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Abstract

Structured prediction is an important and well-
studied problem with many applications across
machine learning. GPstruct is a recently pro-
posed structured prediction model that offers
appealing properties such as being kernelised,
non-parametric, and supporting Bayesian infer-
ence (Bratières et al., 2013). The model places
a Gaussian process prior over energy functions
which describe relationships between input vari-
ables and structured output variables. However,
the memory demand of GPstruct is quadratic in
the number of latent variables and training run-
time scales cubically. This prevents GPstruct
from being applied to problems involving grid
factor graphs, which are prevalent in computer
vision and spatial statistics applications.

Here we explore a scalable approach to learn-
ing GPstruct models based on ensemble learn-
ing, with weak learners (predictors) trained on
subsets of the latent variables and bootstrap data,
which can easily be distributed. We show exper-
iments with 4M latent variables on image seg-
mentation. Our method outperforms widely-used
conditional random field models trained with
pseudo-likelihood. Moreover, in image segmen-
tation problems it improves over recent state-of-
the-art marginal optimisation methods in terms
of predictive performance and uncertainty cali-
bration. Finally, it generalises well on all training
set sizes.
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1. Introduction
Conditional random fields (CRF) (Lafferty et al., 2001) and
Markov random fields (MRF) (Blake et al., 2011) are pop-
ular models in computer vision, language modelling, and
other applications of machine learning, because they al-
low specifying rich interactions between multiple random
variables using an undirected graph. Despite their success
these models remain challenging to work with: both infer-
ence and parameter estimation for general graph structures
are intractable and require approximations. Furthermore, in
order to achieve good predictive performance one needs to
specify meaningful features and has to trade-off the result-
ing model capacity with the amount of available training
data to avoid overfitting.

This work addresses the specification and estimation prob-
lems in a Bayesian framework building on a recent non-
parametric model—the GPstruct model (Bratières et al.,
2013). Our contribution is to present an efficient approx-
imate Bayesian learning approach that reliably prevents
overfitting yet remains scalable for large general (non-tree
structured) graphs. An important limitation preventing the
application of GPstruct to larger data sets is the dimension
of the kernel matrix, determined by the number of GPstruct
latent variables, which is number of training points×output
dimensionality×label space cardinality. While this num-
ber may remain reasonable for linear chain factor graphs
(Bratières et al., 2013), the output dimensionality in vision
problems is vastly higher than in typical language process-
ing applications. As an example, this paper tackles an 8-
class segmentation task, training over 572 training images
of size 50 × 150. In the standard GPstruct approach, this
yields a kernel matrix of size 4 million by 4 million (∼ 1013

elements, assuming a block diagonal unary kernel matrix
as in (Bratières et al., 2013)), which cannot be inverted us-
ing Gaussian process (GP) sparsification techniques such
as (Snelson & Ghahramani, 2005) alone. In practice, we
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find the standard GPstruct model to be applicable to only
about one image at a time, which is consistent with the scal-
ability results in (Hensman et al., 2013). On the other hand,
for these computer vision applications the GPstruct model
proposed in this paper provides reliable uncertainty esti-
mates that are well calibrated. Because in many real world
domains, computer vision is part of a larger autonomous
system, we believe that providing reliably quantified un-
certainty is an important feature of our method.

Our paper introduces a scalable approximate Bayesian
learning method. The latent variables are divided into sub-
sets, each of which is assigned to a GPstruct predictor. The
predictors are trained on bootstrap data using the pseudo-
likelihood approximation. The above problem is reduced to
subsets of 40000 latent variables, distributed over a com-
puting cluster, with slave nodes carrying out partial pre-
diction and the master node aggregating predictions. Our
approach makes it possible to apply the model to prediction
on grid factor graphs and potentially other structures.

2. The GPstruct Model
For self-consistency of the paper, we review the Gaus-
sian process structured prediction model (Bratières et al.,
2013). Assume that we are given a set of N input-output
data points or examples D = {(x1,y1), . . . , (xN ,yN )} ⊂
X × Y . We use X and Y to denote the input and output
space, respectively. We consider structured output: the out-
put domain is the product of individual variable domains Yi
so thatY = ×

i=1,...,I

Yi where we use I to denote the number

of output variables associated with an input. Note impor-
tantly that as in other typical structured prediction problems
for discrete Yi, the size of Y grows exponentially with I .

We describe the relationship between an input variable x
and its output variable y by means of an energy function
E. The energy function defines a conditional probability
distribution Pr(y|x,E) as

Pr(y|x,E) =
1

Z(x,E)
exp(−E(x,y)), (1)

where the log partition function Z(x,E) =∑
y∈Y

exp(−E(x,y)) is the normalising constant. Note that

our model in (1) is in the general form of a conditional
random field (CRF) (Lafferty et al., 2001; Sutton &
McCallum, 2012).

We will consider the case in which the energy function E
decomposes into a sum of energy functions EtF over fac-
tors F , where F defines a subset of variables. As an illus-
tration, when |F | = 2, the energy function is:

E(x,y) =
∑
F∈F

EtF (xF ,yF ). (2)

In the above, we use xF to denote the collection (xi)i∈F ,
and likewise we use yF to denote the parts of y that are
in F . While there are many different subsets in F , we as-
sume that there are only few distinct types and we use tF
to denote the type of the factor F . The function EtF is
the same for all factors of that type, but it acts on different
variables. This notion of type specifies both repeated struc-
ture and parameter tying in the model. As another exam-
ple, we can further decompose the energy function in (2).
This results in two different types of factors: a) unary1 fac-
tors connecting components of input and output variables
(xi, yi), and b) pairwise factors connecting neighbouring
output variables (yi, yj). We then have

E(x,y) =
∑

(x,yi)∈tFa

Ea(xi, yi) +
∑

(yi,yj)∈tFb

Eb(yi, yj). (3)

The traditional CRF parameterisation (e.g., Sutton & Mc-
Callum (2012)) consists of expressing the energy function
E(x,y) as a weighted sum of features w>φ(x,y) where
w ∈ RD is the weight vector and φ(x,y) is a feature
function. Learning consists of estimating the weight vec-
tor under a given prior distribution. This approach is called
parametric, since the parameterisation (e.g. the size of the
weight vector) is fixed independently of the data. The GP-
struct model employs a non-parametric approach by con-
sidering the energy terms Ea(xi, yi) and Eb(yi, yj) as la-
tent functions, and imposing a Gaussian process prior (Ras-
mussen & Williams, 2006) upon them. In the usual GP
terminology, Pr(y|x,E) defined in equation 1 is the likeli-
hood function.

This requires defining a covariance function over any
two such energy functions. Following Bratières et al.
(2013), which elaborates on this aspect, we define
Cov(Ea(·), Eb(·)) to be zero, and further

Cov(Ea(xi, yi), Ea(x
′
i, y
′
i)) = ka((xi, yi), (x

′
i, y
′
i))

Cov(Eb(yi, y
′′
i ), Eb(y

′
i, y
′′′
i )) = kb((y, y

′′), (y′, y′′′))

We use ka(·, ·) and kb(·, ·) to denote a positive definite ker-
nel function (Schölkopf & Smola, 2001). By defining that
Ea(xi, yi) depends on the location i while Eb(yi, y

′′
i ) does

not, the number of unary latent variables grows with the
data, while the number of pairwise latent variables does
not. The non-parametric property, which allows model
complexity to be determined as part of analysing the data,
although appealing, introduces a serious scalability issue
in the linear chain factor graph (Bratières et al., 2013). Un-
fortunately, this scalability issue is magnified in the vision
applications in which we are interested, and which involve
grid factor graphs: the number of unary latent variables
grows with I , the number of pixels in an image. The same

1These are unary because in our supervised learning setting,
we assume x to be given.
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Figure 1. Left: Grid factor graph with a pairwise 4-connected fac-
tor. There is one unary factor type per pixel, and one pairwise
factor type. Right: A plate notation for a variable yi with its 4
connected neighbours corresponding to a pixel i. The unary fac-
tor ai depends on image data x, and the pairwise factors b are data
independent.

scalability issue affects kernel CRFs (Lafferty et al., 2004),
which may be one of the reasons why these models have
not become popular.

Next, we will describe the GPstruct model for grid factor
graphs before addressing our approach to scaling up the
model.

3. GPstruct for Grid Factor Graphs
Assume that we are given an observed image x ∈ X where
X denotes the set of possible images. We note the pixels xi,
i = 1, . . . , I , so that I is the number of pixels of an image.
Our goal is to infer a discrete labelling y ∈ Y where the
labelling is per-pixel, that is y = (yi)i=1,...,I , yi ∈ Yi, and
in practice, we will mostly have a single set Yi := L of
labels.

We assume that the energy functions decompose into sums
of energy functions over unary and pairwise factors as in
(3). To be specific, consider a toy image of size 3 by 3. Fig-
ure 1 displays the corresponding factor graph model, with
a distinct unary factor for each pixel, and shared pairwise
factors over inter-pixel edges. All unary factors depend on
image data x, and all pairwise factors do not depend on x.

Learning Given training data D consisting of N images
and their labels, the goal of learning is to infer a posterior
distribution over energy functions, that is Pr(E|D). As-
suming the images in the dataset are independent and iden-
tically distributed given the model, the training data like-
lihood can be written as Pr(D|E) =

∏N
n=1 Pr(yn|xn,E),

where Pr(yn|xn,E) is given in (1).

As for most interesting Bayesian models, analytic or exact
computations are generally not possible, and adequate al-
gorithms are needed in several places. Generating posterior
samples E|D from the GP, given the non-Gaussian likeli-

hood, cannot be done analytically and is dealt with by ellip-
tical slice sampling (ESS) (Murray et al., 2010), an efficient
Markov Chain Monte Carlo method for tightly coupled la-
tent variables with a Gaussian prior, as used in Bratières
et al. (2013).

The likelihood computation is intractable due to the nor-
malising constant Z(x,E), which involves a summation
over the label set Y , whose size is exponential in the num-
ber of pixels in an image. Take as a running illustra-
tion, a simple foreground-background segmentation task
(L = {1, 2}) and an image of size 50 × 100. For this
problem, the exact likelihood would be computed using
the junction tree algorithm, whose complexity is exponen-
tial in the treewidth of the grid graph, i.e. 50 in our ex-
ample. To address the intractability of the normaliser, we
use a surrogate likelihood, the pseudo-likelihood (Besag,
1975) (PL), as a drop-in for the true likelihood in the ESS
procedure. The PL is derived from the per variable con-
ditional distributions Pr(yi|yN (i),x,E). We use N (i) to
denote the set of neighbours of variable i according to the
underlying factor graph. If a grid factor graph with pair-
wise factors is used, |N (i)| = 4 except for variable i asso-
ciated with a pixel at the boundary. The PL is then de-
fined as PrPL(D|E) =

∏N
n=1

∏
i∈V Pr(yni |yN (i),x

n,E).
The maximum PL estimator is known to be a consistent
estimator (Besag, 1975), but here we use it to approxi-
mate the intractable likelihood function itself. The use of
PL in MCMC schemes for Bayesian parameter learning in
Markov random fields dates back to Wang et al. (2000).

A detailed study of MCMC for Bayesian learning in non-
trivial undirected graphical models is given in Murray &
Ghahramani (2004), which conjectures that for general
undirected models, there are no tractable MCMC meth-
ods that give the correct equilibrium distribution over pa-
rameters. Their pragmatic solution is to explore a variety
of approximations for the normalising constant Z(x,E).
The method of Murray et al. (2006) is not exactly suited
to our setting, since it requires pure Metropolis-Hastings
as the sampling algorithm (and works on the acceptance
rate), while we use elliptical slice sampling to avoid high
sample correlation, in the presence of tightly coupled latent
variables. However, earlier, Parise & Welling (2005) have
concluded that for fully observed MRFs (as in our case),
PL is recommended over perfect sampling due to the com-
putational burden of the latter, which is not balanced by a
corresponding performance gain. In this paper, we show
empirically that PL works well when used as a likelihood
approximation in the GPstruct model.

For GPstruct, the PL computation will still involve 10, 000
latent variables (50 × 100 pixels times 2 classes) in our il-
lustrative binary segmentation task. In addition, this high
number of latent variables requires large storage for the
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GP kernel matrix. These two issues are addressed with
one strategy, namely reducing the set of latent variables as-
signed to a weak learner (WL) by an ensemble method, an
approach detailed in section 4.

To implement this method, as in Nowozin et al. (2011), PL
is computed on subsets of pixels, V ′ ⊂ V , where V is the
set of pixels of an image (and |V| = I), while retaining the
4-connected factor for all i ∈ V ′. Referring to the plate
notation in figure 1 (right), the variable yi inside the plate
is now repeated |V ′| times. This gives a subset PL func-
tion P̂rPL(D|E) =

∏N
n=1

∏
i∈V′ Pr(yni |yN (i),x

n,E). To
produce diversified weak learners, a necessity for ensem-
ble methods, we train them on disjoint subsets of pixels.
This approach to subset-based ensemble learning is related
to the Bayesian committee machine (Tresp, 2000).

Prediction For a previously unseen test image x∗ ∈ X ,
the predictive distribution over the latent structured output
y∗ ∈ Y can be computed as follows:

Pr(y∗|x∗,D) =
∫ (∫

Pr(y∗|x∗,E∗)Pr(E∗|E)dE∗
)

×
∏N

n=1 Pr(yn|xn,E)Pr(E)

p(D)︸ ︷︷ ︸
Pr(E|D)

dE (4a)

≈
∫ (∫

Pr(y∗|x∗,E∗)Pr(E∗|E)dE∗
)

×
∏N

n=1

∏
i∈V′ Pr(yni |yN (i),x

n,E)Pr(E)

p(D) dE,

(4b)

where Pr(y∗|x∗,E∗) is a predictive likelihood, Pr(E∗|E)
is a conditional multivariate Gaussian (MVG) distribution
(due to the GP marginalisation property (Rasmussen &
Williams, 2006)), and Pr(E|D) is the posterior distribu-
tion. In equation (4b) Pr(E|D) is obtained from the learn-
ing stage, and involves the pixel subset PL.

We use a Monte Carlo estimate to approximate the above
predictive distribution, where posterior samples of E|D
are produced by the learning (ESS) part of the algo-
rithm discussed above. Since the predictive likelihood
Pr(y∗|x∗,E∗) is again intractable, we use tree-reweighted
(TRW) belief propagation (Wainwright & Jordan, 2008) as
an approximation. TRW yields a tractable upper bound on
the log partition function, which might give an inconsistent
marginal predictive likelihood Pr(y∗i |x∗,E∗) in the sense
that no joint distribution yields those marginals. Despite
this inconsistency, practically, TRW-based inference deliv-
ers state-of-the-art predictive performance (see for example
Domke (2013)).

To obtain an optimal point estimate y∗,
we maximise the expected utility y∗,opt =

argmaxyguess
∑

y∗ Pr(y∗|x∗)U(yguess,y∗), for some
utility function U . In our experiments, we will use a utility
function corresponding to Hamming error, i.e. which
counts the number of components of the label vector which
are correct. For this utility function, maximising expected
utility implies maximising each component independently:
y∗,opt
i = argmaxy∗i Pr(y∗i |x∗), known as maximum

posterior marginal inference (Marroquin et al., 1987).

4. Bagging for GPstruct
Much evidence shows that ensemble learners can exceed
the performance of simple models. Examples of ensem-
ble methods are bagging, boosting, random forests and
their variants. The bagging algorithm (Breiman, 1996)
trains each weak learner from bootstrap data and com-
bines individual predictions by uniform averaging or vot-
ing over class labels. We use the non-parametric bootstrap
of Fushiki et al. (2005) to construct the predictive distribu-
tion from Monte Carlo samples. We can now present the
full algorithm of our method. Let T be the (application-
dependent) size of the ensemble.

1. (Distributed stage) For each weak learner t =
1, . . . , T

(a) Generate bootstrap data Dt =
{(xt,1,yt,1), . . . , (xt,N ,yt,N )} from
the empirical distribution P̂r(x,y) =
1
N

∑N
n=1 δ(x− xn)δ(y − yn).

(b) (Training) Based on the subset of pixel positions
Vt ⊂ V on images Dt, perform training by ESS
using PL on Vt as the likelihood, resulting in
MCMC samples Ẽt.

(c) (Partial prediction) For each sample Ẽt, ob-
tain samples Ẽ∗t from the MVG E∗t |Et. For
each sample Ẽ∗t obtain the predictive distribu-
tion Pr(y∗|x∗, Ẽ∗t ) using TRW. Aggregate these
in Pr(y∗|x∗,Dt) ≈ 1

S Pr(y∗|x∗, Ẽ∗t ), where S is
the number of samples Ẽ∗t .

2. (Aggregation stage) Compute the complete predic-
tive distribution PrT (y∗|x∗) as a uniform average of
the Pr(y∗|x∗,Dt), ∀ t.

Our bagging algorithm for GPstruct is distributed by na-
ture: step 1 can run on slave nodes, step 2 on the master
nodes, as our experiments demonstrate.

5. Related work
Kernel CRFs (Lafferty et al., 2004) are non-parametric ran-
dom field models sharing many of the design goals of the
GPstruct model; they also scale in complexity with the
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amount of training data. A clique selection algorithm al-
lows some degree of sparsification. The method we present
here may be applicable to speed up kernel CRFs as well as
GPstruct.

As described earlier, our work is closely related to the re-
search efforts on GP sparsification, whose goal is to im-
prove the runtime from cubic in the number of data points
to linear. Almost all sparse GP methods exploit a condi-
tional independence assumption between training and test
sets, given a set of inducing points (see Quiñonero-Candela
& Rasmussen (2005) for a unifying view). However, even
linear scaling can be prohibitive for very large data sets.
Recent progress in sparsification has led to methods that
can potentially process millions of data points (Hensman
et al., 2013). Our proposed ensemble method could further
benefit from sparse GP methods implemented in each weak
learner. This would allow large scale non-parametric struc-
tured prediction on high resolution images with millions of
pixels.

6. Applications
We assess the performance of bagging applied to the GP-
struct model on a multiclass image segmentation task using
two datasets. We compare GPstruct to a number of other
techniques. A further experiment based on an image de-
noising task is detailed in the supplementary material.

Stanford Background Dataset (Gould et al., 2009) This
dataset consists of 715 images of different sizes, resized to
50 × 150 pixels. Each pixel in the image is labelled with
one of 8 classes, i.e. {sky, tree, road, grass, water, building,
mountain, foreground object}. We keep 80% of the data
for the training set (i.e. 572 images), and 20% for the test
set (143 images). This split is repeated over 5 folds.

LabelMeFacade Image Database (Fröhlich et al., 2010)
Our second dataset contains 100 images for training and
845 images for testing. The images are of different sizes
and are resized to 50× 150 pixels. Each pixel in the image
is labelled with one of 9 classes, i.e. {building, car, door,
pavement, road, sky, vegetation, window, unlabelled}.
For each problem, we will compare the performance of
GPstruct to that of other models suited to the same task.
Our aim is to assess the contribution of different aspects
of our proposed model: the non-parametric property of the
latent variables, the choice of learning technique (MCMC
vs. margin optimisation), the ”structured output” property
of GPstruct obtained by factors on the inter-pixel edges,
and the improvement brought by bagging.

CRF PL is a CRF model trained with pseudo-likelihood.

CRF LBMO (for loss-based marginal optimisation) is the
model described in Domke (2013), and is considered to

be state-of-the-art for vision CRF applications. While
traditionally, CRF parameter learning optimises the like-
lihood, Domke (2013) suggests fitting parameters based
on the quality of prediction of a given marginal infer-
ence algorithm, obtained by TRW or mean-field (we use
TRW in our experiments), using truncated univariate lo-
gistic loss. Domke (2013) outperforms likelihood-based
learning methods such as PL on difficult problems where
the model being fit is approximate in nature, such as image
denoising and image segmentation tasks.

independent is a variant of CRF LBMO based on the
same training procedure, but where prediction ignores pair-
wise edges, preserving only unary features. This helps ap-
preciating the contribution of the edge factors.

CRF LBMO bag applies the same bagging procedure as
the GPstruct model to the CRF LBMO model, i.e. weak
learners are trained on the training set, and their predic-
tions combined to obtain an overall prediction. Since
CRF LBMO is CRF-based it produces probabilistic predic-
tions, so that combining predictions consists of averaging
marginals produced by each weak learner.

We train these CRF-based models with a regularisation pa-
rameter of 10−4 as in Domke (2013). Splitting regulari-
sation parameters into unary and pairwise parameters, and
giving the pairwise parameter a smaller value did not im-
prove performance in our experiments. We use a data inde-
pendent pairwise Potts factor. Our unary features are per-
pixel posteriors produced by a random forest model, with
11 trees of depth 18 each. Our implementation was done
in Matlab2, and we use J. Domke’s toolbox3 for the CRF
models.

The GPstruct model is configured as follows. We use
a squared exponential kernel between the pixels4, i.e.
k(xi,xj) = exp(−γ ‖xi − xj‖2). The kernel width γ is
set to 1/(number of features). We train 50 weak learners
in total. Each weak learner is trained on 5000 pixel posi-
tions uniformly chosen in the training set images. Using
only a subset of the weak learners, we can explore how to
trade performance against runtime.

Computations for GPstruct were distributed on an Amazon
cluster using MIT’s Starcluster5. Each weak learner trained
and issued partial predictions (steps 1a through 1c in sec-
tion 4) on a separate slave node, and the final aggregation
step (step 2) was carried out on the master node.

2The code will be available as a GPstruct toolbox at the au-
thors’ homepage

3http://users.cecs.anu.edu.au/˜jdomke/
JGMT/

4We briefly discuss the issue of kernel choice in section 7.
5http://star.mit.edu/cluster

http://users.cecs.anu.edu.au/~jdomke/JGMT/
http://users.cecs.anu.edu.au/~jdomke/JGMT/
http://star.mit.edu/cluster
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Figure 2. Semantic segmentation task (best viewed in colours). Example marginals – brightness level encodes certainty – and predicted
labels from the Stanford Background Dataset. All methods use the same image features. First row: input image and true labels, second
row: marginals and predicted labels of independent, third row: of CRF PL, fourth row: of CRF LBMO, fifth row: of GPstruct.
The independent model performs reasonably well in predicting per-pixel segmentation, but makes rather noisy predictions, whereas
CRF PL puts more emphasis on pairwise factors resulting in large same-label patches in predictions. GPstruct combines the good
per-pixel segmentation of independent and smoothness of CRF PL.

6.1. Results

The results are summarised in tables 1 and 2. Our primary
error metric is the per-pixel error rate, which is consistent
with prediction using maximum posterior marginals. Since
GPstruct and CRF LBMO produce probabilistic predic-
tions, it is also relevant to assess the quality of posterior
marginals, e.g. using the negative log marginals of the test
data as a metric, which the reader will find discussed in the
supplementary material. We also provide a sample visuali-
sation of marginals and predicted labels for all methods in
figure 2.

GPstruct outperforms the other models consistently,
even with only about 15 weak learners. In all cases, each
GPstruct weak learner ever only learns from 5000 pix-
els. CRF PL performs weakly, which is consistent with
previous studies (Domke, 2013) which found CRF trained
with PL suffers from model mis-specification and places
too much emphasis on the pairwise factors. However, in-
terestingly, PL performs well when used as a likelihood ap-
proximation for ESS in the GPstruct model.

Bagging has an effect on the performance of CRF LBMO,
but it is insufficient to bring it to par with GPstruct.
Therefore bagging alone does not justify why GPstruct
performs better than CRF LBMO, and other properties like

being non-parametric and Bayesian come into play.

To illustrate configuration options for GPstruct, we plot-
ted the error rate against a varying number of weak learners
in figure 3, which shows that GPstructwill attain its best
performance from 15 weak learners up. Table 1 shows that
increasing the number of images seen by the GPstruct
weak learners is responsible for a performance increase,
since in all cases the total number of pixels learnt from
is constant at 5000. The usefulness of having more inde-
pendent training images over having more dependent pixels
from the same images has been observed earlier by Shotton
et al. (2011) and Nowozin et al. (2011).

To explore the effect of varying the number of subsampled
pixel positions in each image, we started from the set up
of GPstruct 15 WL in table 1, with a fixed training set
size of 50 images (second column). This corresponds to
100 pixels per images. Reducing the number of subsam-
pled pixels in each image to 50 (for a total of 2500 pixels)
reduces the error rate to 25.18 ± 0.70, which is still better
than the 26.61 ± 0.65 error rate obtained for 25 training
images and 200 pixels per image (for a total of 5000 pix-
els), cf. table 1. Reducing to 25 pixels per image instead
of the original 100, the error rates drops again slightly to
25.23 ± 0.68. This corroborates the finding that more in-
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Table 1. Error rate performance on test set of 143 images when training set size varies, N ∈ {25, 50, 100, 200, 300, 572}. WL denotes
weak learner. Results are averaged over 5 folds. The best result and those results that are not significantly worse than it are highlighted in
boldface. We used a paired Wilcoxon test with 95% confidence level as reference. Bayesian posterior inference of GPstruct generalises
well at all training set sizes.

Stanford Background Dataset
25 50 100 200 300 572 (all)

CRF PL 57.14±6.92 58.40±6.46 47.19±3.67 44.92±2.05 60.00±1.51 65.00±1.33
CRF LBMO 30.60±1.21 27.03±0.67 26.09±0.67 25.31±0.65 24.91±0.63 24.78±0.61
CRF LBMO bag 15 WL 29.56±0.77 25.68±0.61 25.24±0.54 24.76±0.58 24.50±0.61 24.63±0.57
CRF LBMO bag 50 WL 29.56±0.77 25.65±0.61 25.20±0.54 24.73±0.58 24.49±0.61 24.61±0.57
GPstruct 15 WL 26.61±0.65 24.94±0.68 24.82±0.63 24.60±0.67 24.56±0.72 24.55±0.70
GPstruct 50 WL 26.56±0.64 24.90±0.67 24.75±0.63 24.51±0.68 24.50±0.72 24.53±0.69

Table 2. Error rate performance on test set of 845 images when training samples size varies, N ∈ {1, 5, 10, 25, 50, 100}. Bayesian
posterior inference of GPstruct generalises well even with small training set sizes.

LabelMeFacade Image Database
1 5 10 25 50 100 (all)

CRF LBMO 55.99 34.84 32.11 28.37 28.01 27.81
GPstruct 34.05 30.23 28.57 27.86 27.84 27.80

dependent images support while keeping the total number
of pixels increases performance, and illustrates the robust-
ness of GPstruct in the small data regime. More configu-
ration options pertaining to the GPstruct model, especially
MCMC learning, are discussed in (Bratières et al., 2013).

6.2. Runtimes and complexity

Training runtimes on the full training data set are around
360, 000 sec for CRF PL, 61, 000 sec for CRF LBMO and
independent. The ensemble method we describe here
allows trading performance against runtime, since we can
choose how many WL to train. Please refer to figure 3 for
more details. Each weak learner of GPstruct trains for
around 12h (43, 000 sec), the same applies to each weak
learner of CRF LBMO bag. GPstruct outperforms the
other non-bagging methods with just around 5 weak learn-
ers (equivalent runtime 215, 000 sec). It has equal runtime
to CRF LBMO bag and outperforms it from around 15
weak learners.

The training runtime is dominated by the ESS algorithm’s
complexity, which in turn is governed by evaluations of the
likelihood function for each sample of the latent variables
f . Each ESS step has a non-deterministic number of likeli-
hood evaluations, as it is essentially a slice sampling algo-
rithm.

Details of the complexity analysis appear in the supplemen-
tary material.

6.3. Effect of approximations on GPstruct

In order to assess the effect of approximating the likeli-
hood with PL, and the prediction with TRW, we conducted
a small-scale experiment using the standard GPstruct, in
which exact likelihood and prediction are tractable. For
this, the Stanford Background Dataset images were resized
to 10 by 10 pixels, and the multiclass segmentation prob-
lem was turned into a foreground-background (2-class)
segmentation task (the foreground label is available in the
original dataset). We perform 4 shuffles of the data, and
in each select 100 images for training, and 100 for testing.
Error rates are averaged over these 4 shuffles and plotted
against ESS iterations in figure 4.

This figure shows that the effect of approximating the pre-
diction function has virtually no effect in the error rate. The
approximation in parameter estimation using PL appears to
be robust in GPstruct, leaving only a 1% gap in accuracy
with the exact likelihood. We can therefore conclude that
the approximations we use, while efficient enough to make
GPstruct scalable, are still robust enough to have a small
impact on performance.

7. Extensions and Open Problems
The results in this paper are a first step in the direction
of Bayesian non-parametric structured prediction for large
grid factor graphs. Several questions arise from this formu-
lation.
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Figure 3. Speed-accuracy trade-off for GPstruct and CRF
LBMO bag. Averages over 5 folds of the complete data set (572
training images and 143 test images). The size of the weak learner
set used for prediction (noted NWL) varies between 1 (a single
weak learner is used for prediction) and 50 (the predictions of
all the available weak learners are aggregated). This allows bal-
ancing runtime against desired performance. For each NWL, the
number of weak learner sets which are evaluated and averaged is
max(5, 50/NWL).

Further scaling – In addition to using subsets of pixels
to train weak learners, GP sparsification techniques (Snel-
son & Ghahramani, 2005; Hensman et al., 2013) applied
inside each weak learner should allow substantial scale
gains. This will result in hybrid methods that combine
sampling and variational methods (see for example Welling
et al. (2008)). In addition, the ensemble approach ap-
plied to training here can also be applied at test time, al-
lowing higher resolution images: we could subdivide the
set of test latent variables, before applying the (approxi-
mate) marginal computation once all latent variables are
collected. There is a balance to be found between the
size of pixel subsets per weak learner, and the computation
overhead.

Kernel learning – We only explored a joint input-output
kernel function that decomposes into a kernel on input
space and a kernel on output space (which was simply a
scaled indicator function). The input-specific kernel further
decomposes into a per-element kernel of the input. Further
benefits of GPstruct could come from the use of more ex-
pressive kernels over the entire input space, or potentially
over the joint input-output space, combined with hyperpa-
rameter learning, which we did not explore here. Exten-
sions of kernel learning where a rich kernel can be con-
structed through a weighted sum of base kernels (for ex-
ample Bach (2008)), or even learning the structural form of
the kernel itself (Duvenaud et al., 2013; Wilson & Adams,
2013) are open problems.

0 500 1000 1500 2000 2500

MCMC iterations

0.095

0.100

0.105

0.110

0.115

0.120

0.125

0.130

e
rr

o
r 

ra
te

exact likelihood, max-product prediction

exact likelihood, TRW prediction

PL, max-product prediction

PL, TRW prediction

Figure 4. Effect of approximations in the standard GPstruct. All
combinations of exact likelihood vs. PL and max-product predic-
tion vs. TRW prediction are explored. The prediction approxi-
mation has virtually no effect on performance, and the likelihood
approximation proves very robust.

8. Conclusion
The recently presented GPstruct model (Bratières et al.,
2013) has appealing properties which distinguish it among
the structured prediction models, but does not scale well
due to both its O(M2) space and O(M3) time complexi-
ties, where M is the number of GP latent variables. This
in effect prevented GPstruct from being applied to vision
problems involving grid factor graphs.

Our main contributions are a distributed ensemble method
in which weak GPstruct learners produce partial probabilis-
tic predictions based on subsets of latent variables, which
can be aggregated for a high-accuracy final prediction, and
a demonstration that this approach can produce competitive
results on two vision tasks. Each individual weak learner
benefits from the GPstruct properties: they are kernelised,
non-parametric and perform Bayesian inference.

The resulting method is shown to perform very well on two
classic vision tasks, binary denoising and multiclass image
segmentation. In the segmentation task, GPstruct consis-
tently outperforms state-of-the-art comparisons, and scales
well to large data, with M = 2 million latent variables.
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