
The Long-Short-Key Primitive and Its
Applications to Key Security

Matthew Cary1, Matthias Jacob2, Mariusz H. Jakubowski3,
and Ramarathnam Venkatesan3

1 Google
2 Nokia

3 Microsoft Research

Abstract. On today’s open computing platforms, attackers can often
extract sensitive data from a program’s stack, heap, or files. To address
this problem, we designed and implemented a new primitive that helps
provide better security for ciphers that use keys stored in easily accessible
locations. Given a particular symmetric key, our approach generates two
functions for encryption and decryption: The short-key function uses the
original key, while the functionally equivalent long-key version works with
an arbitrarily long key derived from the short key. On common PC archi-
tectures, such a long key normally does not fit in stack frames or cache
blocks, forcing an attacker to search memory space. Even if extracted
from memory, the long key is neither easily compressible nor useful in
recovering the short key. Using a pseudorandom generator and addi-
tional novel software-protection techniques, we show how to implement
this construction securely for AES. Potential applications include white-
box ciphers, DRM schemes, software smartcards, and challenge-response
authentication, as well as any scenario where a key of controllable length
is useful to enforce desired security properties.

1 Introduction

On today’s computing systems, security often relies on public-key cryptography
and symmetric ciphers. Protection of cryptographic keys against eavesdroppers
is a crucial issue. While the problem of keeping secret keys secret during key
exchange is well understood in principle, hiding data in memory or on disk
is difficult on open platforms. In particular, symmetric keys are often used for
performance reasons, but support only “private” operations that must be secured
against malicious observation and tampering. For example, viruses and bots
can scan a user’s hard drive or launch side-channel attacks on cryptographic
functions [25, 30]. Widely available tools like debuggers and system monitors
facilitate both manual and automated extraction of keys from unsecured storage.

In practice, software has used various key-protection approaches to create
roadblocks against access to sensitive data at runtime. For example, white-
boxing [8, 9] transforms keys into code that performs cryptographic operations
without using key material explicitly. Obfuscation and tamper-resistance tech-
niques [1, 2, 6, 10, 11, 21, 28] similarly help to prevent hackers from easily finding

K. Matsuura and E. Fujisaki (Eds.): IWSEC 2008, LNCS 5312, pp. 279–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 M. Cary et al.

and extracting keys. Unfortunately, such methods provide limited solutions that
work only under restrictions and offer few security guarantees or analyses.

In this paper, we approach the problem from a different angle and implement
a secure cryptographic system based on our long-short-key primitive (LSK). LSK
is a universal tool to address concerns with easy key extraction and distribution.
Like white-boxing, our method generates code for cryptographic operations with
a given key. However, instead of obfuscation, we transform the key into an arbi-
trarily long data stream that is used to implement encryption and decryption.
This transform is one-way, so that the original short key cannot be efficiently
reconstructed from the long version. Moreover, the long key cannot be easily
compressed, forcing a lower bound on the size of any hack derived from the long
key. The idea of LSK is related to theoretical approaches to bounded storage
and retrieval [5, 14]; however, earlier work has not applied such techniques to
the problem of keys exposed during cryptographic operations.

More specifically, our approach accepts a symmetric key as input and gener-
ates two corresponding functions for cryptographic operations using that key:

– The short-key function uses the original unprotected cipher key for efficient
encryption and decryption. The secret key may be either incorporated into
the function code or passed in as a parameter, so that a single short-key
function can suffice for all keys. Typically compact and efficient, this func-
tion’s implementation should run only in a secure environment, such as a
protected server or tamper-resistant smartcard.

– The long-key function is operationally equivalent to the short-key version,
but uses an arbitrarily large data block derived from the short key. The
size of the long key is a security parameter. The owner of the short key
generates the long key from the short key and an optional secret. Given the
long key, efficient recovery of the short key is not possible. The entire long
key is required for encryption and decryption of data in general, though a
particular input text may use only a portion of the long key.

The main goal of our approach is to provide a guaranteed security property,
namely minimum effort needed to analyze a long-key function, as well as to ex-
tract, store and reuse a long key. This has various applications, such as protection
of long-lived symmetric keys in DRM systems and secure smartcard simulation
in program code where key exchange is not possible. Usage scenarios extend be-
yond encryption; for example, a challenge-response authentication protocol can
depend on a server’s short key to verify a client’s possession of a long key (e.g.,
via periodic requests for random blocks of that key).

Our method does not fully address all possible security issues with key protec-
tion. For example, an adversary can still copy a long key, as well as simply call
a long-key function to perform encryption and decryption. However, such situa-
tions are beyond the scope of this paper. As in bounded-data models [5, 14], we
assume that an adversary has restricted storage capabilities, or at least limited
bandwidth for data retrieval. We analyze security mainly in this context.

Depending on usage scenario, obfuscation of the long key may be useful to
complicate the task of extracting key bits and calling the long-key function. For

The Long-Short-Key Primitive and Its Applications to Key Security 281

example, one may build a platform-specific long-key implementation bound to a
particular application via additional mechanisms. This paper also presents some
novel obfuscation techniques to increase the attacker’s workload, but our basic
method does not depend on obfuscation for its main security property.

Our approach focuses on symmetric block ciphers such as DES and AES, but is
applicable to stream ciphers and public-key systems as well. More generally, the
duality of long and short keys is of independent interest in various cryptographic
scenarios, including protocols and authentication.

The following is a summary of our contributions in this paper:

– We define a new cryptographic construction, the long-short-key primitive,
and propose its usage as an alternative to other key-protection methods in
some scenarios.

– Using a cryptographic pseudorandom generator and a standard block cipher,
we show that an LSK scheme can be implemented in practice with provable
security (equivalent to breaking the generator and cipher).

– We present several applications, including white-boxing, DRM, software
smartcards, and challenge-response authentication.

– We explain some LSK-specific obfuscation techniques and describe an AES-
based implementation of the LSK primitive with reasonable performance
penalty.

1.1 The Case for Long Keys

The long-short-key primitive can significantly improve security in various sce-
narios, as described later. Below we summarize several applications:

Block-Cipher Security. Since the short key may change on every block-cipher
operation, our construction significantly improves security of encryption. For
example, it becomes difficult to carry out the types of ciphertext-correlation
attacks possible in ECB mode. In addition, the long key can improve security of
white-box ciphers, which aim to protect keys by hard-coding them into programs.

Digital Rights Management. On modern computing systems, reverse engineers
and hackers can typically inspect contents of memory and disk. Widely accessible
tools, such as debuggers and system monitors, allow sophisticated users to access
runtime state and files, including sensitive data like cryptographic keys and au-
thentication credentials. Even when hardware enforces data protection, security
exploits and side-channel attacks [29] may still render secret bits open to obser-
vation. Such transparency creates problems for various popular applications that
need to protect cryptographic keys. For example, DRM systems decrypt content
on PCs, enabling attackers to extract symmetric keys from memory. Since such
keys are quite short (e.g., 128 or 256 bits), they can be easily shared across
different devices and distributed via pirate channels. In general, symmetric-key
encryption usually relies on well known, standardized ciphers that allow easy
reuse of keys lifted from memory. A leaked key may even be typed in by a PC
or device user. Using LSK, however, a long key can be megabytes or possibly
gigabytes in size, preventing such attacks.

282 M. Cary et al.

Software Smartcards. In many cases, it is desirable to implement software smart-
cards that perform the same functionality as their hardware counterparts. While
hardware can make key extraction very difficult via physical tamper-resistance,
this is not possible in open software. A smartcard key extracted from software
enables hardware forgery of the smartcard. Using LSK, however, it is possible to
have a software long key from which it is difficult to extract the short smartcard
key. The adversary is forced to extract the code that carries out the encryption
or other key-based operations. Moreover, the long key may not be practical to
include or use on a smartcard, preventing easy hardware forgery.

Remote Timing Attacks. Side-channel attacks [29], such as remote timing at-
tacks, are a common threat on the Internet. By simply measuring the time
required by a remote node to encrypt selected messages, it is possible to derive
the full secret key. If the remote node encrypts under LSK, enough randomness
is added to encryption timing, complicating implementation of remote timing
attacks.

Challenge-Response Authentication. In a standard challenge-response protocol,
the challenger picks a set of arbitrary variables presented to the responder. The
responder is authenticated only upon presenting the correct answer to the chal-
lenger. Many challenge-response protocols use cryptographic techniques, with
the responder needing to encrypt a nonce under a specific key. When the key
leaks, an adversary can always answer the challenge. With LSK, however, key
leakage is less likely, depending on key length and any additional key-hiding
measures.

2 Security Model

For most considerations in this paper, we assume an open platform such as a
PC. The user has full access, and can use tools like debuggers and disassemblers
to reverse engineer code and inspect memory. When we discuss remote attacks,
a weakened model applies: The adversary is able only to trigger encryptions
remotely and measure the time it takes to return results.

As a building block, we use a presumably secure cipher (e.g., AES). The
adversary has access to the public code of the cipher, but not to the secret key.
However, when attacking the cipher, the adversary is able to carry out side-
channel attacks such as fault injection and timing analysis.

In addition, we assume that storage size is bounded, and an adversary can
copy only a limited amount of data at a time (similar to [5, 14]). Storage size
and bandwidth may vary, depending on the attack scenario – e.g., a virus trans-
mitting data remotely versus a local attacker using a debugger to retrieve data.

3 The Long-Short-Key Primitive

The LSK primitive stipulates a short key k and a long key l. Both keys can
be used to encrypt plaintext x such that ciphertext c = E′

k(x) = E′
l(x). The

The Long-Short-Key Primitive and Its Applications to Key Security 283

long key l can be derived from the short key k. However, given the long key l,
efficient retrieval of the short key k is not possible. In reality, the long key can
be hundreds of megabytes, whereas the short key may contain only 128 or 256
bits, as in AES.

This paper focuses on LSK-based encryption schemes built with a block ci-
pher. The encryption and decryption operations can be implemented in various
ways, each of which has its own advantages and disadvantages. In every scheme,
the encryption function requires an initialization vector IV:

– Sequential key-block encryption uses a sequence of long-key blocks to encrypt
plaintext x. The sequence is predefined, and depends only on the IV and the
length of the plaintext.

– Counter-based key-block encryption uses a random sequence of long-key blocks
as encryption keys for consecutive plaintext blocks, but without dependencies
on ciphertext.

– Selective key-block encryption selects a random block of the long key and
passes this to the cipher, retrieving the next random key block based on the
resulting ciphertext.

3.1 Long-Key Construction

One secure implementation mechanism for LSK involves using a cryptographic
generator to derive the long key, with the short key serving as a seed; we then
treat blocks of the long key as separate symmetric keys. More specifically, we
construct the N -bit long key l from a short key k by using a cryptographic
pseudorandom number generator or stream cipher R(k, N). R accepts k as a
seed and generates N pseudorandom bits. For efficiency, R can be a random-
access stream cipher, such as a block cipher in counter mode, which enables
generation of an arbitrary long-key block without first computing any other
long-key parts [20]. Encryption and decryption use blocks of the long key-stream
l = R(k, N) as individual cipher keys. Since these operations use the original
standard cipher E() as a building block, cipher security is preserved.

After Alice computes the long key l from the short key k, she sets up encryp-
tion by handing a portion of l to Bob. During the encryption, l serves as the
’code book’ for Alice and Bob. When Alice encrypts a plaintext message m, she
computes c = Ek′ (m), where k′ is the j-th sub-key of the long key (for some
index j). She then sends (c, j) to Bob. Bob looks up the j-th sub-key of the long
key l and decrypts c. Alice is much more powerful than Bob in this setting, since
she can derive any long-key portion from her short key k, whereas Bob is tied
to the long-key fragment he received. He is able to encrypt as well, but only
within his set of sub-key blocks. When Alice decides to black-out Bob, she sim-
ply switches to a different range of sub-keys in l. The following paragraphs will
show how important this seemingly simple technique can be in implementations.

Operation Modes For LSK. In our construction so far, Alice is solely re-
sponsible for security, since she can pick which parts of the long key l to use

284 M. Cary et al.

for encryption. In the worst case, she could degrade the whole long-key secu-
rity to the cipher’s security – i.e., when she picks only the first long-key block
every time she encrypts a plaintext message. To eliminate this risk, we present
three different mechanisms that enhance the security of the long-key encryption
scheme.

Sequential key-block encryption. One scheme is to use consecutive long-key
blocks as keys. In the first ciphertext message, Alice sends to Bob the pair (c, i),
where c is the ciphertext and i indicates the i-th long-key block used as the
encryption key; in all consecutive messages, she sends only c. Bob automatically
uses blocks i + 1, i + 2, ... for decryption. Alternately, Alice can simply encrypt
each plaintext with long-key blocks 0, 1, 2, ...

Counter-based key-block encryption. In the counter-based scheme, Alice encrypts
sequences of numbers i, i + 1, i + 2, ..., using the cipher EIV under some initial-
ization vector IV . When she sets up the communication, she sends IV to Bob.
When she encrypts the first data block, she uses key-block with index Ek(i)
mod N from the long key; for the next data block, she uses Ek(i + 1) mod N ,
and so on. Bob also computes the same sequence of block indices and decrypts
the messages accordingly. For a simpler scheme, i can begin at 0, and the first
long-key block can be used as the initial value IV .

As compared to sequential key-block encryption, the advantage of the counter-
based method is less locality during encryption. To decrypt a ciphertext, an
adversary needs to obtain arbitrary parts of the long key l. In addition, this
method has a random-access property for decryption; i.e., any block can be
decrypted independently of other blocks.

Selective key-block encryption. Similar to CBC mode in block ciphers, the next
key block to use from the long key can also be decided based on the most recent
ciphertext and key. Alice starts encryption using some block kj of the long key
(e.g., the first block or a block determined by an initial value). She then computes
the first ciphertext block c0 based on key block kj and first plaintext block p0.
The next key-block index is then c0 mod N . In general, for i > 0, the i−th
key-block index is ci−1 mod N , which encrypts the i−th plaintext block pi.

Selective key-block encryption has a significant advantage over the counter-
based method, since the former uses a different key block combination for dif-
ferent plaintexts. Therefore, this mode randomizes the key block accesses best
and requires an adversary to obtain all long-key bits in general.

Depending on the random distribution used in an implementation, key blocks
in both counter-based and selective key-block encryption are potentially scat-
tered across the entire long key. In addition, different random subsets of the
long key may be used for operations with each specific short key. With the se-
lective key-block encryption scheme, the long-key subsets also depend on the
input text. This provides better protection against an adversary who has par-
tial knowledge of the long key. Also, this defends against side-channel attacks,
such as cache-timing analysis. However, these methods could be slow because
the random memory accesses may cause many cache misses.

The Long-Short-Key Primitive and Its Applications to Key Security 285

Sequential key-block encryption simply uses consecutive long-key blocks to
process consecutive text blocks, wrapping around whenever text size exceeds
long-key size. This is a simple strategy that does not offer the capability to use
random subsets of the long key. The apparent trade-off that we need to analyze
more carefully is the security through randomization vs. the performance penalty
due to random memory accesses.

4 Applications

4.1 Block-Cipher Security

A typical problem with block ciphers is susceptibility to correlation attacks
in ECB mode. If used in CBC mode, ciphers must be synchronized. This of-
ten causes problems in unreliable communication channels, such as UDP-based
transmissions. LSK improves upon ECB without this drawback of CBC, be-
cause an adversary without knowledge of the long key cannot correlate identical
ciphertext blocks, even if Alice uses a simple operational mode and sends the
long-key-block index on every transmission.

In addition, LSK improves the security of white-box block-cipher implemen-
tations. Often it is possible to carry out fault-injection attacks (e.g., [22]) to
extract the key from the white-box cipher. With support from the long key,
this attack becomes difficult, because the cipher key may change on every block
encryption.

4.2 Digital Rights Management

A main goal in DRM is to protect a secret key k of a common publicly known
cipher Ek(x) on an open platform (such as Microsoft Windows). After k leaks,
an attacker can decrypt any ciphertext c using x = Dk(c). To determine k, an
attacker can use disassemblers, debuggers and other reverse-engineering tools
that help investigate memory during program execution. When k is located
within a single stack frame or memory location, identifying and extracting k may
pose few difficulties. Similarly, side-channel attacks like cache-timing analysis
and fault injection can isolate k, which may comprise only a few bytes.

With a long key, an attacker’s tasks become more difficult. First, the key k
does not fit into a single stack frame or memory location. Secondly, side-channel
attacks are significantly more difficult when an attacker has more key bits to
retrieve. Also, common white-box techniques are more effective when applied to
a cipher that uses a large amount of key material.

To ensure security, it is also important that the construction of the long key be
transparent and derivable from common cryptographic primitives. Our present
work does not generate a new cipher, but uses existing symmetric encryption to
create a new cipher construction that has better security properties for imple-
mentation on open platforms.

286 M. Cary et al.

4.3 Software Smartcards

Smartcards are a ubiquitous technique for authenticating users. It would be
desirable to have a software pendant for hardware-based smartcards on PC plat-
forms – not only to avoid proliferation of hardware readers, but also to stream-
line smartcard updates. One problem, however, is to protect smartcard-specific
secrets in software. When the user types in a PIN code, smartcard software typ-
ically uses this to compute a ciphertext validated against a stored ciphertext.
When smartcard-specific secrets leak, an adversary can forge PIN codes and
compromise the system.

On an open platform, LSK hides the short smartcard secret inside the long
key. Smartcard-simulator software runs in selective key-block mode and contains
only the long key. When the user types a PIN, the software encrypts the PIN
via the LSK construction, and compares this to a stored ciphertext. There is no
need to secure a separate secret on the open platform, while hardware tamper-
resistance protects the short key in the smartcard.

4.4 Remote Timing Attacks

In remote timing attacks (e.g., [4]), an attacker exploits timing properties of an
encryption algorithm (e.g., RSA-CRT) to extract secret keys. Typically, these
attacks can be countered by blinding the input data. This additional randomness,
which is unknown to the adversary, forces the encryption algorithm to process a
different plaintext message. In many encryption schemes, such as RSA, blinding
can be inverted after encryption by exploiting algorithmic properties. For the
adversary, the key becomes hard to extract, while the performance penalty is
small. However, blinding does not work on all encryption schemes, because it
may be hard to revert the blinding operation without handing out the secret
randomness to every receiver. For remote attacks to be successful, the adversary
must measure the timing of a certain number of encryptions under the same key.
An LSK-based scheme fixes this problem, because LSK uses a different cipher
key for every encryption. Given that the long key can comprise a few hundred
megabytes, this will stretch the duration of the attack significantly, if not render
the attack practically impossible.

4.5 Challenge-Response Authentication

In cryptographic challenge-response authentication protocols, the key must not
leak. If it does, an adversary can easily answer any arbitrary cryptographic chal-
lenge from the verifying party. Using an approach based on LSK, the challenger
can simply hand the long key to the responder and later request parts of the long
key, combining this with encryption of nonces to provide better security. For an
adversary, it is virtually impossible to answer challenges without knowing the
entire long key, which is difficult to extract because of its size and any additional
protection measures.

The Long-Short-Key Primitive and Its Applications to Key Security 287

5 Implementation

An important part of this work is implementation of LSK-based schemes in a
secure manner. In some contexts, a problem stems from an adversary’s ability
to copy the long key onto media like DVDs or over the network, transferring
the key to another machine. Therefore, the long key should also be hidden in
software code. Extracting portions of the key may be feasible, but obtaining the
entire key should be difficult.

In practice, choosing an appropriate length for the long key will depend on
the application. If the goal is mainly to prevent humans from memorizing or
writing down keys, even several hundred bytes or a few kilobytes of long key
may suffice. If we wish to make electronic key distribution unwieldy, several
hundred megabytes or more may be the minimum if the Internet or CD/DVD
media are involved. Advances in networking and storage capabilities may affect
the required long-key size as well. In general, the protection designer should
carefully consider aspects such as hardware and software capabilities, as well as
security requirements in particular scenarios.

We have implemented a construction we call ExAES, which is an LSK-based
scheme with AES as a cipher. In ExAES, we expand the secret AES key into a
long key using a pseudorandom number generator. We then replicate the AES
code, embedding blocks of the long key in each replica. Finally, we merge the
different AES cipher implementations to hinder attacks that attempt to extract
portions of the key.

5.1 Iterated Obfuscation

As a novel technique, we use iterated obfuscation to establish a general framework
for the implementation of our obfuscation techniques. This methodology involves
the iterated application and recombination of various obfuscating transforma-
tions (or primitives) over code, with the output of each successive transformation
serving as input to the next. Via this strategy, even simple and easy to implement
primitives can be cascaded to yield effective obfuscation.

As an example, the technique of oblivious hashing (OH) [7] can serve as an
obfuscation primitive. A single OH transformation injects code to hash a pro-
gram’s runtime state (i.e., data and control flow), thus ascertaining execution
integrity of the original code. Applying OH again to the transformed program
protects both the original program and the first OH round. In general, each new
OH round verifies the integrity of both the original program and all previous
OH rounds.

To increase security further, arbitrary other primitives can be combined and
iterated with the OH rounds. For ease of design and implementation, such prim-
itives can be quite simple – e.g., conversion of variable references to pointer ref-
erences, and even source-to-source translation among different code dialects or
languages. Via iteration, the interaction of simple primitives can lead to emergent
code behavior and achieve the effect of far more complex obfuscation operators.

288 M. Cary et al.

This is related to both iterative complex systems (e.g., cellular automata) and
iterated rounds in cryptographic constructions.

5.2 Generic Block-Cipher Obfuscation

In this section, we define an obfuscation operation O′(·) intended to compose
two different cipher keys. This operation transforms a concatenated block cipher
Ek0 · Ek1 into an obfuscated sequence O′(Ek0 · Ek1) in which it is difficult to
isolate Ek0 and Ek1 . Both ciphers are obfuscated individually on a per-round
basis, but have the same security as the original. We assume that the per-cipher
obfuscation is weak, so that key bits can be extracted in constant time from
every round.

Interleaving Rounds. To combine two cipher instances, we interleave their
rounds. As in shuffling two decks of cards, we pick cipher rounds randomly from
each cipher, with the long key serving as a source of randomness. Formally, given
Ek0 = R1

k0
·R2

k0
· ... ·Rn

k0
= ∪n

i=1R
i
k0

and Ek1 = R1
k1

·R2
k1

· ... ·Rn
k1

= ∪n
i=1R

i
k1

, we

construct Ek1 �Ek2 = ∪2n
i=1R

ρ(i)
kπ(i)

, where ρ(i) is a permutation and π(i) ∈ {0, 1}
randomly selects k0 or k1.

Weakly obfuscated, the rounds themselves remain in the same order as in
the original ciphers (i.e., ρ(i) < ρ(i + k) when π(i) = π(i + k)). The computed
ciphertexts may be different than in the original cipher, depending on the inter-
leaving. However, security remains unchanged, since the same round functions
are used. In the appendix, we describe methods to merge and obfuscate the
rounds themselves.

5.3 Performance

A main trade-off in our white-box is the number of rounds for the long key. This
number is significantly larger than the number of rounds in a normal cipher. To
gauge the effect, we measured the number of cycles consumed for every encrypted
byte with different numbers of rounds and different obfuscation levels.

Figure 1 shows the results. The additional performance overhead becomes
superlinear relatively early when the obfuscation level becomes larger. However,
these additional operations are necessary to disguise round boundaries.

We also compare our white-box (WB) to AES and RSA (from Microsoft’s
Crypto API) in terms of performance. We chose a key size of 512 bits in all
cases.

Figure 2 shows the performance comparison with AES and RSA in cycles
per encrypted byte. The compact white-box implementation with the short key
and without any additional obfuscation is only slightly slower than AES. How-
ever, even with obfuscation turned on, our white-box is still faster than RSA.
(Involving symmetric and asymmetric encryption, this comparison is only for
illustration.)

The Long-Short-Key Primitive and Its Applications to Key Security 289

Fig. 1. White-box performance when increasing the total number of rounds and the
obfuscation level

Algorithm Cycles per Byte
AES 200
RSA 2000
WB Compact 202
WB 1500

Fig. 2. Performance comparison between WB, AES, and RSA

5.4 Security Assessment

Our obfuscation algorithm does not depend on precise types and quantities of
primitives. Due to space constraints, we have omitted such specifics in our de-
scription. However, when analyzing the security of our algorithm, we assume
the adversary has complete knowledge of all obfuscation primitives used; we do
not assume any security-by-obscurity in choice of the primitives. The adversary
does not know the random sequence which determines the application of the
primitives, as such knowledge would be tantamount to knowing the private key.

The powerful side-channel and fault-injection attacks [22] mentioned in §6
show that round boundaries in an obfuscated cipher must be difficult to de-
tect. Below we provide an example of an attack on ExAES, given knowledge of
round boundaries. The problem is that each round is composed of several dis-
tinct types of operations. For example, the AES and ExAES ciphers used here
alternate variable XOR operations with permutation and field operations im-
plemented via table lookups. The operations must be applied sequentially; thus,
if the distribution of hardware instructions reveals this alternation, the round
boundaries could be discovered and the cipher broken.

290 M. Cary et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

Obfuscated
Light Obfuscation

No Obfuscation

Fig. 3. Effect of obfuscation on round boundaries. Note the visible segmentation in
the leftmost curve, which clearly indicates round boundaries. As more obfuscation is
applied, the segmentation becomes less apparent, thus hiding the boundaries.

As a concrete example, consider the Mix operation in AES. The multiplica-
tion in the AES field is implemented by a lookup table indexed by data bytes
whose entries are XORed together to produce the result. To implement this in
hardware, XOR instructions with both operands variable are used, in contrast
to XOR instructions with static constants that are used to mix in key data be-
fore applying the S-Box. These variable XOR instructions may be discovered
statically and their cumulative total plotted against the number of instructions
to produce a cumulative distribution curve.

This has been done in Figure 3 with various levels of obfuscation applied.
The figure plots the cumulative distribution of variable XOR instructions by
total number of instructions with various levels of obfuscation applied. Plots
with higher levels of obfuscation are flatter, as the total number of instructions
is higher. The key point is to see how the round structure is clearly visible in
the non-obfuscated version (leftmost curve), and that structure disappears as
the obfuscation level is increased (middle and rightmost curves).

Attack Against a Single Round. To illustrate the importance of hiding
round boundaries, we show how a single ExAES round may be attacked even if
no information is known about the byte permutation or the S-Boxes. We note
that an attack against a round of AES is even simpler, since the key is involved
only in the XOR performed before the S-Box.

The crux is that the Mix operation mixes only four bytes at a time. Hence,
by comparing the action of the round on inputs that vary at single bytes, the
permutation can be discovered up to the order within each column. After the
Mix operation, unknown dummy operations will XOR with each column to pro-
duce the output, 32 bits in total. The Mix operation itself is known. By guessing
the 32 bits of dummy XOR after the Mix operation, then guessing which of
the 24 possible permutations were used on the input identified as forming the
column, we arrive at a guess of the state of those bytes immediately after the

The Long-Short-Key Primitive and Its Applications to Key Security 291

S-Box operation. Varying each input byte to reconstruct the S-Box and con-
firm the guess completes the attack against that column. Repeating this for the
remaining columns reveals the rest of the round key.

This attack takes approximately 240 work, which is very feasible on a modern
processor. The attack can recover the several thousand bytes of key that are
used in the case of independent random S-Boxes, in addition to the permutation
and final layer of dummy operations. Further improvements to this attack only
underscore the need for an obfuscator to hide fully the round boundaries of the
cipher.

6 Related Work

Software obfuscation is a well known problem that has never seen a compre-
hensive solution. [10] is a systematic taxonomy of obfuscation techniques in the
context of Java bytecode. Many of these apply to our problem, and are incor-
porated into our system. In particular, we use data obfuscation by aggregation
and ordering, as well as control-flow obfuscation; see [10] for definitions. Some
of the obfuscation techniques in [10] are used with complex control flow, data
structures or procedure networks, and do not apply to the less general problem
of white-boxing ciphers that we consider here. The extension of [11] describes
opaque predicates, which are used for obfuscated control flow. We use a limited
form of these in our current version and will incorporate more complex construc-
tions in future versions.

Other approaches to secure computation include secure circuit evaluation [16,
18, 23, 32, 33]. In this model, several parties hold separate inputs to a common
function, and want to compute the function without revealing any information
about their inputs other than what is contained in the function output. The
multiparty-communication nature of this problem produces solutions inappro-
priate for our white-box model. In particular, protocols for secure circuit evalu-
ation rely on random choices that must change with each run of the protocol. In
a white-box context, an adversary is able to reset any state, including random
counters within the attacked program.

The specific obfuscation problem of creating a white-box cipher (DES) was ad-
dressed in [8, 9]. This was later attacked using fault-injection techniques [22, 27].
The idea of [8, 9] first hard-codes the DES round keys into the round computa-
tion. The DES encoding is then seen as a series of functions – some affine, while
others entirely non-linear and implemented with lookup tables (the S-Boxes).
Random invertible functions are chosen, paired with their inverses, and inserted
into the series of DES-related functions. The encoding operation is then re-
associated to combine the random functions with the DES steps, expanding the
affine functions into lookup tables as appropriate. The goal is to hide the key
operations with the random invertible functions.

The construction in [9] was attacked in [22] by injecting faults before the last
round to probe for key bits. The essential point is that once the boundaries can
be discovered, the round function can be taken apart in spite of the obfuscating

292 M. Cary et al.

random functions applied to it. Their construction differs from ours in being
a very specific algorithm—table composition and re-association—applied at a
high-level to the cipher. As described below, our method is applied across all
levels of white-box program generation, from the high-level representation of
the operation sequence to the the low-level access of individual bytes.

Much work has been done in areas of distributed execution and security of mo-
bile code [17, 24]. This often focuses on running untrusted programs on trusted
machines, which is opposite to our problem of running a trusted program on an
untrusted machine. A related area is software tamper-resistance [26, 31], where
the problem is to guarantee that distributed code is executed unmodified on un-
trusted machines. In white-box applications, it is immaterial whether or not the
white-box code is modified, provided that the output is correct. The only aim
is to compute while keeping a secret hidden. Many tamper-resistance solutions
implicitly rely on keeping obfuscated secrets, such as locations of checksumming
that occurs in code. Software white-boxing addresses this secret-hiding explicitly
and does not attempt wider security goals.

Recently, side-channel attacks have been shown to be effective against even
software implementations of ciphers [3, 4, 29]. In cache-timing attacks, an ad-
versary detects the number of cache misses during encryption operations and
reconstructs the key bits based on this information. In particular, ciphers like
AES that access memory locations based on the values of the key are prone to
this attack. Our white-box protects against these attacks because of the long
key and the additional amount of randomness in the cipher algorithm.

The extended limitations on obfuscation presented in [19] suggest that obfus-
cation is more difficult in the presence of auxiliary dependent information. An
example of this in the context of our system would be an adversary who has
access to two white-box versions of the cipher with a particular key. While we
believe our system should be practically secure against this attack, a detailed
analysis remains to be performed.

Finally, there is a large body of work on cryptographic algorithms for bounded
storage [5, 12, 13, 14, 15]. Typically, the security framework is similar to our LSK
platform, with the exception of remote attacks in bounded-data models (e.g., a
virus sending secret data over a network with limited bandwidth).

7 Conclusion

We proposed a new construction, the long-short-key primitive, that hides keys
and improves implementation security of block ciphers. Our method creates a
compact, efficient implementation of encryption, along with white-boxed long-
key decryption code that may be arbitrarily large, as controlled by the user.
Unless a cryptographic pseudorandom generator is broken, any hack of the white-
box must have a provably large size to recover the full long key. In essence, we
provide a private encryption function that uses a short key, along with a corre-
sponding public decryption function that requires a long key. In addition, differ-
ent encrypted content requires different sections of the long key for decryption,

The Long-Short-Key Primitive and Its Applications to Key Security 293

so that breaking the obfuscation enough to decrypt one ciphertext does not nec-
essarily allow decryption of others. The key sections required for decryption may
be revealed only as decryption proceeds.

Our method has a number of practical applications, including DRM key man-
agement and software-based smartcard simulators designed to hide a short key
present on tamper-resistant hardware smartcards. Our main provable security
metric, namely the minimum size of any white-box hack, is of independent theo-
retical interest as well. While our system provides a symmetric cipher, the novel
asymmetric paradigm of short “private” keys and arbitrarily long “public” keys
may find other applications that currently rely on true asymmetric cryptography.

References

1. Aucsmith, D.: Tamper resistant software: An implementation. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bernstein, D.J.: Cache-timing attacks on AES,
http://cr.yp.to/papers.html#cachetiming

4. Boneh, D., Brumley, D.: Remote timing attacks are practical. In: USENIX Security
Symposium (2003)

5. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-resilient
key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

6. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Digital Rights
Management Workshop, pp. 160–175 (2001)

7. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: Silent verification of code execution. In: Proceedings of the 2002
Information Hiding Workshop (October 2002)

8. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.: White-box cryptography and
an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595. Springer, Heidelberg (2003)

9. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.: A white-box DES implementa-
tion for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 1–15. Springer, Heidelberg (2003)

10. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand (July 1997)

11. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Principles of Programming Languages, POPL 1998,
pp. 184–196 (1998)

12. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

13. Dagon, D., Lee, W., Lipton, R.: Protecting secret data from insider attacks. In:
Proceedings of Financial Cryptography (2005)

http://cr.yp.to/papers.html#cachetiming

294 M. Cary et al.

14. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

15. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

16. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (ex-
tended abstract). In: STOC 1994: Proceedings of the Twenty-sixth Annual ACM
Symposium on Theory of Computing, pp. 554–563. ACM Press, New York (1994)

17. Gao, D., Reiter, M.K., Song, D.X.: On gray-box program tracking for anomaly
detection. In: USENIX Security Symposium, pp. 103–118 (2004)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987: Proceedings of the Nineteenth Annual ACM Conference on Theory of Com-
puting, pp. 218–229 (1987)

19. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS 2005: Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science (2005)

20. Dj Golić., J.: Stream cipher encryption of random access files. Information Process-
ing Letters 69(3), 145–148 (1999)

21. Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Digital Rights Management Workshop,
pp. 141–159 (2001)

22. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting faults.
In: ACM CCS-9 Workshop (DRM) (2002)

23. Kilian, J.: A general completeness theorem for two party games. In: STOC 1991:
Proceedings of the Twenty-third Annual ACM Symposium on Theory of Comput-
ing, pp. 553–560 (1991)

24. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: USENIX Security Symposium, pp. 191–206 (2002)

25. Kocher, P.: Timing attacks on implementation of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109. Springer,
Heidelberg (1996)

26. Lie, D., Thekkath, C.A., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.C.,
Horowitz, M.: Architectural support for copy and tamper resistant software. In:
ASPLOS, pp. 168–177 (2000)

27. Link, H., Neumann, W.: Clarifying obfuscation: Improving the security of white-
box encoding. Cryptology ePrint Archive Report 2004/025 (2004)

28. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

30. Shamir, A., van Someren, N.: Playing hide and seek with stored keys. In: Financial
Cryptography (1998)

31. van Oorschot, P.C., Somayaji, A., Wurster, G.: Hardware-assisted circumvention
of self-hashing software tamper resistance. IEEE Transactions on Dependable and
Secure Computing 2(2), 82–92 (2005)

32. Yao, A.C.: Protocols for secure computations. In: FOCS 1982: Proceedings of the
Twenty-third IEEE Symposium on Foundations of Computer Science, pp. 160–164
(1982)

The Long-Short-Key Primitive and Its Applications to Key Security 295

33. Yao, A.C.: How to generate and exchange secrets. In: FOCS 1986: Proceedings of
the Twenty-seventh IEEE Symposium on Foundations of Computer Science, pp.
162–167 (1986)

A Merging Rounds

When block-cipher rounds are simply shuffled, a brute-force method could suc-
cessfully rearrange rounds in the original ciphers. In addition, various other
key-extraction attacks are possible if round boundaries are easily discernible. In
this section, we present a list of operations that preserve semantics but enhance
security by merging operations of different rounds.

Our approach obfuscates an operation sequence by applying a series of obfus-
cation transformations. Most of these are peephole; i.e., they are applied locally
to small groups of instructions, usually pairs. The transformations are organized
below into several classes. When variously composed and iterated, the combined
transformations will increase the complexity of the obfuscation more than the
sum of each individual transformation. As attacks against our obfuscation de-
velop, new transformations will be become apparent and can easily be integrated
into our system.

We combine these transformations randomly to obfuscate code. Some tuning
is required to maximize the avalanche effect of the obfuscations while minimizing
the increase of program size. For example, dummy permutations, which translate
into a large number of instructions, are inserted sparsely into rounds between
commuting and combining transformations, which have a smaller impact on code
size. This heuristically maximizes the amount of diffusion from each permutation
while minimizing the total number of permutations performed.

Space constraints do not permit us to describe all transformations in detail.
We will elaborate on several illustrative techniques and leave the remainder gen-
eral. An advantage of our obfuscation method is that the exact transformations
used are not critical; we believe most reasonable simple ones can be used itera-
tively to produce effective obfuscation.

Our machine model assumes a simple processor operating over a random-
access array. We view a program is a sequence of operations over a logical array
of bits. The operations are only those needed to implement the cryptographic
functions of interest, such as bitwise Boolean operations, permutation, copy-
ing, addition, multiplication, and some simple control flow. We do not expect
the operations to be universal in the sense of ability to describe any computa-
tion. This operation set was chosen as the smallest sufficient to compute AES
efficiently, as well as introduce execution that cannot be analyzed in a purely
static way. In particular, while control flow is not strictly necessary to produce
an AES-like program, this is useful in obfuscation when combined with opaque
predicates [11].

Simple Transformations. Our first class of obfuscations is simple transforma-
tions that do not cause internal changes to any operation. For example, a ran-
dom permutation of a subset of the working data can be applied, followed by

296 M. Cary et al.

A B =⇒ A x=x^c x=x^c B
A x=x^c =⇒ x=x^c A

if A does not contain x

y=y^c x=T[y]=⇒ x=S[y] y=y^c

with S[a]=T[a^c]

x=T[y] x=x^c=⇒ x=S[y]

with S[a]=c^T[a]

Fig. 4. Some simple obfuscation transformations. In the above, ^ denotes XOR, lower-
case letters are working data locations, upper-case letters signify generic operations,
and braces are used to denote table lookup.

a permutation that moves the working data back to its original location. Sim-
ilarly, two XOR operations with the same random constant can be performed
on a subset of the working data. Both these operations may seem nonsensical,
but become quite powerful when combined with other operations below. We also
note that if the input and output sets of an adjacent pair of operations do not
intersect, they may be commuted. That is, the sequence of two operations [A
B] may be replaced by the sequence [B A].

Morphing Transformations. Techniques in this class of obfuscations commute
two operations in ways that cause the operations, but not their number, to
change. For example, an operation and a permutation may be commuted by
modifying the operation to apply the permutation to its inputs and outputs.
The permutation or its inverse is applied, depending on whether the operation
precedes the permutation or vice-versa. This makes the simple transformation
above useful. Several more complicated ones are shown in Figure 4.

Lookup-Table Obfuscations. These transformations apply to lookup tables. The
above transformations can take a single lookup table from an unobfuscated ver-
sion of a program and create several obfuscated versions, each permuted and
changed. While this increases the obfuscation, it also leads to a large amount of
static data. Furthermore, because most of the tables are byte-oriented, they are
vulnerable to exhaustive analysis of all 216 possible modifications.

We use two techniques to address these problems – gradual lookup-table cor-
rection and dummy lookup tables. In the former, the lookup tables are stored
with errors that are corrected and changed as the program executes. The latter
allows for dummy operation sequences, described below, to use actual lookup ta-
bles for computation interleaved with the error correction. This obscures which
values in the lookup tables are correct and which are erroneous.

B Low-Level Obfuscation Techniques

Our low-level obfuscations hide patterns of data access by operations indepen-
dently from the semantics of the operations. After these obfuscations, the code
generated for a byte-array read or write is more complicated than a simple lookup
into the array.

The Long-Short-Key Primitive and Its Applications to Key Security 297

An example of this technique is byte-array indirection. Logical bytes are stored
discontinuously throughout the lookup tables, which are changed over the course
of the program’s execution. A set of indirection indices is used to look up the
location of each byte. These indices are spread discontinuously throughout the
lookup-table data. As their locations are known statically at generation time,
moving indices will effect a permutation of data elements indirectly.

	Introduction
	The Case for Long Keys

	Security Model
	The Long-Short-Key Primitive
	Long-Key Construction

	Applications
	Block-Cipher Security
	Digital Rights Management
	Software Smartcards
	Remote Timing Attacks
	Challenge-Response Authentication

	Implementation
	Iterated Obfuscation
	Generic Block-Cipher Obfuscation
	Performance
	Security Assessment

	Related Work
	Conclusion
	Merging Rounds
	Low-Level Obfuscation Techniques

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

