) are in one-one correspondence with the abelian

squares of length 2n, as follows: take such a word and complement the last n bits.

This transformation is clearly invertible. Thus there are
(

2n

n

)

binary abelian squares

of length 2n.

On the other hand, there are
(

n

i

)2
words that are abelian squares and have a first

and last half, each with i 0’s. Summing this from i = 0 to n gives the result.

Corollary 10. The language

ssr({0, 1}∗) =
⋃

x∈{0,1}∗

(xX xR)

is not a CFL, but is in P.

Proof. From above, intersecting ssr({0, 1}∗) with 0+1+0+1+ gives

{0m1n0m+2k1n : m, n ≥ 1 and k ≥ 0} ∪ {0m1n+2k0m1n : m, n ≥ 1 and k ≥ 0}.

Now the pumping lemma applied to z = 0n1n0n1n shows this is not a CFL.

Since we can easily test if a string is an abelian square by counting the number

of 0’s in the first half, and comparing it to the number of 0’s in the second half, it

follows that ssr({0, 1}∗) is in P. �

As before, we can define

bk(n) :=

∣

∣

∣

∣

∣

∣

∣

⋃

x∈{0,1,...,k−1}n

(xX xR)

∣

∣

∣

∣

∣

∣

∣

.

For k = 2, our results above explain bk(n), but we do not know a closed form for

larger k.

The first few terms are given as follows:

n 0 1 2 3 4 5 6 7 8 9

b2(n) 1 2 6 20 70 252 924 3432 12870 48620

b3(n) 1 3 15 87 549 3657 25317 180459

b4(n) 1 4 28 232 2116 20560 208912

b5(n) 1 5 45 485 5785 73785

b6(n) 1 6 66 876 12906 203676

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✸✽

Clearly bi(0) = 1, bi(1) = i, and bi(2) = 2i2 − i. Empirically, we have bi(3) =

5i3−6i2+2i, bi(4) = 14i
4−27i3+17i2−3i, and bi(5) = 42i

5−110i4+94i3−17i2−8i.

This suggests that bi(n) =
(2nn)
n+1
in −

((

2n−1

n−1

)

− 2n−1
)

in−1 +O(in−2), but we do not have

a proof.

5 Perfect self-shuffle with reverse

We now consider the operation w → wxwR applied to languages. Recall that

pssr(L) =
⋃

x∈L{xx x
R}.

Theorem 11. If L is regular then pssr(L) is not necessarily regular.

Proof. Let L = 0+10+. Then pssr(L) ∩ 0+110+ = {0n110n : n ≥ 2}, which is

clearly not regular. �

Theorem 12. If L is context-free then pssr(L) is not necessarily context-free.

Proof. Let L = {0m1m2n3n : m, n ≥ 1}. Then pssr(L) ∩ (03)+(12)+(21)+(30)+ =

{(03)n(12)n(21)n(30)n : n ≥ 1}, and this language is easily seen to be non-context-

free. �

Theorem 13. If L is regular then pssr(L) is necessarily context-free.

We defer the proof of Theorem 13 until Section 6.4 below.

6 Unshuffling

Given a finite word w = a1a2 · · · an we can decimate it into its odd- and even-

indexed parts, as follows:

odd(w) = a1a3 · · · an−((n+1) mod 2)

even(w) = a2a4 · · · an−(n mod 2)

Similarly, given w = a1a2 · · · an we can extract its first and last halves, as follows:

fh(w) = a1a2 · · · a⌊n/2⌋

lh(w) = a⌊n/2⌋+1 · · · an

We now turn our attention to four “unshuffling” operations:

bd(w) = odd(w)even(w)

bdr(w) = odd(w)even(w)R

bdi(w) = fh(w)x lh(w)

bdir(w) = fh(w)x lh(w)R

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✸✾

6.1 Binary decimation

We first consider a kind of binary decimation, which forms a sort of inverse to

perfect shuffle.

Given a word w = a1a2 · · · a2n of even length, note that

bd(w) = a1a3 · · · a2n−1a2a4 · · · a2n

is formed by “unshuffling” the word into its odd- and even-indexed letters. For

example, the French word maigre becomes the word mirage under this opera-

tion.

Theorem 14. Neither the class of regular languages nor the class of context-free

languages is closed under bd.

Proof. Consider the regular (and context-free) language L = (00 + 11)+. Then

bd(L) = {ww : w ∈ {0, 1}+}, which is well-known to be non-context-free. �

6.2 Binary decimation with reverse

We now consider the operation bdr, which is a kind of binary decimation with

reverse. Note that

bdr(a1a2 · · · a2n) = a1a3 · · · a2n−1a2n · · · a4a2.

For example, bdr(friend) = finder and bdr(perverse) = preserve.

Theorem 15. The class of regular languages is not closed under bdr.

Proof. Let L = (00)+11. Then bdr(L) = {0n110n : n ≥ 1}, which is not regular.

�

Theorem 16. The class of context-free languages is not closed under bdr.

Proof. Consider L = {(03)n(12)n : n ≥ 1}. Then bdr(L) = {0n1n2n3n : n ≥ 1},

which is not context-free. �

Theorem 17. If L is regular, then bdr(L) is context-free.

Proof. We show how to accept words of bdr(L) of even length; words of odd

length can be treated similarly.

On input w = b1b2 · · · b2n, a PDA can guess x = a1a2 · · · a2n in parallel with

the elements of the input. At each stage the PDA compares ai to b(i+1)/2 if i is odd;

and otherwise it pushes ai onto the stack (if i is even). At some point the PDA

nondeterministically guesses that it has seen a2n and pushed it on the stack; it now

pops the stack (which is holding a2n · · · a4a2) and compares the stack contents to

the rest of the input w.

The PDA accepts if x ∈ L and the symbols matched as described. �

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✹✵

6.3 Inverse decimation

We now consider a kind of inverse decimation, which shuffles the first and last

halves of a word.

Note that if w = a1 · · · a2n is of even length, then

bdi(w) = a1an+1a2an+2 · · · ana2n.

Further, bdi(bd(w)) = bd(bdi(w)) for w of even length.

Theorem 18. If L is regular then so is bdi(L).

Proof. On input x we simulate the DFA for L on the odd-indexed letters of x,

starting from q0, and we simulate a second copy of the DFA for L on the even-

indexed letters, starting at some guessed state q. Finally, we check to see that our

guess of q was correct. �

Theorem 19. The class of context-free languages is not closed under bdi.

Proof. Let L = {0m1m22n34n : m, n ≥ 1}. It is easy to see that

bdi(L) =

(01)m−3n(02)2n(03)n(13)3n, if m ≥ 3n;

(02)m−n(03)n(13)m(23)3n−m, if n ≤ m ≤ 3n;

(03)m(13)m(23)2n(33)n−m, if m ≤ n.

Consider L′ := bdi(L) ∩ (03)+(13)+(23)+. From the above we have L′ =

{(03)n(13)n(23)2n : n ≥ 1}, which is evidently not context-free. �

6.4 Inverse decimation with reverse

Note that if w = a1 · · · a2n is of even length, then bdir(w) = a1a2na2a2n−1 · · · anan+1.

If w = a1 · · · a2n+1 is of odd length, we define

bdir(w) = a1a2n+1a2a2n · · · anan+2an+1.

Theorem 20. If L is regular then so is bdir(L).

Proof. On input x we simulate the DFA M for L on the odd-indexed letters of x,

starting from q0. We also create an NFA M′ accepting LR in the usual manner, by

reversing the transitions of M, and making the start state the set of final states of

M, and we simulate M′ on the even-indexed letters of x. Finally, we check to see

that we meet in the middle. �

Theorem 21. The class of context-free languages is not closed under bdir.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✹✶

Proof. Consider L = {02m14m2n3n : m, n ≥ 1}. Then L is a CFL, and it is easy to

verify that

bdir(02m14m2n3n) =

(03)n(02)n(01)2m−2n(11)m+n, if m ≥ n;

(03)n(02)2m−n(12)2n−2m(11)3m−n, if m ≤ n ≤ 2m;

(03)2m(13)n−2m(12)n(11)3m−n, if 2m ≤ n ≤ 3m;

(03)2m(13)n−2m(12)6m−n(22)n−3m, if 3m ≤ n ≤ 6m;

(03)2m(13)4m(23)n−6m(22)3m, if n ≥ 6m.

Assume bdir(L) is a CFL. Then L′ := bdir(L) ∩ (03)+(13)+(22)+ is a CFL, and

from above we have L′ = {(03)2m(13)4m(22)3m : m ≥ 1}, which is not a CFL. �

As Georg Zetzsche has kindly pointed out to us, the operation bdir was studied

previously by Jantzen and Petersen [3]; they called it “twist”. They proved our

Theorems 20 and 21.

We now return to the proof of Theorem 13, which was postponed until now.

We need two lemmas:

Lemma 22. Suppose L is a regular language. Then L′ = {wwR : w ∈ L} is a

CFL.

Proof. On input x, a PDA can guess w and verify it is in L, while pushing it on

the stack. Nondeterministically it then guesses it is at the end of w and pops the

stack, comparing to the input. �

Lemma 23. For all words w we have wxwR = bdir(w) bdir(w)R.

Proof. If w is of even length then

wxwR = (fh(w)lh(w))x (fh(w)lh(w))R

= (fh(w)lh(w))x (lh(w)Rfh(w)R)

= (fh(w)x lh(w)R)(lh(w)x fh(w)R)

= bdir(w)bdir(w)R.

A similar proof works for w of odd length. �

We can now prove Theorem 13.

Proof. From Lemma 23 we have

pssr(L) =
⋃

x∈L

xx xR =
⋃

x∈L

bdir(x) bdir(x)R =
⋃

x∈bdir(L)

xxR.

If L is regular, then bdir(L) is regular, by Theorem 20. Then, from Lemma 22, it

follows that pssr(L) is a CFL. �

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❚❊❈❍◆■❈❆▲ ❈❖◆❚❘■❇❯❚■❖◆❙

✶✹✷

7 Acknowledgment

We are grateful to Georg Zetzsche for his remarks.

References

[1] J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.

[2] J. Erickson. How hard is unshuffling a string?

http://cstheory.stackexchange.com/questions/34/

how-hard-is-unshuffling-a-string, August 16 2010.

[3] M. Jantzen and H. Petersen. Cancellation in context-free languages: enrichment by

reduction. Theoret. Comput. Sci. 127 (1994), 149–170.

[4] A. Mansfield. An algorithm for a merge recognition problem. Disc. Appl. Math. 4

(1982), 193–197.

[5] A. Mansfield. On the computational complexity of a merge recognition problem.

Disc. Appl. Math. 5 (1983), 119–122.

[6] M. K. Warmuth and D. Haussler. On the complexity of iterated shuffle. J. Comput.

Sys. Sci. 28 (1984), 345–358.

❇✉❧❧❡$✐♥ ♦❢ $❤❡ ❊❆❚❈❙ ♥♦ ✶✵✼✱ ♣♣✳ ✶✹✺➊✶✻✺✱ ❏✉♥❡ ✷✵✶✷

©❝
❊✉<♦♣❡❛♥ ❆>>♦❝✐❛$✐♦♥ ❢♦< ❚❤❡♦<❡$✐❝❛❧ ❈♦♠♣✉$❡< ❙❝✐❡♥❝❡

Report on BCTCS 2012

The 28th British Colloquium for Theoretical Computer Science

2-5 April 2012, University of Manchester

Ian Pratt-Hartmann

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual

forum in which researchers in Theoretical Computer Science can meet, present

research findings, and discuss developments in the field. It also provides an envi-

ronment for PhD students to gain experience in presenting their work in a wider

context, and to benefit from contact with established researchers.

BCTCS 2012 was hosted by the University of Manchester, and held from 2nd

to 5th April, 2012. The event attracted over 50 participants, and featured an in-

teresting and wide-ranging programme of six invited talks (two from the same

speaker) and 33 contributed talks, covering virtually all areas of the subject. This

year, BCTCS was collocated with the 19th Workshop for Automated Reasoning

(ARW), which attracted over 30 participants; plenary sessions were shared be-

tween the two events. Abstracts for all of the talks are provided below.

The conference began with an invited talk by Mike Edmunds, of Cardiff Uni-

versity, entitled "The Antikythera Mechanism and the early history of mechanical

computing." Other invited talks were given by Reiner Hähnle, of the Technische

Universität, Darmstadt, ("Formal verification of software product families"),

Nicole Schweikardt of the Goethe-Universität, Frankfurt am Main ("On the ex-

pressive power of logics with invariant uses of arithmetic predicates") and Daniel

Kroening, of Oxford University ("SAT over an Abstract Domain"). As in previ-

ous years, the London Mathematical Society sponsored a keynote talk in Discrete

Mathematics: for this, Rod Downey, of the Victoria University of Wellington,

gave two lectures on "Fundamentals of Parametrized Complexity." The financial

support of the London Mathematical Society (LMS) is gratefully acknowledged.

BCTCS 2013 will be hosted by the University of Bath from 25th to 28th March,

2013. Researchers and PhD students wishing to contribute talks concerning any

aspect of Theoretical Computer Science are cordially invited to do so. Further

details are available from the BCTCS website at www.bctcs.ac.uk.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✹✻

Invited Talks at BCTCS 2012

Mike Edmunds, University of Cardiff

The Antikythera mechanism and the early history of mechanical computing

Perhaps the most extraordinary surviving relic from the ancient Greek world is a

device containing over thirty gear wheels dating from the late 2nd century B.C.,

and now known as the Antikythera Mechanism. This device is an order of mag-

nitude more complicated than any surviving mechanism from the following mil-

lennium, and there is no known precursor. It is clear from its structure and in-

scriptions that its purpose was astronomical, including eclipse prediction. In this

illustrated talk, I will outline the results—including an assessment of the accu-

racy of the device—from our international research team, which has been using

the most modern imaging methods to probe the device and its inscriptions. Our

results show the extraordinary sophistication of the Mechanism’s design. There

are fundamental implications for the development of Greek astronomy, philoso-

phy and technology. The subsequent history of mechanical computation will be

briefly sketched, emphasising both triumphs and lost opportunities.

Reiner Hähnle, Technische Universität Darmstadt

Formal verification of software product families

Formal verification techniques for software product families not only analyse in-

dividual programs, but act on the artifacts and components which are reused to

obtain multiple software products. As the number of products is exponential in

the number of artifacts, it is essential to perform verification in a modular fash-

ion instead of verifying each product separately: the goal is to reuse not merely

software artifacts, but also their verification proofs. In our setting, we realize code

reuse by delta-oriented programming, an approach where a core program is gradu-

ally transformed by code "deltas" each of which corresponds to a product feature.

The delta-oriented paradigm is then extended to contract-based formal specifica-

tions and to verification proofs. As a next step towards modular verification we

transpose Liskov’s behavioural subtyping principle to the delta world. Finally,

based on the resulting theory, we perform a syntactic analysis of contract deltas

that permits us to automatically factor out those parts of a verification proof that

stays valid after applying a code delta.

Nicole Schweikardt, Goethe-Universität

On the expressive power of logics with invariant uses of arithmetic predicates

In this talk I consider first-order formulas (FO, for short) where, apart from the

symbols in the given vocabulary, also predicates for linear order and arithmetic

may be used. For example, order-invariant formulas are formulas for which the

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✹✼

following is true: if a structure satisfies the formula with one particular linear

order of the structure’s universe, then it satisfies the formula with any linear order

of the structure’s universe. Arithmetic-invariant formulas are defined analogously,

where, apart from the linear order, other arithmetic predicates may be used in an

invariant way. When restricting attention to finite structures, it is known that order-

invariant FO is strictly more expressive than plain FO, and arithmetic-invariant FO

can express exactly the properties that belong to the circuit complexity class AC0.

On the other hand, by Trakthenbrot’s theorem we know that order-invariance (on

the class of finite structures) is undecidable. In this talk I want to give an overview

of the state-of-the art concerning the expressive power of order-invariant FO and

arithmetic-invariant FO.

Daniel Kroening, Oxford University

SAT over an abstract domain

We present a generalisation of the DPLL(T) framework to abstract domains. As

an instance, we present a sound and complete analysis for determining the range

of floating-point variables in embedded control software. Existing approaches to

bounds analysis either use convex abstract domains and are efficient but imprecise,

or use floating-point decision procedures, and are precise but do not scale. We

present a new analysis that elevates the architecture of a modern SAT solver to

operate over floating-point intervals. In experiments, our analyser is consistently

more precise than a state-of-the-art static analyser and significantly outperforms

floating-point decision procedures.

Rod Downey, Victoria University of Wellington

Fundamentals of parametrized complexity

Parameterized complexity is a multivariant view of complexity seeking to utilize

the order present in natural problems to establish practical tractability, or to pro-

vide tools that such a methodology won’t work. Since the original work in the

early 1990’s, there has been a clearly defined set of techniques tunes to this idea.

In this pair of tutorial lectures I will discuss the basic methods used for the con-

struction of parameterized algorithms, and some of the methods for showing pa-

rameterized intractability and optimality of the computational classes.

This method is something that a modern person doing algorithms should know.

The first lecture will be about the positive techniques, and the second on limita-

tions. The material will be accessible to a beginning graduate student.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✹✽

Contributed Talks at BCTCS 2012

Martin Adamčík, University of Manchester

Collective reasoning under uncertainty and inconsistency

In practice probabilistic evidence is incomplete and often contradictory. To build

an artificial expert system such as one recognizing diseases from list of symp-

toms, one classical approach is to define an inference process which picks the

"most rational" probabilistic belief function which an agent should have, based

solely on the given evidence. For a single incomplete but consistent probabilistic

knowledge base satisfying certain reasonable topological criteria, the Maximum

Entropy (ME) inference process championed by Jaynes and others on the basis

of combinatorial arguments, has several different justifications, and was uniquely

characterized by an elegant list of axioms developed by Paris and Vencovská. ME

enables a single rational agent to choose an optimal probabilistic belief function

on the basis of his incomplete but consistent evidence. If however probabilis-

tic evidence is derived from more than one agent, where the evidence from each

individual agent is consistent, but the evidence from all agents together is incon-

sistent, then the question as to how to merge the evidence in such a manner as to

be able to choose a single "most rational" probabilistic belief function on the basis

of the merged evidence from all agents, has been much less studied from a general

theoretical viewpoint.

In this talk we briefly describe a "social" inference process extending ME

to the multi-agent context, called the Social Entropy Process (SEP), based on

Kullback-Leibler information distance, and first formulated by Wilmers. SEP

turns out to be a generalisation of the well-known logarithmic pooling operator

for pooling the known probabilistic belief functions of several agents. We show

that SEP satisfies a natural variant of the important principle of Irrelevant Infor-

mation which is known to be satisfied by ME. We also indicate how the merging

process described by SEP satisfies a suitable interpretation of the set of merging

axioms for knowledge bases formulated by Konieczny and Pino Pérez in.

Chris Banks, University of Edinburgh

Towards a logic of biochemical processes

The Continuous Pi-calculus, cπ, is a continuous time and continuous space pro-

cess calculus. The prime motivation cπ is for the modelling of the evolution of

biochemical processes where the state of process is the real concentration of its

constituent species and these concentrations are evolving continuously. Our aim

is to provide a logic suitable for expressing properties of such processes, an algo-

rithm for model checking, and tools to support the analysis of these processes.

Our proposed logic is based on Linear Temporal Logic with real constraints.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✹✾

The deterministic nature of cπ processes means that a linear time logic is sufficient

for expressing their temporal properties. However, in the context of biochemical

processes, it is desirable to allow the expression of contextual properties. One

might like to express how the system changes in different contexts, for example,

with the introduction of new species into the system. The proposed logic contains

an operator similar to the guarantee from spatial logic which allows the expression

of such properties.

We also aim to provide a model checking algorithm to verify assertions in the

logic. The problem is how to model check over a continuous state space. One ap-

proach to the model checking problem is to take the numerical solutions of ODEs

which describe the process; this gives a discrete, deterministic approximation of

the process dynamics within a finite time interval. Model checking can then be

done using a relatively simple algorithm. Using this technique, software tools for

analysis of cπ processes are being developed as part of the project.

Richard Barraclough

A unifying theory of control dependence and its application to arbitrary pro-

gram structures

There are several similar definitions of control dependence in the literature. These

are given in terms of control flow graphs which have had extra restrictions im-

posed (for example, end-reachability). We define two new generalisations of non-

termination insensitive and nontermination sensitive control dependence called

weak and strong control-closure. These are defined for all finite directed graphs,

not just control flow graphs, and are hence allow control dependence to be applied

to a wider class of program structures than before.

We define an underlying semantics for control dependence by defining two

relations between graphs: weak and strong projections. We prove that the graph

induced by a set of vertices is a weak/strong projection of the original if and only

if the set is weakly/strongly control-closed. Thus, all previous forms of control de-

pendence also satisfy our semantics. Weak and strong projections, thus, precisely

capture the essence of control dependence both in our generalisations and all the

previous – more restricted – forms. More fundamentally, these semantics can be

thought of as correctness criteria for future definitions of control dependence.

Brandon Bennett, University of Leeds

An ‘almost analytic’ sequent calculus for first-order S5 with constant domains

We present a cut-free sequent calculus for the first-order modal logic S5 with

constant domains. The system has the advantage of simplicity, in that all the

rules are straightforward and intuitive. The rule set is analytic apart from one

rule for eliminating a � operator in the succedent of a sequent. Although this

rule is not strictly analytic, it does not introduce new non-logical symbols, and

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✺✵

hence provides for an ‘almost analytic’ proof mechanism. The system is close

in form to Gentzen’s original sequent calculus for first-order logic. It does not

employ any generalisation or augmentation of the basic form of a sequent and

only involves very simple side conditions restricting the applicability of two of

the rules. Moreover these conditions can be checked locally by looking only at

the syntactic form of the immediate conclusion of the rule application.

Adequacy of the system is demonstrated by an inductive cut-elimination proof,

which shows equivalence to a well-established Hilbert system formulation of first-

order S5. The current proof has the shortcoming that it requires that the an-

tecedents and succedents of a sequent be multi-sets rather than ordinary sets,

which seems to be an unnecessary complication. Further work is ongoing to deter-

mine whether the possibility of having duplicated formulae in sequents is essential

to the completeness of the system or whether such formulae are redundant.

Mihai Burcea, University of Liverpool

Online multi-dimensional dynamic bin packing of unit fraction and power frac-

tion items

We study 2D and 3D dynamic bin packing, in which items arrive and depart at ar-

bitrary times. The 1D problem was first studied by Coffman, Garey, and Johnson

motivated by the dynamic storage problem. Bar-Noy et al. have studied pack-

ing of unit fraction items (i.e., items with lengths 1/w for some integer w ≥ 1),

motivated by the window scheduling problem.

We extend the study of 2D and 3D dynamic bin packing to unit fraction and

power fraction items (i.e., items with lengths 1/2k for some integer k ≥ 0). The

objective is to pack the items into unit-sized bins such that the maximum number

of bins ever used over all time is minimized. We give a scheme that divides the

items into classes and show that applying the first-fit algorithm to each class is

6.7850- and 21.6108-competitive for 2D and 3D, respectively, for unit fraction

items. Similarly, we provide a scheme dividing power fraction items into classes

for which the first-fit algorithm is 6.2455- and 20.0783-competitive for 2D and

3D, respectively. These are in contrast to the 7.788 and 22.788 competitive ratios

for 2D and 3D general sized items.

This is joint work with Prudence W.H. Wong and Fencol C.C. Yung.

Evelyn-Denham Coates, Logic Code Generator Ltd, London, UK

Optimum sort algorithms with o(N) moves

We show implementation of an unstable algorithm that uses o(N) additional mem-

ory to do no more than N⌈log2(N)⌉−⌈log2(N)⌉ comparisons, and no more than 3N

data moves to sort an array of N values. We show modification to the algorithm so

that it does unstable in-place sort with about the same number of comparisons and

O(N) data moves. We use our main algorithm to implement a stable merge-sort

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✺✶

with o(N) pointers and N +C − S data moves, where S = number of single cycle

permutations in the set to be sorted and C = number of permutation cycles. The

operation and operational complexity is as with natural merge-sort except for the

additional amount of memory. We show an implementation of the main algorithm

that uses log2(N) parallel steps with 1
2
N(N + 1) interconnected processors to sort

N input values. We present tabulated data from experimental test results on our

main algorithm.

The algorithm does no more than O(N(log2(N))3) bit level operations. With-

out mathematical fanfare or much theoretical exposition, we contend that our al-

gorithm demonstrate an instance solution to the comparing sort problem where a

decoupling of comparisons from data moves improves the operational complex-

ity on the number of comparisons and the number of data moves. We pose a

theoretical challenge for additional research and development with this approach.

We consider our result to be the best so far and possible the final solution to the

sort/merge problem from what we have seen in the literature.

Laurence Day, University of Nottingham

The Silence of the Lambdas

At last year’s BCTCS, I presented the preliminary results of implementing a mod-

ular compiler for a language supporting arithmetic and exceptions which has been

constructed as the least fixpoint of functors, where functions over said language

are defined as catamorphisms. In this talk, I will recap the necessary ideas before

going on to discuss the implementation of the de-Bruijn indexed lambda calculus

in this system and the need to switch from catamorphisms to explicit recursion

when dealing with term substitution. I will conclude by discussing the potential

impact that such a shift may have on notions such as modular proofs.

Michael Gabbay, King’s College London

A very simple, explicit construction of some models of beta-equality and beta-

eta-equality

We discuss a (relatively) new method of providing models of λ-reduction by which

we are able to interpret λ-terms compositionally on “possible world” structures

with a ternary accessibility relation. The simplicity of the structures is striking,

moreover, they provide us with a surprising richness of interpretations of function

abstraction and application.

We show how the models can differentiate between ‘extensional’ λ-reduction,

which supports β-contraction and η-expansion, and ‘intensional’ reduction which

supports only β-contraction. We state semantic characterisation (i.e. complete-

ness) theorems for both. We then show how to extend the method to provide a

sound and complete class of models for reduction relations that additionally sup-

port β-expansion and η-contraction (i.e. β-equality and η-equality). In this respect

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✺✷

the models we present differ from the familiar models of the λ-calculus as they

can distinguish, semantically, between intensional and extensional λ-equality.

For the main result of the paper, we outline an explicit construction of a model

of untyped λ-calculus. Again, the simplicity of the construction is striking. Fur-

thermore the construction is sufficiently general that it can be modified to construct

models either of βη-equality or simply β-equality.

Finally, we draw some speculative connections between the models constructed

and neural nets, abstractly construed. This opens up the possibility that we can

view a neural network as computing a λ-term in some sense.

Murdoch Gabbay, Heriot-Watt University

Game semantics using nominal techniques

Game semantics gives denotation to logic and computation using as metaphor a

dialogue between Proponent and Opponent. This can be modelled as a labelled

acyclic graph called a pointer sequence: nodes are labelled with Proponent / Op-

ponent moves; edges represent the move’s justification. We propose a model of

pointer sequences based on nominal sets, using atoms to model edges. Atoms are

just a countably infinite set of distinct symbols a, b, c, Questions and answers

are q and a. Pointers are rendered as a pair of atoms. The tip of an arrow is repre-

sented as coabstraction [a] or [b]. Coabstractions bind ‘into the future’, and are a

new idea to nominal techniques. The tail of an arrow is an atom occurence like a

or b. Dangling pointers are just free names (in the sequence above c is free).

Nominal sequences have the following good properties: (1) Closure under

subsequences. A subgraph of a pointer sequence is not a pointer sequence, be-

cause it might have ‘dangling pointers’. (2) Closure under concatenation. Names

link up and there are no reindexing isomorphisms. It is less obvious how pointer

sequences concatenate. (3) Nominal sequences are an inductive datatype and can

be manipulated with standard tools. There is also a specific nominal advantage:

it enables efficient management of renaming pointers. This is why we use names

and not e.g. numbers, which are permutatively asymmetric. Taking names and

permutations as primitive gives good meta-theoretic properties since ‘obvious’

symmetry properties up to ‘reindexing’ become obvious. This style of name man-

agement and has proven effective in other applications. We shall see that it is also

effective here, and we speculate that mechanisation of game semantics using our

nominal model will be significantly easier than with pointer sequences.

This is joint work with Dan Ghica

Thomas Gorry, University of Liverpool

Communication-less agent location discovery

We study a randomised distributed communication-less coordination mechanism

for uniform anonymous agents located on a circle. The agents perform their ac-

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✺✸

tions in synchronised rounds. At the beginning of each round an agent chooses

the direction of its movement from clockwise and anticlockwise, as well as its

speed 0 ≤ v ≤ 1 during this round. We assume that the agents are not allowed

to overpass, i.e., when an agent collides with another it instantly starts moving

with the same speed in the opposite direction. The agents cannot leave marks on

the ring, they have zero vision and they cannot exchange messages. However, on

the conclusion of each round each agent has access to a detailed trajectory of its

movement during this round. This information can be processed and stored by the

agent for further analysis.

We assume that n mobile agents are initially located on a circle with circum-

ference one at arbitrary but distinct positions unknown to other agents. The main

location discovery task to be performed by each agent is to determine the initial

position of every other agent and eventually to stop at its initial position, or pro-

ceed to another task, in a fully synchronised manner. Our main result is a fully

distributed randomised (Las Vegas type) algorithm, solving the location discovery

problem w.h.p in O(n log2 n) rounds. We also show how this mechanism can be

adopted to distribute the agents evenly, at equidistant positions, and how to coor-

dinate their joint effort in patrolling the circle. Note that our result also holds if

initially the agents do not know the value of n and they have no coherent sense of

direction.

Tom Grant, University of Leicester

Maximising lifetime for fault-tolerant target coverage in sensor networks

We present the problem of maximising the lifetime of a sensor network for fault-

tolerant target coverage in a setting with composite events. Here, a composite

event is the simultaneous occurence of a combination of atomic events, such as

the detection of smoke and high temperature. We are given sensor nodes that have

an initial battery level and can monitor certain event types, and a set of points

at which composite events need to be detected. The point and sensor nodes are

located in the Euclidean plane, and all nodes have uniform sensing radius. The

goal is to compute a longest activity schedule with the property that at any point

in time, each event point is monitored by at least two active sensor nodes.

We present a (6 + ε)-approximation algorithm by devising an approximation

algorithm with the same ratio for the dual problem of minimising the weight of

a fault-tolerant sensor cover. This generalises previous approximation algorithms

for geometric set cover with weighted unit disks and is obtained by enumerating

properties of the optimal solution that guide a dynamic programming approach.

Paolo Guagliardo, Free University of Bozen-Bolzano

On the relationship between view updates and logical definability

Given a set of views defined over a database, the view update problem consists

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✺✹

in finding suitable ways of propagating an update performed on the views to the

underlying database in a consistent and unique way. In this talk, we highlight the

strong connection between the view update problem and the notion of definabil-

ity in logic, and we revisit the abstract functional framework by Bancilhon and

Spyratos in a setting where views and updates are exactly given by functions that

are expressible in first-order logic. We give a characterisation of views and their

inverses based on the notion of definability, and we introduce a general method

for checking whether a view update can be uniquely translated as an update of the

underlying database.

Christopher Hampson, King’s College London

Modal Products with the difference operator

The modal logic Diff of the difference operator is known to be Kripke complete

with respect to the class of symmetric, pseudo-transitive frames. These frames

closely resemble S5-relations (i.e. equivalence relations) and it is little surprise

that the validity problems for Diff and S5 have the same co-NP complexity, and

both logics enjoy the finite model property.

Here we turn our attention to two-dimensional product logics L1×L2, by which

we mean the multimodal logic of all product frames where the first component is

a frame for L1 and the second a frame for L2. It is well-known that product logics

of the form L × S5 are usually decidable whenever L is a decidable (multi)modal

logic. We even have that S5 × S5 enjoys the exponential finite model property.

However, it is little understood how product logics of the form L × Diff behave.

Here we present some cases where the transition from L × S5 to L × Diff

not only increases the complexity of the validity problem, but in fact introduces

undecidability. The logics we consider are (i) Ku × Diff, which is shown to be

undecidable in contrast to Ku × S5, which lies in co-N2ExpTime, (ii) PTL©� ×

Diff, which is shown to be non-r.e. in contrast to the ExpSpace-completeness of

PTL©�×S5, and (iii) Diff×Diff, which is shown to lack the finite model property,

in contrast to S5 × S5 as mentioned above. Our undecidability and non-r.e.ness

results are obtained by reductions of halting-type problems for Minsky machines

on two registers, which are known to be Turing-complete.

This is joint work with Agi Kurucz.

Tie Hou, Swansea University

Modeling a language of realizers using domain-theoretic semantics

How to synthesize efficient programs from proofs obeying their formal specifi-

cations has been a long sought after goal. One method of program extraction is

to employ a realizability interpretation. Kleene first introduced the concept of

realizability with the idea of defining a relation between natural numbers and log-

ical sentences. Later many other notions on realizability were introduced, e.g.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✺✺

the "modified realizability" of Kreisel and the "function realizability" of Kleene-

Vesley. The possibility of effectively obtaining a program and its verification proof

is based on a sound realizability interpretation.

We study the domain-theoretic semantics of a Church-style typed λ-calculus

with constructors, pattern matching and recursion, and show that it is closely re-

lated to the semantics of its untyped counterpart. The motivation for this study

comes from program extraction from proofs via realizability where one has the

choice of extracting typed or untyped terms from proofs. Our result shows that if

the extracted type is regular, the choice does not matter.

The proof uses hybrid logical relations. Logical relations have been used suc-

cessfully to prove properties of typed systems. Famous examples are the strong

normalization proofs by Tait and Girard using logical relations called computabil-

ity predicates or reducibility candidates. The crucial feature of a logical relation is

that it is a family of relations indexed by types and defined by induction on types

such that all type constructors are interpreted by their logical interpretations.

The reason for studying this domain-theoretic semantics is that it allows for

very simple and elegant proofs of computational adequacy, and hence for the cor-

rectness of program extraction. Since domain theory combines the computational

features of functions with the mathematical definition of function as a mapping

from one domain to another, from the perspective point of view, a functional lan-

guage is basically a shorthand notation for domain-theoretic concepts.

Phillip James, Swansea University

Domain-specific languages and automatic verification

In this talk, we explore the support of automatic verification via careful design of

a domain specific language (DSL). For verification, such a specialized language

has two effects: (i) Only specific proof goals can be expressed in the language.

(ii) The language semantics includes axioms expressing domain knowledge. We

illustrate these ideas within the Railway Domain. The semantics of our DSL is

a specification in the algebraic specification language CASL. To provide proof

support, we use various automated theorem provers which are accessible via the

Heterogeneous tool-set (Hets). Finally, we provide concrete verification results

illustrating that careful design of a DSL and systematic use of domain knowledge

is useful for supporting automatic verification. The result is a step towards a plat-

form for creating domain specific languages with effective automatic verification

tools for domain engineers.

Sam Jones, University of Leicester

Groups, formal language theory and decidability

One natural way to describe a group G is by means of a “presentation" consisting

of a set X of generators for G and a set R of relations between words over X. If X

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✺✻

is finite then G is finitely generated, and if R is finite then G is finitely presented.

The word problem for a finitely generated group G is an algorithmic question

which asks: given two words α and β over some (finite) generating set for G are

the elements of G represented by the words α and β the same? An equivalent

formulation of this question is: given two words α and β over some generating

set for G is the element of G represented by αβ−1 the identity element of G? In

this way we can think of the word problem for G as the problem of determining

membership of the set of all words which represent the identity element of G.

In this talk I give a brief overview of some of the interactions between group

theory and formal language theory, in particular, I will focus on the word problem

for groups and the study of the word problem as a formal language. I will explain

how groups can be classified in terms of the type of automata which accept their

word problem. I will then talk about some decidability questions and results in

formal language theory on which I have been working which were motivated by

the study of the word problem for groups as a formal language.

Stanislaw Kikot, Birkbeck College, London

The length of query rewriting for OWL 2 QL

Let Σ be a signature consisting of a finite number of constants, unary and binary

predicates (Ai and Ri, respectively) and equality. We consider a class of first-order

theories T with formulas of the form

• ∀x(C1(x)→ C2(x)), where C1(x) and C2(x) are Ai(x) or ∃yRi(x, y),

• ∀x∀y(Ri(x, y)→ R j(x, y)) and ∀x∀y(Ri(x, y)→ R j(y, x)),

and conjunctive queries q(~x) = ∃~yϕ(x, y), where ϕ(x, y) is a conjunction of atoms

Ai(t1) and Ri(t1, t2) and t1 and t2 are either constants or variables from ~x, ~y. The

query rewriting problem is, given a theory T , a query q(~x) and a first-order lan-

guage L, construct a first-order formula qT (~x) in the language L (we call it “the

L-rewriting of a query q(~x) with respect to a theory T ”) such that for all sets A

of data (ground atoms of the form A(a),R(a, b)), we have A ∪ T |= q(~a) if and

only ifA |= qT (~a). For example, the rewriting of the query q(x) = ∃yR(x, y) with

respect to the theory {∀x(A(x)→ ∃yR(x, y))} is qT (x) = A(x) ∨ ∃yR(x, y).

We prove that for “natural” languages L the minimal size of qT (~x) may be

exponential in the combined size of q(~x) and T . On the other hand, we supply an

algorithm which gives short rewritings for all reasonable practical cases.

We believe that our research is relevant to the next generation search engine

design, where individuals range, say, over web pages, people and products, and

examples of unary predicates are “contains the word dextrose” and “contains some

information relevant to biology”.

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✺✼

Andrew Lawrence, Swansea University

Extracting a DPLL Algorithm

In order for verification tools to be used in an industrial context they have to be

trusted to a high degree and in some cases need to be certified. We have come up

with a new application of program extraction to develop correct certifiable deci-

sion procedures. SAT-solvers are one such decision procedure which are common

in verification tools. The majority of SAT-solvers used in an industrial context are

based on the DPLL proof system. We have performed a correctness proof of the

DPLL proof system in the Minlog theorem prover. Using the program extraction

facilities of Minlog we have been able to obtain a formally verified SAT-solving

algorithm. When run on a CNF formula this algorithm produces a model satisfy-

ing the formula or a DPLL derivation showing its unsatisfiability. Computational

redundancy was then removed from the algorithm by labelling certain universal

quantifiers in the proof as non-computational. The performance of the resulting

program was tested with a number of pigeonhole formulae.

David Love, Sheffield Hallam University

Why Don’t Cantor’s Sets Compute?

In this talk we explore the rejection of the structural equivalence used in Hilbet’s

formal theory (and by extension those of computation). For Hilbert’s formal the-

ories, we assume that the structure of the theory is congruent with the structures

described by the theory. Such a congruence is necessary for the self-referential

properties of Hilbert’s formal theories (which are in turn responsible for the power

and scope of those theories).

Even rejecting the assumption of structural equivalence we show that we can

build coherent mathematical theories: even if these are not actually formal theo-

ries. In this talk we do so using the example of two ‘halting like’ machines, creat-

ing two non-formal analogues of the more well known formal halting machines.

By doing so we show that we can explore the space of mathematical theories be-

yond Hilbert formal theories – without rejecting the vast body of work that has

been undertaken on those theories since Hilbert’s pronouncement of 1904.

Yavor Nenov, University of Oxford

Computability of topological logics over Euclidean spaces

In the last decades, formalisms for representing and reasoning with spatial knowl-

edge have been of a significant interest to the AI community. Such formalisms

are usually referred to as spatial logics and consist of a logical language whose

variables are interpreted as subsets of a topological space, called regions, and

whose non-logical symbols have a fixed geometric interpretation. Spatial log-

ics whose non-logical symbols represent topological relations and operations are

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✺✽

called topological logics.

We consider quantifier-free languages that feature symbols for Boolean opera-

tions and relations (e.g. union, complementation, etc.) and a predicate symbol for

one of two notions of connectedness – the property of being topologically con-

nected or the property of having a connected interior. We take the variables of

each language to range over different collections of regions in a Euclidean space

of dimension higher than one (Rn, n ≥ 2). We investigate the computability and

the computational complexity of the resulting topological logics and show that,

despite being based on a very simple logical syntax, they generally exhibit a very

high computational complexity, and with few exceptions are all undecidable. The

considered logics stand in stark contrast to other studied quantifier-free topologi-

cal logics, which are all decidable and of relatively low computation complexity.

Jude-Thaddeus Ojiaku, University of Liverpool

Online makespan scheduling of linear deteriorating jobs on parallel machines

Traditional scheduling assumes that the processing time of a job is fixed. Yet there

are numerous situations that the processing time increases (deteriorates) as the

start time increases. Examples include scheduling cleaning or maintenance, fire

fighting, steel production and financial management. Scheduling of deteriorating

jobs was first introduced on a single machine by Browne and Yechiali, and Gupta

and Gupta independently. In particular, lots of work has been devoted to jobs with

linear deterioration. The processing time p j of job J j is a linear function of its

start time s j, precisely, p j = a j + b js j, where a j is the normal or basic processing

time and b j is the deteriorating rate. The objective is to minimize the makespan

of the schedule.

The problem has been mainly studied in the context of offline setting, with

optimal offline solutions on single machine and FPTAS on parallel machines. We

first consider simple linear deterioration, i.e., p j = b js j. It has been shown that

on m parallel machines, when jobs are given one by one and the algorithm has to

schedule a job before knowing the next one (online-list model), LS (List Schedul-

ing) is (1 + bmax)1− 1
m -competitive. We extend the study to the online-time model

where each job is also associated with a release time. We show that for two ma-

chines, no deterministic online algorithm is better than (1 + bmax)-competitive,

implying that the problem is more difficult in the online-time model than in the

online-list model. We also show that LS is (1 + bmax)2(1− 1
m

)-competitive, meaning

that it is optimal when m = 2. We further consider the case when one of the two

machines is unavailable for a fixed time period. For the online-list model, we give

an optimal semi-online-list algorithm when bmax is known in advance.

We also study another linear deterioration function, namely, p j = a j + b s j.

In the online-list model, on m machines, we show that RR (Round Robin) is α-

competitive and LS is α-competitive in a special case, where α is the ratio of

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✺✾

maximum and minimum normal processing times.

Arnoud Pastink, University of Liverpool

Approximate Nash Equilibria in an uncoupled setup with limited communica-

tion

Since it was shown that finding a Nash equilibrium is PPAD-complete, atten-

tion has been given to other equilibrium concepts that give approximately a Nash

equilibrium in polynomial time. The two most common concepts are (additive)

ǫ-approximate Nash equilibria and well-supported Nash equilibria (ǫ-SuppNE);

the first requires a strategy of every player such that deviating can give a gain of at

most ǫ, and the latter requires that every pure strategy that is played with positive

probability is an ǫ-approximate best-response.

Most algorithms for computing ǫ-approximate Nash equilibria assume that all

payoffs are known by everybody. There are very few results about approxima-

tions in an uncoupled setup where players only know their own payoff matrix. In

this uncoupled setup we allow the players to communicate a limited amount of

communication. The best ǫ-approximate Nash equilibrium procedure with lim-

ited communication in an uncoupled setup at the moment is a simple algortihm

which achieves a 0.5–approximate Nash equilibrium by looking at strategies with

a support size of 2 and a communication complexity of O(log n). For ǫ-SuppNE,

no non-trivial approximations are known with limited communication.

I will present algorithms that achieve a 0.438–approximate Nash equilibrium

and a 0.732-SuppNE, both with a polylogarithmic communication complexity.

These results are achieved by cleverly using the properties of the zero-sum game

of the player’s own payoff matrix.

Robert Piro, University of Oxford

Model-theoretic characterisation of TBoxes and the TBox rewritability Prob-

lem

With Knowledge Representation in AI, knowledge is represented in logic, thus

giving the representation a clearly defined semantics and making it machine pro-

cessible. Description Logics (DL), which are essentially decidable fragments of

First Order Logics, have been introduced to facilitate this. The decidability al-

lows for automated reasoning and the developing of tool support. The properties

and statements a specific DL allows to express must be carefully chosen, as the

reasoning complexity rises with the expressiveness of a logic. To cater for the

different needs and requirements, a whole zoo of DLs have been introduced and

classified w.r.t. their complexity.

An interesting problem therefore is to determine their expressivity. Tradition-

ally, the expressivity of a logic is determined by a characterisation theorem, in

which model theoretic properties are determined, such that every first order for-

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✻✵

mula with these properties is expressible as formula of the logic in hand and vice

versa. The famous theorem of van Benthem, which characterises the DLALC on

concept level, is of this kind as well as the work of Kurtonina and de Rijke, who

gave characterisations for a whole zoo of description logics.

TBoxes however, which contain sentences describing concept hierarchies and

play an important role in ontologies, have not been investigated. Thus, the talk

will concentrate on characterisation theorems of TBoxes of the ALC-family as

well as EL-TBoxes. Additionally we shall present the rewritability problem for

TBoxes, which asks whether a TBox of a certain DL is expressible as TBox of

another DL with lower complexity.

Giles Reger, University of Manchester

Quantified event automata: towards expressive and efficient runtime monitors

Runtime verification techniques have recently focused on parametric specifica-

tions where events take data values as parameters. These techniques exist on a

spectrum inhabited by both efficient and expressive techniques. These character-

istics are usually shown to be conflicting - in state-of-the-art solutions, efficiency

is obtained at the cost of loss of expressiveness and vice-versa. To seek a solution

to this conflict we explore a new point on the spectrum by defining an alternative

runtime verification approach. We introduce a new formalism for concisely cap-

turing expressive specifications with parameters. Our technique is more expres-

sive than the currently most efficient techniques while at the same time allowing

for optimizations.

In this talk we present event automata and show how they can be extended with

quantification to achieve an expressive formalism for monitoring the behaviour

of programs at runtime. Using a range of examples, we will demonstrate how

these quantified event automata can be interpreted and used within the context of

runtime monitoring.

Yanti Rusmawati, University of Manchester

Dynamic networks as concurrent systems and supervised evolution

Highly dynamic and complex computing systems often need to adapt to changing

external and internal environments. One approach to this is to build in evolvabil-

ity as a feature of such systems. Dynamic networks provide examples of such

systems, in which a collection of nodes are linked through edges with the num-

ber of nodes and edges varying over time. Applications include internet, mobile

networks, and unreliable networks. The dynamic behaviours impact on message-

passing mechanisms and computations attempting to reach ‘consensus’ or com-

pute global properties. In order to undertake formal reasoning about such systems,

abstract models are essential.

We consider abstract descriptions of dynamic networks by developing a formal

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✻✶

framework. We view dynamic networks as concurrent systems, in which there are

at least two kinds of processes: a disrupter (which disrupts the connectivity of dy-

namic networks) and an organizer (which attempts to run the normal execution).

Various notions of fairness enable us to reason about message-passing and routing.

We also consider how dynamic networks may be modelled via supervised evolu-

tion, where components consist of computational systems which are ‘monitored’

by a supervisory system which may evolve the computation if necessary.

Hugh Steele, University of Manchester

Double glueing and MLL full completeness

Linear Logic (LL) is a deductive system that has garnered considerable attention

over the past two decades. Its correspondence to a polymorphic lambda calculus

has made it a topic particularly of interest to theoretical computer scientists. The

logic’s original description takes the form of a sequent calculus, making it un-

gainly at times; but there has been success expressing the proof theory of LL and

of its smaller logical fragments in other ways. Derivations can be described graph-

ically (with propositional atoms and connectives being represented by vertices) or

as arrows in an appropriate category.

Naturally it is important for a category describing any logic to be as accurate

a model as possible in order for it to be considered useful. The formalisation

of this concept is known as ‘full completeness’: a categorical model of a logic

is fully complete if all of its arrows correspond directly to a derivation. In this

talk we demonstrate how it is possible to create fully complete models of MLL,

the strongly normalising multiplicative fragment of LL, from certain degenerative

models. The approach taken makes use of a ‘double glueing’ construction placed

on top of tensor-generated compact closed categories with biproducts; and the new

arguments which we employ to show the resulting categories have the properties

desired are based around considering the combinatorics behind this construction

using standard linear algebra.

Alistair Stewart, University of Edinburgh

Polynomial time algorithms for multi-type branching processes and stochastic

context-free grammars

We show that one can approximate the least fixed point solution for a multivari-

ate system of monotone probabilistic polynomial equations in time polynomial in

both the encoding size of the system of equations and in log(1/ǫ), where ǫ > 0 is

the desired additive error bound of the solution.

We use this result to resolve several open problems regarding the computa-

tional complexity of computing key quantities associated with some classic and

heavily studied stochastic processes, including multi-type branching processes

and stochastic context-free grammars.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✻✷

Martin Sticht, University of Bamberg

A Game-Theoretic Decision Procedure for the constructive Description Logic

cALC

In the last years, several languages of Description Logic have been introduced to

model knowledge and perform inference on it. There have been several propo-

sitions for different application scenarios. The constructive Description Logic

cALC deals with uncertain or dynamic knowledge.

We make use of a game-theoretic dialogue-based proof technique that has its

roots in philosophy and introduce rules so that we can perform reasoning in cALC

and the modal-logical counterpart CK. The game-theoretic presentation can be

considered as an alternative technique to tableau-based proofs, emphasising in-

teraction semantics. As we will see, showing validity is more complex but in

return we have a philosophical approach that might make it possible to find out

more about related constructive theories and that provides a rich playground of

possibilities to extend or alter the underlying semantics.

Dirk Sudholt, University of Sheffield

The analysis of evolutionary algorithms: why evolution is faster with crossover

Evolutionary algorithms use search operators like mutation, crossover and selec-

tion to ‘evolve’ good solutions for optimisation problems. In the past decades

there has been a long and controversial debate about when and why the crossover

operator is useful. The ’building-block hypothesis’ assumes that crossover is par-

ticularly helpful if it can recombine good ‘building blocks’, i. e. short parts of

the genome that lead to high fitness. However, attempts at proving this rigorously

have been inconclusive; there have been no rigorous and intuitive explanation for

the usefulness of crossover. In this talk we provide such an explanation. For

functions where ’building blocks’ need to be assembled, we prove that a sim-

ple evolutionary algorithm with crossover is twice as fast as the fastest evolu-

tionary algorithm using only mutation. The reason is that crossover effectively

turns fitness-neutral mutations into improvements by combining the right build-

ing blocks at a later stage. This leads to surprising conclusions about the optimal

mutation rate.

Christopher D. Thompson-Walsh, University of Cambridge

Extending a Rule-Based Biological Modelling Language Semantics with Con-

tainment

Rule-based modelling of biochemical systems has emerged as an important ap-

proach in the development of computational techniques for the analysis of these

systems. Many biological systems of chemical reactions exhibit a combinatorial

explosion in the number of possible species and reactions. Rule-based techniques

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✻✸

rely on using rules which specify patterns, rather than explicit species, to suc-

cinctly describe these reactions.

One such rule-based modelling language is Kappa, a calculus which defines

how a graph, representing a system of linked agents, can be modified by rules that

specify which changes may occur at places that match specific local patterns. It

has a clean graph-rewriting based semantics; and though the calculus has a wide

degree of applicability, it has emerged as a natural description of well-mixed,

protein-protein interaction systems and pathways in molecular biology. However,

tdoes not presently model the partition of space by membranes, resulting in mul-

tiple well-mixed and interacting compartments.

In this talk, we describe work expanding on this graph-based semantics to add

containment structure. This containment structure allows us to begin to model

the various ways in which biological mixtures are partitioned and enclosed by

membranes, which have important effects in real biological systems.

This is joint work with Jonathan Hayman and Glynn Winskel.

Patrick Totzke, University of Edinburgh

Weak bisimulation approximants for BPP processes

In automated verification we want to algorithmically check if a system satisfies

a given property. The two main approaches are model checking and equivalence

checking. In model checking, the properties are given as formulae of a temporal

logic and one checks if a system satisfies these formulae. In equivalence checking,

one checks if two given systems are in some semantical sense equal and thereby

verify if an implementation is equivalent to a specification that encodes the desired

properties. The question arises for which kinds of systems and equivalences this

is decidable and if so, what are the complexity bounds.

We consider weak bisimulation, an equivalence that has a very intuitive char-

acterization in terms of two-person games and look at systems called Basic Paral-

lel Processes, which were introduced as derivations of commutative context-free

grammars and are equi-expressible with communication-free Petri nets. The de-

cidability of checking weak bisimilarity for BPP is a long standing open problem.

In this talk we explore the well known approach of weak bisimulation ap-

proximants and see how far this takes us for different notions of approximation.

We successfully apply the approximation method to restricted classes of BPP pro-

cesses and establish a few rather surprising lower bounds for the convergence

levels of approximants considered before. Lastly, we define new subclass which

demands a lot of additional structure. Surprisingly, all “hard” systems that we use

to show lower bounds are contained in this very restricted subclass.

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❘❊"❖❘❚❙ ❋❘❖▼ ❈❖◆❋❊❘❊◆❈❊❙

✶✻✹

Chiara Del Vescovo, University of Manchester

The modular structure of an ontology: atomic decomposition

Ontologies are special logical theories: they are finite sets of axioms in a language

that belongs to the family of Description Logics, which are decidable fragments

of First Order Logic. They aim to describe knowledge about a domain of interest;

and in general they are complex systems, unstructured and large. Decomposing

ontologies into modules is widely accepted as a fruitful mechanism to ease pro-

cessing, modifying, analyzing, and reusing parts of an ontology. However, modu-

larisation is a difficult task to achieve for ontologies, because we want to preserve

logical properties.

There exist several notions of logically coherent modules for logical theories.

Each kind of module determines in the ontology a different modular structure,

i.e. a set of logically coherent chunks of the ontology and interesting relations

between these chunks. However, these suffer from being based on a loose con-

ceptualization of logical connection, and in some notable examples the ontology

cannot be decomposed into smaller bits, even if it seems to be well structured.

An important family of modules of ontologies is based on the notion of de-

ductive Conservative Extensions (d-CEs): such modules encapsulate all the on-

tology’s knowledge about a set of terms Σ, called signature. We focus on locality-

based modules, that are computable in polynomial time, whose the most important

notions are ⊥, ⊤, and ⊤⊥∗. Locality-based modules are currently used in many

scenarios, e.g. the reuse of part of an ontology.

In our talk, we are going to present Atomic Decomposition (AD), which is

the modular structure induced by locality-based modules. We show how ADs are

efficiently computed, and describe some of their properties. Finally, we discuss a

consequence of ADs on building a model of an ontology.

Domagoj Vrgoc, University of Edinburgh

Regular expressions for data words

In data words, each position carries not only a letter form a finite alphabet, but also

a data value coming from an infinite domain. There has been a renewed interest

in these due to applications in querying and reasoning about data models with

complex structural properties, notably XML, and more recently, graph databases.

Logical formalisms designed for querying such data often require concise and

easily understandable presentations of regular languages over data words.

Our goal, therefore, is to define and study regular expressions for data words.

As the automaton model, we take register automata, which are a natural analog

of NFAs for data words. We first equip standard regular expressions with limited

memory, and show that they capture the class of data words defined by regis-

ter automata. The complexity of the main decision problems for these expressions

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✻✺

(nonemptiness, membership) also turns out to be the same as for register automata.

We then look at a subclass of these regular expressions that can define many prop-

erties of interest in applications of data words, and show that the main decision

problems can be solved efficiently for it.

❇✉❧❧❡$✐♥ ♦❢ $❤❡ ❊❆❚❈❙ ♥♦ ✶✵✼✱ ♣♣✳ ✶✻✾➊✶✼✷✱ ❏✉♥❡ ✷✵✶✷

©❝
❊✉;♦♣❡❛♥ ❆==♦❝✐❛$✐♦♥ ❢♦; ❚❤❡♦;❡$✐❝❛❧ ❈♦♠♣✉$❡; ❙❝✐❡♥❝❡

Abstract of PhD Thesis

Author: Alina García-Chacón

Title: The Complexity of Angel-Daemons and Game Isomorphism

Language: English

Supervisor: Joaquim Gabarro

Institute: Universitat Politècnica de Catalunya, UPC (Barcelona Tech)

Departament de Llenguatges i Sistemes Informàtics, LSI

Date: May 7, 2012

Abstract

The analysis of the computational aspects of strategic situations is a basic field in

Computer Sciences. Two main topics related to strategic games have been devel-

oped. First, introduction and analysis of a class of games (so called angel/daemon

games) designed to asses web applications, have been considered. Second, the

problem of isomorphism between strategic games has been analysed. Both parts

have been separately considered.

Part I: Angel-Daemon Games. A service is a computational method that is

made available for general use through a wide area network. The performance

of web-services may fluctuate; at times of stress the performance of some ser-

vices may be degraded (in extreme cases, to the point of failure). In this thesis

uncertainty profiles and Angel-Daemon games are used to analyse service-based

behaviours in situations where probabilistic reasoning may not be appropriate.

In such a game, an angel player acts on a bounded number of “angelic” ser-

vices in a beneficial way while a daemon player acts on a bounded number of

“daemonic” services in a negative way. Examples are used to illustrate how game

theory can be used to analyse service-based scenarios in a realistic way that lies

between over-optimism and over-pessimism. The resilience of an orchestration to

service failure has been analysed - here angels and daemons are used to model

services which can fail when placed under stress. The Nash equilibria of a corre-

sponding Angel-Daemon game may be used to assign a “robustness” value to an

orchestration.

Finally, the complexity of equilibria problems for Angel-Daemon games has

been analysed. It turns out that Angel-Daemon games are, at the best of our

knowledge, the first natural example of zero-sum succinct games. Deciding the

existence of a pure Nash equilibrium or a dominant strategy for a given player

is Σ
p

2
-complete. Furthermore, computing the value of an Angel-Daemon game

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❆❇❙❚❘❆❈❚❙ ❖❋ (❍❉ ❚❍❊❙❊❙

✶✼✵

is EXP-complete. Thus, matching the already known complexity results of the

corresponding problems for the generic families of succinctly represented games

with exponential number of actions.

Part II: Game Isomorphism. The question of whether two multi-player strate-

gic games are equivalent and the computational complexity of deciding such a

property has been addressed. Three notions of isomorphisms, strong, weak and

local have been considered. Each one of these isomorphisms preserves a different

structure of the game. Strong isomorphism is defined to preserve the utility func-

tions and Nash equilibria. Weak isomorphism preserves only the player preference

relations and thus pure Nash equilibria. Local isomorphism preserves preferences

defined only on “close” neighbourhood of strategy profiles.

The problem of the computational complexity of game isomorphism, which

depends on the level of succinctness of the description of the input games but

it is independent of the isomorphism to consider, has been shown. Utilities in

games can be given succinctly by Turing machines, boolean circuits or boolean

formulas, or explicitly by tables. Actions can be given also explicitly or succinctly.

When the games are given in general form, an explicit description of actions and a

succinct description of utilities have been assumed. It is has been established that

the game isomorphism problem for general form games is equivalent to the circuit

isomorphism when utilities are described by Turing Machines; and to the boolean

formula isomorphism problem when utilities are described by formulas. When the

game is given in explicit form, it is has been proven that the game isomorphism

problem is equivalent to the graph isomorphism problem.

Finally, an equivalence classes of small games and their graphical representa-

tion have been also examined.

Table of Contents

1 Algorithmic Game Theory and Isomorphisms . 1

1.1 Algorithmic Game Theory and Isomorphisms . 1

1.2 Isomorphisms on Game Theory . 3

1.3 Angel-Daemon Games and Web Orchestrations 4

1.4 Overview of this thesis . 6

1.5 Thesis outline . 8

1.6 Notes . 9

2 Preliminaries on games . 11

2.1 Strategic and Extensive Games . 11

❚❤❡ ❇✉❧❧❡&✐♥ ♦❢ &❤❡ ❊❆❚❈❙

✶✼✶

2.2 Definitions and Preliminaries . 15

2.3 Notes . 20

Part I: Angel-Daemon Games

3 Preliminaries on Web Orchestrations . 25

3.1 Web-services and Orchestration versus Choreography 25

3.2 Orchestration and Game Theory . 31

3.3 Notes . 31

4 Bounded Site Failures:

an Approach to Unreliable Web Environments .33

4.1 Unreliable Environments and Risk Management 33

4.2 Assessing Orchestrations . 38

4.3 Two Player Games: The Angel-Daemon Case 39

4.4 Maximisation and Minimisation Approaches 43

4.5 Properties of Uncertainty Profiles and Assemssments 45

4.6 Notes . 51

5 On the Complexity of Equilibria Problems

in Angel-Daemon Games . 53

5.1 Angel-Daemon Games . 53

5.2 Strategic Games and Succinct Representations 54

5.3 Orc and Angel-Daemon Games . 56

5.4 The Complexity of the EPN Problem . 56

5.5 Computing the Value of Angel-Daemon Game 60

5.6 Deciding the Existence of Dominant Strategies 64

5.7 Notes . 64

Part II: Computations Issues of Game Isomorphism

6 Preliminaries on Game Isomorphisms . 69

6.1 Strong, Weak and Local Game Isomorphism . 71

❇❊❆❚❈❙ ♥♦ ✶✵✼ ❆❇❙❚❘❆❈❚❙ ❖❋ (❍❉ ❚❍❊❙❊❙

✶✼✷

6.2 Classical Complexity’s Problems . 73

6.3 Notes . 75

7 The Complexity of Game Isomorphim . 77

7.1 The IsISO and ISO Problems . 77

7.2 Complexity Results for Strong Isomorphisms 79

7.3 Weak Isomorphisms . 99

7.4 Notes . 110

8 On the Hardness of Game Equivalence under Local Isomorphism 111

8.1 The Isomorphism Problem .111

8.2 From Strong Isomorphism to Local Isomorphism 114

8.3 From General Games to Binary Actions Games 118

8.4 From Local Isomorphim on Binary Action Games

to Strong Isomorphim . 126

8.5 The Complexity of Local Isomorphim . 127

8.6 Notes . ?129

Conclusions and Future Work

9 Conclusions and Future Work .133

Appendices

A Arranging a Meeting using Reputation . 141

B IT System Example . 145

C Small Games. Graphic Representation . 153

Author’s address Alina García-Chacón

Universitat Autònoma de Barcelona (UAB)

Institut de Biotecnología i de Biomedicina (IBB)

Grup d’Aplicacions Biomèdiques

de la Ressonància Magnètica Nuclear (GABRMN)

Unitat de Bioinformàtica, Despacho Bioinformàtica 4

CP: 08193 Bellaterra (Cerdanyola del Vallès), Spain

Tel.: 93 581 2807 Fax: +34 93 581 1264

E-mail: agarcia@gabrmn.uab.es

Web: http://gabrmn.uab.es/agarcia

PhD download http://gabrmn.uab.es/agarcia

