
The Bw-Tree: A B-tree for New Hardware

Platforms

Justin J. Levandoski 1, David B. Lomet 2, Sudipta Sengupta 3

Microsoft Research

Redmond, WA 98052, USA
1
justin.levandoski@microsoft.com,

2
lomet@microsoft.com,

3
sudipta@microsoft.com

Abstract— The emergence of new hardware and platforms has
led to reconsideration of how data management systems are
designed. However, certain basic functions such as key indexed
access to records remain essential. While we exploit the common
architectural layering of prior systems, we make radically new
design decisions about each layer. Our new form of B-tree, called
the Bw-tree achieves its very high performance via a latch-free
approach that effectively exploits the processor caches of modern
multi-core chips. Our storage manager uses a unique form of log
structuring that blurs the distinction between a page and a record
store and works well with flash storage. This paper describes the
architecture and algorithms for the Bw-tree, focusing on the main
memory aspects. The paper includes results of our experiments
that demonstrate that this fresh approach produces outstanding
performance.

I. INTRODUCTION

A. Atomic Record Stores

There has been much recent discussion of No-SQL systems,

which are essentially atomic record stores (ARSs) [1]. While

some of these systems are intended as stand-alone products,

an atomic record store can also be a component of a more

complete transactional system, given appropriate control op-

erations [2], [3]. Indeed, one can regard a database system as

including an atomic record store as part of its kernel.

An ARS supports the reading and writing of individual

records, each identified by a key. Further, a tree-based ARS

supports high performance key-sequential access to designated

subranges of the keys. It is this combination of random and

key-sequential access that has made B-trees the indexing method

of choice within database systems.

However, an ARS is more than an access method. It includes

the management of stable storage and the requirement that

its updates be recoverable should the system crash. It is the

performance of the ARS of this more inclusive form that is

the foundation for the performance of any system in which the

ARS is embedded, including full function database systems.

This paper introduces a new ARS that provides very high

performance. We base our ARS on a new form of B-tree that

we call the Bw-tree. The techniques that we introduce make

the Bw-tree and its associated storage manager particularly ap-

propriate for the new hardware environment that has emerged

over the last several years.

Our focus in this paper is on the main memory aspects of

the Bw-tree. We describe the details of our latch-free tech-

nique, i.e., how we can do updates and structure modification

operations without setting latches. Our approach also carefully

avoids cache line invalidations, hence leading to substantially

better caching performance as well. We describe how we use

our log structured storage manager at a high level, but leave

the specifics to another paper.

B. The New Environment

Database systems have mostly exploited the same storage

and CPU infrastructure since the 1970s. That infrastructure

used disks for persistent storage. Disk latency is now analo-

gous to a round trip to Pluto [4]. It used processors whose

uni-processor performance increased with Moore’s Law, thus

limiting the need for high levels of concurrent execution on a

single machine. Processors are no longer providing ever higher

uni-core performance. Succinctly, ”this changes things”.

1) Design for Multi-core: We live in a high peak perfor-

mance multi-core world. Uni-core speed will at best increase

modestly, thus we need to get better at exploiting a large

number of cores by addressing at least two important aspects:

1) Multi-core cpus mandate high concurrency. But, as the

level of concurrency increases, latches are more likely

to block, limiting scalability [5].

2) Good multi-core processor performance depends on high

CPU cache hit ratios. Updating memory in place results

in cache invalidations, so how and when updates are

done needs great care.

Addressing the first issue, the Bw-tree is latch-free, ensuring a

thread never yields or even re-directs its activity in the face of

conflicts. Addressing the second issue, the Bw-tree performs

“delta” updates that avoid updating a page in place, hence

preserving previously cached lines of pages.

2) Design for Modern Storage Devices: Disk latency is a

major problem. But even more crippling is their low I/O ops

per second. Flash storage offers higher I/O ops per second at

lower cost. This is key to reducing costs for OLTP systems.

Indeed Amazon’s DynamoDB includes an explicit ability to

exploit flash [6]. Thus the Bw-tree targets flash storage.

Flash has some performance idiosyncracies, however. While

flash has fast random and sequential reads, it needs an erase cy-

cle prior to write, making random writes slower than sequential

writes [7]. While flash SSDs typically have a mapping layer

(the FTL) to hide this discrepancy from users, a noticeable

slowdown still exists. As of 2011, even high-end FusionIO

drives exhibit a 3x faster sequential write performance than



random writes [8]. The Bw-tree performs log structuring it-

self at its storage layer. This approach avoids dependence on

the FTL and ensures that our write performance is as high

as possible for both high-end and low-end flash devices and

hence, not the system bottleneck.

C. Our Contributions

We now describe our contributions, which are:

1) The Bw-tree is organized around a mapping table that

virtualizes both the location and the size of pages. This

virtualization is essential for both our main memory

latch-free approach and our log structured storage.

2) We update Bw-tree nodes by prepending update deltas

to the prior page state. Because our delta updating pre-

serves the prior page state, it improves processor cache

performance. Having the new node state at a new storage

location permits us to use the atomic compare and swap

instructions to update state. Hence, the Bw-tree is latch-

free in the classic sense of allowing concurrent access

to pages by multiple threads.

3) We have devised page splitting and merging structure

modification operations (SMOs) for the Bw-tree. SMOs

are realized via multiple atomic operations, each of which

leaves the Bw-tree well-formed. Further, threads observ-

ing an in-progress SMO do not block, but rather take

steps to complete the SMO.

4) Our log structured store (LSS), while nominally a page

store, uses storage very efficiently by mostly posting

page change deltas (one or a few records). Pages are

eventually made contiguous via consolidating delta up-

dates, and also during a flash “cleaning” process. LSS

will be described fully in a another paper.

5) We have designed and implemented an ARS based on

the Bw-tree and LSS. We have measured its performance

using real and synthetic workloads, and report on its very

high performance, greatly out-performing both Berke-

leyDB, an existing system designed for magnetic disks,

and latch-free skip lists in main memory.

In drawing broader lessons from this work, we believe that

latch free techniques and state changes that avoid update-in-

place are the keys to high performance on modern processors.

Further, we believe that log structuring is the way to provide

high storage performance, not only with flash, but also with

disks. We think these “design paradigms” are applicable more

widely to realize high performance data management systems.

D. Paper Outline

We present an overview of Bw-tree architecture in Section 2.

In Sections 3 through 5, we describe the system we built.

We start at the top layer with in-memory page organization

in Section 3, followed by Bw-tree organization and structure

modifications in Section 4. Section 5 details how the cache is

managed. In Section 6, we describe our experiments and the

performance results of them. Section 7 describes related work

and how we differ significantly in our approach. We conclude

with a short discussion in Section 8.

Flash Layer

Bw-tree Layer

API

Cache Layer

Mapping Table

In-memory pages only

Tree-based search/update logic

Logical page abstraction for B-tree layer

Maintains mapping table, brings pages 

from flash to RAM as necessary

Manages writes to flash storage

Flash garbage collection

Fig. 1. The architecture of our Bw-tree atomic record store.

II. BW-TREE ARCHITECTURE

The Bw-tree atomic record store (ARS) is a classic B+-

tree [9] in many respects. It provides logarithmic access to

keyed records from a one-dimensional key range, while pro-

viding linear time access to sub-ranges. Our ARS has a classic

architecture as depicted in Figure 1. The access method layer,

our Bw-tree Layer, is at the top. It interacts with the middle

Cache Layer. The cache manager is built on top of the Storage

Layer, which implements our log-structured store (LSS). The

LSS currently exploits flash storage, but it could manage with

either flash or disk.

This design is architecturally compatible with existing

database kernels, while also being suitable as a standalone

“data component” in a decoupled transactional system [2],

[3]. However, there are significant departures from this classic

picture. In this section, we provide an architectural overview

of the Bw-tree ARS, describing why it is uniquely well-suited

for multi-core processors and flash based stable storage.

A. Modern Hardware Sensitive

In our Bw-tree design, threads almost never block. Elimi-

nating latches is our main technique. Instead of latches, we in-

stall state changes using the atomic compare and swap (CAS)

instruction. The Bw-tree only blocks when it needs to fetch

a page from stable storage (the LSS), which is rare with a

large main memory cache. This persistence of thread execution

helps preserve core instruction caches, and avoids thread idle

time and context switch costs. Further, the Bw-tree performs

node updates via ”delta updates” (attaching the update to an

existing page), not via update-in-place (updating the existing

page memory). Avoiding update-in-place reduces CPU cache

invalidation, resulting in higher cache hit ratios. Reducing

cache misses increases the instructions executed per cycle.

Performance of data management systems is frequently

gated by I/O access rates. We have chosen to target flash

storage to ease that problem. But even with flash, when

attached as an SSD, I/O access rates can limit performance.

Our log structure storage layer enables writing large buffers,

effectively eliminating any write bottle neck. Flash storage’s

high random read access rates coupled with a large main

memory cache minimizes blocking on reads. Writing large

multi-page buffers permits us to write variable size pages that

do no contain “filler” to align to a uniform size boundary.

The rest of this section summarizes the major architectural

and algorithmic innovations that make concrete the points de-

scribed above.



B. The Mapping Table

Our cache layer maintains a mapping table, that maps logi-

cal pages to physical pages, logical pages being identified by a

logical ”page identifier” or PID. The mapping table translates

a PID into either (1) a flash offset, the address of a page on

stable storage, or (2) a memory pointer, the address of the page

in memory. The mapping table is thus the central location for

managing our “paginated” tree. While this indirection tech-

nique is not unique to our approach, we exploit it as the base

for several innovations. We use PIDs in the Bw-tree to link the

nodes of the tree. For instance, all downward “search” pointers

between Bw-tree nodes are PIDs, not physical pointers.

The mapping table severs the connection between physical

location and inter-node links. This enables the physical loca-

tion of a Bw-tree node to change on every update and every

time a page is written to stable storage, without requiring that

the location change be propagated to the root of the tree (i.e.,

updating inter-node links). This “relocation” tolerance directly

enables both delta updating of the node in main memory and

log structuring of our stable storage, as described below.

Bw-tree nodes are thus logical and do not occupy fixed

physical locations, either on stable storage or in main memory.

Hence we are free to mold them to our needs. A “page” for a

node thus suggests a policy, not a requirement, either in terms

of how we represent nodes or how large they might become.

We permit page size to be elastic, meaning that we can split

when convenient as size constraints do not impose a splitting

requirement.

C. Delta Updating

Page state changes are done by creating a delta record (de-

scribing the change) and prepending it to an existing page

state. We install the (new) memory address of the delta record

into the page’s physical address slot in the mapping table

using the atomic compare and swap (CAS) instruction1. If

successful, the delta record address becomes the new physi-

cal address for the page. This strategy is used both for data

changes (e.g., inserting a record) and management changes

(e.g., a page being split or flushing a page to stable storage).

Occasionally, we consolidate pages (create a new page that

applies all delta changes) to both reduce memory footprint and

to improve search performance. A consolidated form of the

page is also installed with a CAS, and the prior page structure

is garbage collected (i.e., its memory reclaimed). A reference

to the entire data structure for the page, including deltas, is

placed on a pending list all of which will be reclaimed when

safe. We use a form of epoch to accomplish safe garbage

collection, [10].

Our delta updating simultaneously enables latch-free access

in the Bw-tree and preserves processor data caches by avoiding

update-in-place. The Bw-tree mapping table is the key enabler

of these features via its ability to isolate the effects of node

updates to that node alone.

1The CAS is an atomic instruction that compares a given old value to a
current value at memory location L, if the values are equal the instruction
writes a new value to L, replacing current.

D. Bw-tree Structure Modifications

Latches do not protect parts of our index tree during struc-

ture modifications (SMOs) such as page splits. This introduces

a problem. For example, a page split introduces changes to

more than one page: the original overly large page O, the new

page N that will receive half O′s contents, and the parent in-

dex page P that points down to O, and that must subsequently

point to both O and N . Thus, we cannot install a page split

with a single CAS. A similar but harder problem arises when

we merge nodes that have become too small.

To deal with this problem, we break an SMO into a sequence

of atomic actions, each installable via a CAS. We use a B-link

design [11] to make this easier. With a side link in each page,

we can decompose a node split into two “half split” atomic

actions. In order to make sure that no thread has to wait for

an SMO to complete, a thread that sees a partial SMO will

complete it before proceeding with its own operation. This

ensures that no thread needs to wait for an SMO to complete.

E. Log Structured Store

Our LSS has the usual advantages of log structuring [12].

Pages are written sequentially in a large batch, greatly reducing

the number of separate write I/Os required. However, because

of garbage collection, log structuring normally incurs extra

writes to relocate pages that persist in reclaimed storage areas

of the log. Our LSS design greatly reduces this problem.

When flushing a page, the LSS need only flush the deltas

that represent the changes made to the page since its previous

flush. This dramatically reduces how much data is written

during a flush, increasing the number of pages that fit in the

flush buffer, and hence reducing the number of I/O’s per page.

There is a penalty on reads, however, as the discontinuous parts

of pages all must be read to return a page to the main memory

cache. Here is when the very high random read performance

of flash really contributes to our ARS performance.

The LSS cleans prior parts of flash representing the old parts

of its log storage. Delta flushing reduces pressure on the LSS

cleaner by reducing the amount of storage used per page. This

reduces the “write amplification” that is a characteristic of log

structuring. During cleaning, LSS makes pages and their deltas

contiguous for improved access performance.

F. Managing Transactional Logs

As in a conventional database system, our ARS needs to

ensure that updates persist across system crashes. We tag each

update operation with a unique identifier that is typically the

log sequence number (LSN) of the update on the transactional

log (maintained elsewhere, e.g., in a transactional component).

LSNs are managed so as to support recovery idempotence, i.e.,

ensuring that operations are executed at most once.

Like conventional systems, pages are flushed lazily while

honoring the write-ahead log protocol (WAL). Unconvention-

ally, however, we do not block page flushes to enforce WAL.

Instead, because the recent updates are separate deltas from

the rest of the page, we can remove “recent” updates (not yet

on the stable transactional log) from pages when flushing.



LPID Ptr

Page P
P

∆ D

CAS

(a) Update using delta record

LPID Ptr

Page P

P

∆ ∆ ∆

Consolidated 

Page P

CAS

(b) Consolidating a page

Fig. 2. In-memory pages. Page updates use compare-and-swap (CAS) on
the physical pointer in the mapping table.

III. IN-MEMORY LATCH FREE PAGES

This section describes Bw-tree in-memory pages. We begin

by discussing the basic page structure and how we update

pages in a latch-free manner. We then discuss occasional page

consolidation used to make search more efficient. Using a

tree based index enables range scans, and we describe how

this is accomplished. Finally, we discuss in-memory garbage

collection with our epoch safety mechanism.

A. Elastic Virtual Pages

The information stored on a Bw-tree page is similar to that

of a typical B+-tree. Internal index nodes contain (separator

key,pointer) pairs sorted by key that direct searches down the

tree. Data (leaf) nodes contain (key, record) pairs. In addition,

pages also contain (1) a low key representing the smallest key

value that can be stored on the page (and in the subtree below),

and (2) a high key representing the largest key value that can

be stored on the page, and (3) a side link pointer that points

to the node’s immediate right sibling on the same level in the

tree, as in a B-link tree [11].

Two distinct features make the Bw-tree page design unique.

First, Bw-tree pages are logical, meaning they do not occupy

fixed physical locations or have fixed sizes. (1) We identify

a page using its PID index into the mapping table. Accessors

to the page use the mapping table to translate the PID into

its current physical address. All links between Bw-tree nodes

(“search” pointers, side links) are PIDs. (2) Pages are elastic,

meaning there is no hard limit on how large a page may grow.

Pages grow by having “delta records” prepended to them.

A delta record represents a single record modification (e.g.,

insert, update), or system management operation (e.g., page

split).

Updates. We never update a Bw-tree page in place (i.e.,

modify its memory contents). Rather, we create a delta record

describing the update and prepend it to the existing page.

Delta records allow us to incrementally update page state in

a latch-free manner. We first create a new delta record D that

(physically) points to the page’s current address P . We obtain

P from the page’s entry in the mapping table. The memory

address of the delta record will serve as the new memory

address (the new state) for the page.

To install the new page state in the mapping table (making

it “live” in the index), we use the atomic compare and swap

(CAS) instruction (described in Section II) to replace the cur-

rent address P with the address of D. The CAS compares P to

the current address in the mapping table. If the current address

equals P , the CAS successfully installs D, otherwise it fails

(we discuss CAS failures later). Since all pointers between

Bw-tree nodes are via PIDs, the CAS on the mapping table

entry is the only physical pointer change necessary to install a

page update. Furthermore, this latch-free technique is the only

way to update a page in the Bw-tree, and is uniform across

all operations that modify a page. In the rest of this paper,

we refer to using the CAS to update a page as “installing” an

operation.

Figure 2(a) depicts the update process showing a delta record

D prepended to page P . The dashed line from the mapping

table to P represents P ’s old address, while the solid line to

the delta record represents P ’s new physical address. Since

updates are atomic, only one updater can “win” if there are

competing threads trying install a delta against the same “old”

state in the mapping table. A thread must retry its update if it

fails2.

After several updates, a “delta chain” forms on a page as

depicted in the lower right of Figure 2(b) (showing a chain

of three deltas). Each new successful updates forms the new

“root” of the delta chain. This means the physical structure of

a Bw-tree page consists of a delta chain prepended to a base

page (i.e., a consolidate B-tree node). For clarity, we refer

to a base page as the structure to which the delta chain is

prepended, and refer to a page as the a base page along with

its (possibly empty) delta chain.

Leaf-level update operations. At the leaf page level, up-

dates (deltas) are one of three types: (1) insert, representing

a new record inserted on the page; (2) modify, representing

a modification to an existing record in the page; (3) delete,

representing the removal of an existing record in the page. All

update deltas contain an LSN provided by the client issuing the

update. We use this LSN for transactional recovery involving

a transaction log manager with its need to enforce the write-

ahead-log (WAL) protocol (we discuss WAL and LSNs further

in Section V-A). Insert and update deltas contain a record

representing the new payload, while delete deltas only contain

the key of the record to be removed. In the rest of this sec-

tion, we discuss only record updates to leaf pages, postponing

discussion of other updates (e.g., index pages, splits, flushes)

until later in the paper.

Page search. Leaf page search involves traversing the delta

chain (if present). The search stops at the first occurrence of

the search key in the chain. If the delta containing the key

represents an insert or update, the search succeeds and returns

the record. If the delta represents a delete, the search fails. If

the delta chain does not contain the key, the search performs

a binary search on the base page in typical B-tree fashion. We

discuss index page search with delta chains in Section IV.

B. Page Consolidation

Search performance eventually degrades if delta chains grow

too long. To combat this, we occasionally perform page con-

2The retry protocol will depend on the specific update operation. We discuss specific

retry protocols where appropriate.



solidation that creates a new “re-organized” base page contain-

ing all the entries from the original base page as modified by

the updates from the delta chain. We trigger consolidation if

an accessor thread, during a page search, notices a delta chain

length has exceeded a system threshold. The thread performs

consolidation after attempting its update (or read) operation.

When consolidating, the thread first creates a new base page

(a new block of memory). It then populates the base page with

a sorted vector containing the most recent version of a record

from either the delta chain or old base page (deleted records

are discarded). The thread then installs the new address of

the consolidated page in the mapping table with a CAS. If

it succeeds, the thread requests garbage collection (memory

reclamation) of the old page state. Figure 2(b) provides an

example depicting the consolidation of page P that incorpo-

rates deltas into a new “Consolidated Page P ”. If this CAS

fails, the thread abandons the operation by deallocating the

new page. The thread does not retry, as a subsequent thread

will eventually perform a successful consolidation.

C. Range Scans

A range scan is specified by a key range (low key, high

key). Either of the boundary keys can be omitted, meaning that

one end of the range is open-ended. A scan will also specify

either an ascending or descending key order for delivering the

records. Our description here assumes both boundary keys are

provided and the ordering is ascending. The other scan options

are simple variants.

A scan maintains a cursor providing a key indicating how

far the search has progressed. For a new scan, the remembered

key is lowkey. When a data page containing data in the range

is first accessed, we construct a vector of records containing

all records on the page to be processed as part of the scan.

In the absence of changes to the page during the scan, this

allows us to efficiently provide the “next-record” functionality.

This is the common case and needs to be executed with high

performance.

We treat each ”next-record” operation as an atomic unit. The

entire scan is not atomic. Transactional locking will prevent

modifications to records we have seen (assuming serializable

transactions) but we do not know the form of concurrency

control used for records we have not yet delivered. So before

delivering a record from our vector, we check whether an

update has affected the yet unreturned subrange in our record

vector. If such an update has occurred, we reconstruct the

record vector accordingly.

D. Garbage Collection

A latch-free environment does not permit exclusive access

to shared data structures (e.g., Bw-tree pages), meaning one or

more readers can be active in a page state even as it is being

updated. We do not want to deallocate memory still accessed

by another thread. For example, during consolidation, a thread

“swaps out” the old state of a page (i.e., delta chain plus base

page) for a new consolidated state and requests that the old

state be garbage collected. However, we must take care not to

LPID Ptr

Page P
P

O

Q
Page Q

Page R

(a) Creating sibling page Q

LPID Ptr

Page P

P

O

Q

Page Q

Page R

Split ∆

CAS

(b) Installing split delta

LPID Ptr

Page P

P

O

Q

Page Q

Page R

Split ∆

CAS

Index entry ∆

(c) Installing index entry delta

Fig. 3. Split example. Dashed arrows represent logical pointers, while solid
arrows represent physical pointers.

deallocate the old page state while another thread still accesses

it. Similar concerns arise when a page is removed from the

Bw-tree. That is, other threads may still be able to access

the now removed page. We must protect these threads from

accessing reclaimed and potentially “repurposed” objects by

preventing reclamation until such access is no longer possible.

This is done by a thread executing within an “epoch”.

An epoch mechanism is a way of protecting objects be-

ing deallocated from being re-used too early [10]. A thread

joins an epoch when it wants to protect objects it is using

(e.g., searching) from being reclaimed. It exits the epoch when

this dependency is finished. Typically, a thread’s duration in

an epoch is for a single operation (e.g. insert, next-record).

Threads “enrolled” in epoch E might have seen earlier ver-

sions of objects that are being deallocated in epoch E. How-

ever, a thread enrolled in epoch E cannot have seen objects

deallocated in epoch E-1 because it had not yet started its

dependency interval. Hence, once all threads enrolled in epoch

E have completed and exited the epoch (“drained”), it is safe

to recycle the objects deallocated in epoch E. We use epochs

to protect both storage and deallocated PIDs. Until the epoch

has drained such objects cannot be recycled.

IV. BW-TREE STRUCTURE MODIFICATIONS

All Bw-tree structure modification operations (SMOs) are

performed in a latch-free manner. To our knowledge, this has

never been done before, and is crucial for our design. We first

describe node splits, followed by node merges. We then dis-

cuss how to ensure an SMO has completed prior to performing

actions that depend on the SMO. This is essential both to avoid

confusion in main memory and to prevent possible corrupt

trees should the system crash at an inopportune time.

A. Node Split

Splits are triggered by an accessor thread that notices a page

size has grown beyond a system threshold. After attempting

its operation, the thread performs the split.

The Bw-tree employs the B-link atomic split installation

technique that works in two phases [11]. We first atomically



install the split at the child (e.g., leaf) level. This is called a

half split. We then atomically update the parent node with the

new index term containing a new separator key and a pointer

to the newly created split page. This process may continue re-

cursively up the tree as necessary. The B-link structure allows

us to separate the split into two atomic actions, since the side

link provides a valid search tree after installing the split at the

child level.

Child Split. To split a node P , the B-tree layer requests

(from the cache layer) allocation for a new node Q in the

mapping table (Q is the new right sibling of P ). We then

find the appropriate separator key KP from P that provides a

balanced split and proceed to create a new consolidated base

state for Q containing the records from P with keys greater

than KP . Page Q also contains a side link to the former right

sibling of P (call this page R). We next install the physical

address of Q in the mapping table. This installation is done

without a CAS, since Q is visible to only the split thread.

Figure 3(a) depicts this scenario, where a new sibling page

Q contains half the records of P , and (logically) points to

page R (the right sibling of P ). At this point, the original

(unsplit) state of P is still present in the mapping table, and

Q is invisible to the rest of the index.

We atomically install the split by prepending a split delta

record to P . The split delta contains two pieces of information:

(1) the separator key KP used to invalidate all records within

P greater than KP , since Q now contains these records and

(2) a logical side pointer to the new sibling Q. This installation

completes the first “half split”. Figure 3(b) depicts such a

scenario after prepending a split delta to page P pointing to

its new sibling page Q. At this point, the index is valid, even

without the presence of an index term for Q in the parent node

O. All searches for a key contained within Q will first go to

P . Upon encountering the split delta on P , the search will

traverse the side link to Q when the search key is greater than

separator key KP . Meanwhile, all searches for keys less than

the KP remain at P .

Parent Update. In order to direct searches directly to Q,

we prepend an index term delta record to the parent of P and

Q to complete the second half split. This index delta contains

(1) KP , the separator key between P and Q, (2) a logical

pointer to Q, and (3) KQ, the separator key for Q (formerly

the separator directing searches to P ). We remember our path

down the tree (i.e. the PIDs of nodes on the path) and hence

can immediately identify the parent. Most of the time, the

remembered parent on the path will be the correct one and we

do the posting immediately. Occasionally the parent may have

been merged into another node. But our epoch mechanism

guarantees that we will see the appropriate deleted state that

will tell us this has happened. That is, we are guaranteed that

the parent PID will not be a dangling reference. When we

detect a deleted state, we go up the tree to the grandparent

node, etc., and do a re-traversal down the tree to find the

parent that is “still alive”.

Having KP and KQ present in the boundary key delta

is an optimization to improve search speed. Since searches

must now traverse a delta chain on the index nodes, finding

a boundary key delta in the chain such that a search key v

is greater than KP and less than or equal to KQ allows the

search to end instantly and follow the logical pointer down to

Q. Otherwise, the search continues into the base page, which is

searched with a simple binary search to find the correct pointer

to follow. Figure 3(c) depicts our running split example after

prepending the index entry delta to parent page O, where the

dashed line represents the logical pointer to page Q.

Consolidations. Posting deltas decreases latency when in-

stalling splits, relative to creating and installing completely

new base pages. Decreasing latency decreases the chance of

“failed splits”, i.e., the case that other updates sneak in before

we try to install the split (and fail). However, we eventually

consolidate split pages at a later point in time. For pages with

split deltas, consolidation involves creating a new base page

containing records with keys less than the separator key in the

split delta. For pages with index entry deltas, we create a new

consolidated base page containing the new separator keys and

pointers.

B. Node Merge

Like splits, node merges are triggered when a thread en-

counters a node that is below some threshold size. We peform

the node merge in a latch-free manner, which is illustrated in

Figure 4. Merges are decidedly more complicated than splits,

and we need more atomic actions to accomplish them.

Marking for Delete. The node R to be merged (to be

removed) is updated with a remove node delta, as depicted

in Figure 4(a). This stops all further use of node R. A thread

encountering a remove node delta in R needs to read or update

the contents of R previously contained in R by going to the

left sibling, into which data from R will be merged.

Merging Children.The left sibling L of R is updated with a

node merge delta that physically points (via a memory address)

to the contents of R. Figure 4(b) illustrates what L and R

look like during a node merge. Note that the the node merge

delta indicates that the contents of R are to be included in L.

Further, it points directly to this state, which is now logically

considered to be part of L. This storage for R’s state is now

transferred to L (except for the remove node delta itself). It

will only be reclaimed when L is consolidated. This turns what

had previously been a linear delta chain representing a page

state into a tree.

When we search L (now responsible for containing both

its original key space and the key space that had been R’s)

the search becomes a tree search which directs the accessing

thread to either L’s original page or to the page that it sub-

sumed from R as a result of the merge. To enable this, the

node merge delta includes the separator key that enables the

search to proceed to the correct node.

Parent Update. The parent node P of R is now updated

by deleting its index term associated with R, shown in Fig-

ure 4(c). This is done by posting an index term delete delta

that includes not only that R is being deleted, but also that L

will now include data from the key space formerly contained



LPID Ptr

L

P

R Page SPage L

S

Remove 

Node ∆

Page R

(a) Posting remove node delta

LPID Ptr

L

P

R Page SPage L

S

Remove 

Node ∆

Page R

Merge ∆

(b) Posting merge delta

LPID Ptr

L

P

R Page SPage L

S

Remove 

Node ∆

Page R

Merge ∆

∆ Delete Index 

Term for R

(c) Posting index term delete delta

Fig. 4. Merge example. Dashed arrows represent logical pointers, while solid
arrows represent physical pointers.

by R. The new range for L is explicitly included with a low

key equal to L’s prior low key and a high key equal to R’s

prior high key. As with node splits, this permits us to recognize

when a search needs to be directed to the newly changed part

of the tree. Further, it enables any search that drops through

all deltas to the base page to find the right index term by a

simple binary search.

Once the index term delete delta is posted, all paths to R

are blocked. At this point we initiate the process of reclaiming

Rs PID. This involves posting the PID to the pending delete

list of PIDs for the currently active epoch. R’s PID will not

be recycled until all other threads that might have seen an

earlier state of R have exited the epoch. This is the same epoch

mechanism we use to protect page memory from premature

recycling (Section III-D).

C. Serializing Structure Modifications and Updates

Our Bw-tree implementation assumes that conflicting data

update operations are prevented by concurrency contol that is

elsewhere in the system. This could be in the lock manager

of an integrated database system, a transactional component

of a decoupled transactional system (e.g., Deuteronomy [2]),

or finally, an arbitrary interleaving of concurrent updates as

enabled as by an atomic record store.

However, “inside” the Bw-tree, we need to correctly seri-

alize data updates with SMOs and SMOs with other SMOs.

That is, we must be able to construct a serial schedule for

everything that occurs in the Bw-tree, where data updates and

SMOs are treated as the units of atomicity. This is nontrivial.

We want to treat an SMO as atomic (think of them as system

transactions), and we are doing this without using latches that

could conceal the fact that there are multiple steps involved in

an SMO. One way to think about this is that if a thread stum-

bles upon an incomplete SMO, it is like seeing uncommitted

state. Being latch-free, the Bw-tree cannot prevent this from

happening. Our response is to require that such a thread must

complete and commit the SMO it encounters before it can

either (1) post its update or (2) continue with its own SMO.

For page splits, that means that when an updater or another

SMO would traverse a side pointer to reach the correct page,

it must complete the split SMO by posting the new index term

delta to the parent. Only then can it continue on to its own

activity. That forces the incomplete SMO to be “committed”

and to serialize before the interrupted action the thread had

started upon.

The same principle applies regardless of whether the SMO

is a split or a node merge. When deleting a node R, we

access its left sibling L to post the merge delta. If we find

that L is being deleted, we are seeing an in progress and

incomplete “earlier” system transaction. We need the delete

of R to serialize after the delete of L in this case. Hence

the thread deleting R needs to first complete the delete of

L. Only then can this thread complete the delete of R. All

combinations of SMO are serialized in the same manner. This

can lead to the processing of a “stack” of SMOs, but given

the rarity of this situation, it should not occur often, and is

reasonably straightforward to implement recursively.

V. CACHE MANAGEMENT

The cache layer is responsible for reading, flushing, and

swapping pages between memory and flash. It maintains the

mapping table and provides the abstraction of logical pages

to the Bw-tree layer. When the Bw-tree layer requests a page

reference using a PID, the cache layer returns the address in

the mapping table if it is a memory pointer. Otherwise, if

the address is a flash offset (the page is not in memory), it

reads the page from the LSS to memory, installs the memory

address in the mapping table (using a CAS), and returns the

new memory pointer. All updates to pages, including those

involving page management operations like split and page

flush involve CAS operations on the mapping table at the

location indexed by the PID.

Pages in main memory are occasionally flushed) to stable

storage for a number of reasons. For instance, the cache layer

will flush updates to enable the checkpointing of a transac-

tional log when the Bw-tree is part of a transactional system.

Page flushes also precede a page swapout, installing a flash

offset in the mapping table and reclaiming page memory in

order to reduce memory usage. With multiple threads flush-

ing pages to flash, multiple page flushes that need a correct

ordering must be done very carefully. We describe one such

scenario for node splits in this section.

To keep track of which version of the page is on stable

storage (the LSS) and where it is, we use a flush delta record,

which is installed at the mapping table entry for the page

using a CAS. Flush delta records also record which changes

to a page have been flushed so that subsequent flushes send

only incremental page changes to stable storage. When a page

flush succeeds, the flush delta contains the new flash offset

and fields describing the state of the page that was flushed.

The rest section focuses on how the cache layer interacts

with the LSS layer by preparing and performing page flushes

(LSS details covered in future work). We start by describing

how flushes to LSS are coordinated with the demands of a

separate transactional mechanism. We then describe the me-

chanics of how flushes are executed.



A. Write Ahead Log Protocol and LSNs

The Bw-tree is an ARS that can be included in a transac-

tional system. When included, it needs to manage the trans-

actional aspects imposed on it. The Deuteronomy [2] archi-

tecture makes those aspects overt as part of its protocol be-

tween transactional (TC) and data component (DC), so we

use Deuteronomy terminology to describe this functionality.

Similar considerations apply in other transactional settings.

LSNs. Record insert and update deltas in a the Bw-tree page

are tagged with the Log Sequence Number (LSN) of their op-

erations. The highest LSN among updates flushed is recorded

in the flush delta describing the flush. LSNs are generated by

the higher-level TC and are used by its transactional log.

Transaction Log Coordination. Whenever the TC appends

(flushes) to its stable transactional log, it updates the End of

Stable Log (ESL) LSN value. ESL is an LSN such that all

lower valued LSNs are definitely in the stable log. Periodically,

it sends an updated ESL value to the DC. It is necessary for

enforcing causality via the write-ahead log protocol (WAL)

that the DC not make durable any operation with an LSN

greater than the latest ESL. This ensures that the DC is “run-

ning behind” the TC in terms of operations made durable. To

enforce this rule, records on a page that have LSNs larger than

the ESL are not included in a page when flushed to the LSS.

Page flushes in the DC are required by the TC when it ad-

vances its Redo-Scan-Start-Point (RSSP). When the TC wishes

to advance the RSSP, it proposes an RSSPit to the DC. The

intent is for this to permit the TC to truncate (drop) the portion

of the transactional log earlier than the RSSP. The TC will

then wait for an acknowledgement from the DC indicating that

the DC has made every update with an LSN < RSSP stable.

Because these operations results are stable, the TC no longer

has to send these operations to the DC during redo recovery.

For the DC to comply, it needs to flush the records on every

page that have LSNs < RSSP before it acknowledges to the

TC. Such flushes are never blocked as the cache manager can

exclude every record with an LSN > ESL. Non-blocking is not

possible with a conventional update-in-place approach using a

single page-wide LSN .

To enable this non-blocking behavior, we restrict page con-

solidation (Section III-B) to include only update deltas that

have LSNs less than or equal to the ESL. Because of this, we

can always exclude these deltas when we flush the page.

Bw-tree Structure Modifications. We wrap a system trans-

action [3] around the pages we log as part of Bw-tree SMOs.

This solves the problem of concurrent SMOs that can result

from our latch-free approach (e.g., two threads trying to split

the same page). To keep what is in the LSS consistent with

main memory, we do not commit the SMO system transaction

with its updated pages until we know that its thread has “won”

the race to install an SMO delta record at the appropriate page.

Thus, we allow concurrent SMOs, but ensure that at most one

of them can commit. The begin and end system transaction

records are among the very few objects flushed to the LSS

that are not instances of pages.

B. Flushing Pages to the LSS

The LSS provides a large buffer into which the cache man-

ager posts pages and system transactions describing Bw-tree

structure modifications. We give a brief overview of this func-

tionality. Details will be described in another paper.

Page Marshalling. The cache manager marshalls the bytes

from the pointer representation of the page in main memory

into a linear representation that can be written to the flush

buffer. The page state is captured at the time it is intended to

be flushed. This is important as later updates might violate the

WAL protocol or a page split may have removed records that

need to be captured in LSS. For example, the page may be split

and consolidated while an earlier flush request for it is being

posted to the flush buffer. If the bytes for the earlier flush are

marshalled after the split has removed the upper order keys in

the pre-split page, the version of the page captured in the LSS

will not have these records. Should the system crash before

the rest of the split itself is flushed, those records will be lost.

When marshalling records on a page for flush, multiple delta

records are consolidated so that they appear contiguously in

the LSS.

Incremental Flushing. When flushing a page, the cache man-

ager only marshals those delta records which have an LSN

between the previously flushed largest LSN on that page and

the current ESL value. The previously flushed largest LSN

information is contained in the latest flush delta record on the

page (as described above).

Incremental flushing of pages means that the LSS consumes

much less storage for a page than is the case for full page

flushing. This is very valuable for a log structured store such

as our LSS for two reasons. (1) It means that a flush buffer

can hold far more updates across different pages than if the

entire state of every page were flushed. This increases the

writing efficiency on a per page basis. (2) The log structured

store cleaner (garbage collector) does not need to work as

hard since storage is not being consumed as fast. This reduces

the execution cost per page for the cleaner. It also reduces

the ”write amplification”, i.e. the requirement of re-writing

unchanged pages when the cleaner encounters them.

Flush Activity. The flush buffer aggregates writes to LSS up

to a configurable threshold (currently set at 1MB) to reduce

I/O overhead. It uses ping-pong (double) buffers and alternates

between them with asynchronous I/O calls to the LSS so that

the buffer for the next batch of page flushes can be prepared

while the current one is in progress.

After the I/O completes for a flush buffer, the states of the

respective pages are updated in the mapping table. The result

of the flush is captured in the mapping table by means of a

flush delta describing the flush, which is prepended to the state

and installed via a CAS like any other delta. If the flush has

captured all the updates to the page, the page is “clean” in

that there are no uncaptured updates not stable on the LSS.

The cache manager monitors the memory used by the Bw-

tree, and when it exceeds a configurable threshold, it attempts

to swap out pages to the LSS. Once a page is clean, it can be

evicted from the cache. The storage for the state of an evicted



0

2

4

6

8

10

12

2 4 8 16 32

O
p

e
ra

ti
o

n
s

/S
e

c
o

n
d

 (
M

)

Delta Chain Length

Synthetic Xbox

Fig. 5. Effect of Delta Chain Length

page is reclaimed via our epoch-based memory garbage col-

lector (Section III-D).

VI. PERFORMANCE EVALUATION

This section provides experimental evaluation of the Bw-

tree when compared to a “traditional” B-tree architecture (Berke-

leyDB run in B-tree mode) as well as latch-free skiplists. Our

experiments use a mix of real-world and synthetic workloads

running on real system implementations. Since this paper fo-

cuses on in-memory aspects of the Bw-tree, our experiments

explicitly focus on in-memory system performance. Perfor-

mance evaluation on secondary storage will be the topic of

future work.

A. Implementation and Setup

Bw-Tree. We implemented the Bw-Tree as a

standalone atomic record store in approximately

10,000 lines of C++ code. We use the Win32 native

InterlockedCompareExchange64 to perform the CAS

update installation. Our entire implementation was latch-free.

BerkeleyDB. We compare the Bw-tree to the BerkeleyDB

key-value database. We chose BerkeleyDB due to its good

performance as a standalone storage engine. Furthermore, it

does not need to traverse a query processing layer as done in

a complete database system. We use the C implementation of

BerkeleyDB running in B-tree mode, which is a standalone B-

tree index sitting over a buffer pool cache that manages pages,

representing a typical B-tree architecture. We use BerkeleyDB

in non-transactional mode (meaning better performance) that

supports a single writer and multiple readers using page-level

latching (the lowest latch granularity in BerkeleyDB) to max-

imize concurrency. With this configuration, we believe Berke-

leyDB represents a fair comparison to the Bw-tree. For all

experiments, the BerkeleyDB buffer pool size is large enough

to accommodate the entire workload (thus does not touch

secondary storage).

Skip list. We also compare the Bw-tree to a latch-free skip

list implementation [13]. The skip list has become a popular

alternative to B-trees for memory-optimized databases3 since

they can be implemented latch-free, exhibit fast insert perfor-

mance, and maintain logarithmic search cost. Our implemen-

tation installs an element in the bottom level (a linked list)

using a CAS to change the pointer of the preceding element.

3The MemSQL in-memory database uses a skip list as its ordered index [14]

Failed Splits Failed Consolidates Failed Updates

Dedup 0.25% 1.19% 0.0013%

Xbox 1.27% 0.22% 0.0171%

Synthetic 8.88% 7.35% 0.0003%

TABLE I

LATCH-FREE DELTA UPDATE FAILURES

It decides to install an element at the next highest layer (the

skip list towers or “express lanes”) with a probability of 1

2
.

The maximum height of our skip list is 32 layers.

Experiment machine. Our experiment machine is an Intel

Xeon W3550 (at 3.07GHz) with 24 GB of RAM. The machine

contains four cores that we hyperthread to eight logical cores

in all of our experiments.

Evaluation Datasets. Our experiments use three workloads,

two from real-world applications and one synthetic.

1) Xbox LIVE. This workload contains 27 Million get-set

operations obtained from Microsoft’s Xbox LIVE Prime-

time online multi-player game [15]. Keys are alpha-

numeric strings averaging 94 bytes with payloads av-

eraging 1200 bytes. The read-to-write ratio is approxi-

mately 7.5 to 1.

2) Storage deduplication trace. This workload comes from

a real enterprise deduplication trace used to generate

a sequence of chunk hashes for a root file directory

and compute the number of deduplicated chunks and

storage bytes. This trace contains 27 Million total chunks

and 12 Million unique chunks, and has a read to write

ration of 2.2 to 1. Keys are 20-byte SHA-1 hash values

that uniquely identify a chunk, while the value payload

contains a 44-byte metadata string.

3) Synthetic. We also use a synthetic data set that generates

8-byte integer keys with a 8-byte integer payload. The

workload begins with an index of 1M entries generated

using a uniform random distribution. It performs 42 mil-

lion operations with a read to write ratio of 5 to 1.

Defaults. Unless mentioned otherwise, our primary perfor-

mance metric is throughput measured in (Million) operations

per second. We use 8 worker threads for each workload, equal

to the number of logical cores on our experiment machine.

The default page size for both BerkeleyDB and the Bw-tree

is 8K (the skip list is a linked list and does not use page

organization).

B. Bw-Tree Tuning and Properties

In this section, we evaluate two aspects of the Bw-tree:

(1) the effect of delta chain length on performance and (2) the

latch-free failure rate for posting delta updates.

1) Delta chain length: Figure 5 depicts the performance

of the Bw-tree run over the Xbox and synthetic workloads

for varying delta chain length thresholds, i.e., the maximum

length a delta chain grows before we trigger page consol-

idation. For small lengths, worker threads perform consol-

idation frequently. This overhead cuts into overall system

performance. For the Xbox workload, search deteriorates for

sequential scans larger than four deltas. While sequential scans



10.40

3.83

2.84

0.56 0.66
0.33

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Xbox Synthetic Deduplication

O
p

e
ra

ti
o

n
s

/S
e

c
 (

M
)

BW-Tree BerkeleyDB

Fig. 6. Bw-tree and BerkeleyDB

over linked delta chains are good for branch prediction and

prefetching in general, the Xbox workload has large 100-byte

records, meaning fewer deltas will fit into the L1 cache during

a scan. The synthetic workload contains small 8-byte keys,

which are more amenable to prefetching and caching. Thus,

delta chain lengths can grow longer (to about eight deltas)

without performance consequences.

2) Update Failure in Latch-Free Environment: Given the

latch-free nature of the Bw-tree, some operations will inevitably

fail in the race to update page state. Table I provides the

failure rate for splits, consolidates, and record updates for

each workload. The record update failure rate (e.g., inserts,

updates, deletes) is extremely low, below 0.02% for all work-

loads. Meanwhile, the failure rates for the split and consoli-

date operations are larger than the update failures at around

1.25% for both the Xbox and deduplication workloads, and

8.88% for the synthetic workload. This is expected, since

splits and consolidates must compete with the faster record

update operations. However, we believe these rates are still

manageable. The synthetic workload failure rates represent

a worst-case scenario. For the synthetic data, preparing and

installing a record update delta is extremely fast since records

are extremely small. In this case, a competing (and more

expensive) split operation trying to install its delta on the same

page has a high probability of failure.

C. Comparing Bw-tree to a Traditional B-tree Architecture

This experiment compares the in-memory performance of

the Bw-tree to BerkeleyDB4, representing a traditional B-

tree architecture. Figure 6 reports the results for the Xbox,

deduplication, and synthetic workloads run on both systems.

For the Xbox workload, the Bw-tree exhibits a throughput of

10.4M operations/second, while BerkeleyDB has a throughput

of 555K operations/second, representing a speedup of 18.7x.

The throughput of both systems drops for the update-intensive

deduplication workload, however the Bw-tree maintains a 8.6x

speedup over BerkeleyDB. The performance gap is closer

for the synthetic workload (5.8x Bw-tree speedup) due to

the higher latch-free failure rates observed for the Bw-tree

observed in Section VI-B.2.

4We use BerkeleyDB’s memp stat function to ensure it runs in memory

Bw-tree Skip List

Synthetic workload 3.83M ops/sec 1.02M ops/sec

Read-only workload 5.71M ops/sec 1.30M ops/sec

TABLE II

BW-TREE AND LATCH-FREE SKIP LIST

In general, we believe two main aspects lead to the supe-

rior performance of the Bw-tree: (1) Latch-freedom: no thread

blocks on updates or reads on the Bw-tree, while BerkeleyDB

uses page-level latching to block readers during updates, re-

ducing concurrency. The Bw-tree executes with a processor

utilization of about 99% while BerkeleyDB runs at about 60%.

(2) CPU cache efficiency: since the Bw-tree uses delta records

to update immutable base pages, the CPU caches of other

threads are rarely invalidated on an update. Meanwhile, Berke-

leyDB updates pages in place. An insert into a typical B-

tree page involves including a new element in vector of key-

ordered records, on average moving half the elements and

invalidating multiple cache lines.

D. Comparing Bw-tree to a Latch-Free Skip List

We also compare the performance of the Bw-tree to a latch-

free skip list implementation. The skip list provides key-ordered

access with logarithmic search overhead, and can easily be

implemented in a latch-free manner. For these reasons, it is

starting to receive attention as a B-tree alternative in memory-

optimized databases [14]. The first row of Table II reports the

results of the synthetic workload run over both the Bw-tree

and the latch-free skiplist. The Bw-tree outperforms the skip

list by a factor of 3.7x. To further investigate the source of the

Bw-tree performance gain, we ran both systems using a read-

only workload that performs 30M key lookups on an index

of 30M records. We report these results in the second row of

Table II, showing the Bw-tree with a 4.4x performance advan-

tage. These results suggest the Bw-tree has a clear advantage

in search performance. We suspect this is due to the Bw-tree

having better CPU cache efficiency than the skip list, which

we explore in the next section.

E. Cache Performance

This experiment measures the CPU cache efficiency of the

Bw-tree compared to the skip list. We use the Intel VTune

profiler5 to capture CPU cache hit events while running the

read-only workload on each system. The workload was run

single-threaded in order to collect accurate statistics. Figure 7

plots the distribution of retired memory loads over the CPU

cache hierarchy for each system. As we expected, the Bw-tree

exhibits very good cache efficiency compared to the skip list.

Almost 90% of its memory reads come from either the L1

or L2 cache, compared to 75% for the skip list. We suspect

the Bw-tree’s search efficiency is the primary reason for this

difference. The skip list must traverse a physical pointer before

every comparison to traverse to the next “tower” or linked list

record at a particular level. This can cause erratic CPU cache

behavior, especially when branch prediction fails. Meanwhile,

5http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bw-tree Skiplist

L1 hits L2 hits L3 hits RAM

Fig. 7. Cache efficiency

Bw-tree search is cache-friendly since most of its time is spent

performing binary search on a base page of keys compacted

into a contiguous memory block (a few deltas may be present

as well). This implies the Bw-tree will do much less pointer

chasing than the skip list.

The cache friendliness of the Bw-tree becomes clearer when

we consider the set of nodes accessed in each data structure

up to the point of reaching the data page. Over all possible

search pathways, this is precisely the set of internal nodes in

the Bw-tree, which is 1% or less of the occupied memory. For

the skip list, this is about 50% of the nodes. So, for a given

cache size, more of the memory accesses involved in a search

hit the cache for Bw-tree over skip list.

VII. RELATED WORK

We have benefitted from prior work and in some cases have

built upon it.

A. B-trees

Anyone working with B-trees owes a debt to Bayer and

McCreight [16]. The variant that we use is the B+tree [9]. We

stretch the meaning of “page-oriented” by exploiting elastic

pages, in discontiguous pieces. The notion of elastic pages

evolved from the hashed access method record lists used by

SkimpyStash [8]. Like SkimpyStash, we consolidate the dis-

contiguous pieces of a “page” when we do garbage collection.

B. Latch Free

Until our work, it was not clear that B-trees could be made

lock or latch-free. Skip lists [13] serve as an alternative latch-

free “tree” when multiple threads must access the same page.

Partitioning is another way to avoid latches so that each thread

has its own partition of the key space [17], [18]. The Bw-tree

avoids the overhead of partitioning by using the compare and

swap (CAS) instruction for all state changes, including the

“management” state changes, e.g., SMOs and flushes

C. Flash Based, Log Structured

Early work with flash storage exploited in-page logging

[19], placing log records near a B-tree page instead of updating

the page “in-place” which would require an erase cycle. While

our delta records resemble somewhat in-page log records, they

have nothing to do with transactional recovery. We view them

not as log records, but as the new versions of the records.

Transactional log records, if they exist at all, are elsewhere.

We gain our latch-free capability from these deltas as well.

We have treated our flash SSD as a generic storage device.

Hence, we have not tried to exploit parallelism within it, as

done by [20]. Exploiting this parallelism might well provide

even higher performance than we have achieved thus far.

Log structuring was first applied to file systems [12]. But

the approach is now more widely used for both disks and as

the translation layer for flash. In our system, we use solid state

disks, i.e. flash based devices that are accessed via the tradi-

tional I/O interface and use a translation layer. Despite this,

we implemented our own log structured store. This enabled us

to pack pages together in our buffer so that no empty space

exists on flash. Further, it permitted us to blur the distinction

between a page store and a record store. This reduces even

further the storage consumed in flushing pages. Storage sav-

ings improve LSS performance as garbage collection, which

consumes cycles, amplifies writes, and wears out flash, is the

largest cost in log structuring.

D. Combination Efforts

Earlier indexes have used some of the elements above, though

not in exactly the same way. Hyder [21] uses a log structured

store built on flash memory. In Hyder, all changes propagate

to the root of the tree. The changes at the root are batched, and

the paths being included are compressed. Hyder, at least in one

mode, supports transactions directly, with their log structured

store used as both the database and the log. We do not do that,

relying instead on a transactional component when transaction

support is desired.

BFTL [22] is another example of an index implemented

over log structured flash. It is perhaps the closest to the Bw-

tree among earlier work in how it’s b-tree manages storage. It

has a mapping table, called a node translation table, and writes

deltas (in our terminology) to flash. It also has a process for

making the deltas contiguous on flash when the number of

deltas gets large. However, the BTFL b-tree does not handle

multi-threading, concurrency control and cache management,

topics that we view as crucial to providing high throughput

performance for an atomic record store.

VIII. DISCUSSION

A. Performance Results

Our Bw-tree implementation achieves very high performance.

And it is sufficiently complete that we can measure normal

operation performance reliably and consistently. We exploit

the database ability to cache updates until it is convenient to

post them to stable storage. This is a key to database system

performance, and is explicitly enabled via control operations

in the Deuteronomy architecture’s interface between TC and

DC. However, exploiting it, as we have done, means that one

needs to be careful in comparing Bw-tree performance with

atomic record stores that immediately make update operations

stable.



B. Log Structured Store

We have focused this paper on the Bw-tree part of our

atomic record store (ARS) or data component (DC). Thus, we

have not discussed issues related to managing LSS. A latch-

free environoment is very challenging for many elements of

data management systems, including storage management as

done by our LSS. We will describe details of how the LSS is

implemented in another paper. Here we want to provide a few

highlights of areas needing attention.

• We manage our flush buffer in a latch-free way. To our

knowledge this has not been done before. This means that

there is no thread blocking when items are posted to the

buffer.

• We use system transactions to capture Bw-tree structure

modification operations (SMOs). This ensures that each

SMO can be considered atomic during recovery.

• We must keep main memory state consistent with the

state being written to LSS, non-trivial without latches.

We gave much thougth to this subtle aspect in designing

the interface to the LSS.

C. In-Page Search Optimization

Our excellent performance results were achieved without

tuning search performance using a cache sensitive page search

technique [23], [24]. We expect further improvement in Bw-

tree search performance as a result of implementing techniques

like these. We have no concerns about update performance, as

we would continue to use our delta record technique for that,

with all of its advantages.

D. Conclusion

We have designed and implemented the Bw-tree such that

it can exist as a free standing atomic record store, be a data

component in a Deuteronomy style system, or be embedded in

a traditional database system. We have followed the classic ar-

chitecture of access method layered on cache manager layered

on storage manager. But at every level, we have introduced

innovations that stretch prior methods and tailor our system

for the newer hardware setting of multi-core processors and

flash storage.

Our innovations, e.g. elastic pages, delta updates, shared

read-only state, latch-free operation, and log structured stor-

age, eliminate thread blocking, improve processor cache effec-

tiveness, and reduce I/O demands. These techniques should

work well in other settings as well, including hashing and

multi-attribute access methods.

We were acutely aware that we were implementing a com-

ponent that had been successfully implemented any number

of times. In such a case, when all is said and done, it is

system performance that determines whether the effort bears

fruit. While we were “confident” in our design choices, we

were nonetheless pleasantly surprised by how good the results

were. Supporting millions of operations per second on a single

“vanilla” cpu offers strong confirmation for our design choices.

That we out-performed very good competing approaches by

such a large margin was “icing on the cake”.

REFERENCES

[1] “MongoDB. http://www.mongodb.org/.”

[2] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao, “Deuteron-
omy: Transaction Support for Cloud Data,” in CIDR, 2011, pp. 123–133.

[3] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling, “Unbundling
Transaction Services in the Cloud,” in CIDR, 2009, pp. 123–133.

[4] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. B. Lomet,
“AlphaSort: A Cache-Sensitive Parallel External Sort,” VLDB Journal,
vol. 4, no. 4, pp. 603–627, 1995.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on
a Modern Processor: Where Does Time Go?” in VLDB, 1999, pp. 266–
277.

[6] “Amazon DynamoDB. http://aws.amazon.com/dynamodb/.”

[7] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceedings

of SYSTOR 2009: The Israeli Experimental Systems Conference, ser.
SYSTOR ’09, 2009, pp. 10:1–10:9.

[8] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM Space Skimpy
Key-Value Store on Flash-based Storage,” in SIGMOD, 2011, pp. 25–36.

[9] D. Comer, “The Ubiquitous B-Tree,” ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, 1979.

[10] H. T. Kung and P. L. Lehman, “Concurrent manipulation of binary search
trees,” TODS, vol. 5, no. 3, pp. 354–382, 1980.

[11] P. L. Lehman and S. B. Yao, “Efficient Locking for Concurrent Opera-
tions on B-Trees,” TODS, vol. 6, no. 4, pp. 650–670, 1981.

[12] M. Rosenblum and J. Ousterhout, “The Design and Implementation of a
Log-Structured File System,” ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26–52, 1992.

[13] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,”
Commun. ACM, vol. 33, no. 6, pp. 668–676, 1990.

[14] “MemSQL Indexes.
http://developers.memsql.com/docs/1b/indexes.html.”

[15] “Xbox LIVE. http://www.xbox.com/live.”

[16] R. Bayer and E. M. McCreight, “Organization and Maintenance of Large
Ordered Indices,” Acta Inf., vol. 1, no. 1, pp. 173–189, 1972.

[17] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki, “PLP: Page Latch-free
Shared-everything OLTP,” PVLDB, vol. 4, no. 10, pp. 610–621, 2011.

[18] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “PALM: Parallel
Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-
Core Processors,” PVLDB, vol. 4, no. 11, pp. 795–806, 2011.

[19] S.-W. Lee and B. Moon, “Design of Flash-Based DBMS: An In-Page
Logging Approach,” in SIGMOD, 2007, pp. 55–66.

[20] H. Roh, S. Park, S. Kim, M. Shin, and S.-W. Lee, “B+-tree Index
Optimizations by Exploiting Internal Parallelism of Flash-based Solid
State Drives,” PVLDB, vol. 5, no. 4, pp. 286–297, 2012.

[21] P. A. Bernstein, C. W. Reid, and S. Das, “Hyder - a transactional record
manager for shared flash,” in CIDR, 2011, pp. 9–20.

[22] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An Efficient B-tree Layer Im-
plementation for Flash-Memory Storage Systems,” ACM Trans. Embed.

Comput. Syst., vol. 6, no. 3, July 2007.

[23] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin, “Fractal
Prefetching B±Trees: Optimizing Both Cache and Disk Performance,”
in SIGMOD, 2002, pp. 157–168.

[24] D. B. Lomet, “The Evolution of Effective B-tree: Page Organization and
Techniques: A Personal Account,” SIGMOD Record, vol. 30, no. 3, pp.
64–69, 2001.


