
Learning to Rank Using Classification and Gradient
Boosting

Ping Li ∗

Department of Statistics
Stanford University
Stanford, CA 94305

pingli@cs.stanford.edu

Christopher J.C. Burges
Microsoft Research

Microsoft Corporation
Redmond, WA 98052

cburges@microsoft.com

Qiang Wu
Microsoft Research

Microsoft Corporation
Redmond, WA 98052

qiangwu@microsoft.com

Abstract

We cast the ranking problem as (1) multiple classification (2) multiple ordinal
classification, which lead to computationally tractable learning algorithms for rel-
evance ranking in Web search. We consider the DCG criterion (discounted cumu-
lative gain), a standard quality measure in information retrieval. Our approach is
motivated by the fact that perfect classifications naturally result in perfect DCG
scores and the DCG errors are bounded by classification errors. We propose using
the Expected Relevance to convert the class probabilities into ranking scores. The
class probabilities are learned using a gradient boosting tree algorithm. Evalua-
tions on large-scale datasets show that our approach can improve LambdaRank [5]
and the regressions-based ranker [6], in terms of the (normalized) DCG scores.

1 Introduction

The general ranking problem has widespread applications including commercial search engines and
recommender systems. In this study, we develop a computationally tractable learning algorithm for
the general ranking problem; and we present our approach in the context of ranking in Web search.

For a given user input query, a commercial search engine returns many pages of URLs, in an order
determined by the underlying proprietary ranking algorithm. The quality of the returned results are
largely evaluated on the URLs displayed in the very first page. The type of ranking problem in this
study is sometimes referred to as dynamic ranking (or simply, just ranking), because the URLs are
dynamically ranked (in real-time) according to the specific user input query. This is different from
the query-independent static ranking based on, for example, “page rank” [3] or “authorities and
hubs” [11], which may, at least conceptually, serve as an important “feature” for dynamic ranking
or to guide the generation of a list of URLs fed to the dynamic ranker.

There are two main categories of ranking algorithms. A popular scheme is based on learning the
pairwise preference, for example, RankNet [4], LambdaRank [5], or RankBoost [7]. Both Lamb-
daRank and RankNet used neural nets to learn the pairwise preference function.1 RankNet used a
cross-entropy type of loss function and LambdaRank directly used a modified gradient of the cross-
entropy loss function. Another scheme is the regression-based ranking [6]. [6] considered the DCG
measure (discounted cumulative gain) [10] and showed that the DCG errors are bounded by the re-
gression errors. Note that the pair-based rankers [4, 5] were also evaluated in terms of DCG scores.

∗Much of the work was conducted while Ping Li was an intern at Microsoft in the summer of 2006.
1In fact LambdaRank supports any preference function, although the reported results in [5] are for pairwise.

In this study, we also consider the DCG measure. From the definition of DCG, it appears more direct
to cast the ranking problem as multiple classification as opposed to regression. In order to convert
the classification results into ranking scores, we propose a simple and stable mechanism by using the
Expected Relevance. Our evaluations on large-scale proprietary datasets demonstrate the superiority
of the classification-based ranker over both the regression-based and pair-based schemes.

2 Discounted Cumulative Gain (DCG)

For an input query, the ranker returns n ordered URLs. Suppose the URLs fed to the ranker are orig-
inally ordered {1, 2, 3, ..., n}. The ranker will output a permutation mapping π : {1, 2, 3, ..., n} →
{1, 2, 3, ..., n}. We denote the inverse mapping by σi = σ(i) = π−1(i).

The DCG score is computed from the relevance levels of the n URLs as

DCG =

n
∑

i=1

c[i] (2
yσi − 1) =

n
∑

i=1

c[πi] (2
yi − 1) , (1)

where [i] is the rank order, and yi ∈ {1, 2, 3, 4, 5} is the relevance level of the ith URL in the original
(pre-ranked) order. yi = 5 corresponds to a “perfect” relevance and yi = 1 corresponds to a “poor”
relevance. For generating training datasets, human judges have manually labeled a large number of
queries and URLs. In this study, we assume these labels are “gold-standard.”

In the definition of DCG, c[i], which is a non-increasing function of i, is typically set as

c[i] =
1

log(1 + i)
, if i ≤ L, and c[i] = 0, if i > L, (2)

where L is the “truncation level” and is typically set to be L = 10, to reflect the fact that the search
quality of commercial search engines is mainly determined by the URLs displayed in the first page.

It is a common practice to normalize the DCG scores to the interval [0, 1] for each query and report
the normalized DCG score averaged over all queries. The normalized DCG scores are often called
“NDCG.” Suppose there are in total NQ queries in a dataset. The individual NDCG for the jth query
(NDCGj) and the final NDCG of the whole dataset (NDCGF) are defined as

NDCGj =
DCGj

DCGj,g
, NDCGF =

1

NQ

NQ
∑

j=1

NDCGj , (3)

where DCGj,g is the maximum possible (or “gold standard”) DCG score of the jth query.

Note that, in Section 6, we will report NDCGF in terms of the percentage values, i.e., 72.1 (%)
instead of 0.721, to remind the readers that even an improvement of 1.0 (%) NDCG point is often
considered significant, especially for commercial search engines.

3 Learning to Rank Using Classification

The definition of DCG suggests that we can cast the ranking problem naturally as multiple classi-
fication (i.e., K = 5 classes), because obviously perfect classifications will lead to perfect DCG
scores. While the DCG criterion is non-convex and non-smooth, classification is very well-studied
and many computationally tractable algorithms are available.

We should also mention that one does not really need perfect classifications in order to produce
perfect DCG scores. For example, suppose within a query, the URLs are all labeled level 2 or higher
by some gold-standard. If a classification algorithm always classifies the URLs one level lower (i.e.,
URLs labeled level 5 are classified as level 4, and so on), then we will still have the perfect DCG
score even though the classification “error” is 100% for this query. This phenomenon to an extent,
may provide some additional “safety cushion” for casting ranking as classification.

[6] cast ranking as regression2 and showed that the DCG errors are bounded by regression errors. It
appears to us that the regression-based approach is less direct and possibly also less accurate than our

2 [6, Section 2.4] commented that one could cast the ranking problem as multiple classification with n

classes (instead of K = 5 classes). Recall n is the total number of returned URLs for a given query.

classification-based proposal. For example, it is well-known that, although one can use regression
for classification, it is often better to use logistic regression especially for multiple classification [8].

3.1 Bounding DCG Errors by Classification Errors

Following [6, Theorem 2], we show that the DCG errors can be bounded by classification errors.

For a permutation mapping π, the error is DCGg - DCGπ . One simple way to obtain the perfect
DCGg is to rank the URLs directly according to the gold-standard relevance levels. That is, all
URLs with relevance level k + 1 are ranked higher than those with relevance level ≤ k; and the
URLs with the same relevance levels are arbitrarily ranked without affecting DCGg . We denote the
corresponding permutation mapping also by g.

Lemma 1 Given n URLs, originally ordered as {1, 2, 3, ..., n}. Suppose a classifier assigns a rele-
vance level ŷi ∈ {1, 2, 3, 4, 5} to the ith URL, for all n URLs. A permutation mapping π ranks the
URLs according to ŷi, i.e., π(i) < π(j) if ŷi > ŷj , and, URL i and URL j are arbitrarily ranked if
ŷi = ŷj . The corresponding DCG error is bounded by the square root of the classification error,

DCGg − DCGπ ≤30
√

2

(

n
∑

i=1

c2
[i]

)1/2(n
∑

i=1

1yi 6=ŷi

)1/2

. (4)

Proof:

DCGπ =
n
∑

i=1

c[πi] (2
yi − 1) =

n
∑

i=1

c[πi]

(

2ŷi − 1
)

+
n
∑

i=1

c[πi]

(

2yi − 2ŷi
)

≥
n
∑

i=1

c[gi]

(

2ŷi − 1
)

+

n
∑

i=1

c[πi]

(

2yi − 2ŷi
)

=
n
∑

i=1

c[gi] (2
yi − 1) −

n
∑

i=1

c[gi]

(

2yi − 2ŷi
)

+
n
∑

i=1

c[πi]

(

2yi − 2ŷi
)

=DCGg +

n
∑

i=1

(

c[πi] − c[gi]

) (

2yi − 2ŷi
)

.

Note that
∑n

i=1 c[πi]

(

2ŷi − 1
)

≥∑n
i=1 c[gi]

(

2ŷi − 1
)

. Therefore,

DCGg − DCGπ ≤
n
∑

i=1

(

c[gi] − c[πi]

) (

2yi − 2ŷi
)

≤
(

n
∑

i=1

(

c[gi] − c[πi]

)2

)1/2(n
∑

i=1

(

2yi − 2ŷi
)2

)1/2

≤
(

2
n
∑

i=1

c2
[i]

)1/2

30

(

n
∑

i=1

1yi 6=ŷi

)1/2

.

Note that
∑n

i=1 c2
[πi]

=
∑n

i=1 c2
[gi]

=
∑n

i=1 c2
[i], and 25 − 21 = 30.

Thus, we can minimize the classification error
∑n

i=1 1yi 6=ŷi
as a surrogate for minimizing the DCG

errors. Of course, since the classification error itself is non-convex and non-smooth, we need to seek
other surrogate loss functions.

3.2 Input Data for Classifications

A training dataset contains NQ queries. The jth query corresponds to nj URLs; each URL is
manually labeled by one of the 5 relevance levels. Engineers have developed methodologies to
construct “features” by combining the query and URLs, but the details are usually “trade secret.”

One important aspect in designing features, at least for the convenience of using traditional machine
learning algorithms, is that these features should be comparable across queries. For example, one
(artificial) feature could be the number of times the query appears in the Web page, which is com-
parable across queries. Both pair-based rankers and regression-based rankers implicitly made this
assumption, as they tried to learn a single rank function for all queries using the same set of features.

Thus, after we have generated feature vectors by combining the queries and URLs, we can create a
“training data matrix” of size N ×P , where N =

∑NQ

j=1 nj is the total number of “data points” (i.e.,
Query+URL) and P is the total number of features. This way, we can use the traditional machine
learning notation {yi, xi}N

i=1 to denote the training dataset. Here xi ∈ R
P is the ith feature vector

in P dimensions; and yi ∈ {1, 2, 3, 4, K = 5} is the class (relevance) label of the ith data point.
Here we slightly overload the notation yi but its meaning should be clear from the context.

3.3 From Classification to Ranking

Although perfect classifications lead to perfect DCG scores, in reality, we will need a mechanism to
convert (imperfect) classification results into ranking scores.

One possibility is already mentioned in Lemma 1. That is, we classify each data point into one of
the 5 classes and rank the data points according to the class labels (data points with the same labels
are arbitrarily ranked). This suggestion, however, will lead to highly unstable ranking results.

Our proposed solution is very simple. We first learn the class probabilities by some soft classification
algorithm and then score each data point (query+URL) according to the Expected Relevance.

Recall we assume a training dataset {yi,xi}N
i=1, where the class label yi ∈ {1, 2, 3, 4, K = 5}. We

learn the class probabilities pi,k = Pr(yi = k), denoted by p̂i,k, and define a scoring function as

Si =
K
∑

k=1

p̂i,kT (k), (5)

where T (k) is some monotone (increasing) function of the relevance level k. Once we have com-
puted the scores Si for all data points, we can then sort the data points within each query by the
descending order of Si. This approach is apparently sensible and highly stable. In fact, we ex-
perimented with both T (k) = k and T (k) = 2k; the performance difference in terms of the
NDCG scores was negligible, although T (k) = k appeared to be a better (more robust) choice
than T (k) = 2k. In this paper, the reported experimental results were based on T (k) = k.

When T (k) = k, the scoring function Si is the Expected Relevance. Note that any monotone
transformation on Si (e.g., 2Si − 1) will not change the ranking results. Consequently, the ranking
results are not affected by any affine transformation on T (k), aT (k) + b, (a > 0), because

K
∑

k=1

pi,k (a × T (k) + b) = a ×
(

K
∑

k=1

pi,kT (k)

)

+ b, since
K
∑

k=1

pi,k = 1. (6)

3.4 The Boosting Tree Algorithm for Learning Class Probabilities

For multiple classification, we consider the following common (e.g., [8, 9]) surrogate loss function
N
∑

i=1

K
∑

k=1

− log(pi,k)1yi=k. (7)

One might ask why not weight the loss function according to (e.g.,) the sample relevance levels. In
fact we experimented with various weighting schemes but none of them outperformed (7).

We implemented a boosting tree algorithm for learning class probabilities pi,k, and use basically the
same implementation later for regression as well as multiple ordinal classification.

The following pseudo code in Algorithm 1 for multiple classification is taken from [9, Algorithm
6], although the presentation is slightly different.

There are three main parameters. M is the total number of boosting iterations, J is the tree size
(number of terminal nodes), and ν is the shrinkage coefficient. Fortunately, as commented in [9] and
verified in our experiments, the performance of the algorithm is not sensitive to these parameters,
which is a significant advantage. We will comment more on these parameters in Section 6.

In Algorithm 1, Line 5 contains most of the implementation work, i.e., building the regression trees
with J terminal nodes. Appendix A describes an efficient implementation for building the trees.

Algorithm 1 The boosting tree algorithm for multiple classification
0: ỹi,k = 1, if yi = k, and ỹi,k = 0 otherwise.
1: Fi,k = 0, k = 1 to K, i = 1 to N
2: For m = 1 to M Do
3: For k = 1 to K Do
4: pi,k = exp(Fi,k)/

∑K
s=1 exp(Fi,s)

5: {Rj,k,m}J
j=1 = J-terminal node regression tree for {ỹi,k − pi,k, xi}N

i=1

6: βj,k,m = K−1
K

P

xi∈Rj,k,m
ỹi,k−pi,k

P

xi∈Rj,k,m
(1−pi,k)pi,k

7: Fi,k = Fi,k + ν
∑J

j=1 βj,k,m1xi∈Rj,k,m

8: End
9: End

4 Multiple Ordinal Classification to Further Improve Ranking

We can further improve our classification-based ranking scheme by taking into account the natural
orders among the class labels.

A common approach for multiple ordinal classification is to learn the cumulative probabilities
Pr (yi ≤ k) instead of the class probabilities Pr (yi = k) = pi,k. We suggest a simple method
similar to the so-called cumulative logits approach known in statistics [1, Section 7.2.1].

We first partition the training data points into two groups: {yi ≥ 5} and {yi ≤ 4}. Now we have
a binary classification problem and hence we can use exactly the same boosting tree algorithm for
multiple classification. Thus we can learn Pr (yi ≤ 4) easily. We can similarly partition the data
and learn Pr (yi ≤ 3), Pr (yi ≤ 2), and Pr (yi ≤ 1), separately. After we have the cumulative
probabilities, we can infer the class probabilities

pi,k = Pr (yi = k) = Pr (yi ≤ k) −Pr (yi ≤ k − 1) . (8)

Once we have learned the class probabilities, we can again use the Expected Relevance to compute
the ranking scores and sort the URLs.

5 Regression-based Ranking Using Boosting Tree Algorithm

With slight modifications, the boosting tree algorithm can be used for regressions. Recall the input
data are {yi,xi}N

i=1, where yi ∈ {1, 2, 3, 4, 5}. [6] suggested regressing the feature vectors xi on
the response values 2yi − 1. [6] also mentioned weighting the samples according to the importance
of the relevance levels, although we did not notice any performance difference in our experiments.

Algorithm 2 The boosting tree algorithm for regressions
0: ỹi = 2yi − 1

1: Si = 1
N

∑N
s=1 ỹs, i = 1 to N

2: For m = 1 to M Do
5: {Rj,m}J

j=1 = J-terminal node regression tree for {ỹi − Si, xi}N
i=1

6: βj,m = meanxi∈Rj,m
ỹi − Si

7: Si = Si + ν
∑J

j=1 βj,m1xi∈Rj,m

9: End

Algorithm 2 implements the least-square boosting tree algorithm. The pseudo code is similar to [9,
Algorithm 3] by replacing the (l1) least absolute deviation (LAD) loss with the (l2) least square loss.
In fact, we also implemented the LAD boosting tree algorithm but we found the performance was
considerably worse than the least-square tree boost.

Once we have learned the values for Si in Algorithm 2, we can use them directly as the ranking
scores to order the data points within each query.

6 Experimental Results

We present the evaluations of 4 ranking algorithms (LambdaRank (using a two-layer, ten-hidden
node neural net), regression-based, classification-based, and ordinal-classification-based) on 3
datasets, including one artificial dataset and two Web search datasets (Web-1 and Web-2). The
artificial dataset and Web-1 are the same datasets used in [5, Sections 6.3.1, 6.4].

The artificial dataset was meant to remove any variance caused by the quality of features and/or
relevance labels. The data were generated from random cubic polynomials, with 50 features, 50
URLs per query, and 10K/5K/10K queries for train/valid/test. We will report the NDCG scores on
the 10K test queries for all 4 rankers.

The Web search data Web-1 has 367 features, with on average 26.1 URLs per query, and
10K/5K/10K queries for train/valid/test. We will report the NDCG scores on the 10K test queries
for all 4 rankers.

The Web search data Web-2 has 355 features, with on average 100 URLs per query, and about 16K
queries for training and about 10K queries for testing. We will report the NDCG scores on these
(about) 10K test queries. Since LambdaRank needs a validation set for the stopping rule in training
the neural net, we further divide the test dataset equally into two sets, one set for validation and
another for testing. We train the neural net twice by switching the validation set with the test set. In
the end, we report the averaged test NDCG errors for LambaRank for Web-2. For other 3 rankers
using boosting trees, since there is no obvious over-fitting observed, we simply report the NDCG
scores on the (about) 10K test queries.

6.1 The Parameters: M , J , ν

There are three main parameters in the boosting tree algorithm. M is the total number of iterations,
J is the number of terminal nodes in each tree, and ν is the shrinkage factor. Our experiments verify
that these parameters are not sensitive as long as they are within some “reasonable” ranges [9] .

We fix ν = 0.05 ([9] suggested ν ≤ 0.1) for all three datasets. The number of terminal nodes, J ,
should be reasonably big (but not too big) when the dataset is large with a large number of features,
because the tree has to be deep enough to consider higher-order interactions [9]. We let J = 10 for
the artificial dataset and Web-1, and J = 20 for Web-2.

With these values of J and ν, we did not observe obvious over-fitting even for a very large number
of boosting iterations M . We will report the results with M = 1000 for the artificial data and Web-1,
and M = 1500 for Web-2.

6.2 The NDCG Results at Truncation Level L = 10

Table 1 lists the NDCG results (both the mean and standard deviation, in percentages (%)) for all 3
datasets and all 4 ranking algorithms, evaluated at the truncation level L = 10.

For both the artificial data and Web-1, to compare with the corresponding results in [5], we report
the NDCG scores on the test datasets (10K queries each). For Web-2, we report the NDCG scores
on the (about) 10K test queries.

Table 1: The test NDCG scores produced by 4 rankers on 3 datasets. The average NDCG scores are
presented in percentages (%) with the standard deviations in the parentheses.

Ordinal Classification Classification Regression LambdaRank

Artificial (M = 1000, J = 10) 85.0 (9.5) 83.7 (9.9) 82.9 (10.2) 74.9 (12.6)
Web-1 (M = 1000, J = 10) 72.4 (24.1) 72.1 (24.1) 71.7 (24.4) 71.2 (24.5)
Web-2 (M = 1500, J = 20) 72.9 (24.1) 72.7 (24.1) 72.0 (24.5) 72.1 (24.4)

The NDCG scores indicate that the ordinal-classification-based ranker always produces the best
results and the classification-based ranker is always the second best. The regression-based ranker

outperforms LambadRank (considerably) on the artificial data and also on the dataset Web-1. For
Web-2, the regression-based ranker has similar performance as LambdaRank.

For the artificial data, all other 3 rankers exhibit very large improvements over LambaRank. This is
probably due to the fact that the artificial data are generated noise-free and hence the flexible (with
high capacity) rankers using boosting tree algorithms tend to fit the data very well.

For the Web search datasets, Web-1 and Web-2, we can conduct a crude t-test to assess the
significance of the improvements. Using a standard deviation = 24 and a sample size = 10000, we
have 1.96 24√

10000
= 0.47. Thus, roughly speaking, we could consider the difference is “significant”

if it is larger than 0.47 (%) NDCG point.

For Web-2, Figure 1 plots the average test NDCG scores as functions of the number of boosting
iterations for both the classification-based ranker and the regression-based ranker, verifying that no
over-fitting is observed.

1 500 1000 1500
70

71

72

73

Iterations

N
D

C
G

 (
%

)

Classifications

Regressions

Figure 1: For Web-2, we plot the average test NDCG scores (at truncation level L = 10) as functions
of the number of boosting iterations. The dashed horizontal line stands for the NDCG score (72.1
%) produced by LambdaRank. We can see that after about 200 boosting iterations, the classification-
based ranker starts to outperform LambdaRank. We do not observe obvious “over-fitting” even after
1500 iterations. The performance of the regression-based ranker approaches LambdaRank after
1500 iterations.

6.3 The NDCG Results at Various Truncation Levels (L = 1 to 10)

For the artificial dataset and Web-1, [5] also reported the NDCG scores at various truncation levels,
L = 1 to 10. To make the comparisons more convincing, we also report similar results for the arti-
ficial dataset and Web-1, in Figure 2. For a better clarity, we plot the standard deviations separately
from the averages. Figure 2 verifies that the improvements shown in Table 1 are not only true for
L = 10 but also (essentially) true for smaller truncation levels.

7 Conclusion

The ranking problem has become an important topic in machine learning, partly due to its
widespread applications in many decision-making processes especially in commercial search en-
gines. In one aspect, the ranking problem is difficult because the measures of rank quality are
usually based on sorting, which is not directly optimizable (at least not efficiently). On the other
hand, one can cast ranking into various classical learning tasks such as regression and classification.

The proposed classification-based ranking scheme is motivated by the fact that perfect classifications
lead to perfect DCG scores and the DCG errors are bounded by the classification errors. It appears
natural that the classification-based ranker is more direct and should work better than the regression-

1 2 3 4 5 6 7 8 9 10
65

70

75

80

85

Truncation Level

N
D

C
G

 (
%

)
1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

Truncation Level

N
D

C
G

 s
td

 (
%

)

LambdaRank

Regression

Classification

Ordinal

1 2 3 4 5 6 7 8 9 10
63
64
65
66
67
68
69
70
71
72
73

Truncation Level

N
D

C
G

 (
%

)

LambdaRank
Regression
Classification
Ordinal

1 2 3 4 5 6 7 8 9 10
24
26
28
30
32
34
36
38
40
42

Truncation Level

N
D

C
G

 s
td

 (
%

)

Figure 2: The NDCG scores at truncation levels L = 1 to 10. Upper Panels: the artificial data.
Bottom Panels: Web-1. Left Panels: average NDCG. Right Panels: standard deviations.

based ranker suggested in [6]. To convert classification results into ranking, we propose a simple and
stable mechanism by using the Expected Relevance, computed from the learned class probabilities.

To learn the class probabilities, we implement a boosting tree algorithm for multiple classifica-
tion and we use the same implementation for multiple ordinal classification and regression. Since
commercial proprietary datasets are usually very large, an adaptive quantization-based approach
efficiently implements the boosting tree algorithm, which avoids sorting and has low memory cost.

Our experimental results have demonstrated that the proposed classification-based ranker outper-
forms both the regression-based ranker and the pair-based LambdaRank. The performance is further
improved using multiple ordinal classification.

In a summary, we regard the proposed multiple and multiple ordinal classification-based ranking
algorithm (retrospectively) simple, robust, and capable of producing quality ranking results.

Acknowledgment

Much of the work was conducted while Ping Li was an intern at Microsoft Research in the summer
of 2006. Ping Li would like to thank Robert Ragno.

Appendix
A An Efficient Implementation for Building Regression Trees

We use the standard regression tree algorithm [2], which recursively splits the training data points
into two groups on the current “best” feature that will reduce the mean square errors (MSE) the most.
Efficient (in both time and memory) implementation needs some care. The standard practice [9] is
to pre-sort all the features. Then after every split, carefully keep track of the indexes of the data
points and the sorted orders in all other features for the next split.

We suggest a simpler and more efficient approach, by taking advantage of some properties of the
boosting tree algorithm. While the boosting tree algorithm is well-known to be robust and also
accurate, an individual tree has limited predictive power and usually can be built quite crudely.

When splitting on one feature, Figure 3(a) says that sometimes the split point can be chosen within a
certain range without affecting the accuracy (i.e., the reduced MSE due to the split). In Figure 3(b),

we bin (quantize) the data points into two (0/1) levels on the horizontal (i.e., feature) axis. Suppose
we choose the quantization as shown in the Figure 3(b), then the accuracy will not be affected either.

ss sRL x

y

(a)

Bin 0 Bin 1

y

xs

(b)

Bin length

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12
(c)

Figure 3: Splitting on one feature (x) is determined by the mean square error (MSE) criterion. That
is, we seek a split point s on the feature (x) such that after the splitting, the MSE (in the y axis) of
the data points at the left plus the MSE at the right is reduced the most, compared to the original
MSE before splitting. Panel (a) suggests that in some cases we can choose s in a range (within sL

and sR) without affecting the reduced MSE. Panel (b) suggests that, if we bin the data on the x axis
to be binary, the reduced MSE will not be affected either, if the data are binned in the way as in (b).
Panel (c) pictures an adaptive binning scheme to make the accuracy loss (if any) as little as possible.

Of course, we would not know ahead of time how to bin the data to avoid losing accuracy. Therefore,
we suggest an adaptive quantization scheme, pictured in Figure 3(c), to make the accuracy loss (if
any) as little as possible. In the pre-processing stage, for each feature, the training data points are
sorted according to the feature value; and we bin the feature values in the sorted order. We start with
a very small initial bin length, e.g., 10−8. As shown in Figure 3(c), we only bin the data where there
are indeed data, because the boosting tree algorithm will not consider the area where there are no
data anyway. We set an allowed maximum number of bins, denoted by B. If the bin length is so
small that we need more than B bins, we simply increment the bin length and re-do the quantization.
After the quantization, we replace the original feature value by the bin labels (0, 1, 2, ...). Note that
since we start with a small bin length, the ordinal categorical features are naturally taken care of.

We consider our adaptive binning scheme simple and effective for the implementation and perfor-
mance of the boosting tree algorithm.

• It simplifies the implementation. After the quantization, there is no need for sorting (and
keeping track of the indexes) because we conduct “bucket sort” implicitly.

• It speeds up the computations for the tree-building step, the bottleneck of the algorithm.

• It reduces the memory cost for training. For example, if we set the maximum allowed
number of bins to be B = 28, we only need one byte per data entry.

• It does not really result in loss of accuracy. We experimented with both B = 28 = 256 and
B = 216 = 65536; and we did not observe real differences in the NDCG scores.

References

[1] A. Agresti. Categorical Data Analysis. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2002.

[2] L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1983.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. in WWW, 107–117,
1998.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank
using gradient descent. in ICML, 89–96, 2005.

[5] C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. in NIPS, 193–200,
2007.

[6] D. Cossock and T. Zhang. Subset ranking using regression. In COLT, 605–619, 2006.

[7] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969, 2003.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The
Annals of Statistics, 28(2):337–407, 2000.

[9] J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

[10] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR,
41–48, 2000.

[11] J. Kleinberg. Authoritative sources in a hyperlinked environment. In SODA, 668–677, 1998.

