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Abstract. Camera sensors constitute an information rich sensing modal-
ity with many potential applications in sensor networks. Their effective-
ness in a sensor network setting however greatly relies on their ability
to calibrate with respect to each other, and other sensors in the field.
This paper examines node localization and camera calibration using the
shared field of view of camera pairs. We compare two approaches from
computer vision and propose an algorithm that combines a sparse set
of distance measurements with image information to accurately local-
ize nodes in 3D. We evaluate our algorithms in a real testbed using a
COTS camera interfaced to our sensor nodes. Sensors identify themselves
to cameras using modulated LED emissions. Our indoor experiments
yielded a 2-7cm error in a 6x6m room. Our outdoor experiments in a
30x30m field resulted in errors 20-80cm, depending on the method used.

1 Introduction

The use of low-cost imagers in sensor network applications is imminent. Small
low-power imagers offer an information rich sensing modality that can detect fea-
tures from a scene, perform visual confirmation and complement other sensing
modalities. Because of these properties, we believe that camera enabled sensor
networks will find numerous applications in everyday life. An intelligent camera-
enabled sensor network can be used for understanding and creating behaviors in
security, safety and entertainment applications. Imagine a sensor network that
can seamlessly identify the formation of groups, the attack on a person or the
removal of assets from a building. These are actions that could be seamlessly
processed by camera-enabled sensor networks that could also provide a specific
service as a response. With these application, it is easy to argue that smart
cameras also have their limitations and should therefore function in close coop-
eration with other sensors. Other, non-imaging sensors offer a source of diversity
and have potential for simplifying some of the vision tasks. To make this col-
laboration possible, one of the first problems that needs to be considered is the
calibration of multiple camera views with respect to each other, and the local-
ization of sensor nodes. The former will allow the combination of information
from multi-camera views and the latter will allow cameras to collaborate with
other non-imager sensors.



In this paper we provide an assessment of this problem by evaluating two
complementary algorithms in real sensor network, where a fraction of the nodes
are equipped with a COTS camera module, similar to the one used in cellphones.
To experiment with camera related sensor networks we have build a camera mod-
ule on top of a sensor node (Fig. 1a)that is capable of taking snapshots of a scene
and perform some basic feature-extraction functionalities such as sobel edge de-
tection (shown in Fig. 1b), motion detection, and direction of motion. We used
these modules in an indoor and an outdoor deployment to collect data to com-
pare two complimentary algorithms that use overlapping fields of view between
pairs of cameras to localize nodes and calibrate cameras. We also propose an al-
gorithm that uses a set of sparse distance measurements to refine locations. Our
results show that a few simple deployment considerations and the use of imagers
can result in lightweight, yet very accurate 3D localization that bypasses some of
the challenges posed by rigidity constraints in the case of distance only localiza-
tion [2]. Furthermore, as our experimental evaluation verified, the requirement
of having distance measurements can be entirely eliminated by having 3 LEDs
form a triangle pattern with known sides on the surface of the node or by simply
making nodes to have a specific shape with known dimensions. This distance
information is required since cameras cannot perceive depth. Without distance
information, locations and translations can only be computed up to scale.

The approaches presented here are suitable both for indoor scenarios as well
as for scenarios that need to localize dense networks of hundreds of nodes. Fur-
thermore, although most of our discussion presents our work in the context of
our testbed, the concepts discussed here can be applied in a broader set of de-
ployments. Instead of using camera nodes, one could use a digital camera to
photograph a sensor field from multiple viewpoints and use the image informa-
tion to localize all the nodes in 3D. Instead of using LEDs to identify nodes, one
could use nodes of a specific shape or color. Our approach would also be inter-
pretable with some other approaches such as the one used with MIT Crickets in
[7]. Tt could also be applied on other platforms such as Cyclops [11].

Our work builds up on concepts from computer vision but it is also bears a
few differences. We perform an in-situ evaluation in the context of sensor net-
work applications based on the actual camera technology we intent to use. We
examine the feasibility of solving the problem using small sensor nodes, and we
propose an algorithm for reconstructing node coordinates that utilizes deploy-
ment information that is more lightweight that the stratification approaches used
in computer vision.

2 Problem Statement

Our presentation in this paper deals with computing the relative translation and
rotation matrices between cameras and localizing nodes in 3D, using informa-
tion between camera views. A practical solution to this problem can easily be
extended to multihop scenarios by using the translation and rotation information
among adjacent cameras. This process is known as transfer in computer vision.



With transfer, the coordinate system of any camera i, can be translated to the
the coordinate system of any other camera j if there is a path of cameras from
i to j, on which the relative rotations and translations, among adjacent camera
pairs are known. Assuming that transfer is possible because camera nodes can
communicate with each other, we state our problem as follows:

Given a network of N sensor nodes t1,ts, ts...ty where a subset m < N nodes
are equipped with cameras, compute all possible node locations and the relative
camera translations and rotations with respect to a local coordinate system. As
we will explain in section 5, the setup we investigate requires some distance
information. This can be provided with a distance measurement system on the
nodes or by properly placing a set of LEDs in a special pattern on the surface
of each node.

Section 6 provides an overview of the multihop localization algorithm, but
the rest of the discussion and our evaluation focuses on how to exploit camera
epipoles when two cameras have one or more nodes in their shared field of view.
In such a setup each camera node will compute node positions with respect
to its own coordinate system. The knowledge of the relative camera rotations
and translations will allow the transformation of coordinates, to either coordi-
nate system. Two algorithms are examined, measured epipoles and estimated
epipoles. Camera coverage and mobility issues are discussed in section 8.

Fig.1. a) XYZ sensor node with OV camera module, b) an image acquired by the
camera module after sobel edge detection, c¢)deployment scenario

3 Related Work

The reconstruction of 3D imagery from images is a problem treated in computer
vision for several years. In 1992 the work done by Tomasi and Kanade in [16] has
proposed a way for reconstructing a scene and estimating camera parameters
and feature point locations using matrix factorization. This initial work was
performed under orthographic projection, and more recent work has treated the
paraperspective case [8]. A more complete solution that compensates for the



camera depth effects has been described in [13]. More recently, the works of
Mantzel et. al. [5] and Devarajan et. al. [1] have begun to consider the problem
of camera calibration in a networked setup. Both approaches have examined
the problem from a computer vision perspective without the consideration of
other sensor node capabilities. The former has proposed an iterative approach
for localizing cameras (position, relative translation and orientation up to a
scale) using linear relationships and the DLT camera calibration developed by
Faugeras in [6].The work of Devarajan et.al. builds upon, more computatonally
demanding factorization methods proposed by Sturm and Triggs in [13]. Cameras
form microclusters with other nodes in the same coordinate system. The camera
localization algorithm requires 4 cameras having at least 12 feature points in
their common field of view. The algorithm also provides a scheme for aligning
image frames.

Camera calibration using mobile entities such as people has also been con-
sidered in the computer vision community. Taylor et. al. at MIT [15] considers
camera calibration for cases of non-overlapping field of views. In sensor networks,
the problem of ad-hoc node localization has been treated in great detail. Our
work is more related to fine grained localization schemes such as the ones that
have been demonstrated in MIT’s Cricket system [9,10] and UCLA’s AHLoS
system [12]. In fact, many of the concepts presented here will be interopera-
ble with the Cricket localization schemes recently presented in [7] or any other
similar scheme.

4 Sensor Assisted Camera Localization

4.1 Background

The extrinsic camera calibration parameters of interest are a rotation matrix
R3«3 and a translation vector T3x1, also referred to as the extrinsic calibration
parameters. In the absolute sense, the two matrices R and T represent the camera
coordinates with respect to a 3-D world origin O. In general, our discussion about
cameras will deal with three types of coordinates. World coordinates w are the
coordinates given with respect to a real 3-D world origin. The camera also has its
own camera centric coordinates w that can also be expressed in world coordinates
with (1).

w=Rw+T (1)

The image coordinates u,v observed by the camera, can also be related to
the camera centric coordinate system though the following equations.
U Wy U Wy
fowf w.
where f is the focal length of the camera. The above expressions can be obtained
by considering the ratio of triangles as shown in figure 2.

(2)
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Fig. 2. a) Camera diagram. Camera coordinate system z-axis is piercing the normalized
(u, v) image plain in the image plain origin, b)epipoles between a pair of cameras .

Our work uses the epipoles between pairs of cameras. The epipoles between
a pair of cameras are defined as the points where a straight line connecting the
two camera centers intersect the image plane of each camera [3] as shown in
Figure 2.

Throughout the paper we use the following notation:

lap - distance between nodes A and B

Vgb - Unit vector from A to B

Ug, Vg - X,y coordinates of an object on the image plane of camera A.

4.2 Localization Based on Two Camera Views

We now examine two methods for extracting camera epipoles, direct observation,
and fundamental matrix estimation.

Direct Epipole Observation - Measured Epipoles(ME) : If a tag C is ob-
served by two cameras A and B that can also observe each other, the distances
between A, B, C' can be determined up to a scale. This was demonstrated in
[14].

If cameras A and B can observe each other and a tag C', then we can derive
the unit vectors vap, Vac, Vba (see Fig. 3), and vp.. From these we can derive the
normalized versions ng = Vap X Vae and Np = Vpg X Vpe. Note that vep, Vpa, Ne and
nyp are related by a rotation matrix Ry, the relative orientation matrix between
cameras A and B.

Vap = —RapUa

Ng = —Rapnyp

From the two perpendicular unit vectors v, and n,, we can construct the or-
thonormal matrices R, and Rp. R, = [vab Ng (Vap X Ng )] and R, = [vba —np (Vpa X nb)]
Substituting we get the relative orientation as

Rap = Ry (Rb)T (3)



Fig. 3. Measured epipole: A tag can be observed by 2 cameras that can also observe
each other

from this we can extract the following linear system

labvab + lbc(Rabvbc) - lcavac =0 (4)

Solving these equations we can get l,p, l4c and lp. up to a scale. Since we also
know the distance l,;, we can solve to Euclidian scale.

Extracting the Epipoles from the Fundamental Matrix - FEstimated
Epipoles (EE) : If two cameras are not facing each other, then the epipoles
cannot be directly observed. Nonetheless, the camera epipoles can still be deter-
mined if the camera observations can provide enough information to compute the
fundamental matrix between two cameras [4]. Although this can be done with a
minimum of 5 nodes in the common field of view of two cameras, the resulting
problem is highly non-linear and very difficult to solve. In our implementation
we chose to use the widely used normalized eight-point algorithm proposed by
Hartley in 1997 [3].

The eight-point algorithm uses eight or more points in the common field of
view of a pair of cameras to estimate the fundamental matrix F' between them.
F is defined by the equation

wWTFu=0

u’ and u are corresponding feature points in the images of the two cameras. The
epipoles of the two cameras can be then extracted from F. For any point =z,
the epipolar line I’ = Fz contains the epipole ¢’. Thus ¢/T(Fz) = (eI F)z =0
for all z. From this it follows that ¢/F = 0 and Fe = 0, thus the epipoles of
the two cameras, ¢/ and e are the left and right null vectors of I’ respectively
[4]. The estimation of both camera’s epipoles allows us to compute the rotation
between the two cameras and the distances from both cameras to all the nodes



up to a scale using the formulation described in the previous subsection. The
only difference in this case is that instead of using the measured epipoles, as in
ME, we use the estimated, from the fundamental matrix, epipoles.

5 Optimized Estimated Epipoles (OEE)

The resulting epipole estimates are noisy and thus will provide noisy distance
estimates. An illustrative example of the error based on our testbed measure-
ments is shown in Fig. 4 . The figure shows the distance error ratio for ground
truth (GT), ME and EE when the distances between the cameras A and B
and the nodes are computed (by equation 4). The figure shows that ME pro-
duces accurate measurements comparable to ground truth while EE has noisy
measurements. Furthermore note that the error from EE at the two cameras is
complimentary. If a distance between camera A and a node is overestimated then
the distance between the same node and camera B will be underestimated and
vice-versa. This is of course an artifact of the lightweight algorithm we use. It
does however suggest that refinement is possible by attempting to match the two
camera views that have complimentary error as shown in Fig. 5. The alternative
is to use stratification, a much more complex algorithm from computer vision
[4], that is not suitable for small sensor nodes.
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Fig. 4. Estimated distances between two camera nodes and other observed nodes. GT
- Ground truth, EE - estimated epipoles, ME - measured epipoles
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To reduce this error, we formulate a more constrained optimization problem,
where the distances between the observed nodes and the camera nodes are esti-
mated simultaneously. To enforce matching views between the cameras, we also
consider the additional constraints that the pairwise distances between all the
nodes observed by the two cameras should be equal from the view point of both
cameras. Consider the scenario in Figure 5 with cameras A and B and observed
nodes 7 and j. The distance /;; can be estimated by both cameras as
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Fig. 5. Estimated locations using an optimized version of the distances in Fig. 4

Fig. 6. Imposing the constraint that two cameras should agree on the [;; estimate

Alij = llaiVai — lajvas|

(5)

Blij = [llbive; — lnjoss]|

If we assume that some of the l;; distances are known, we can impose these
as constraints. The rest of the analysis is identical for both cameras, therefore we
will focus on camera A. The required camera-to-node distances can be estimated
up to a scale with respect to camera A’s view point as:

lapVap + lbi(Rabvbi) — laiVai = 0

_ (6)
labVab + lbi (Rapvbs) — lajvaj = 0

As it was described in the previous section, in the case of the estimated
epipoles method(EE), the computed distances from the camera to the nodes will
be erroneous. These erroneous distances can be refined if a subset of distances



between the nodes seen by the camera is known. Assuming that n distances
di,j,, v =1,2,...,n are known, the following equations should hold:

where z is an index running over all n known edges and i;, j, are the nodes
connected by the z'* edge. In order to refine the distance estimates l4i, and
lajz based on the known n distances we would need to minimize the following
function:

L=min Y (di,j, — llai, Vai, — laj, Vaj.||)? (8)
xr

Since z is running over all n known distances, function L is basically a set of n
equations where the number of unknowns depends on the known edges. If all the
n known edges are independent® the number of variables is 2n because in that
case each edge (i,7) would involve two unique unknowns: l,; and l,;. Since the
number of equations is less than the number of unknowns the minimization of
function L is impossible. However, if different known edges share common nodes
then the minimization of L is possible. The simplest case, where the minimum
number of edges is needed and function L can be minimized, is when all the
distances among three nodes are known. In other words, when all the edges of a
triangle that is formed by three nodes are known the set of equations represented
by L can be solved. Each edge of the triangle provides an equation giving a total
of 3 equations. For each node in the triangle there is only one unknown. Therefore
the number of unknowns is equal to the number of equations and the distances
from camera A to the nodes forming the triangle can be refined. This set of
equations is a non-linear set of equations that can be solved with an Extended
Kalman Filter(EKF) or another gradient descend method.

Note that any other closed geometric shape (square, pentagon, hexagon etc)
could be used in the optimization process. We use triangles because they require
the minimum number of known distances (only 3) and therefore they require
the minimum number of local information. Therefore based on local triangles
we can optimize the distances between the cameras and the non-camera nodes
with respect to the camera’s coordinate system. After the refinement of the
distances between the camera nodes and the non-camera nodes, the rotation
matrix between two camera nodes with overlapping fields of view can be refined
using equation 6 and the already refined distances.

The preceding ME, EE and OEE algorithms provide us with a means of
bootstrapping a coordinate system and also computes the relative rotation and
translation between a pair of cameras. Next section shows how these two com-
ponents can be applied on a distributed localization algorithm.

! Two edges are independent if they do not share any common nodes
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6 Multihop Localization Algorithm Overview

Although our focus in this paper is on how to perform calibration based on
two camera views, we briefly describe an example of a distributed localization
algorithm. This algorithm assumes the existence of a coordinate transformation
service that runs in the background and distributes the rotations and transfor-
mations between pairs of cameras so that nodes can be localized on demand in
multiple coordinate systems, using transfer.

Immediately after deployment(or when triggered), each node broadcasts a
list of IDs for all the nodes it can observe to its radio neighbors. The camera
nodes processes these broadcasts and creates a vision graph that connects camera
nodes that have one or more nodes in their shared field of view. The same
information also allows each camera node to identify which other nodes can use
its observations to run the ME or EE algorithm. Once a camera node identifies
these nodes, it forwards them the observations (node id and image coordinates)
for the observed nodes in their shared field of view.

After this phase, each camera node has the required observations to bootstrap
its local coordinate system by running ME or OEE. ME and OEE provide a
distance(magnitude) and a vector(direction) for each node they consider. This
allows the camera node to estimate the coordinates of each of the considered
nodes in its own coordinate system. The relative rotation between the two nodes
is also computed, and its passed to the coordinate transformation service. At
this point the coordinate transformation service is also notified to check if the
new information generated will allow computing camera transformations from
other nodes.

If a new node appears in a camera’s field of view, the camera repeats a
similar process to discover if any of its neighbors can observe the same node.
Depending on the number of nodes available in the shared field of view each
camera node may execute ME, EE or simply compute the node’s location based
on previously computed rotation information. Do to space limitations, the details
and evaluation of the multihop localization and the coordinate transformation
service are omitted in this paper. These will be treated in a subsequent paper.

7 Evaluation

The evaluation of the the ME, EE and OEE algorithms is performed on real
measurements obtained from an indoor and outdoor dataset collected using our
camera enabled sensor nodes. Each node is equipped with an extension board
carrying a COTS OV7649 camera module from OmniVision. The node processor
can acquire frames from the camera and perform some basic feature extraction,
such as sobel edge detection, differencing to detect motion and LED identifi-
cation. All nodes also carry a Lumex CCIl-CRS10SR omnidirectional LED with
an axial intensity of 40 millicandellas. In our lab setup, the cameras nodes can
clearly observe these LEDs for distances up to 4 meters. In our tests, camera
nodes can uniquely identify the nodes using an asynchronous protocol which can
read the node id of each node by toggling the LED to send bits across.
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Using this platform we acquired 2 datasets, one indoor and one outdoor.
The indoor scheario was comprised of 2 camera nodes and 16 non-camera nodes
identified with blinking LEDs. The two camera nodes were placed at different
heights and angles with respect to the non-camera nodes yielding four different
datasets. For the outdoor scenario, we placed 80 bright orange postit nodes in
an outdoor plaza next to our building. In this outdoor test we were interested in
the accuracy and range of our system, and we assumed that the correspondences
for each post it node were known 2. The layout of the outdoor scenario is shown
in Fig 7.

128106
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Distance error [mm]
.
&

Normalized Pixel Area x10°

(b)

Fig. 7. a) Characterization scenario using 8-tags and 2 camera nodes, b) Error across
different resolutions

Before evaluating our algorithms, we also verified that the error varies linearly
with camera resolution. We verified this with a characterization of the measure-
ment error across four different camera resolutions: 640 x 480 (VGA), 352 x 288
(CIF), 240 x 180, and 128 x 96 (SQCIF). Our evaluation was done using the ME
method using a topology of two camera nodes and 8 tags as shown in Figure 7a.
The maximum error was 3.32 cm in the lowest resolution. Figure 7b describes the
measurement error as a function of the normalized pixel area for each resolution,
as computed using the pairwise distance measurements. With the exception of
the VGA resolution, the error follows a linear trend y = 2.8-10°x+ 2. This result
verifies our intuition that error scales with resolution and also indicates that the
lens distortion effects are almost negligible.

7.1 ME, EE, OEE Evaluation

The perfomance of the ME, EE and OEE algorithms in the case of one of the in-
door experiments can be seen in Figure 9. The accuracy of the ME method shows
that the camera is a very reliable measuring modality. On the other hand, the
poor performance of the EE algorithm shows that the estimates of the epipoles

2 The image correspondences can be found by methods from computer vision not
described here
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Fig. 8. Layout of the outdoor setup. Camera node pairs that can run ME are connected
with solid lines and camera pairs that can run EE and REE are connected with dotted
lines. The units are in cm.
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Fig. 9. Estimated distances between two camera nodes and other observed nodes for
the indoor experiment. GT - Ground truth, OEE - optimized estimated epipoles, EE -

estimated epipoles. All distances are in cm.
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are erroneous and therefore unreliable. However, as it can be seen in Figure 9 the
OEE method proposed in this paper reduces drastically the error and performs
almost equally well to the ME method.

The drastic reduction in the error in the case of the OEE method can be
seen better in Figures 10 and 11 where the empirical CDF of the node-to-node
distance error is shown. In the indoor setup, EE reports an error of 60cm with
probability 90% while OEE reports an error of 7cm with the same probability.
Given that the average node-to-node distance in the indoor setup is approxi-
mately 85¢m the OEE algorithm performs fairly well. The ME algorithm has
the best performance reporting an error of 2ecm with 90% probability. Figures 10
and 11 show very similar results for the outdoor experiment. Again, ME has the
best performance(20cm error with 90% probability) but OEE performs compara-
bly well reporting an error of 60cm with 90% probability given that the average
node-to node distance is approximately 297c¢m. In the case of the outdoor setup
a more detailed view of the performance of all the methods can be seen in Figure
12.
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Fig. 10. Empirical CDF for node to node distance estimates a) all indoor scenarios
with optimized EE, b) all outdoor scenarios with optimized EE

To compare our results to other approaches we also evaluate the estimated
internode distance error with respect to the follow two metrics:

N A~
P=2 "%
=1

and

(10)

N is the number of pairwise distances, [; are the measured distances and
l; are the estimated pairwise distances computed from the localization results
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Fig. 11. Empirical CDF for node to node distance estimates a) all indoor scenarios
with unoptimized EE, b) all outdoor scenarios with unoptimized EE

of the algorithm. Metric (9) is the mean error. Metric (10) is the square root
of the mean square error and it is also used in [7]. The standard deviation of
the error, noted by o, is also computed. Table 1 summarizes our results and
compares to the ultrasonic approach from [7]. At a room level scale, the ME and
OEE approaches are more accurate than ultrasound. In the outdoor scenarios
the error is much higher. This is expected since the average internode distances
are much larger. In this case camera accuracy degrades since the small angular
error of the camera measurements increases tangentially with distance.

Camera A to nodes distances Camera B to nodes distances

Camera o node distance
Camerato node distance
g

Fig. 12. Estimated distances between two camera nodes and other observed nodes for
the outdoor experiment. GT - Ground truth, OEE - optimized estimated epipoles, EE
- estimated epipoles. All distances are in cm.
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Algorithm Indoor Outdoor

p(em)|q(em) | p(em) | q(cm)
ME 4.0165|0.3779(17.9794| 1.2493
OEE |0.9714|1.4159|29.6057|51.16818

Ultrasound| 7.02 | 518 [ N/A | N/A |

Table 1. The p and ¢ distance metrics for the ME and OEE algorithms as well as for
the ultrasound technology in the case of both indoor and outdoor experiments.

8 Discussion

Localization and camera calibration when sensors can generate stimuli that al-
lows them to communicate with cameras is appealing in some applications since
it implies one could easily build very simple nodes that cost a few cents each
with today’s technologies. Imagine for instance, thousands of floatable chemical
sensors dispersed to measure chemical concentrations in the sea, in water reser-
voirs or large tanks. Such nodes would consist of a small battery, a tiny 4-bit
microcontroller and an LED serving both as a communication and localization
device. A smaller set of camera nodes can observe them.

During our evaluation we also realized that camera placement is a main
problem. To have adequate field of view, the cameras need to be mounted on
the walls or the ceiling or need to be placed in positions higher than other nodes
facing down. This together with the limited field of view of cameras suggest that
articulation, and autonomous motion are necessary for many camera enabled
sensor networks. It also makes a case for using cameras together with ther sensors
that can help overcome the limited field of view of the cameras. Another issue
in the deployment of camera networks is privacy. We plan to handle this issue
with the custom designed cameras under development in our project[reference
withheld]. These cameras will be blind to images and will only extract features
and sensor stimuli, preserving the privacy of their users.

9 Conclusions and Future Work

In this paper we have compared using a real sensor network two basic computer
vision algorithms from computer vision. Using the results of our evaluation we
have developed a refinement algorithm that is more lightweight than traditional
computer vision algorithms and therefore more suitable for resource constrained
sensor nodes. As part of our future work, we plan to use these results to local-
ize and track events, other than sensor nodes. The current infrastructure will
allow us to leverage the collaboration of imager and non-imager sensors to iden-
tify other events, targets and behaviors in sensor networks. As part of the same
project we are also perusing the design of custom camera sensors that have very
low power consumption and can detect events with feature extraction mecha-
nisms directly implemented in the camera hardware.
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