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ABSTRACT
We initiate the study of online pricing problems in mar-
kets with “buyback,” i.e., markets in which prior al-
location decisions can be revoked, but at a cost. In
our model, a seller receives requests online and chooses
which requests to accept, subject to constraints on the
subsets of requests which may be accepted simultane-
ously. A request, once accepted, can be canceled at a
cost which is a fixed fraction of the request value. This
scenario models a market for web advertising, in which
the buyback cost represents the cost of canceling an ex-
isting contract.

We analyze a simple constant-competitive algorithm
for a single-item auction in this model, and we prove
that its competitive ratio is optimal among determin-
istic algorithms. Moreover, we prove that an exten-
sion of this algorithm achieves the same competitive
ratio in any matroid domain, i.e., when the sets of re-
quests which may be simultaneously satisfied constitute
the independent sets of a matroid. This broad class of
domains includes, for example, advertising markets in
which each request is for a unit of supply coming from
a specified subset of the available impressions. We also
present algorithms and lower bounds for knapsack do-
mains, i.e., when advertisers request varying quantities
of a homogeneous but limited supply of impressions.

1. INTRODUCTION
The problem we study is motivated by the following

real scenario in the Display Advertising industry. The
large banner ads shown on a popular website such as
MSN are sold by negotiated contract up to a year in
advance. The impression inventory is diverse, the ad-
vertisers are looking to meet campaign limits in terms of
demographics targets (who an ad is shown to), tempo-
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ral targets (when an ad is shown), and location targets
(where an ad is shown). Any particular advertiser re-
quest may be able to be met in a variety of ways. The ad
seller has a complex online optimization task. As adver-
tiser requests arrive the ad seller must decide whether
the requests should be accepted or not. When formu-
lated most naturally as an online optimization problem,
two aspects make this a near impossible task to do with
any reasonable quality guarantee. It is a small market;
display advertisers on a major website number in the
thousands and big advertisers number in the tens. It
is an online market; inventory may be preallocated to
advertisers at a low value early. It may not ever be
learned that advertisers arriving later would have paid
a premium for the same inventory. Absent this knowl-
edge, there is little basis for accepting or declining ad or-
ders placed by advertisers. This reality of the industry is
mirrored by online algorithm theory which suggests that
online algorithms for limited supply allocation problems
suffer from the worst possible competitive ratios — lin-
ear in the number of requests.

This paper addresses both the theoretical problem in
online algorithms analysis for allocation problems and
the practical problem in settings such as Display Ad-
vertising, above, and gives algorithms with competitive
ratios that are a constant, parameterized by a coeffi-
cient representing a required level of commitment. No-
tice that the scenarios that bring bad competitive ratios
are ones where the algorithm commits to serve a request
with low value, say $1, and then an incompatible request
arrives with high value, say $1M. A committed algo-
rithm is stuck. Practically speaking, we cannot think
of one real scenario where it is impossible to bump out
the $1 request (perhaps at some cost) to take the $1M
request, unless the $1 request has already been served.1

Thus, we are motivated to explicitly model the revoca-
tion of a commitment into the model of online allocation
and design algorithms that make use of it. Our resulting
work gives a theory of online algorithms with buyback.

Of course this kind of contract revocation is not new
and in many real settings a possibility of revocation is

1The situations modeled in this paper are those in which
a seller makes a sequence of commitments to provide
service at some later time after the end of the request
sequence. All commitments are thus revocable in our
model.



explicitly written into agreed upon contracts. Notable
instances of this are the airline industry that routinely
over-sells economy seats when premium last minute book-
ings are made, bumps travelers on over-booked flights,
and cancels under-booked flights. Even in our moti-
vating example of Display Advertising, it is possible
that the actual impression inventory does not meet fore-
casted estimates. In this case the actual inventory may
be over-sold. There are clauses in the advertisers’ con-
tracts that specify that MSN will“make good”by substi-
tuting alternative, comparable inventory. Taking these
kinds of contracts as given, our paper studies the effect
of structural constraints, similar to those that arise in
the Display Advertising setting, on optimal online ad-
mission and revocation policies.

We consider the following model for studying algo-
rithms for online admission with costly revocation. An
admitted request of value v can be revoked at any time
at a cost proportional to v. Let f represent this buyback
factor. Then the cost of revocation of a v-valued request
is f · v. Our algorithm now, faced with a sequence of
requests arriving online, must make admission and re-
vocation decisions satisfying the conditions that (a) at
any time the set of admitted requests is feasible, (b) a
request may only be admitted at the time it first ar-
rives, and (c) a request may be revoked (a.k.a., bought-
back) at a penalty of the buyback factor at any time,
but once revoked it may not subsequently be readmit-
ted. After the last request arrives and is processed, the
set of admitted requests that have not been revoked are
served. The total payoff of the algorithm is the cumu-
lative value of these served requests less the cumulative
buyback cost, i.e., the cumulative value of the revoked
requests scaled by the buyback factor.

One type of structural constraint we may have in the
Display Advertising setting is a matching constraint.
Advertisers’ requests could potentially be satisfied from
different impression inventory. Supply constraints im-
ply a matching structure on the set of served requests.
We make the simplifying assumption that each request
is for a unit of supply which implies that the sets of com-
patible requests are the independent sets of a transversal
matroid. We give an optimal online algorithm for this
problem and more generally for any matroid set system.
We prove that our algorithm is (1 + 2f + 2

√
f(1 + f))-

competitive to the benchmark defined by the cumulative
value of the set of requests served by an optimal offline
algorithm; moreover, we prove that no online buyback
algorithm achieves a better worst-case competitive ra-
tio. Our algorithm’s competitive ratio approaches one
as as the buyback factor f goes to zero.

Another type of structural constraint that arises in
Display Advertising is a knapsack-type constraint. Here
advertisers’ ad campaigns may require different quanti-
ties of inventory. An advertiser may want their request
to be all fulfilled or all denied, as either they run their
full campaign or no campaign. We make the simplify-
ing assumption that there is a single commodity, e.g.,
one banner ad is being shown to web traffic that is not
demographically or temporally segregated. The quanti-

ties and values of the request form an online knapsack
problem. We give a deterministic online buyback algo-
rithm that achieves a bi-criteria approximation result.
With an assumption on the size of the largest demand
relative to the total supply, we can turn this bi-criteria
result into a full constant approximation (for constant
f) that is not much worse than the best possible by
any online algorithm with buyback. With no assump-
tion, standard randomization approaches for knapsack
can be used to convert our approximation algorithm to
one that that has a constant approximation factor (for
constant f) that is bounded away from one; however all
online algorithms, even randomized ones, have a com-
petitive ratio that is bounded away from one in this
case.

Related Work. Many authors have studied Internet ad-
vertising in the context of online algorithms or in the
context of knapsack problems. Most of this work deals
with sponsored search auctions whereas our work is mo-
tivated primarily by problems that arise in selling ban-
ner advertisements. There are clear relations between
the underlying algorithmic issues in both applications,
but also some interesting differences: in sponsored search,
the inventory (i.e., queries) arrives online, whereas in
banner advertising the demand (i.e., requests from ad-
vertisers) arrives online. Here, we briefly review some
of the most closely related work in this area. Aggar-
wal and Hartline [1] modeled advertising auctions as a
knapsack problem with strategic bidders, and designed
revenue-competitive offline auctions for this problem.
Knapsack problems have also been used to model the
bid optimization problem in sponsored search auctions
(with the knapsack’s capacity representing the adver-
tiser’s budget) in work by Borgs et al. [5] (which treats
the problem of slot selection) and by Rusmevichientong
and Williamson [18] (which treats keyword selection).
Chakrabarty et al. [7] modeled the bidding problem us-
ing online knapsack and gave an online algorithm whose
competitive ratio is logarithmic in the ratio of maximum
to minimum value density. The same problem was stud-
ied, under a random-ordering assumption, by Babaioff
et al. [3] in a paper on the “knapsack secretary problem”
discussed further below. Ad auctions with non-strategic
budget-constrained bidders have also been modeled as
an online b-matching problem, the so-called AdWords
problem. Randomized algorithms achieving the opti-
mal competitive ratio of e/(e− 1) for this problem were
given by Mehta et al. [15] and by Buchbinder et al. [6].

One approach that has been followed in the literature
in order to overcome the linear lower bound for (ran-
domized) online algorithms facing adversarial input is to
assume that the requests come in a random order. The
classical secretary problem [9] studies how to select on-
line an element with maximum value in a randomly or-
dered sequence. Dynkin [9] presented an e-competitive
algorithm for this problem. The extension to the case
that k elements should be selected was studied in [12];
the paper presents an algorithm with competitive ratio
tending to 1 as k grows to infinity. Matroid secretary



problems, i.e., those in which one would like to select
an independent set of a matroid online, are considered
in [3]. That paper presents an O(log(k))-competitive
algorithm for general matroids, where k is the rank of
the matroid, and some better algorithms for some spe-
cific matroids. Constant competitive algorithm for the
knapsack secretary problem are presented in [2].

All these papers assume that decisions are irrevoca-
ble yet the input comes in a random order. We, on the
other hand, allow the algorithm to revoke acceptance
decisions with some cost, and assume adversarial order.
This sometimes allows for better results, for example,
for a fixed buyback factor f we get a constant compet-
itive algorithm for matroids, while the algorithm of [3]
has only logarithmic competitive ratio.

We wish to emphasize another difference between the
two approaches (random order vs. buyback). Secretary
algorithms provide some guarantee on the expected pay-
off of the outcome, but have no guarantee on the quality
of the outcome on a specific permutation (the variance
might be high). For example, in the classical secre-
tary solution there is a constant probability of failing
to get any value. On the other hand, the buyback al-
gorithm for matroids is deterministic and has a perfor-
mance guarantee for every input sequence.

The problem of online knapsack (without removal)
was introduced and studied by [13, 14]. Our results for
the online buyback knapsack problem relate to papers
that study online knapsack problems with the possibility
of removing elements that were already accepted to the
knapsack. All prior work assumes that such removal has
no cost (f = 0 in our formulation). [10] presents tight
competitive algorithms for online unweighted knapsack.
Bi-criteria results for the case in which elements can
be fractionally accepted are presented in [16], while bi-
criteria results for the case of integral acceptance are
presented in [11].

The idea of a buyback is related to the idea of “oppor-
tunistic cancellations” which was presented in [4]. That
paper shows that if ones allow cancellation of some deals
with a fixed penalty this results in higher efficiency. The
paper makes some distributional assumptions, while we
work in the framework of worst case competitive anal-
ysis. [19] proposes a leveled commitment contracting
protocol that allows self-interested agents to efficiently
accommodate future events by having the possibility
of unilaterally decommitting from a contract by paying
some penalty.

Concurrent Work. Constantin et al. [8] have indepen-
dently and concurrently studied online buyback prob-
lems in a model quite similar to ours. To aid the reader
consulting both papers we point out the key differences
between the two papers. Both papers give buyback al-
gorithms for matroid set systems, the algorithms are es-
sentially the same. While we only consider the algorith-
mic problem, Constantin et al. focus on game theoretic
properties of their algorithm. We prove a lower bound
on any deterministic algorithm’s performance that ex-
actly matches the bound given by our algorithm, while

Constantin et al. only have an implicit definition of a
lower bound (as a solution to a set of equations). Fi-
nally, we extensively study the model of knapsack with
buyback, a problem that is not considered in [8].

Organization. The paper is organized as follows. In
Section 2 we start by a warmup example and study the
single item case. In Section 3 we give our formal general
model for considering constrained online optimization
with buyback. In Section 4 we give an optimal algorithm
for online buyback for matroid set systems. In Section 5
we consider knapsack set systems and give algorithms
that approximate the optimal buyback algorithm.

2. WARMUP: THE SINGLE ITEM CASE
Consider n requests from customers coming online in

an arbitrary order. There is a fixed buyback factor f >
0. Customer e has value ve if she receives the item, and
if we buy back the item from her later, we need to pay
her f · ve to compensate for revoking our commitment.

We next present a
(
1 + 2f + 2

√
f(1 + f)

)
-competitive

algorithm and a matching lower bound.

2.1 The Algorithm
For the single item case our algorithm is very sim-

ple. The algorithm assumes we are given a parameter
r > 1 whose value may depend on the buyback factor
f . We will later see that the optimal competitive ra-
tio is achieved by setting r = 1 + f +

√
f(1 + f). The

algorithm operates as follows.

• Accept the first request.

• Consider the rest of the requests in order of arrival.
If the value of the arriving request is more than r
times the value of currently accepted request, buy
back the item and accept the arriving request.

Observe that setting r = 1 + f in the above algorithm
corresponds to the very natural idea of accepting a new
bid whenever it is profitable to do so. However, when
r = 1 + f the algorithm has an unbounded competitive
ratio. This is easily seen, for example, by considering
a bid sequence defined recursively by v1 = 1, vi+1 =
(1 + f)vi + ε for some arbitrarily small ε > 0. For
every n > 0, the algorithm’s profit after n + 1 bids is
only 1+ εn, whereas the optimum profit is greater than
(1 + f)n.

Theorem 1. The single item buyback algorithm has

a competitive ratio of r(r−1)
r−1−f

. For a fixed buyback factor
f > 0, this function is minimized by setting r = 1 + f +√

f(1 + f), resulting in the competitive ratio 1 + 2f +

2
√

f(1 + f).

Proof. We first prove that the competitive ratio is
r(r−1)
r−1−f

. Let m be the request with the highest value,
that is OPT = vm. Let w be the final request selected.
We claim that vw ≥ vm/r. If w = m then this is trivially
true (as r > 1). If on the other hand w 6= m, then at
the time that m was considered and rejected, the item



was allocated to request u satisfying vm ≤ r · vu. As
the winner’s value monotonically increases, at the end
it must be the case that vm ≤ r · vw and the claim
follows.

We next bound the total buyback payment, B. Let
`(1), `(2), . . . , `(j) be the requests who are selected but
subsequently bought back, numbered in decreasing or-
der of arrival time. For notational convenience we will
also define `(0) = w. For i = 1, 2, . . . , j, the fact that
the algorithm chose to buy back the item from `(i) at
the arrival time of `(i−1) implies that v`(i−1) > r ·v`(i).

By induction on i we now obtain v`(i) < r−i · vw. Now,

B = f ·
j∑

i=1

v`(i) ≤ fvw ·
j∑

i=1

r−i < fvw · 1

r − 1
.

Thus, the algorithm’s profit vw −B satisfies

vw −B > vw

(
1− f

r − 1

)
≥ 1

r

(
1− f

r − 1

)
vm,

and the competitive ratio r(r−1)
r−1−f

follows by rearranging
terms. It is now an exercise in calculus to verify that the
optimal value of r and the resulting competitive ratio
are as stated in the theorem. (See Appendix A.)

2.2 A Lower Bound
In this section we prove that the competitive ratio 1+

2f + 2
√

f(1 + f) obtained by the algorithm in the pre-
ceding section is optimal for deterministic algorithms.

Theorem 2. For all β < 1+2f +2
√

f(1 + f), there
does not exist a β-competitive deterministic online buy-
back algorithm.

Proof. Let us call a finite non-decreasing sequence
of numbers y1 ≤ y2 ≤ · · · ≤ yn an all-sell sequence if
the algorithm sells to every buyer (after buying back
from the preceding buyer) when presented with the in-
put sequence y1, y2, . . . , yn. Denote the set of all such
finite sequences by AS. Define an infinite sequence
x1, x2, . . . recursively, by stipulating that x1 = 1 and
that for n > 1,

xn = inf{x ≥ xn−1|x1, x2, . . . , xn−1, x ∈ AS}. (1)

Note that the set on the right side of (1) is non-empty,
unless the algorithm has an unbounded competitive ra-
tio.

When presented with the sequence x1, . . . , xn, (1 −
ε)xn+1, the algorithm sells to every costumer except the
last one, and it buys back from every costumer except
the last two. Thus its profit is xn− f

∑n−1
i=1 xi — which

is positive unless the algorithm has an unbounded com-
petitive ratio — while the optimum profit is (1−ε)xn+1.
As this must hold for every ε > 0 and for every n, the
β-competitiveness of the algorithm would imply

∀n xn+1 ≤ β
(
xn − f

∑n−1

i=1
xi

)
. (2)

A non-decreasing sequence of positive real numbers can
never satisfy (2) when β < 1 + 2f + 2

√
f(1 + f), as

we prove in Appendix B. This completes the proof of
Theorem 2.

3. THE GENERAL MODEL
We consider a set N = {1, 2, ..., n} of requests coming

online, where request k from some customer arrives at
time step k. Each request k ∈ N has a value vk ≥ 0 as-
sociated with it. When presented with request k at time
step k the online algorithm A needs to decide whether
to accept request k. At time step k the algorithm holds
a set S(k−1) of the requests accepted so far. The algo-
rithm is constrained in the sets it picks. We assume that
there is a set system S (a family of subsets of N) which
represents the feasible sets. At each step the algorithm
can hold the subset S ⊆ N only if it is feasible, that is
S ∈ S. At time step k the algorithm can pick subsets,
each satisfying T ⊆ {1, ..., k}, and check if T ∈ S. This
constraint on the queries models the fact that the al-
gorithm has no knowledge about the future and cannot
tell if future elements can be picked with the current
elements or not.

Unlike many other online algorithms (such as algo-
rithms for secretary problems, e.g. [9]) in which deci-
sions of the algorithm are irrevocable, we allow the algo-
rithm to revoke an acceptance decision with some cost,
and we call it a “buyback”. (Note that once a request
is rejected it can never be accepted later.) That is, if
the algorithm decides to reject a request that was al-
ready accepted it has to compensate the customer who
issued that request. We assume that this compensation
is proportional to the value of the request; the algorithm
is given a buyback factor f and if it decides to revoke
the acceptance decision on customer i it needs to com-
pensate customer i with payment f · vi. At time k the
algorithm has to pick a subset S(k) ⊆ S(k−1) ∪{k} such

that this subset is feasible, that is S(k) ∈ S. The algo-
rithm pays f · vi to each customer i ∈ S(k−1) \ S(k) (a
request that was previously accepted and is now going
to be rejected).

The goal of the algorithm is to maximize the total
value of the requests picked, minus the cost of the buy-
backs. For a set S ⊆ N let v(S) =

∑
i∈S vi be the value

of the set S. Let F = S(n) be the final set accepted
by the algorithm and let R be the set of requests that
were bought-back, that is, requests that were accepted
and later rejected. Note that R = ∪n

k=1S
(k) \ F and we

denote the total buyback cost by B = f · v(R). Thus
the payoff of the algorithm is Payoff (A) = v(F ) − f ·
v(R) = v(F )−B. Our goal is to design algorithms that
have good competitive ratio with respect to the opti-
mal offline solution. An optimal offline solution is a set
OPT ⊆ N such that OPT ∈ S and v(OPT ) ≥ v(S) for
every other S ∈ S. The competitive ratio of algorithm
A with buyback is thus v(OPT )/Payoff (A).

We would like to emphasize that an online algorithm
with buyback needs to be competitive for any set of re-
quests and any arrival order for these requests, i.e., an
adversarial model. This is unlike the case of secretary
problems [9] in which there is an assumption that re-
quests come in a random order. The algorithm is given
the power of costly revocation of its acceptance commit-
ments, and this turns out to be very powerful.

Our paper focuses on two important set systems for



which buyback is natural. First we consider the case
that the set system S constitutes the independent sets
of a matroid structure2 on ground set N . (Thus we
sometimes identify requests with elements of the ground
set of the matroid.)

Second, we consider online knapsack problems. In
this case we are selling a divisible good of total supply
C (corresponding to the capacity of the knapsack). Each
customer i is a buyer with value vi for si units of the
good. A set of requests is feasible if the total demand of
the set does not exceed the supply. Formally, for S ⊆ N
it holds that S ∈ S if and only if

∑
i∈S si ≤ C.

4. AN ALGORITHM FOR MATROIDS
Recall that matroid set systems generalize many rele-

vant allocation problems. The uniform matroid of rank
k represents feasible sets of winners of a k-unit alloca-
tion problem. The transversal matroid represents feasi-
ble sets of winners when there is a matching constraint.
Transversal matroids exemplify an important aspect of
the display advertising problem: that certain advertis-
ers are only interested in certain impressions (e.g., based
on demographic, time of day, web page, etc.).

In this section we present a deterministic online buy-
back algorithm for matroids with competitive ratio of
1+2f+2

√
f(1 + f). This matches the lower bound from

Theorem 2, which holds even for the uniform matroid
of rank 1, i.e. the matroid whose nonempty independent
sets are all singletons.

In the special case where buyback factor f = 0, the
online matroid buyback problem is trivial. Readers fa-
miliar with matroids will recall that the following very
simple procedure selects an independent set with max-
imum total value. Iterate over the elements in an ar-
bitrary order, in particular, the order of arrival. If the
next arriving element is independent from the current
set of selected elements then select it. Otherwise, if it
can be exchanged with a selected element of lesser value
then exchange it with such an element with the smallest
value: remove the lesser valued element and select the
arriving element.

When f > 0 we generalize the above algorithm by
exchanging elements only if the value of the arriving
element is at least r times the value of the smallest ele-
ment it can be exchanged with. The resulting Matroid
Buyback Algorithm, parameterized by r, is formalized
below. (The best choice of r is identical to that in Sec-
tion 2.)

We remind the reader with some notations. Recall
that S(k) denotes the set S after k elements have been
considered. OPT denotes a basis of maximal weight.
Finally, recall that F denotes the final set picked by the
algorithm, and B denotes the total buy-back payment.

We will begin with some lemmas culminating in a

2A matroid (U , I) is constructed from a ground set U 6=
∅ and a nonempty family I of subsets of U , called the
independent subsets of U , such that if B ∈ I and A ⊆ B
then A ∈ I (I is hereditary). Additionally, if A, B ∈ I
and |A| < |B|, then there is some element x ∈ B \ A
such that A ∪ {x} ∈ I (exchange property).

Algorithm 1 Matroid Buyback Algorithm

1: Given: a parameter r > 1.
2: Initialize S = ∅.
3: for all elements e, in order of arrival, do
4: if S ∪ {e} ∈ I then
5: Sell to e.
6: else
7: Let e′ be the element of smallest value such that

S ∪ {e} \ {e′} ∈ I.
8: if ve ≥ r · ve′ then
9: Sell to e.

10: S = S ∪ {e} \ {e′}.
11: Pay back f · ve′ to the buyer e′.
12: end if
13: end if
14: end for

lower bound on the value of the final set picked by the
algorithm (Lemma 7) and an upper bound the total buy-
back payment (Lemma 8). Theorem 9, establishing the
competitive ratio of Algorithm 1, will follow immedi-
ately from these two lemmas.

We first recall some general definitions from matroid
theory.

Definition 3. If M = (U , I) is a matroid and T ⊆
U , then rank(T ) denotes the cardinality of a maximal
independent subset of T . We say that T spans an ele-
ment u ∈ U if rank(T ∪{u}) = rank(T ). The closure of
a set T is cl(T ) = {u ∈ U |T spans u}.
Next we establish some notations needed for the analysis
of Algorithm 1.

Definition 4. For a set of elements T ⊆ U and a
threshold value θ ≥ 0, let T (θ) be the subset of T con-
sisting of elements whose weight is at least θ, and let
clθ(T ) be the set spanned by these elements. In other
words, T (θ) = {t ∈ T |vt ≥ θ} and clθ(T ) = cl(T (θ)).

The following two lemmas are crucial in comparing the
value of F to the value of OPT .

Lemma 5 (Spanning Lemma). For every θ ≥ 0, if
an element is spanned by elements of S(θ) at some stage
of the algorithm, then it is spanned by elements of S(θ)
at all later stages of the algorithm. In other words, for
any k ≤ ` it holds that clθ(S

(`)) ⊇ clθ(S
(k)).

Proof. The proof is by induction on `, the base case
` = k being trivial. To prove the induction step we must
show that clθ(S

(`+1)) ⊇ clθ(S
(`)). If S(`+1) ⊇ S(`) then

we are done. Otherwise, S(`+1) = S(`)∪{e}\{e′} for two

elements e, e′. If e′ 6∈ S(`)(θ) then S(`+1)(θ) ⊇ S(`)(θ)
and we are again done, so we may assume henceforth
that ve′ ≥ θ. Because the algorithm reached Step 10, we
know that the condition in Step 4 evaluated to “false”,
i.e. S(`) ∪ {e} 6∈ I. This implies that S(`) ∪ {e} con-
tains a unique minimal dependent set C 6∈ I, and that
e ∈ C. (See, e.g., [17] Proposition 1.1.6.) For every ele-

ment e′′ ∈ S(`) ∪ {e}, the set T (e′′) = S(`) ∪ {e} \ {e′′}
is dependent if e′′ 6∈ C, because C ⊆ T (e′′) in that case,



and T (e′′) is independent if e′′ ∈ C because every de-

pendent subset of S(`) ∪ {e} must contain C. Looking
at the definition of e′ in Step 7 of the algorithm, we see
now that e′ must be the minimum-weight element of C.
Consequently ve′′ ≥ θ for every e′′ ∈ C, so

e′ ∈ cl(C \ {e′}) = clθ(C \ {e′}) ⊆ clθ(S
(`+1)).

As e′ is the unique element of S(`) which does not belong
to S(`+1), we see now that clθ(S

(`+1)) contains clθ(S
(`)),

as desired.

The following Lemma is well known [20].

Lemma 6 (Matching Lemma). Let B1, B2 by any
two bases of the matroid M . There exists a perfect
matching between elements of B1 and B2 such that if
b1 ∈ B1 is matched to b2 ∈ B2 it holds that B2 ∪ {b1} \
{b2} is a basis of M .

Using the two preceding lemmas, we can relate the value
of the final set picked by the algorithm to the value of
OPT as follows.

Lemma 7. v(F ) ≥ 1
r
· v(OPT )

Proof. Let n = |U|. Recall that the final set is

F = S(n). By the Matching Lemma (Lemma 6) there
exists a perfect matching between OPT and F such that
each element e ∈ OPT is matched to an element ẽ ∈ F
such that e /∈ cl(F \ {ẽ}). (Note that this includes the
possibility that ẽ = e.) We show that ve ≤ r · vẽ, which
is clearly sufficient to prove the lemma.

Let k be the arrival time of e, and let θ = ve/r. We
consider two cases. If e was not picked by the algo-
rithm it must be the case that e ∈ clθ(S

(k)). If, on the
other hand, e was picked by the algorithm, it holds that
e ∈ clθ(S

(k+1)). In both cases by the Spanning Lemma

(Lemma 5) it must be the case that e ∈ clθ(S
(n)).

Now, observe that e is matched to some element ẽ in
F such that e /∈ cl(S(n) \ {ẽ}). This means that e /∈
clθ(S

(n) \ {ẽ}) but we know that e ∈ clθ(S
(n)).

Now assume in contradiction that vẽ < θ. This means
that clθ(S

(n) \{ẽ}) = clθ(S
(n)). This yields a contradic-

tion as on one hand e /∈ clθ(S
(n) \ {ẽ}) and on the other

hand e ∈ clθ(S
(n)).

To bound the total buy-back cost paid by the algorithm,
we use the following lemma.

Lemma 8. B ≤ f
r−1

· v(F )

Proof. For each element e ∈ F we look at the chain
of elements that were bought back in the process of get-
ting e, and we charge all their buy-back costs to e. To
make the argument more precise, let e0 = e. For i ≥ 1
let ei be the element that was replaced by ei−1. Let
vi = vei . By induction on i, the buy-back cost of ei is
at most f · v/ri, thus the total buy-back cost for the set
{ei | i ≥ 1} is at most

∞∑
i=1

f · v

ri
= f · v ·

∞∑
i=1

1

ri
= f · v

r − 1

The result follows directly from summing over all ele-
ments in F .

Theorem 9. For any r it holds that v(F ) − B ≥
r−1−f
r(r−1)

·v(OPT ). That is, the algorithm achieves a com-

petitive ratio of r(r−1)
r−1−f

. For a fixed f > 0, this function

is maximized by setting r = 1+f +
√

f(1 + f), resulting

in the competitive ratio 1 + 2f + 2
√

f(1 + f).

Proof. By Lemma 8, v(F )−B ≥ r−1−f
r−1

· v(F ). By

Lemma 7, v(F ) ≥ 1
r
· v(OPT ). Combining the two we

get v(F ) − B ≥ r−1−f
r(r−1)

· v(OPT ). Now the optimal

choice of r and the resulting competitive ratio follow
from Lemma 17.

5. RESULTS FOR KNAPSACKS
The online knapsack buyback problem exemplifies an-

other very relevant aspect of display advertising: adver-
tisers may want to either run all of their campaign or
none of it. When there is a limited number of impres-
sions this constraint yields a knapsack like problem. Un-
like in the matroid setting, even with a buyback factor
of f = 0, there is no online buyback algorithm achieves
the optimal offline performance (proof to follow). We
begin by presenting a deterministic algorithm for the
knapsack buyback problem. We then present a lower
bound for deterministic algorithms. Finally, we discuss
a randomized algorithm and a lower bound for such al-
gorithms.

5.1 Deterministic Upper Bounds
In this section we present a deterministic algorithm

for the knapsack problem with buyback. Our first re-
sult is a bicriterion result. We show that if the largest
element is of size at most γ times the knapsack capac-
ity, where 0 < γ < 1, then we get a competitive ratio of
1 + 2f + 2

√
f(1 + f) with respect to the optimum so-

lution for a knapsack whose capacity is scaled down by
a factor of (1− 2γ). Then we derive a simple corollary
about the competitive ratio when γ < 1/2.

Conventions. We consider a set U = {1, . . . , n} of re-
quests presented online. Request k ∈ U has size sk,
value vk, and density (a.k.a., bang-per-buck) vk/sk (we
sometimes identify the request with an item of the ap-
propriate size and value). We will assume without loss of
generality that the requests are totally ordered by den-
sity (e.g., by using request indices to break ties among
requests of equal density). Let γ be the ratio of the
largest request size to the capacity of the knapsack. Un-
less otherwise stated, we normalize the capacity of the
knapsack to C = 1; therefore all requests have size at
most γ. For a set S ⊆ U let OPTC(S) be the value of
the optimal offline fractional knapsack solution with ca-
pacity C on requests S. Consider the greedy algorithm
that sorts requests in S by density and accepts the dens-
est requests until the next object exceeds the knapsack
capacity. Let densC(S) denote the density of this re-
quest, or densC(S) = 0 if the total size of requests in S
does not exceed C. Let greedyC(S) denote the requests
accepted, and let rejectC(S) denote the remaining re-
quests (i.e., rejectC(S) = S \ greedyC(S)).



Algorithm. Our knapsack algorithm admits requests
following the greedy fractional offline algorithm on a
knapsack with restricted capacity C = 1 − 2γ, but pe-
nalizes requests which are not yet in the knapsack by a
multiplicative factor of r > 1. When the knapsack’s ca-
pacity is exceeded, it buys back items greedily, starting
from the ones with the lowest bang-per-buck, until the
remaining items fit the capacity constraint once again.

Algorithm 2 Knapsack Buyback Algorithm

1: Given: parameters r > 1, 0 < γ < 1/2.

2: Initialize S(0) = ∅.
3: for all requests k do
4: if the density of request k is at least

r · dens1−2γ(S(k−1)) then
5: /* (Integrally) greedily buyback cheapest re-

quests so as to fit request k, i.e., buyback all
requests of reject1−sk

(S(k−1)) to make room for
request k. */

6: Add request k to knapsack.
7: Set S(k) ← greedy1(S

(k−1) ∪ {k}).
8: Buy back all requests of S(k) \ S(k−1)

9: else
10: S(k) ← S(k−1).
11: end if
12: end for
13: Output F ← S(n).

Lemma 10. When elements U are presented to the
Knapsack Buyback Algorithm, the set of requests F se-
lected satisfies OPT1−2γ(F ) ≥ OPT1−2γ(U)/r.

Proof. Let U ′ = ∪n
k=1S

(k) ⊆ U be the set of all re-
quests that are ever admitted to the knapsack in Step 6,
including the ones that get bought back in Step 7. Let
S′ be the largest prefix of U ′ that fits completely within
the knapsack (i.e., S′ = greedy1(U

′)).
First, S′ = F . To see this, note that the algorithm

never buys back an element j ∈ U ′ unless it has al-
ready bought back all elements of smaller density, and
it never buys back an element which currently fits in
the knapsack. Thus elements of S′, once added into
the knapsack, will never be bought back, implying that
S′ ⊆ F . The reverse inclusion follows from the fact that
the most dense element j ∈ F \S′ would have to satisfy
(i) S′ ∪{j} fits the capacity constraint, (ii) j has higher
density than any element of U ′ \ S′. If such an element
existed, it would belong to greedy1(U

′), contradicting
the definition of S′.

Consider the requests F ∗ (resp. U∗) that are selected
by the optimal (offline) fractional knapsack solution with
capacity C = 1− 2γ on F (resp. U). Each of these sets
possibly contains one fractional request. For this analy-
sis, replace the fractional request by an integral one with
same density, whose size is scaled down so that the sum
of all request sizes in F ∗ (resp. U∗) is exactly 1 − 2γ.
In other words, if F ∗ (resp. U∗) contains a fractional
amount β of a request with size s and value v, then for
this analysis we will instead treat the fractional request
as an integral request of size βs and value βv. Thus,

according to this convention, OPT1−2γ(U) =
∑

k∈U∗ vk

and OPT1−2γ(F ) =
∑

k∈F∗ vk.
We now show that the total value in F ∗ \ U∗ is at

least 1/r times that of U∗ \ F ∗. Using the fact that
F = S′ = greedy1(U

′), and that the largest request size
is γ, we know that F ∗ is the optimal fractional knapsack
solution with capacity C = 1 − 2γ on U ′. Thus, F ∗

contains all requests from U∗ that are ever admitted
to the knapsack, so the requests in U∗ \ F ∗ were not
admitted to the knapsack and thus have density less
than r · dens1−2γ(F ∗). Of course, the total capacity
consumed by requests in F ∗\U∗ and U∗\F ∗ is identical.
Thus the value of requests in F ∗\U∗ is at least 1/r times
the value of the requests in U∗\F ∗. Thus the value of all
requests in F ∗ is at least 1/r times the value of requests
in U∗. This proves the lemma.

Lemma 11. The total amount spent on buyback is at
most f

r−1
OPT1−2γ(F )

Proof. We use an accounting scheme where when a
request is admitted to the knapsack, we charge it with
the fraction of any requests that henceforth exceed the
capacity 1−γ. By the time such a request is (integrally)
bought back by the algorithm because some fraction of
it exceeds the capacity 1 we will have already charged
the entirety of its buyback cost to admitted requests.

To make the analysis simpler we initially fill the knap-
sack up to capacity 1−γ with requests of value zero (and
buyback cost zero). Now, if request k of size sk is ad-
mitted to the knapsack, the request receives a charge
equal to the buyback cost of sk fractional units of re-
quests with the least density. This maintains the in-
variant that the capacity of requests whose buyback is
uncharged remains constant at 1−γ. When a fractional
buyback of request j is charged to another request k, we
also charge k for the sum of all the charges that j ever
received, scaled by a factor equal to the fraction of re-
quest j that was bought back.

Notice that if request k is admitted to the knapsack
then its density is at least r · dens1−2γ(S(k−1)). Any re-
quests with fractional buyback charged to k have density
at most dens1−2γ(S(k−1)). Thus, the new buyback cost
charged to item k is at most vk

r
. Request k inherits

buyback charges previously assessed to these requests.
The total buyback charged to k is thus at most

vkf

∞∑
i=1

1

ri
=

vk

r − 1
.

When the algorithm ends, the final (fractional) knap-
sack from F with capacity 1−2γ has charged buyback of
all requests (integrally) bought back by the algorithm
to requests in F (as discussed, we have actually over-
charged some requests that have not been bought back
yet). The total cost of these buybacks is at most

f

r − 1
OPT1−2γ(F ).

Theorem 12. The Knapsack Buyback Algorithm with
parameter r has net payoff (value less buyback cost) of



at least

r − 1− f

r(r − 1)
OPT1−2γ(U).

For a fixed f the best way to pick r is to set r = 1+ f +√
f(1 + f). For such an r the net payoff is at least

1

1 + 2f + 2
√

f(1 + f)
OPT1−2γ(U)

Proof. By Lemma 10 it holds that OPT1−2γ(F ) ≥
OPT1−2γ(U)/r. By Lemma 11 the buyback cost B is
at most f

r−1
OPT1−2γ(F ) and as F ⊆ U it holds that

OPT1−2γ(F ) ≤ OPT1−2γ(U) thus B ≤ f
r−1

OPT1−2γ(U).
We conclude that for the Knapsack Buyback Algorithm
A it holds that

Payoff (A) ≥ OPT1−2γ(F )−B

≥ OPT1−2γ(U)

r
− f

r − 1
OPT1−2γ(U)

=
r − 1− f

r(r − 1)
OPT1−2γ(U)

Now the optimal choice of r and the resulting com-
petitive ratio follow from Lemma 17.

Note that the above result can be viewed as a bi-
criterion result: the approximation is with respect to an
optimal offline fractional solution for a knapsack of size
1−2γ. With an additional loss of factor 1/(1−2γ) in the
approximation ratio, we can clearly get a bound with
respect to the optimal solution for the original knap-
sack size for the case that γ < 1/2. This is because
OPT1−2γ(U) ≥ (1 − 2γ)OPT1(U), which follows from
the definition of OPTC(U) as the optimal fractional
solution.

Corollary 13. Assume γ < 1/2. The Knapsack

Buyback Algorithm with r = 1 + f +
√

f(1 + f) has net
payoff (value less buyback cost) of at least

1− 2γ

1 + 2f + 2
√

f(1 + f)
OPT1(U)

5.2 A Lower Bound for Deterministic Al-
gorithms

We next present a simple lower bound for the prob-
lem: for deterministic algorithms (such as ours) there
is no hope to get any competitive buyback algorithm
when γ is large (say 1). For the proof see Appendix C.

Theorem 14. For any f when γ = 1 no determinis-
tic buyback algorithm for knapsack problems has a bounded
competitive ratio that is a function of f .

5.3 Randomized Upper and Lower Bounds
We can overcome this negative result and achieve a

competitive algorithm that works for any γ using ran-
domization. Consider the following randomized algo-
rithm A′: with probability 1/3 we run the Knapsack
Buyback Algorithm (Algorithm 2) and with probabil-
ity 2/3 we run the buyback algorithm for a single item
(Section 2.1).

Theorem 15. For any γ the randomized algorithm
A′ has an expected net payoff (value less buyback cost)
of at least

1

3(1 + 2f + 2
√

f(1 + f))
OPT1(U).

Proof. Define O1/2 = {u ∈ OPT1(U) s.t. su ≥ 1/2}
to be the set of requests in OPT1(U) with size at least
1/2. Let O = OPT1(U) \ O1/2. Let δ(f) = 1 + 2f +

2
√

f(1 + f). Note that when A′ runs the Knapsack
Buyback Algorithm it gets at least O/δ(f) and when A′

runs the Approximately Greedy Algorithm from Sec-
tion 4 it gets at least O1/2/(2δ(f)) (the lost of factor
2 is due to the fact that |O1/2| ≤ 2 and the algorithm
is competitive with the respect to the best request of
O1/2). We conclude the the expected payoff of A′ is at
least

1

3
· O

δ(f)
+

2

3
· O1/2

2δ(f)
=

OPT1(U)

3δ(f)

Note that our bi-criteria result shows that when f ap-
proaches 0, the Knapsack Buyback Algorithm (Algo-
rithm 2) is close to being perfectly competitive (the
competitive ratio goes to 1) with respect to the optimal
knapsack solution with capacity 1− 2γ (not 1). On the
other hand the above randomized algorithm has com-
petitive ratio of at least 3, even when f is 0. This raises
the following question: can a randomized knapsack buy-
back algorithm have a competitive ratio (with respect
to the optimal algorithm on the full size of the knap-
sack) that approaches 1 when f goes to 0? We next
show that the answer for this question is no, and losing
some constant in the competitive ratio is inevitable.

Theorem 16. Any randomized buyback algorithm for
knapsack problems has a competitive ratio of at least
5/4. This is true for any f ≥ 0, even f = 0.

Proof. We present two inputs such that for at least
one of these inputs any randomized buyback algorithm
has competitive ratio of at least 5/4. In both cases the
capacity C is 1. The first input has s1 = 1, v1 = 1 and
s2 = 1/2, v2 = 1/2. The second input is the same as the
first with an additional request s3 = 1/2, v3 = 1. Let p
be the probability that the algorithm picks the second
request (clearly when faced with the second request the
algorithm cannot distinguish the two inputs). The opti-
mal offline algorithm gets a value of 1 on the first input
(by picking the first request) and a value of 3/2 on the
second input (by picking the second and third requests).
The payoff of the algorithm on the first input is at most
(1 − p) · 1 + p · 1/2 = 1 − p/2, while its payoff on the
second input is at most (1 − p) · 1 + p · 3/2 = 1 + p/2.
Thus the competitive ratio in the first case is at least
1/(1 − p/2) and while in the second case it is at least
(3/2)/(1+p/2). It is easy to verify that the optimal way
for the algorithm to pick p is to set p = 2/5 (in order to
minimize the maximal of the two ratios). In this case
the ratio is at least 5/4. Thus it is at least 5/4 for any
p the algorithm picks.
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APPENDIX
A. TECHNICAL LEMMA

Lemma 17. For any given f > 0 the function h(r) =
r−1−f
r(r−1)

for r ∈ (1,∞) is maximized at r∗ = 1 + f +√
f(1 + f) and its maximum is h(r∗) = 1+2f+2

√
f(1 + f).

Proof. We would like to pick r in order to maximize
h(r). Taking the derivative of h(r) with respect to r, we
obtain

h′(r) =
r(r − 1)− (r − 1− f)(2r − 1)

r2(r − 1)2

This equals 0 if and only if r satisfies the quadratic
equation r(r−1)−(r−1−f)(2r−1) = 0. The two roots

of this equation are r1 = 1 + f +
√

f(1 + f) and r2 =

1+f−
√

f(1 + f). By checking the second derivative we

find that r = r1 = 1 + f +
√

f(1 + f) maximizes h(r).

Now let s =
√

f(1 + f). For r = 1 + f +
√

f(1 + f) =
1 + f + s, the competitive ratio is

r − 1

r − 1− f
=

(1 + f + s)(f + s)

s

=
2s2 + s(1 + 2f)

s
= 2s + (1 + 2f)

= 1 + 2f + 2
√

f(1 + f)

B. A LOWER BOUND FOR BUYBACK
ALGORITHMS

Lemma 18. For every infinite non-decreasing sequence
of positive real numbers x1 ≤ x2 ≤ . . ., if β < 1 + 2f +
2
√

f(1 + f) then there exists some n such that

xn+1 > β(xn − f

n−1∑
i=1

xi)

Proof. The proof is by contradiction. Assume that
there is a nonempty set S of sequences x1 ≤ x2 ≤ . . . of
positive reals satisfying

xn+1 ≤ βxn − βf

n−1∑
i=1

xi (3)

for all n ≥ 1. For any such sequence x ∈ S, let n(x)
be the least n such that the inequality (3) is strict, or
n(x) = ∞ if there is no such n. We claim that n(x) takes
unboundedly large values as x ranges over S. Indeed,
assume to the contrary that x ∈ S is a sequence such
that

n(x) = N = max
w∈S

n(w).



Let

λ =
xN+1

βxN − βf
∑

i<N xi
,

which is less than 1 by assumption. Then the sequence

x′ = λx1, λx2, . . . , λxN , xN+1, xN+2, . . .

belongs to S, and it satisfies n(x′) > N , contradicting
our choice of N .

Having thus established that n(x) takes unboundedly
large values as x ranges over the elements of S, we may
conclude that the sequence defined by

y1 = 1

yn+1 = βyn − βf

n−1∑
i=1

yi for n ≥ 1

is non-decreasing. (To prove that ym+1 ≥ ym for every
m, let x ∈ S be a sequence such that n(x) > m and ob-
serve by induction that yi = xi/x1 for i = 1, 2, . . . , m+1.
Since every sequence x ∈ S is non-decreasing, we ob-
tain the inequality ym+1 ≥ ym as claimed.) Now define
zn =

∑n
i=1 yi, and observe that the recursion defining

yn+1 implies that

zn+1 = (1 + β)zn − β(1 + f)zn−1.

This is a linear recursion, whose general solution is zn =
asn + btn where a, b are arbitrary constants and s, t are
the roots of the quadratic equation

u2 − (1 + β)u + β(1 + f) = 0. (4)

The discriminant of this quadratic is (1+β)2−4β(1+f),
which is strictly negative given our hypothesis that 1 <
β < 1 + 2f + 2

√
f(1 + f). Hence the two roots s, t are

complex conjugates with nonzero imaginary part. We
claim also that a, b are complex conjugates. To see this,
note that

1 = z1 = a + b

1 + β = z2 = as + bs̄

which implies that the linear system

w1 + w2 = 1

sw1 + s̄w2 = 1 + β

is solved by (w1, w2) = (a, b) and also by (w1, w2) =
(b̄, ā). Since the linear system is nonsingular, it has a
unique solution. Hence (a, b) = (b̄, ā), confirming our
claim that a, b are complex conjugates.

At this point we have established that there are com-
plex numbers a, s such that zn = asn + ās̄n = 2<(asn)
for all n, and s has nonzero imaginary part. Write
a = qeiφ, s = reiθ where q, r > 0 and θ is not an in-
teger multiple of π. Interchanging a, s with ā, s̄ if nec-
essary, we may assume without loss of generality that
0 < θ < π. Now we have asn = qrnei(φ+nθ) which has
negative real part if (2m + 1

2
)π < φ + nθ < (2m + 3

2
)π

for some integer m. In particular, letting m be the least
integer such that (2m + 1

2
)π > φ and recalling that

0 < θ < π, we find that there must be some n > 0 such
that (2m + 1

2
)π < φ + nθ < (2m + 3

2
)π, implying that

<(asn) < 0. This contradicts the fact that zn > 0 for
every n.

C. A LOWER BOUND FOR DETERMIN-
ISTIC KNAPSACK ALGORITHMS: THE
PROOF

In this section we prove Theorem 14.

Proof. Assume in contradiction that there is an al-
gorithm that is β-competitive for some β = β(f) ≥ 1 (β
is a function of f). We present a set of inputs and show
that the algorithm cannot be β-competitive on at least
one of the inputs. We pick an integer m = d3β2e. We
define m + 1 inputs as follows. All inputs have the first
request with v1 = 1, s1 = 1. For k ∈ {0, ..., m}, input
k has k requests all with size 1/m and value 2β/m.
That is, input k has si = 1/m and vi = 2β/m for
i ∈ {2, ..., k + 1}. Clearly for the algorithm to be β-
competitive it must pick the first request, otherwise it
fails of the first input (with only one request). Thus we
can assume that the algorithm picks the first request. If
it does not pick any other request on the m + 1 input
(k = m) it gets net profit of 1 while the optimal of-
fline algorithm pick all requests of size 1/m and has net
profit of 2β > β, a contradiction. Thus there is a k′ ∈
{2, ..., m+1} such that the algorithm buys-back the first
request and picks the request k′. Now consider the k′

input. As the algorithm is deterministic it must behave
the same on this input. On this input the algorithm has
profit of at most 2β/m ≤ (2β)/(3β2) = 2/(3β) < 1/β
while the optimal offline algorithm has profit of at least
1, by picking the first request.


