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Abstract12 
 

In this paper we study the problem of shape analysis 
and its application in locating facial feature points on 
frontal faces. We propose a Bayesian inference solution 
based on tangent shape approximation called Bayesian 
Tangent Shape Model (BTSM). Similarity transform 
coefficients and the shape parameters in BTSM are 
determined through MAP estimation. Tangent shape 
vector is treated as the hidden state of the model, and 
accordingly, an EM based searching algorithm is 
proposed to implement the MAP procedure.  The major 
results of our algorithm are: 1) tangent shape is updated 
by a weighted average of two shape vectors, the 
projection of the observed shape onto tangent space, and 
the reconstruction of shape parameters. 2) Shape 
parameters are regularized by multiplying a ratio of the 
noise variations, which is a continuous function instead of 
a truncated function. We discussed the advantages 
conveyed by these results, and demonstrate the accuracy 
and the stability of the algorithm by extensive experiments. 
 
1. Introduction 
 

The geometrical description of an object can be 
decomposed into two parts: the geometrical transform and 
the shape. A common vision task is to recover both pose 
parameters and low-dimensional representations of the 
underlying shape from observed images. This procedure 
is usually referred as “shape analysis” or “shape 
registration”.   

Shape analysis has been advanced in both the literature 
of statistics and vision. The statistical theory of general 
shape space began with the work of Kendall [6] in 1977. 
Kendall described shape distribution in a Riemann 
manifold which is highly curved and nonlinear. Statistical 
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techniques were first introduced to analyze the 
probabilistic distribution of shape in this manifold. 
Subsequent developments [7][5][2] have led to several 
practical statistical approaches to analyzing objects using 
probability distributions of shape and likelihood based 
inference. A comprehensive survey can be found in Small 
[5]. General shape space has been proved to be highly 
nonlinear. However, as for a set of concentrated data, 
tangent space provides a good linear approximation to 
general shape space. More importantly, modeling shape in 
tangent space can convert statistical shape analysis to 
standard multivariate analysis [7].  

In image analysis literatures, practical parametric 
deformable models [3][10][11] have been developed to 
deal with the problems like segmentation or feature points 
localization. These models are generally capable of 
incorporating prior knowledge with observations directly 
derived from image data. In particular, Active Shape 
Model [3] proposed by Cootes et.al. in 1992 attracts a 
wide range of attention. ASM consists of a point 
distribution model capturing shape variations of valid object 
instances, and a set of grey gradient distribution models, 
which describe local texture of each landmark point. Cootes 
developed an iterative searching algorithm to actively update 
the model parameters according to the observed image. The 
major advantage of ASM is that the model can only 
deform in the ways leant from the training set. That is, it 
can accommodate considerable variability and it is still 
specific to the class of object it intends to represent. 
Specifically, in ASM the principle component analysis 
(PCA) technique is used to model both 2D shape 
variations and local grey level structures.  

In this paper, we address the problem of shape analysis 
from two aspects. First, shape analysis problem is 
formulated in Bayesian framework. Specifically, we 
describe the prior model of tangent shape vectors, the 
likelihood model and the posterior of model parameters. 
Second, an EM based searching algorithm is given to 
estimate tangent shape and other model parameters. The 



 

 

derived updating rules highlight the advantages of BTSM 
shape registration 

The rest of the paper is organized as follows: we begin 
with the description of tangent space approximation and 
the probabilistic formulation of shape registration. We 
describe the parameter estimation algorithm and compare 
the updating rules of ASM searching and BTSM 
searching in Section 3. Section 4 provides experimental 
results. We discuss some related problems and draw the 
conclusions and in Section 5 and 6. 

  
2. A Bayesian Formulation to Shape 
Registration  

 
The probabilistic formulation of shape registration 

problem contains two models: one denotes the prior shape 
distribution in tangent shape space and the other is a 
likelihood model in image shape space. Based on these 
two models we derive the posterior distribution of model 
parameters. The MAP estimation of the parameters can be 
obtained using the EM algorithm. 
 
2.1 Tangent Space Approximation 

 
Assuming that a planar shape is described by N 

landmark points in the image, we can represent it by a 2N-

dimensional vector is . The difference between two planar 

shapes is usually measured by their Procrustes distance 
[12]. Furthermore, given a set of training shape vectors 

1{ }L
i is = , the most popular way to align them into a 

common co-ordinate frame is Generalized Procrustes 
Analysis (GPA) [1]. The procedure essentially equals to 
minimize a quadratic loss function defined by 

2( ) || ( ) ||i i
all i

L T sµ µ= −∑ , where ( )i iT s is a 2D similarity 

transform of is . See [12] for the details of GPA.  

The tangent space is a linear approximation of the 
general shape space in the vicinity of the mean shape 
vector. More specifically, the tangent space µ!  is 

defined as the space normal to ( )T µ and passing 

through µ . The Euclidean distance in the tangent space is 

a good approximation to the Procrustes distance, if most 
of shape instances are close. is  can be transformed 

onto µ! by aligning is with µ  as 1{ : ( )}L
i i i i ix x T sµ =∈ =! . 

ix  is often referred as “tangent shape vector” and 

represented as a 2N-dimensional vector. The residuals are 
computed as 1{ }L

i i it x µ == − in tangent space instead of 

image space, to remove the difference introduced by 
similarity transform iT .  

Note that the dimension of µ! is 2 4N − , where the 

degenerated dimensionality is corresponding to the degree 

of freedom of similarity transformation in a 2d Euclidean 
space. Furthermore, since any transformed shape vector 
from µ can be represented by a linear combination of 

* *{ , , , }e e µ µ 1, the complement space of µ!  is spanned 

by * *{ , , , }e e µ µ . Therefore, the covariance matrix of 

tangent shape,  

( )
1

1
( )( )

1

L
T

i i
i

Var X x x
L

µ µ
=

= − −
− ∑               (1) 

will has at least four zero eigenvalues with corresponding 
eigenvectors * *{ , , , }e e µ µ . In other words, the tangent 

shape variances in this complement space must be zero. 
 
2.2. Prior Tangent Shape Model 

 
We apply a probabilistic extension of traditional PCA 

to model tangent shape variation, which is similar to 
PPCA proposed by Tipping and Bishop [4]. The model 
can be written as  

( )
(2 4 )0
rT

N r r

I
x bµ ε

− − ×

 
Φ − = + 

 
          (2)  

a) : (2 4) 2T N NΦ − × is the tangent projection matrix 

whose row vectors are the eigenvectors of ( )XVar . 

: 2r N rΦ ×  consists the first r columns of Φ . 

 b) b, the shape parameter, is a r-dimensional vector 
distributed as multivariate Gaussian (0, )N Λ , 

where 1( ,..., )rdiag λ λΛ = . iλ is the ith eigenvalue 

and  r is the number of modes to retain in PCA.  
c) ε  denotes an isotropic noise in the tangent space. It 

is a 2N-4-dimensional random vector which is 
independent with b and distributes as 

2 2( ) ~ exp{ || || (2 )}p ε ε σ−   (
2 4

2

1

1

2 4

N

i
i rN

σ λ
−

= +

=
− ∑ ). 

 
After some simple algebra the model (2) can be 

rewritten as: 

rx bµ ε= + Φ + Φ                          (3) 

By adding an isotropic Gaussian noise term we associate 
PCA with a probabilistic explanation, thereby allowing to 
compute the posterior of model parameters.  

Each item of b reflects a specific variation along the 
corresponding principle component (PC) axis. Instead of 
using all modes and 2N-4-dimensional shape parameters, 
we only select a subset of them to reconstruct the shape 
with shape variations we concern about. The fewer the 
modes are used, the more compact the model will be, and 
the smoother the reconstructed shape tends to be. On the 
other hand, more modes are involved in describing shape, 
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Figure 1: Shapes reconstructed by the first three PCs: in each 
row the middle one is the mean shape. Else are obtained by 

varying corresponding PC from 3 iλ−  to 3 iλ . 

 
more flexible the model is. Shape variation along the first 
three PCs is visualized in Figure 1. The interpretation of 
PCs is not straight forward. A possible interpretation is 
that the first PC describes variations in vertical direction, 
the second PC may explain the variation on mouth, and 
the third PC may account for out-of-plane rotation.  

The tangent space noise ε can also be viewed as a 
compensation of missed shape variation during PCA 
projection. When the number of modes is larger, more 
variation is retained in PCA model and the noise variance 

2σ is smaller. 
 
2.3. Adaptive Likelihood Model 
 

To incorporate image evidence into the Bayesian 
framework one requires a likelihood ( | , )P I x θ which is 

usually a probability distribution of the grey levels 
conditional on the underlying shape. However, directly 
parameterizing ( | , )P I x θ may not be a good idea, because 

I and X  are not in a same physical coordinate system, 
and the parametric form of ( | , )P I x θ  is usually complex 

and nonlinear. In BTSM, we redefine the likelihood as 
( | , )P y x θ . Assume oldy is the shape estimated in the last 

iteration, by updating each landmarks of oldy  with its 

local texture we obtain y, which is called “observed shape 
vector”. The distance between observed shape y and the 
true shape can also be model as an adaptive Gaussian as 
(4). By adaptive we mean the variance of the model is 
determined by the distance between y and oldy in each 

iteration step.   
y sU x cθ η= + +                          (4) 

a) y: observed shape vector, 
b) s: scale parameter; 

cos sin

sin cosNU Iθ
θ θ
θ θ
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: rotation matrix; 
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: translation parameter. 
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b: shape parameters
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Figure 2. A graphical illustration of Bayesian tangent shape 
model: circles stand for variables, dashed circles denote noise 
terms and rectangles denote model parameters. 

 
 (⊗ denotes Kronecker product2.) 

c) η : isotropic observation noise in the image space. 
2

2~ (0, )NN Iη ρ . ρ is set by 2 2|| ||oldc y yρ = − , 

where c is a manually chosen constant.  
 

2.4. Posterior  
 

Now we can compute the posterior of model 
parameters ( , , , )b s c θ  given the observed shape vector y . 

By applying Bayes rule we have derived the equation (5). 
Directly optimizing the posterior is difficult. Alternatively, 
if the tangent shape x  is known, the posterior of model 
parameters conditional on both x and y are much simpler. 

This leads us to implement the EM based parameters 
estimation algorithm. 
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where the const do not vary with (b,c,s,θ) and r−Φ is the 

sub-matrix of Φ by removing the first r columns. The 
derivation is left to the appendix A. 
 
2.5. BTSM as A Hidden Variable Model  
 

A graphical illustration of BTSM is shown in Figure 2. 
The tangent shape x is the hidden variable and y is 

observation. The prior shape model and the likelihood 
model are connected through tangent shape.  
    
3. Parameter Estimation in BTSM Searching 

 
In this section, we describe an EM algorithm for 

estimation the MAP parameters of BTSM model. Before 
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immersing ourselves in the details of derivation, however, 
let us first present the results of EM parameter estimation 
and compare them with those of ASM. 
 
3.1. Comparison between BTSM and ASM 
 

The iterative updating procedure of ASM is shown in 
Figure 3. In ASM, tangent shape x is directly constructed 
from shape parameter b , where b is a truncation of 

1( )T yθ
− ’s coordinates within the range of ( 3 ( ),diag− Λ  

3 ( ))diag Λ . In BTSM we derive the updating equations 

of x and b shown in Figure 4. (See Section 3.2 and 3.3 
for the details of derivation.) The major difference of the 
two algorithms comes from their updating rules of the 
tangent shape x and shape parameter b. 
a) In BTSM, the tangent shape x  is updated by a 

weighted average of the shape reconstructed from 
the shape parameter b  and the tangent projection of 
the observed shape y . In this way, the estimation of 

x  encodes both prior shape knowledge and image 
evidence. It is interesting to note that the weight p is 

automatically chosen by computing the ratio 
between the variance σ of prior noise in tangent 
space and the variance ρ of the observation noise. 
They are aligned to the same scale by multiplying 
the scale factor s of similarity transform. When ρ  is 
large, which implies the image is noisy or the 
observation is not stable, shape parameters are more 
important for updating x . On the other hand, 
when ρ is small, the shape estimation may be 
converged already, we need not to regularize it too 
strictly. 

b) Regularization on shape parameters is required to 
generate valid shape instances. Using a continuous 
regularization function often is preferred  to using a 
truncation function because numerically,  
discontinuous regularization on b may result in a 
unstable estimation. That is, the result may shift 
back and forth instead of converging to a point.  In 
BTSM, the shape parameter is constrained by 
multiplying a contrained factor 2 1( )R Iσ −= Λ Λ + . 

Remember that Λ  represents prior shape variance 
matrix and 2σ  represents the resudial variance. (See 
Section 2.2 for details). Specifially, along the ith  
principle axis, ib  is updated by 

2/( )( )T
i i i ib xλ λ σ ⋅= + Φ , where i⋅Φ is the ith column 

of Φ . 
In short BTSM algorithm enjoys its merits in two 

aspects: weighted representation of tangent shape and 
continuous regularization of shape parameters. These 
results are derived from optimizing an explicit and 
continuous loss function using EM. 
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Figure 3. Updating rules of Active Shape Model 
 

1(1 ) ( )T
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2 2 2 2( )p sσ σ ρ−= +
Recover  tangent   shape  using   the
information of both shape parameters
and  observed  shape;  weights  are
determined by noise ratio.
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A continuous regularization of
shape parameters
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Figure 4. BTSM updating rules: Tangent shape x is estimated by 
a weighted sum of the shape reconstructed from shape 
parameters b and the transform of the observed shape y to the 
tangent space. 

 
 

3.2. Expectation Step 
 

Given a set of complete data { , }x y , the complete 

posterior of model parameters is simply a product of the 
following two distributions,  

 
1 2 2( | ) exp{ 1/ 2[ || || ]}T

r
p b x b b x bσ µ− −∝ − Λ + − − Φ     (6) 

2 2( | , ) exp{ 1/ 2[ || || ]}p x y y Xγ ρ γ−∝ − −             (7) 

 
where * *( , , , )X x x e e=  and 1 2( cos , sin , , )Ts s c cγ θ θ= ⋅ ⋅ . 

Taking the logarithm and the conditional expectation, we 
obtain: 

( | )oldQ γ γ                                                                         (8) 

log ( , , , | , ) log ( | ) log ( | , )p b c s x y p b x p x yθ γ= = +  

1 2 2 2 21
|| || || ||

2
T

rb b x b y X

const

σ µ ρ γ− − − = − Λ + − − Φ + − 

+    



 

 

Computing the Q-function of (8) essentially equals to 
calculate two statistics, the conditional expectations of x 
and 2|| ||x with respect to ),,,|( θscyxp  

 
1(1 ) ( )T

r
x p b p T yθµ −= + − Φ + ΦΦ               (9) 

2 2 2|| || || || (2 4)x x N δ= + −                  (10) 

 
where )( 2222 ρσσ −+= sp and 12222 )( −−− += ρσδ s . The 

detailed derivation is left to the appendix B. 
  
3.3. Maximization Step 
 

The M step maximizes the Q-function over model 
parameters. Since the terms depending on b  and γ  are 
decoupled in (8), it is a much simpler expression to 
maximize than the logarithm of the posterior in (5). We 
use “ ~ ” to denote the updated parameters. By computing 
the derivative of the Q-function we have,  
 

2 1 2 1( ) ( ) ( )T T
r rb x xσ µ σ− −= Λ Λ + Φ 〈 〉 − = Λ Λ + Φ 〈 〉"   (11) 

*

1 22 2
1 1

1 1
( , , , )

|| || || ||

T T N N

i i
i i

y x y x
y y

N Nx x
γ

= =

〈 〉 〈 〉=
〈 〉 〈 〉 ∑ ∑"           (12) 

 
Accordingly, the updating equations of each pose 
parameter are, 
 

2 2
1 2s γ γ= +" "" , 1 2( )atanθ γ γ=" " " , and 3 4( , )Tc γ γ="     (13) 

 
3.4. Inhomogeneous Observation Noise 
 

In Section 2.3 we assume the observation noise is 
distributed as an isotropic Gaussian. This assumption may 
not always hold, because the noise of each feature 
landmark may be different due to partial occlusion, noisy 
background or other effects in the image. We can choose 
a diagonal variance matrix instead for the observation 
noise η as,  

2 2
1 2~ (0, ), ( ,..., )NN diag Iη ρ ρΣ Σ = ⊗         (14)  

where 2 2 2
2 1 2 1 2 2(( ) ( ) )old old

i i i i ic y y y yρ − −= − + − EM algorithm 

can also be applied to this case with slight modification. 

Instead of computing x  and 2x , the statistics we 

need to compute in the E-Step is x  and 1Tx x−Σ . The 

results of EM parameters estimation are given in the 
appendix C. 
 
4. Experimental Results 

 
In this section we compare BTSM with ASM and 

demonstrate BTSM searching improves both accuracy 

Figure 5. An example of BTSM searching: (Left) Initial shape 
mask, we perturb its orientation and scale parameter to make the 
task more difficult. (Middle) Searching result after 10 iterations 
at the top layer. (Right) Final result by searching all three layers. 
 
 
and stability. 

 
4.1. BTSM Searching 

 
Similar to ASM the BTSM searching algorithm is 

decomposed into two major steps: local texture matching 
and EM inference for shape and transformation 
parameters. As usual, the searching is run in a multi- 
resolution framework. A three level Gaussian image 
pyramid is formed on a testing image by repeated sub-
sampling. Model instance starts at the 4/1 resolution of the 
image. Different dimensions r of shape parameter vector 
are used for different pyramid layers. We choose 5r = for 
the first layer, 20r = for the second layer, and 40r =  for 
the third layer. Figure 5 shows a typical example of 
BTSM searching. More searching results of ASM and 
BTSM are shown in Figure 10. 
 
4.2. Accuracy  
 

To compare the accuracy of the two algorithms 
quantitatively we divide our database into two parts, one 
used for training and the other used for testing. Our database 
contains 870 grey-scale images in the FERET database [8], 
the AR database [9] and other collections. Each image 
contains a face with a size ranging from 

150150 × to 220220 × , and with different facial expressions 
and different illumination conditions. A total of 83 face 
landmarks are labeled manually on each image of the 
training set. 

We train both the ASM model and our model on 599 
faces, and use the else 271 images for testing. For each 
testing image, an initial guess of face location are provided 
by a Boosting based face detector [13] and then, the mean 
face shape mask is transformed and putted on the detected 
region. We perturb the shape mask by randomly rotating 
(from 0° to 45°) and scaling (from 1 to 1.2). The 
perturbed shape is used as initial values and is fed into the 
two algorithms. The searching processes would not stop 
unless the results are converged or the number of 
iterations is over than 100. 



 

 

 
Figure 6: Comparison of the accuracy of BTSM and ASM: x-
axis demotes the index of test images and y-axis denotes the 
difference of the estimation errors ( ) jdist BTSM  

( ) jdist ASM− between ASM and BTSM. Points below 

0y = (blue points) denote images with better performance by 

BTSM and red points are opposite. For a total of 271 testing 
images, 248 of them are marked blue and 23 of them are marked 
red, which means on 91.51% testing images the searching 
results of BTSM are better than that of ASM. 
 
 

 
 
Figure 7. An ambiguous searching result: an unstable algorithm 
does not guarantee that the model converges to similar results 
while searching in similar images. The figure shows the 
searching results on three contiguous frames with a slightly 
change in view. Notice the inconsistent searching results on the 
nose and the chin of the boy.   
 
 

To compare the accuracy of the two algorithms, we 
compute the estimation error by a difference measure 
defined by the sum of the distance between searched 
landmark and annotated landmark.  

2 2

1

( ) ( ) ( )
N

A A
j i i i i

i

dist A x x y y
=

= − + −∑  

( ) jdist A  denotes estimation error of algorithm A on the 

image j , where ( , )i ix y is annotated coordinates of the 

ith landmark and ( , )A A

i i
x y is the searched coordinates of 

the ith landmark by algorithm A. We have plotted j  

~ −jBTSMdist )( jASMdist )(  in Figure 6. It is shown 

that on 248 of 271 (91.51%) images, the search results of 
BTSM are better than that of ASM. 

Figure 8. Comparison variation of estimation results in one 
individual dimension of shape parameter b: (Top) Five 
intermediate results of ASM searching and BTSM searching. 
(Bottom) The evolution of the shape parameter b[2] with the 
increasing of iterations number. Red points denote b[2] 
produced by the truncation procedure of ASM. Blue points are 
b[2] estimated by BTSM algorithm. 
 

Figure 9. Comparison of variations of the alignment errors on 
eye points: (Top) Four intermediate results of ASM searching 
and BTSM searching. (Bottom) the evolution of eye errores of 
ASM and BTSM. 
 
 
4.3. Stability  
 

Another character of shape analysis algorithms we 
concern is numerical stability of estimation results. For a 
robust searching algorithm we expect that variation of 
estimation results decreases with the increasing of 
iteration number i . An unstable algorithm will produce 
ambiguous results. See Figure 7 for an example. 

We explore the stability of ASM and our BTSM 
algorithm in two ways. The first is the variation of 
estimation results in one individual dimension of shape 
parameter b , and the next is the variation of some facial 
component. Figure 8 compares the variations in the 
estimation of the second shape parameter [2]b . Figure 9 

compares the variations of the estimation errors on eyes. 



 

 

 
Figure 10. Comparison of BTSM and ASM searching results: (First and Third Rows) results of ASM searching;  

(Second and Fourth Rows) results of BTSM searching 
 

We have plotted the value of [2]b and ( )dist eye  for every 

15 steps of iterations. From the figures we can observe 
that the variations of the estimation results by BTSM 
algorithm are much smaller. 
 
5. Discussion 
 

( );p x b ( )| ;p y x θx

 
Figure 11. A generalization of BTSM model 

 
BTSM can be extended to a more general form 

illustrated by the undirected graph in Figure 11. The prior 
model describes shape variation, the observation model 
incorporates image evidence and they are connected 
through the tangent shape. While the tangent shape is 
estimated, due to its local Markov property, the MAP 
estimation of pose parameters depends only on the right 
side of the graph, and it is degenerated to standard 
Procrustes Analysis with the assumption that the 
observation noise is an isotropic Gaussian. Note that the 
equation (25) equals to estimate pose parameters using 
weighted Procrustes analysis. Similarly the MAP 
estimation of shape parameters is completely determined 
by the left part of the graph given the tangent shape. 
Figure 11 provides a general framework for shape 

analysis problem. In contrast to directly optimizing a huge, 
heuristically defined loss function, the statistical treatment 
in BTSM provides the flexibility to deal with different 
problems in different sub-models. For example, if we are 
interested in modeling multimodal shape variations like 
exaggerated face expression, we may parameterize the left 
part as a Gaussian mixtures; if we are interested in 
handling partial occlusion or image noise, we may 
implement the right part using robust statistics methods. 
Approximate inference algorithm may need to be adopted 
in both cases. 

BTSM shape registration runs very fast since we 
derive analytical solution in EM parameter estimation. In 
E-step, computing the expectation of the two statistics 
(please refer to (9) and (10)) includes only three matrix 
multiplication. In the M-step, parameters updating rules 
(equations (11) and (12)) involves only one matrix 
multiplication and some inner products of vectors. In our 
experiments, it takes about 200 ms in general for BTSM 
to converge on a 300x300 face on a Pentium3-800Hz 
machine; and for smaller faces it takes less time (from 
60ms to 200ms, depends on the size of the face). 

 
6. Conclusion  
    

This paper presents a Bayesian approach for shape 
registration problem. By projecting shape to tangent shape, 
we have built the models describing the prior distribution 
of face shapes and their likelihood. We have developed 
the BTSM algorithm to uncover the shape parameters and 
transformation parameters of an arbitrary figure. We have 



 

 

compared our algorithm with the classic ASM algorithm 
and demonstrated its accuracy and efficiency. 
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Appendix 
 
A. Posterior Distribution of Parameters 
 

By combining (3) with (4) and multiplying T
rΦ on both 

sides of the equation we have, 
1 1 1 1 1( ) ( )rT y b s U s Uθ θ θµ ε η ξ η− − − − −= + Φ + Φ + #  

( )T T
rb AAµ ε ξ ξ= + Φ + Φ + Φ +                       

1
(2 4 )( ) ( ,0 )( )T T

r r r N rT y b Iθ ε ξ−
× − −⇒ Φ − = + Φ                 (15) 

where * *( , , , )A e e µ µ= . Since ε and ξ are independent, 

the distributions of ξε TΦ+ and TA ξ can be computed as,  

( ) 2 2 2
2 4~ (0, ( ) )T

NN s Iε ξ σ ρ−
−+ Φ +   

2 2
4~ (0, )TA N s Iξ ρ−                        (16) 

Combining (15) and (16) we obtain the likelihood of 
model parameters. The posterior of model parameters is 
computed by applying the Bayes rule as (5). 

B. Detailed Derivation of Expectation Step 
 

The conditional probability of the tangent shape vector 
x given the observed shape y and model parameters is  

),,,|( θscyxp                                                  (17) 

2 2

2 2 1 2

1
exp{ [ || ||

2
|| ( ) || ]} ( ) 0

0,

r

T

x b

s x T y when A x

otherwise
θ

σ µ

ρ µ

−

− −

 ∝ − − − Φ=  + − − =


The tangent shape x can be written as  
xxAAxAAx TTTTT ΦΦ+=ΦΦ+=ΦΦ+= µµ)(    (18) 

where * *( , , , )A e e µ µ= . Since x is an isotropic Gaussian, 

the elements of x on the two orthogonal subspaces are 
independent, i.e. T TA x x⊥ Φ . So 
              ( | ( ) 0) ( )T T Tp x A x p xµΦ − = = Φ  

        2
1 2 2 4((1 ) , )T T

NN p p Iµ µ δ −= − Φ + Φ              (19) 

where 1 2 2 2 2

1 2, ( ) , ( )rb T y p sθµ µ µ σ σ ρ− −= + Φ = = +  and  
2 2 2 2 1( )sδ σ ρ− − −= + . Therefore the conditional 

expectation of x is                    

1 2

1

( )

(1 )

(1 ) ( )

T T

T T T

T
r

x AA E x

p p AA

p b p T yθ

µ

µ µ µ
µ −

= + Φ Φ

= − ΦΦ + ΦΦ +

= + − Φ + ΦΦ

         (20) 

and the conditional expectation of the norm of x is 
22 2 2 2|| || || || (2 4)T Tx A E x x Nµ δ= + Φ = + −     (21) 

 
C. EM for Inhomogeneous Observation Noise  
 

We ignore the details of the derivation and just present 
the results of E-step and M-Step. Let us denote 

 2 2 1 1( )sσ − − −∆ + Σ#   
2 2 1 1( )P I sσ − −+ Σ#  

1/ 2 1[ ( ) ( ) ( )]rP b I P T yθα µ− −∆ + Φ + −#  

 Let 1/ 2( )B Orth A∆# , whose column vectors form an 

orthogonal basis of the column space of 1/ 2 A∆ .  
 
The E-step: 

1/ 2 1/ 2[ ( )]Tx BBα µ α−= ∆ + ∆ −                     (22) 

1 1 1 1( ) ( )
TT Tx x x x tr tr BB− − − −Σ = Σ + ∆Σ − ∆Σ       (23) 

 
The M-step: 

2 1 2 1( ) ( ) ( )T T
r rb x xσ µ σ− −= Λ Λ + Φ 〈 〉 − = Λ Λ + Φ 〈 〉"    (24) 

2 2
*1 1 1 2

1 1

1 1
2 2

1 1
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T T i i i i
i i

N NT T

i i
i i

y y
y x y x

x x x x

ρ ρ
γ

ρ ρ

− −
− −

= =
− −

− −

= =

 
 Σ Σ
 =
 Σ Σ
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∑ ∑
"   (25) 


