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Abstract

It is well known that the addition of noise to the input data of a neural network during
training can, in some circumstances, lead to significant improvements in generalization
performance. Previous work has shown that such training with noise is equivalent to a
form of regularization in which an extra term is added to the error function. However,
the regularization term, which involves second derivatives of the error function, is not
bounded below, and so can lead to difficulties if used directly in a learning algorithm
based on error minimization. In this paper we show that, for the purposes of network
training, the regularization term can be reduced to a positive definite form which involves
only first derivatives of the network mapping. For a sum-of-squares error function, the
regularization term belongs to the class of generalized Tikhonov regularizers. Direct
minimization of the regularized error function provides a practical alternative to training
with noise.



1 Regularization

A feed-forward neural network can be regarded as a parametrized non-linear mapping
from a d-dimensional input vector x = (x1, . . . , xd) into a c-dimensional output vector
y = (y1, . . . , yc). Supervised training of the network involves minimization, with respect
to the network parameters, of an error function, defined in terms of a set of input vectors
x and corresponding desired (or target) output vectors t. A common choice of error
function is the sum-of-squares error of the form

E =
1

2

∫ ∫
‖y(x) − t‖2 p(x, t) dx dt (1)

=
1

2

∑

k

∫ ∫
{yk(x) − tk}

2 p(tk | x) p(x) dx dtk (2)

where ‖ · · · ‖ denotes the Euclidean distance, and k labels the output units. The function
p(x, t) represents the probability density of the data in the joint input-target space, p(tk |
x) denotes the conditional density for tk given the value of x, and p(x) denotes the
unconditional density of x. In going from (1) to (2) we have integrated over the variables
tj 6=k. For a finite discrete data set consisting of n samples labelled by the index q we have

p(x, t) =
1

n

∑

q

δ(x − xq)δ(t − tq) (3)

Substituting (3) into (1) gives the sum-of-squares error in the form

E =
1

2n

∑

q

‖y(xq) − tq‖2 (4)

The results obtained in this paper are derived in the limit of large data sets, and so
we shall find it convenient to work with the notation of continuous probability density
functions.

One of the central issues in network training is to determine the optimal degree of
complexity for the model yk(x). A model which is too limited will not capture sufficient
of the structure in the data, while one which is too complex will model the noise on the
data (the phenomenon of over-fitting). In either case the performance on new data, that
is the ability of the network to generalize, will be poor. The problem can be regarded
as one of finding the optimal trade-off between the high bias of a model which is too
inflexible and the high variance of a model with too much freedom (Geman et al., 1992).

There are two well-known techniques for controlling the bias and variance of a model,
known respectively as structural stabilization and regularization. The first of these involves
making adjustments to the number of free parameters in the model as a way of controlling
the number of degrees of freedom. In the case of a feed-forward network this is generally
done by varying the number of hidden units, or by pruning out individual weights from
an initially oversized network. By contrast, the technique of regularization makes use of
a relatively flexible model, and then controls the variance by modifying the error function
by the addition of a penalty term Ω(y), so that the total error function becomes

Ẽ = E + λΩ(y) (5)

where the parameter λ controls the bias-variance trade-off by affecting the degree to which
Ω(y) influences the minimizing function y(x). The regularization functional Ω(y), which
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is generally expressed in terms of the network function y(x) and its derivatives, is usually
chosen on the basis of some prior knowledge concerning the desired network mapping.
For instance, if it is known that the mapping should be smooth, then Ω(y) may be chosen
to be large for functions with large curvature (Bishop, 1991; 1993).

Regularization has been studied extensively in the context of linear models for y(x).
For the case of one input variable x and one output variable y, the class of Tikhonov
regularizers takes the form

Ω(y) =
R∑

r=0

b∫

a

hr(x)

(
dry

dxr

)2

dx (6)

where hr ≥ 0 for r = 0, . . . , R−1, and hR > 0. For such regularizers, it can be shown that
the linear function y(x) which minimizes the regularized error (5) is unique (Tikhonov
and Arsenin, 1977).

2 Training with Noise

There is a third approach to controlling the trade-off of bias against variance, which
involves the addition of random noise to the input data during training. This is generally
done by adding a random vector onto each input pattern before it is presented to the
network, so that, if the patterns are being recycled, a different random vector is added
each time. Heuristically, we might expect that the noise will ‘smear out’ each data point
and make it difficult for the network to fit individual data points precisely. Indeed, it has
been demonstrated experimentally that training with noise can lead to improvements in
network generalization (Sietsma and Dow, 1991). We now explore in detail the relation
between training with noise and regularization.

Let the noise on the input vector be described by the random vector ξ. The error
function when training with noise can then be written in the form

Ẽ =
1

2

∫ ∫ ∫ ∑

k

{yk(x + ξ) − tk}
2 p(tk | x) p(x) p̃(ξ)dx dtk dξ (7)

where p̃(ξ) denotes the distribution function of the noise. We now assume that the noise
amplitude is small, and expand the network function as a Taylor series in powers of ξ to
give

yk(x + ξ) = yk(x) +
∑

i

ξi

∂yk

∂xi

∣∣∣∣∣
ξ=0

+
1

2

∑

i

∑

j

ξiξj

∂2yk

∂xi∂xj

∣∣∣∣∣
ξ=0

+ O(ξ3) (8)

The noise distribution is generally chosen to have zero mean, and to be uncorrelated
between different inputs. Thus we have

∫
ξip̃(ξ) dξ = 0

∫
ξiξj p̃(ξ) dξ = η2δij (9)

where the parameter η2 is controlled by the amplitude of the noise. Substituting the
Taylor series expansion (8) into the error function (7), and making use of (9) to integrate
over the noise distribution, we obtain

Ẽ = E + η2ER (10)
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where E is the standard sum-of-squares error defined in (2), and the extra term ER is
given by

ER =
1

2

∫ ∫ ∑

k

∑

i





(
∂yk

∂xi

)2

+
1

2
{yk(x) − tk}

∂2yk

∂x2
i



 p(tk | x) p(x) dx dtk (11)

This has the form of a regularization term added to the usual sum-of-squares error, with
the coefficient of the regularizer determined by the noise variance η2. This result has been
obtained earlier by Webb (1993)1.

Provided the noise amplitude is small, so that the neglect of higher order terms in the
Taylor expansion is valid, the minimization of the sum-of-squares error with noise added to
the input data is equivalent to the minimization of the regularized sum-of-squares error,
with a regularization term given by (11), without the addition of noise. It should be
noted, however, that the second term in the regularization function (11) involves second
derivatives of the network function, and so evaluation of the gradients of this error with
respect to network weights will be computationally demanding. Furthermore, this term
is not positive definite, and so the error function is not, a-priori, bounded below, and is
therefore unsuitable for use as the basis of a training algorithm.

We now consider the minimization of the regularized error (10) with respect to the
network function y(x). Our principal result will be to show that the use of the regu-
larization function (11) for network training is equivalent, for small values of the noise
amplitude, to the use of a positive definite regularization function which is of standard
Tikhonov form and which involves only first derivatives of the network function.

We first define the following conditional averages of the target data

〈tk | x〉 ≡
∫

tk p(tk | x) dtk (12)

〈t2k | x〉 ≡
∫

t2k p(tk | x) dtk (13)

After some simple algebra, we can then write the sum-of-squares error function in (2) in
the form

E =
1

2

∑

k

∫ ∫
{yk(x) − 〈tk | x〉}2 p(tk | x) p(x) dx dtk

+
1

2

∑

k

∫ ∫
{〈t2k | x〉 − 〈tk | x〉2} p(tk | x) p(x) dx dtk (14)

We note that only the first term in (14) depends on the network mapping yk(x). The
minimum of the error function therefore occurs when the network mapping is given by
the conditional average of the target data

ymin
k (x) = 〈tk | x〉 (15)

This represents the well-known result that the optimal least-squares solution is given by
the conditional average of the target data. For interpolation problems it shows that the
network will average over intrinsic additive noise on the target data (not to be confused
with noise added to the input data as part of training) and hence learn the underlying

1A similar analysis was also performed by Matsuoka (1992), but with an inconsistency in the Taylor expansion,
which meant that second order terms were treated incorrectly.
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trend in the data. Similarly, for classifications problems in which the target data uses a
1−of−N coding scheme, this results shows that the network outputs can be interpreted
as Bayesian posterior probabilities of class membership and so again can be regarded
as optimal. Note that (15) represents the global minimum of the error function, and
requires that the network model be functionally rich enough that it can be regarded as
unbiased. The error function does not vanish at this minimum, however, as there is a
residual error given by the second term in equation (14). This residual error represents
the mean variance of the target data around its conditional average value.

For the regularized error function given by equation (10) we see that the minimizing
function will have the form

ymin
k (x) = 〈tk | x〉 + O(η2) (16)

Now consider the second term in equation (11) which depends on the second derivatives
of the network function. Making use of the definition in equation (12), we can rewrite
this term in the form

1

4

∫ ∫ ∑

k

∑

i

{
{yk(x) − 〈tk | x〉}

∂2yk

∂x2
i

}
p(tk | x) p(x) dx dtk (17)

Using (16) we see that, to order η2, this term vanishes at the minimum of the total error
function. Thus, only the first term in equation (11) needs to be retained. It should
be emphasized that this result is a consequence of the average over the target data.
It therefore does not require the individual terms yk − tk to be small, only that their
(conditional) average over tk be small.

The minimization of the sum-of-squares error with noise is therefore equivalent (to
order η2) to the minimization of a regularized sum-of-squares error without noise, where
the regularizer, given by the first term in equation (14), has the form

ÊR =
1

2

∫ ∑

k

∑

i

(
∂yk

∂xi

)2

p(x) dx (18)

where we have integrated out the tk variables. Note that the regularization function in
equation (18) is not in general equivalent to that given in equation (11). However, the total
regularized error in each case is minimized by the same network function y(x) (and hence
by the same set of network weight values). Thus, for the purposes of network training,
we can replace the regularization term in equation (11) with the one in equation (18).
For a discrete data set, with probability distribution function given by equation (3), this
regularization term can be written as

ÊR =
1

2n

∑

q

∑

k

∑

i

(
∂y

q
k

∂x
q
i

)2

(19)

Note that there is nothing in our analysis which is specific to neural networks. The
advantage of feed-forward networks, as parametrized non-linear models for the function
y(x), is that their relative flexibility allows them to represent good approximations to the
optimal solution given by equation (16).

We can apply a similar analysis in the case of the cross-entropy error function given
by

E = −
∫ ∫ ∑

k

{tk ln yk(x) + (1 − tk) ln(1 − yk(x))} p(tk | x) p(x) dx dtk (20)
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Using the Taylor expansion (8) as before, we again arrive at a regularized error function
of the form

Ẽ = E + η2ER (21)

where the regularizer is given by

ER =
1

2

∫ ∫ ∑

k

∑

i





[
1

yk(1 − yk)
−

(yk − tk)(1 − 2yk)

y2
k(1 − yk)2

](
∂yk

∂xi

)2

+

[
(yk − tk)

yk(1 − yk)

]
∂2yk

∂x2
i

}
p(tk | x) p(x) dx dtk (22)

which involves second derivatives of the network mapping function, and which contains
terms which are not positive definite2. From equation (20) it follows that the network
function which minimizes the regularized error again has the form given in equation (16).
Using this result, and following a similar line of argument to that presented for the
sum-of-squares error, we see that the second and third terms in (22) vanish. Thus, this
regularization function can be simplified to give

ER =
1

2

∫ ∑

k

∑

i





1

yk(1 − yk)

(
∂yk

∂xi

)2


 p(x) dx (23)

Again, we see that this is now positive definite, and that it only involves first derivatives.
Note, however, that it is not of the standard Tikhonov form given in equation (6). For a
discrete data set, as described by equation (3), we have

ER =
1

2

∑

q

∑

k

∑

i





1

y
q
k(1 − y

q
k)

(
∂y

q
k

∂x
q
i

)2


 (24)

Efficient techniques for evaluating the derivatives of regularization functions such as
equations (19) or (24) with respect to the weights in a feed-forward network, based on
extensions of the standard back-propagation technique, have been described in Bishop
(1993). These derivatives can be used as the basis for standard training algorithms such as
gradient descent or conjugate gradients. An alternative to training with noise is therefore
to minimize the regularized error functions directly.

3 Perturbative Solution

In our analysis we have assumed the noise amplitude to be small. This allows us to
find a perturbative solution for the set of neural network weights which minimizes the
regularized error function, in terms of the weights obtained by minimizing the sum-of-
squares error function without regularization (Webb, 1993). Let the unregularized error
function be minimized by a weight vector w? so that

∂E

∂wn

∣∣∣∣∣
w

?

= 0 (25)

2When this form of cross-entropy error function is used, it is convenient to take the activation functions of the
output units to have the logistic sigmoid form y(a) = {1 + e

−a}−1 where a is the total input to the unit. This
has the property that y

′(a) = y(1 − y) which leads to some simplification of derivatives when they are expressed
in terms of a instead of y.
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If we write the minimum for the regularized error function in the form w? +∆w, then we
have

0 =
∂(E + η2ER)

∂wn

∣∣∣∣∣
w

?+∆w

=
∂E

∂wn

∣∣∣∣∣
w

?

+
∑

m

∆wm

∂2E

∂wn∂wm

∣∣∣∣∣
w

?

+ η2 ∂ER

∂wn

∣∣∣∣∣
w

?

(26)

If we consider the discrete regularizer given in equation (19), and make use of equa-
tion (25), we obtain an explicit expression for the correction to the weight values in the
form

∆w = −η2H−1
∑

q

∑

k

∑

i

∇
w

(
∂yk

∂x
q
i

)2

(27)

where H is the Hessian matrix whose elements are defined by

(H)nm =
∂2E

∂wn∂wm

(28)

A similar result is obtained for the case of the cross-entropy error function. An ex-
act procedure for efficient calculation of the Hessian matrix for a network of arbitrary
feed-forward topology was given in Bishop (1992). Similarly, extended back-propagation
algorithms for evaluating derivatives with respect to the weights of the form occuring
on the right hand side of (27) were derived in Bishop (1993). The fact that the second
derivative terms in (11) can be dropped means that only second derivatives of the net-
work function occur in equation (27), and so the method can be considered for practical
implementation. With third derivatives present, the evaluation of the weight corrections
would become extremely cumbersome.

4 Summary

We have considered three distinct approaches to controlling the tradeoff between bias and
variance, as follows:

1. Minimize a sum-of-squares error function, and add noise to the input data during
training;

2. Minimize directly a regularized sum-of-squares error function without adding noise
to the input data, where the regularization term is given by equation (19);

3. Minimize a sum-of-squares error without adding noise to the input data, and then
compute the corrections to the network weights using equation (27);

(with analogous results for the cross-entropy error function). If the noise amplitude pa-
rameter η2 is small, these three methods are equivalent.
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