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1. Introduction 

Most tracking problems in computer vision can be concep 
tualized as nonlinear estimation problems, with the gray 
level of each pixel being an observation. The difficulty in 
making use of this point of view is that i) we lack a plau- 
sible model for the underlying stochastic processes, and ii) 
the resulting problems would be of very high dimension as 
well as being nonlinear, making them all but intractable. 
The search for an approach that makes effective use of 
the existing spatial correlations has led to the study of 
various methods of simplification involving feature points, 
contours, blobs, etc. In particular there has been consid- 
erable work based on organizing visual evidence around 
parametrized contours called snakes [I]. 

It seems that the most geometrically natural evolution- 
ary equations for curves in the plane, such as the smoothing 
flow for closed curves investigated by Gage and Hamilton 
[Z], are nonlinear. [3] 
have shown that linear models based on finite dimensional 
parametrization can also be effective and remain tractable 
even in a stochastic setting. This paper continues in a 
similar way. We introduce a coordinate system and repre- 
sent the curve using its horizontal and vertical components 
( ~ 1 ,  L Z ) ,  expressed as functions of time and arc length. We 
introduce continuum models for the evolution of the co- 
ordinates and noisy observation models that allow us to 
formulate and solve a realistic class of estimation problems. 

One interesting question brought into focus by this work 
is that of determining how to optimize the use of spatial 
correlation along the curve, and temporal correlation in 
the evolution of the curve, so as to reduce the effects of 
the observation noise. Our formulas in Section 7 give an 
answer to this question. 

On the other hand, Blake et al. 

2. Stochastic Models for Contour Evolution 

We begin by introducing a family of stochastic processes 
that evolve in infinite dimensional spaces. These will be 
spaces of functions, scalar or vector valued, defined on the 
circle or the r ed  line. In a number of places we ignore tech- 
nical points whose discussion would lead us too far from 
the applications of interest here. We will not distinguish 
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between statements that are only true with probability one, 
and those that are true, etc. 

It is a standard idea in control theory that linear dif- 
ferential equation models involving an exogenous input U, 
e.g. 

k ( t )  = A ( t ) z ( t )  + B ( t ) u ( t )  
can serve as a basis for defining stochastic processes. Under 
suitable hypotheses we may replace U by a Wiener process, 
a jump process, etc., and generate a new process z whose 
statistical properties are shaped by A and B to approx- 
imate a particular situation of interest. Because we are 
discussing linear equations here we use a simplified nota- 
tion, exemplified by k = A z  + Bw.  For such equations 
z = E x  satisfies 

d 
d t  
- Z ( t )  = A(t )Z( t )  

and C = &(x - x)(x - n)T, satisfies 

e(t) = E ( t ) A T ( t )  + A( t )E( t )  + B ( t ) B T ( t )  

If A and B are constant then it makes sense to ask about 
the existence of an equilibrium solution. Assuming that the 
null solution of the deterministic equation k ( t )  = A z ( t )  is 
asymptotically stable, the steady state value of the mean 
is zero and the steady state value of the variance is given 
by 

Cm = 1 e-AtBBTeAT' dt 

We will develop some analogous formulae covering cases 
in which z belongs to a vector space of functions taking 
on values in a finite dimensional space. Let L be a linear 
differential operator that generates a semigroup eLt. The 
equation 

m 

m 

t ( t ,  9) = Lz(2, s )  + C h ( S ) U i ( t )  
-W 

is a direct generalisation of the finite dimensional situation. 
However, if L is an unbounded operator, e.g. if it is a 
partial differential operator, then some restrictions on the 
b's may be necessary if we are to claim that there is a 
solution for a wide class of U'S. Introducing a parameter A 
and rewriting this equation as 

m 

t ( t ,  s) = Lz( t ,  s) + Ab(s, iA)u(t, A) 
--m 

suggests that one may consider 
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as a limiting case. If b is a difference kernel, i.e. if 
b ( s , 9 )  = b(s - 9,0), then the s dependence exhibits a type 
of translation invariance. This plays a role in later sections. 
In particular, if 8,  is a one parameter family of difference 
kernels such that b,  approaches a delta function as Q goes 
to  zero, this provides a way to approximate the simpler 
equation 

Z(t ,  s) = L z ( t ,  s) + u(t, s) 

If there is a countable number of controls, we may iden- 
tify BB= as 

00 

BBT = C bi(s)bi(r)  
-00 

and in the integral case the role of BBT is played by 
00 

4(s, .) = J_, b(3 ,  tlP(9, r) d9 

If z(t ,  s) is the value of the 2-component of a curve then 
it is important that it evolve in such a way as to  main- 
tain continuity in s; otherwise the curve would not hold 
together! The following observations will be useful. 
Remark 1: If u(t,  -) is assumed to be bounded but not 

necessarily continuous with respect to  the spatial variable 
s then z(t; ) will not necessarily be continuous unless the 
operators L and B are suitably chosen. A full treatment 
would involve more mathematical questions than we have 
space to  address here, but, roughly speaking, it is necessary 
for L-'B to provide the required smoothing of U. For 
example, if Q and p are positive, a solution to the equation 

will be continuous if u is bounded and integrable. Even the 
special case obtained by equating (I equal to  zero evolves 
in the space of continuous functions if U is bounded and 
integrable. On the other hand, the equation 

i ( t ,  s) = +azz(t, s) + u(t ,  3) 

can not be expected to  generate a solution that is contin- 
uous with respect to  s because L-'B is simply a constant 
and therefore provides no smoothing of U. 

If z ( t , s )  takes on values in R", we let L be an n x n 
matrix of operators, E ( s ,  9) an n x m matrix, and u( t ,  s) an 
m-vector. This model presents no new difficulties provided 
that L is the infinitesimal generator of a semigroup and, 
in the cases where L is unbounded, if the operator B is 
sufficiently well-behaved so as to  assure the existence of 
a solution for forcing functions U that are not necessarily 
continuous with respect to time or space. 

The cases in which L has constant coefficients and b is 
translation invariant in the sense that b(s ,  r )  = b(s  - r ,  0) 
are the most tractable. We will refer to such equations 
as being spatially homogeneous. We are also interested 
in the case where z ( t , . )  is periodic. If ( z l ( t , s ) , z z ( t , s ) )  
are the coordinates of a closed curve of length I and if 
(m(t ,  s), zz(t ,  s)) = ( z l ( t ,  s + I), ~ ~ ( 2 , s  + I ) ) ,  then z will 
evolve in such a way as to preserve both continuity and 
the equality of the end points, provided that L is spa- 
tially invariant, b is periodic, and L-'B is as above. Thus 

they provide a model for a stochastic process whose sam- 
ple paths are one parameter families of closed curves in the 
plane. 

Stochastic models can be constructed by replacing the 
controls by the increments of Wiener processes. If there is 
a countable number of controls this yields equations of the 
type 

00 

i ( t ,  9) = ~ z ( t ,  3) + & i ( s ) t b i ( t )  
-CO 

A special case of this, corresponding to  what one obtains 
when spatially discretizing the integral form described 
above, yields 

00 

z ( t ,  3) = L z ( t ,  s) + Ab(s, iA)w,(t) 
-00 

If we evaluate 
00 

q5 , (~ ,  3) = & A2b(s, iA)b(iA, r)wi(t)ws(t) 
-00 

and compare it to  the refined model obtained by dividing 
A is two, 

00 

+ Z ( S ,  S) = E C ( A / 2 ) 2 b ( ~ ,  iA/2)b(iA/2, r ) t b i ( t ) i i ( t )  
-00 

we see that in order to maintain the effective variance one 
needs to double the variance of the noise when dividing the 
spatial discretization by two. Our notation for the limiting 
form obtained by the repeated application of this process 
is 

* ( t ,  3) = L z ( t , s )  + b ( t ,  9, 9)wq(t,  9) dq 10, 
Any spatial coherence enjoyed by the solution of this equa- 
tion must come from B and L ,  not from the driving noise. 

3. Scalar Valued Functions 

We may define the evolution of functions by means of a 
linear stochastic model driven by a family of independent 
white noise terms. Such equations may be formulated in a 
variety of function spaces. The functions may be supported 
on a finite interval, with or without boundary conditions, 
or on an infinite interval, with or without decay conditions, 
at infinity. If the spatial domain of the functions is an 
infinite interval, i t  may be natural to ask that the functions 
are square integrable along with some of its derivatives with 
respect to s or one may just ask that they be locally square 
integrable along with certain derivatives. Equations of the 
form 

i ( 4  3) = wt, 3) + b(s, rl)Wq(tr 9) d 9  1: 
are of interest in either case. The simplest examples may 
be those that are defined on the whole real line and are 
translation invariant. The state space for such processes 
can not, of course, be a subspace of the space of square 
integrable functions but it could be a subspace of the space 
of locally square integrable functions. 
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Remark 2: Second order stat,istical characterizations 
such as E z ( t , s ) z ( t , r )  will play an important role in the 
discussion of the estimation problem. In order for the equa- 
tion displayed above to  define a process with finite variance 
it is necessary that the integral 

00 

4(3) = 1, V M V ,  3) do 

should not be too large relative to the size of L-'. Of 
course IEz(t ,  s )z ( t ,  r)I 5 Ez( t ,  s ) z ( t ,  s) so that the spatial 
correlation exists for all values of s and r if E z ( t , s ) z ( t , s )  
is finite. 

Remark 3: In order for the variance equation to reach 
steady state it is necessary that L generate a semigroup 
with b in its domain of definition. 

The Fourier transform, as applied to  the spatial variable 
s, is an effective tool for understanding the translation in- 
variant problems of this type when the domain of definition 
is the whole line. Fourier series play a corresponding role 
when the curves are defined on the circle. We use 

m 

5(p7 s) = e- '@z(t ,  s) d t  L 
L 

to denote the temporal Fourier transform and 
m 

Z ( t , k )  = e - l k s z ( t , s )  ds 

to denote the spatial Fourier transform. 
Example 1: Consider the scalar equation 

i ( t ,  s) = -az( t ,s )  + e+-"ti ?I ( t  7 r l )  drl Jp, 
to be thought of defining a process on the space of locally 
square integrable functions on the line. The spatial auto- 
correlation function of the integral term is 

e - l ~ - d e - l ~ - - r l  do = (1 + is - rl)e-is--rl 

Because the drift term is just -az we see that in steady 
state 

1 + Is - rl e-ls-rl lim Ez( t ,  s )z ( t ,  r)  = 
t-m 2a 

The steady state spatio-temporal correlation function in- 
volves an additional factor 

lim &z(t,  s)z(t + r,  r )  = (1 +!a- r ~ )  e- ls - r le - i r l  
t-00 

In this case the power spectrum of the signal, i.e. the 
temporal Fourier transform of the autocorrelation function, 
is 

If we also take the Fourier transform with respect to space, 
we get the spatio-temporal power spectrum 

Example 2: Consider the model 

The spatial correlation of the driving noise is 

We think of this as an equation on the subset of the space 
of locally square integrable functions on the real line con- 
sisting of those functions that have at least two locally 
square integrable derivatives with respect to s. We must 
assume that a1 is positive if the drift term is to generate 
a semigroup. If we assume that a2 is negative then there 
will be a steady state value of the variance. Under these 
assumptions we can look for the steady state value of the 
expectation of z ( t , s )  as well as the steady state value of 
the various correlation functions. In this case we have 

The steady state value of the spatial autocorrelation func- 
tion is given by 

t-00 lim C z ( t ,  s )z( t ,r )  = ~ ( s  - r )  

with 

where 

d ( k )  = ( 2 L ( k ) ) - l $ ( k )  

The time dependence of the correlation function can be 
expressed in terms of the solution of the deterministic ini- 
tial value problem 

a2 

This has the solution 

i ( t ,  s) = (UI + az)z(t, s) ; z(O, s) = given 

z (0 , r l )  do z(t ,  s) = ea3t- e - ( s - # ~ 2 a ~ t  

using this together with the steady state value of the covari- 
ance we can get an expression for the spatio-temporal au- 
tocorrelation function of the process evolving in the space 
of curves. 

We observe that the larger the magnitude of a l ,  the 
more rapidly the spatial correlation falls off with increasing 
spatial frequency. The larger a 2  is in magnitude, the faster 
the temporal correlation falls off in time. 

Example 3: This example concerns stochastic processes 
whose sample values are functions defined on the unit cir- 
cle. The evolution is again linear and of the same general 
form as defined above. Let z ( t ,  s) = z ( t ,  s + 27r). The 
process defined by 
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has sample paths that are continuous on the circle. If a2 is 
negative and a1 is zero then the steady state value of the 
spatial covariance is 

- r c  

cos(s - 7) cos(q - r )  dq 

or 
1 

f z ( t , s ) z ( t , r )  = - ( I +  cos(s - r)) 
2a2 

Example 4: Again we consider stochastic processes 
whose sample values are functions defined on the unit circle 
but now we allow the dynamics to  be second order. 

d 
a32 

cos(s - rl)w(t, r l )  drl. 

z ( t ,  s) + az( t )  = (a1 - + 02)z(t ,  s) 

+ 
The process so defined has sample paths that are continu- 
ous on the circle and statistics that are rotationally invari- 
ant. If 0 2  is negative and a1 is zero then the steady state 
value of the spatial covariance is 

1 t z ( t ,  s ) z ( t , r )  = -(I + cos(s - r)) 
2b 

E i ( t ,  s)z ( t ,  r )  = o 
1 

E i ( t ,  s ) z ( t , r )  = -(I + COS(. - r ) )  
202 

4. Vector Valued Functions 

By considering vector-valued functions, we can obtain 
models that can be used to  study the problem of tracking 
closed curves in the plane. If we chose a Cartesian coordi- 
nate system and parameterize the curve by its arc length 
then the locus of points ( q ( s ) , z 2 ( s ) )  for 0 5 s 5 1 define 
the curve. Of course (Z,(S + l ) , z z ( s  + I ) )  = ( Z I ( S ) , Z ~ ( S ) )  

so we can think of the coordinate functions as being de- 
fined on a circle of circumference l. The models given in 
the previous section tend to a steady state whose expected 
value is zero, however, by adding a bias term one can get 
stochastic processes in the space of closed curves whose 
steady state expectation is any particular closed curve one 
wants. 

Example 5: Let z be a two dimensional vector 

z ( t ,  3) = ( Z l ( t ,  s), z2(t, 3)) 

Suppose that z evolves according to the equation 

i ( t , s )  = L z ( t , s )  + B ( s , ~ ) w ( t , r )  d 7  J 
with L being a generator of a semigroup and B being 
a matrix-valued function whose entries are differentiable 
functions of s - q, square integrable in the sense used in 
Example 4. These conditions, and the specification of L ,  
are guided by the idea that the model should yield an 
z that evolves in the space of smooth curves. We also 
want the statistical properties of these curves to have lim- 
iting values as t goes to  infinity. Let B ( s , r )  be given by 
diag ((cos(s - T ) ,  cos(s - 7 ) ) .  Let L be multiplication by a 

constant and let ((U,, w2) be a vector-valued Wiener pro- 
cess. Thus 

21(t, s )  + al l i l ( t ,  s) + a1222(t, s )  = 
~02”cos(s - r )w l ( t , r )  dr 

i ~ ( t , s )  + a2122(t, s) + azziz(t, s) = 
Jf” sin(s - r)2uz(t, r )  dr 

In this case the system is simplified in various ways. For 
example, if we expand z in a Fourier series in the arc length 
s, then only the first term in the Fourier series participates 
in the motion. 

5. The Observation Model 

The main point of this paper is to explore the problem of 
removing the effects of noise in the process of identifying 
the location of a moving contour. Because the whole idea 
of organizing evidence using curves rather than points or 
areas can be viewed as a way of approximating the optimal 
estimator, the choice of model is critical. The particular 
models we introduce here are, in effect, simply ways to ex- 
ploit spatial correlation in the observation process. The  
edge detection processes available in computer vision have 
been refined over many years but the process is intrinsically 
noisy. A prevalent view is that more effective edge location 
will require algorithms that take into account more explic- 
itly the coherence of the curve. The models of the previous 
sections have been constructed with the idea of being able 
to  use the spatial correlation to improve the contour de- 
tection and, of course, are designed to  treat the more gen- 
eral problems associated with tracking moving contours. 
To complete our specification of the models, however, i t  is 
necessary to give equations for the measurements. These 
must reflect the inaccuracy of the detection process and 
any spatial or temporal coherence in the errors made by 
the contour detection process. 

The abstract linear model that underlies the Kalman- 
Bucy filter, postulates the specification of a model for the 
observation process as well as a linear differentid equa- 
tion model for the signal itself. In one popular notational 
scheme the observations are written with an over dot so 
that the model appears as 

i ( t )  = A z ( t )  + Bw(t) 

$ ( t )  = Cz(t) + Dri(t) 
with the understanding that Y is a, possibly vector-valued, 
Wiener process which we take to  be independent of w. 

Having discussed a set of choices for the differential equa- 
tion appropriate for generating stochastic process in the 
space of contours, i t  remains to be discussed the choice of 
C and D. When the cardinality of the observation set is 
infinite, i.e. when y ( t ,  .) belongs to  an infinite dimensional 
space, to  know y one requires an infinite number of mea- 
surements. If z ( t ,  .) is cont.inuous with respect to its second 
argument and if the observations are too numerous, in a 
sense that we will illustrate shortly, the estimation prob- 
lem may be meaningless because the observations deter- 
mine z(i ,  s) with vanishing mean-square-error. A similar 
problem arises when discussing observation processes that 



are continuous in time. We simply adapt the standard 
treatment of that situation to the spatial domain. 

Let C i ( t )  be a set of unit strength white noise processes. 
Consider a countable set of observations uniformly dis- 
tributed in space and separated by A units. 

y i ( t )  = z ( t ,  ZA) + & ( t )  ; i = 0, f l ,  f 2 , .  . . 

If we now make observations that are separated in space 
by A/2 but with additive noise having twice the variance, 
i.e. if we switch to 

yi(t) = z ( t ,  iA/2)  + 2 C ; ( t )  ; i = 0, fl, f 2 , .  . . 

we would determine a constant z ( t ,  .) with the same error 
variance. Repeating this process of reducing the distance 
between measurements by one-half and doubling the vari- 
ance of the additive noise, we approach a limit which we 
write as 

Y ( t ,  3) = z ( t ,  9) + . S ( t ,  s) 

This corresponds to very dense spatial sampling with large, 
independent noise variances. The effective noise variance 
associated with such a model can be associated with the ra- 
tio of the strength of the noise variance divided by A, the 
distance between the initial observations. By letting the 
variance of the noise go to infinity as the spacing goes to 
zero, we can obtain a meaningful limiting form. A class of 
observation models that are spatially invariant, and there- 
fore more tractable, are 

00 

Y(t, 3) = s_m_ CO, s-9)+, a )  drlS L d ( t ,  s - r l ) W ,  9 )  d9 

These incorporate some spatial smearing of the value of 

If the process to be estimated is vector valued, we can 
take the observation process to be a two component vector 
of the form 

z ( t ,  d .  

It  is also useful to consider models of the above type in 
a more general setting involving an unstructured, finite di- 
mensional part that  is coupled to the infinite dimensional 
part. Such supplements can be used, for example, to model 
the classicd dynamics of a rigid body whose motion deter- 
mines aspects of the moving contour. 

6. Recursive Estimation 

Given a Gauss-Markov model for a stochastic process and 
a linear observation model of the type discussed above, the 
Kalman-Bucy filter generates the conditional mean of the 
state via an equation of the form 

d 
--2.(t) = A2(t)  + CCT(y ( t )  - C?(t ) )  
dt  

where C is the error covariance. In the spatially homoge- 
neous case this takes the more concrete form 

d 
dt  - i ( t , s )  = LP(t , s )  + f ( s  - rl ) (y( t ,  rl) - C i ( t ,  .))drl 

The problem of finding the optimal filter is the problem of 
finding f. The remainder of this section and all of the next 
is devoted to showing how to do this. 

There is a nonlinear differential equation of the Riccati 
type that C satisfies. In all but. the simplest finite dimen- 
sional problems, C is usually found numerically. The most 
tractable situations correspond to solving for its steady 
state value, in which case one can also use Wiener’s spec- 
tral factorization method. In the spatially homogeneous 
situation the error variance is characterized by a difference 
kernel. We will show how the Fourier transform with re- 
spect to space can be used to “diagonalize” the process of 
finding a solution, thereby giving us an expression for the 
Fourier transform of f. The spatially homogeneous case 
is of interest in its own right and also gives insight about 
more general situations. 

Consider a scalar, spatially invariant model of the form 

i ( t ,  S) = Lz( t ,  3) + b(3  - q ) ~ ( t ,  q)dq  L 
Y(t, s) = z ( t ,  3) + C(t ,  3) 

To find the optimal filter we must solve a Riccati equation 
in the error variance. Denoting this quantity by U ,  the 
equation is 

q t ,  7 ,  s) = 2La(t, 7.9) + R(t ,  r , 3 )  - 2 ( t ,  f ,  8 )  

where R is a double integral formed from b.  If the large t 
limit of the solution exists then it satisfies 

a Z ( s ,  r )  - 2 h ( s ,  U )  - R(s,  r )  = 0 

In terms of the solution of error variance, the conditional 
mean is generated by 

dZ(t ,  s ) / d t  = Li?(t, 3) + ~ ( t ,  3, r ) ( y ( t ,  S) - Z ( t ,  s)) 

We require a few standard formulae from estimation the- 
ory. A standard problem in Wiener theory involves sepa- 
rating a signal having power spectrum &,(p), from ad- 
ditive noise having power spectrum $nn(p). In terms of 
differential equations, the problems can be posed using 

k ( t )  = - u z ( ~ )  + b&(t) 

y(2) = cz( t )  + dir ( t )  

In this case the power spectrum of the y-process is 

The power spectrum of the noise is 

dnn(P) = dZ 

If we define yl = y / d  then the estimation problem takes 
on the standard form. The corresponding Riccati equation 
is 

U = -2aa(t) + bz - U’< 
d2 

This equation has an equilibrium solution 
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The best filter, expressed in terms of 11, is first order 
and takes the form 

with -a - acid  being given by 

a-&=-.d+.d\l,+(E$!)2 d2 C C  

Expressing matters in terms of the original notation, i.e. 
in terms of y, we get 

d zii”(t) = -ak(t)  + P ( i ( t )  - ck(t)) 

7. Fourier Diagonalization 

We now turn to  the question of finding the optimal steady 
state filter in the spatially homogeneous situation. By 
working with the Fourier transformed version of the evolu- 
tion equation, we reduce the Riccati equation to a family 
of scalar equations parameterized by the spatial Fourier 
transform variable k. If we limit ourselves to  reasonably 
simple time-evolution equations then the steady state val- 
ues of the Riccati equation can be determined and the 
choice of branches for the various algebraic functions can 
be described explicitly. 

Example 6: In order to  illustrate these ideas we pos- 
tulate a model that allows us to  investigate how spatial 
correlation can be best used in estimating the function. 
Consider 

i ( t ,  s) = -az(t, s) + L(t, s) 

i ( t ,  s) = z ( t ,  3) + d( t ,  s) 
with & and d being white in time and with spatial power 
spectra of 1/(1 + k’) and 1/(,u2 + k’), respectively. 

In a typical application, the spatial scale of the noise 
would be much shorter than the spatial scale of the contour 
and so k would be significantly larger than one. 

The optimal filter is given by 

With P being - d n b ( s  - r) plus the inverse Fourier 
transform of the square integrable function 

This function takes on the value - d m  + d w  
at k = 0 and the value 0 at k = 00. Approximating this 
by a rational function of the form 

-@T7+@Ti 
A ( k )  = 1 + a:k2 

we see that 

Pi(s - n) c - & T i t 5 ( s  - r)- 

will be an approximation to  the kernel of the optimal filter. 
Written out in full, the approximate filter is 

$ ? ( t , s )  = (-a - r )e( t , s )+  

(Y(t, - z(t ,  .)I d. + Y Y ( 4  3) 
J-, m re-alla-rl 

with 
7 = -JS+ &G-i 

More generally, in the case where a is a constant, one 
obtains 

~ ( k )  = -a J1+ (k)’ aQnn 

which, when reexpressed as 

with f a constant and / 3 l ( k )  an L2(-00,00) function, al- 
lows one to  find the optimal kernel. 

If a is a constant coefficient differential operator this last 
formula still defines the optimal kernel provided we replace 
a’ by 6(k ) i i ( -k ) ,  with ii being the Fourier transform of the 
operator. 
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