
Finding instability in biological models

Byron Cook1,2, Jasmin Fisher1,3, Benjamin A Hall1, Samin Ishtiaq1, Garvit
Juniwal4 and Nir Piterman5

1 Microsoft Research
2 University College London
3 University of Cambridge

4 University of California, Berkeley
5 University of Leicester

Abstract. The stability of biological models is an important test for es-
tablishing their soundness and accuracy. Stability in biological systems
represents the ability of a robust system to always return to homeosta-
sis. In recent work, modular approaches for proving stability have been
found to be swift and scalable. If stability is however not proved, the
currently available techniques apply an exhaustive search through the
unstable state space to find loops. This search is frequently prohibitively
computationally expensive, limiting its usefulness. Here we present a
new modular approach eliminating the need for an exhaustive search
for loops. Using models of biological systems we show that the technique
finds loops significantly faster than brute force approaches. Furthermore,
for a subset of stable systems which are resistant to modular proofs, we
observe a speed up of up to 3 orders of magnitude as the exhaustive
searches for loops which cause instability are avoided. With our new
procedure we are able to prove instability and stability in a number of
realistic biological models, including adaptation in bacterial chemotaxis,
the lambda phage lysogeny/lysis switch, voltage gated channel opening
and cAMP oscillations in the slime mold Dictyostelium discoideum. This
new approach will support the development of new clinically relevant
tools for industrial biomedicine.

Keywords: stability, instability, verification, biology

1 Introduction

Traditional computer science approaches are playing an increasingly important
role in the modeling and analysis of biological systems. Formal verification ap-
proaches for biological signaling systems have been successfully applied in wide
range of different organisms and phenomena [1–3]. In different systems, proofs
of both reachability [4, 5], and stability [6] can give powerful insights into the
mechanisms of cell differentiation and homeostasis. Stability specifically offers
a valuable tool when considering systems which can be reliably considered as
being at equilibrium or homeostatic. We consider stability here in terms of a
guarantee that the system always eventually moves towards a single self-loop
state, regardless of the initial state of the model. In the context of biological

2 Cook et al

systems, instability can therefore indicate a developmental switch (e.g. bifurca-
tion) or oscillation (e.g. cycles with lengths greater than 1). In contrast stability
demonstrates that the system is at a robust equilibrium, as any temporary per-
turbation will eventually converge to the equilibrium state.

The development of formal models of biological systems further offers a new
platform for discoveries in the life sciences and medical research. By translating
the diagrammatic models typically generated in experimental disciplines into
forms which can be explored using verification techniques we can highlight inad-
equacies in the model and propose new testable hypotheses. In contrast to mod-
els based on precise reproduction of physical or chemical properties of a given
biological phenomenum, executable models avoid a reliance on highly accurate
quantitative data from experimental studies. For questions such as "could a drug
targeted to this protein ever kill the cell?" or "does the model accurately rep-
resent a robust equilibrium?", the relative independence of formal models from
detailed physical constants is a strength of the technique over traditional physico-
chemical simulation. Furthermore, this degree of abstraction more closely mim-
ics the qualitative data generated by genetic screens. Boolean and qualitative
networks specifically, have been successfully used in the study of diverse sys-
tems. Initially applied to the study of gene regulation [7] these formalisms have
been applied to blood cell differentiation, skin homeostasis and cancer devel-
opment [8–11]. The ability to analyze models with these approaches has great
relevance to clinicians and the biomedical industries. Furthermore, Boolean net-
works have been used successfully to systematically model drug interactions in
tumorigenesis [12], in order to rationally identify new drug targets. This ability
to validate drug targets in silico offers the potential to avoid costly failures at
late stage clinical trials, and as such new model checking techniques has great
relevance to clinicans and the biomedical industries.

Existing tools suitable for the analysis of biological qualatitive networks,
such as GinSim [13] and NuSMV [14], explore stability through the use of ef-
ficient representations of the state transitions as binary decision diagrams and
multi-valued decision diagrams [15], coupled with simulation. The reliance on ex-
haustive simulation however limits the size of the models which can practically
be analysed, forcing users with large models to reduce the size of the model by
a semi-automated process of model reduction (e.g. [10]). Additionally, encoding
complex transition functions in these tools is laborious, making expression of
realistic biological models difficult.

Proofs of stabilization in biological systems are complicated by the complex
temporal relationships between interacting elements which are necessary for sta-
bility, and prevent the use of scalable techniques which abstract these details
away. These temporal interactions are necessary to describe systems which show
adaptation [16], or timed switches [17]. Previous work presented an algorithm for
proving stability [6] which is sound and complete, and reverts to an exhaustive
search for cycles of increasing length (up to the diameter of the system) if sta-
bility cannot be proved rapidly. Failure to find multiple self-loop states or cycles
proves the stability of the system. Thus, if a stable model is resistant to quick
proofs of stability, the search for cyclic counterexamples can be prohibitive. As
a result of the rapid growth in the number and diversity of biological qualitative

Finding instability in biological models 3

networks, we have recently identified several realistic, stable models which resist
the approach of [6].

In this paper we tackle the problem of proving instability with a new modular
approach. This greatly increases the speed of proving stability in several systems
by rapidly identifying loops arising from cyclic instabilities. Previous techniques
proved stability by taking lemmas of the form: [FG(p1)∧· · ·∧FG(pk)]⇒ FG(q),
where p1 . . . pk are formulae over the inputs of a given component, and q is a
formula about the component’s output, where F and G denote "eventually" and
"always" in linear temporal logic [18]. If this fails to find a single self-loop state,
exhaustive searches for multiple self-loop states and loops are performed.

To avoid this costly calculation, our new approach searches for counterex-
amples using a divide/conquer technique, based around a modular approach for
proving stability. If a single or multiple self-loops cannot be found when an-
alyzing the system, the state space is divided into two, and each individually
searched for local self-loops. Finally, through an analysis of the cut and a small
number of steps of simulation either counter examples of cycles are found or
stability is proved.

Our new approach increases the speed of the proof of instability and stability
(in the case that stability cannot be proved easily) by over 2 orders of magnitude
compared with previous approaches [6] in addition to being sound and complete.

2 Verifying Stability in Qualitative Networks

Qualitative Networks (QNs) [8] have been extensively used to model biological
phenomena. A QN Q(V, T,N), of granularity N + 1 consists of n variables:
V = (v1, v2, · · · , vn). The state of the system is a finite map s : V → {0, 1, · · ·N}.
The set of initial states is the set of all states. Each variable vi ∈ V has a
target function Ti ∈ T associated with it: Ti : {0, 1, · · · , N}n → {0, 1, · · ·N}.
Qualitative networks update the variables using synchronous parallelism.

Target functions in qualitative networks direct the execution of the network
from state s = (d1, d2, · · · , dn). The next state s′ = (d′1, d

′
2, · · · , d′n) is computed

by:

d′v =

dv + 1 dv < Tv(s) and dv < N,

dv − 1 dv > Tv(s) and dv > 0,

dv otherwise.

(1)

A target function of a variable v is typically a simple algebraic function, such
as sum, over several other variables w1, w2, · · ·wm. Variables w1, w2, · · · , wm are
called inputs of v and v is an output of each one of w1, w2, · · · , wm. The input
function induces a dependency graph of the network with the variables as nodes,
where an edge (u, v) exists iff u is an input of v.

A QN Q(V, T,N) defines a state space Σ = {s : V → {0, 1, · · ·N}} and a
transition function δ : Σ → Σ, where δ(s) = s′ such that for every v ∈ V ,
s′(v) depends on Tv(s) as in Eq. 1. For a state s ∈ Σ we denote s(v) also by
sv. Likewise, δ(s)v = δ(s)(v) is the value of v in δ(s). We say that a state s is

4 Cook et al

recurring if it is possible to get back to s after a finite number of applications
of δ. That is, if for some i > 0, we have δi(s) = s. As the state space of a
qualitative network is finite, the set of recurring states is never empty. We say
that a network is stabilizing if there exists a unique recurring state s. That is,
there is a unique state s such that δ(s) = s, and for every other state s′ and
every i > 0 we have δi(s′) 6= s′. Intuitively, this means that starting from an
arbitrary state, we always end up in a self-loop state and always the same one.
For an unstable network, we have two possibilities: (a)multiple self-loop states;
(b) at most one self-loop state but non-trivial cycles.

In [6], the problem of determining whether a network stabilizes or not is
solved by proving local lemmas about the range of values a variable can eventu-
ally take depending upon already proven lemmas about its inputs. Each newly
proven lemma is then used to strengthen the lemmas about its outputs until
nothing changes. The order in which variables are picked for strengthening is
arbitrary. The proven lemmas can sometimes be enough to determine that a
network stabilizes. If not, an explicit search for counter-examples is carried out.
First, the existence of multiple self-loops is checked by encoding it as a boolean
satisfiability problem. If this check fails, bounded model-checking (BMC) is used
to find non-trivial cycles of increasing length. For stabilizing networks where
modular lemmas are not strong enough to show the same (see Fig. 1b), BMC
unrolling to a length more than or equal to the system’s diameter is required
to show non-existence of cycles, which is infeasible even for moderately sized
networks.

Here, we revisit the modular proof-based approach from [6], using a technique
similar in spirit to abstract interpretation [19, 20]. We present a novel, scalable
instability detection algorithm in Sec. 3 that reuses the old algorithm as one of
its sub-procedures.

2.1 Over-approximating Recurring States

All states of a QN are considered initial states. Let Σi, i ≥ 0 be the set of states
of the QN that are reachable in i or more steps starting from some initial state.
Note that if a state s of a QN is not reachable in i or more steps, then it is
not reachable in i′ or more steps for every i′ > i. Hence, Σ = Σ0 ⊇ Σ1 ⊇
Σ2 ⊇ · · · is a decreasing sequence. Since the state space is finite, there will exist
l ≤ diameter(Σ), such that Σl′ = Σl, for every l′ ≥ l. The set Σl is the set of all
recurring states of the network, which is a singleton for a stabilizing network.

Computing the exact reachability sets is not feasible in practice. Instead we
try to over-approximate the set of recurring states by using a layer of abstraction
to represent sets of states. Analogous to interval domain from abstract interpre-
tation [19,20], for each variable v, we just keep track of the range of its possible
values. Let [i, j], i, j ∈ Z, i ≤ j, denote the interval containing all integers from
i to j inclusive. Interval [i1, j1] contains another interval [i2, j2] iff i1 ≤ i2 and
j1 ≥ j2. Let LN be the the set of all intervals contained in [0, N]. An element
(I1, · · · , In) of the set S = LnN represents a sub-space of Σ where variable v can
take all values in the interval Iv. We refer to elements of S as regions. A region
ρI = (I1, · · · , In) is said to contain another region ρJ = (J1, · · · Jn) (written as

Finding instability in biological models 5

ρI w ρJ) iff Ik contains Jk for every 1 ≤ k ≤ n. (S,w) is a finite (hence complete)
partial order with [0, N]n as the > element. A region ρ = ([l1, h1], · · · , [ln, hn])
can be equivalently represented by functions V ρlo and V ρhi s.t. ∀v ∈ {0, · · · , n},
V ρlo(v) = lv and V ρhi(v) = hv. The set of states s in ρ s.t. δ(s) is outside of ρ is
denoted by ρ• = {s ∈ ρ ∧ δ(s) 6∈ ρ}. If ρ• is not empty, we say the region ρ is
open wrt δ, otherwise it is closed.

Let v be a variable and (w1, · · · , wm) be its inputs. We define a function
F : S → S, which updates the bounds of eventually possible values of v using
the bounds on the values of its inputs as restricted to ρ. Let (w1, · · · , wm) =
inputs(v). We compute the set of values of the target function Tv applied to
all possible input combinations in ρ and use that to update the interval of v.
Formally, F (ρ) = (f1(ρ), · · · fn(ρ)), with

fv(ρ) = [min(θv(ρ)),max(θv(ρ))], where (2)
θv(ρ) = Tv([V

ρ
lo(w1), V

ρ
hi(w1)]× · · · × [V ρlo(wm), V ρhi(wm)]) (3)

by suitably lifting the definition of Tv to sets of states.
Note that F is monotonic because ρ1 w ρ2 implies Tv(ρ1) ⊇ Tv(ρ2) and

thereby fv(ρ1) contains fv(ρ2). By Kleene’s fixed point theorem, F will have a
greatest fixed point νF , which can be computed by finite number of repeated
applications of F on >. Since F is monotonic, repeated applications of F on >
would give rise to a decreasing sequence of regions > w F (>) w F 2(>) w · · · .
Every element of this sequence is a closed region, because an outgoing transition
from some state s in F i(>) would mean that in s, target function of some variable
v takes a value not contained in [V

F i(>)
lo (v), V

F i(>)
hi (v)], implying F i+1(>) 6v

F i(>). Using these observations, we claim the following.

Lemma 1. The greatest fixed point νF is an over-approximation of the set of
recurring states in Σ.

We can prove this by induction on the number of times F is applied. > =
[0, N]n = Σ contains all recurring states, which proves the base case. Assume
the inductive hypothesis that for some i ≥ 0, F i(>) contains all recurring states.
We show that one more application of F cannot remove at least one recurring
states from F i(>). For some state s ∈ F i(>) \ F i+1(>), there exists a variable
v s.t. fv(F i(>)) does not contain sv. For the sake of contradiction, assume s
is recurring. Then, there exists m > 0 s.t. ∀i ∈ {1, · · · ,m − 1} · δi(s) 6= s
and δm(s) = s. Since all variables can change by at most 1 in each transition
according to Eq. 1, there must exist i, j ∈ {0, · · · ,m − 1} s.t. Tv(δi(s)) ≥ sv
and Tv(δ

j(s)) ≤ sv. Since F i(>) is closed, δi(s), δj(s) ∈ F i(>). This means
fv(F

i(>)) must contain sv which leads to a contradiction. Thus, F i+1(>) also
contains all recurring states, proving our claim.

2.2 Computing the Greatest Fixed Point νF

We refer to one application of some fv as an update. Then, νF is a fixed point
of a system of equations, one equation corresponding to each fv. The simplest

6 Cook et al

algorithm to compute νF is to repeatedly apply F until a fixed point is reached.
One application of F corresponds to a parallel application of each fv. This
algorithm is far from optimal since it does not exploit the dependencies in the
network. In the worst case, when each application of F changes either lower
or upper bounds of exactly one of the variables by 1, it can perform O(Nn2)
updates. Biological models expressed as QNs are typically expected to have a
small granularity, reflecting the high level of abstraction from the underlying
physico-chemical nature. Since every fi is monotonic, any sequential algorithm
will find the greatest fixed point as long each fi is applied a sufficient number
of times. Each update can be compared to a lemma generation step (Algorithm
4 in [6]).

Computing νF is often scalable because most variables in a typical QN have
a small number of inputs. Each update to a variable means going over all pos-
sible combinations of its inputs w1, · · · , wm within the current region ρ, i.e.
([V ρlo(w1), V

ρ
hi(w1)]× · · · × [V ρlo(wm), V ρhi(wm)]), which is feasible when the num-

ber of inputs is small. In many cases the target functions are also monotonic in
some inputs, which allows for checking only the boundaries of the region (instead
of the complete Cartesian product) to get the min/max possible target function
value.

In cases where νF is a singleton, we safely conclude that the network stabi-
lizes. We denote such networks as being trivially stable. When it is not a singleton,
it may still be possible that the network is stable and the over-approximation is
too coarse. Such networks are termed as being non-trivially stable.

2.3 Example

Fig. 1 shows how the fixed-point computation would proceed on the example
transition systems. Each of them are of granularity 3 and have two variables A
and B. The target functions corresponding to the transition system in Fig.1a are:
TA(a, b) = 0, TB(a, b) = if a = 0 then 0 else b. Target functions of the other two
transitions systems are cumbersome to write and are hence skipped in the text.
In case of Fig.1a, two updates are enough to determine that the only recurring
state is A = 0, B = 0. In Fig.1b even though the network is stabilizing, it is
not possible to strengthen the intervals of either A or B beyond [0, 2]× [0, 2]. In
Fig.1c, the network is unstable due to presence of a cycle, and one update each
to intervals of A and B leads to the greatest fixed point region [0, 1]× [0, 1]. We
still have to explicitly check for presence of cycles within this smaller region.

3 Finding Instability

If the greatest fixed point νF is not a singleton, we can think of the following
disjoint possibilities: (a) the network is unstable due to presence of (a.1) at least
two self-loop states, or (a.2) at most one self-loop state but at least one non-
trivial cycle; (b) the network stabilizes and νF is too coarse to conclude that,
in which case it has exactly one self-loop and no non-trivial cycles. Checking
(a.1) can be encoded as a formula satisfiability problem. A decision procedure

Finding instability in biological models 7

(a) Trivially Stable

(b) Non-trivially
Stable

(c) Cyclic Instability

Fig. 1: Computing νF on transition systems of example QNs. Circles denote states and
arrows between states denote transitions. Solid circle means that the state is recurring.
Rounded rectangles are used to represent regions (interval domain).

is used to check the existence of two distinct states: u and w such that both are
self-loops: ∀i ∈ {1, · · · , n} · (δ(u)i = ui) ∧ (δ(w)i = wi). This decision procedure
usually works very well. On the contrary, as mentioned earlier the check for
distinguishing (a.2) and (b) is a brute force call to a decision procedure that
searches for loops of increasing length (up to the diameter of the network).
Especially in the case that (b) is true, this has prohibitive performance. This
motivates development of a new algorithm to distinguish between cases (a.2)
and (b).

First, we define some terminology. Let ρ be a region of the QN Q. A pair
(ρ1, ρ2) of disjoint regions such that ρ1 ∪ ρ2 = ρ is called a cut of ρ. As both ρ1
and ρ2 are regions and ρ1∪ρ2 must be ρ, it follows that there exists some variable
v and a value d such that ρ1 = {s ∈ ρ | s(v) ≤ d} and ρ2 = {s ∈ ρ | s(v) > d}.
In this case it must also be the case that ρ1 ∪ ρ2 = ρ1 t ρ2 (where t is the
join operation in the lattice of regions). Let ρ1 • ρ2 = {s|s ∈ ρ1 ∧ δ(s) ∈ ρ2} be
the set of states in ρ1 that have a transition to some state in ρ2 and δ(ρ1 • ρ2)
is the image of ρ1 • ρ2 wrt δ. We have δ(ρ1 • ρ2) ⊆ ρ2. A pair of sets of states
γ = (γρ1 , γρ2) is a frontier of the cut (ρ1, ρ2) iff ρ1•ρ2 ⊆ γρ1 ⊆ ρ1, δ(ρ2•ρ1) ⊆ γρ1
and ρ2 • ρ1 ⊆ γρ2 ⊆ ρ2, δ(ρ1 • ρ2) ⊆ γρ2 . A cut (ρ1, ρ2) can have one of three
natures:(1) zero-way iff there is no transition from a state in ρ1 to a state in
ρ2 and also the other way;(2)one-way iff there are transitions in exactly one
direction; (3) two-way if there are transitions in both directions. That is, (ρ1, ρ2)
is: zero-way iff both ρ1•ρ2 and ρ1•ρ1 are empty; one-way iff exactly one of ρ1•ρ2
and ρ2 • ρ1 is empty; two-way iff both ρ1 • ρ2 and ρ2 • ρ1 are non-empty. The
nature of a frontier is also defined similarly, based on directionality of transitions
between γρ1 and γρ2 . Note that all frontiers of a cut have the same nature as
the cut, hence determining the nature of some frontier suffices to determine the
nature of the cut.

8 Cook et al

We use (s0, k) to denote a simple cycle (s0, δ(s0) 6= s0, · · · , δk−1(s0) 6=
s0, δ

k(s0) = s0) of length k > 0. A cycle (s0, k) is non-trivial iff k > 1. We
say that (s0, k) is within a region ρ if ∀i ∈ {0, · · · , k} · δi(s0) ∈ ρ. Algorithm 1
guarantees to find a non-trivial cycle (if one exists) within a region ρ by using
two generic procedures Shrink and Cut.

Shrink: S → S. Shrink takes a region ρ as input and returns a region
ρ′ v ρ such that ρ′ still contains every cycle that exists within ρ.

Cut: S → (S × S) × (P(Σ) × P(Σ)). Cut takes a region ρ as input and
returns a cut (ρ1, ρ2) of ρ and a frontier γ = (γρ1 , γρ2) of the cut.

Later in the section, we describe concrete implementations of these proce-
dures that were used in our experiments, but it should be noted that every
implementation that follows the specifications would work as far as correctness
of Algorithm 1 is concerned. Algorithm 1 is a recursive procedure that first ap-
plies Shrink to the input region ρ to find a smaller region containing all cycles
that exist within ρ. If the smaller region contains a single state, we can con-
clude that ρ does not have non-trivial cycles. Otherwise, we use Cut to split
the shrunk region in two disjoint sub-regions ρ1 and ρ2 to which Algorithm 1
can be applied recursively. If a cycle is found within one of the sub-regions, it
can be returned as a cycle within ρ. In case no cycle is found within either of
the sub-regions, we still have to look for cycles that may exist across the cut
(ρ1, ρ2). This is done using Algorithm 2.

Algorithm 2 uses a frontier γ = (γρ1 , γρ2) of the cut (ρ1, ρ2) found by Cut. If
the cut is one/zero-way, there can’t exist a non-trivial cycle across this cut (ex-
istence of a cycle across (ρ1, ρ2) would imply that there is at least one transition
from a state in ρ1 to a state in ρ2 and also the other way and hence both ρ1 • ρ2
and ρ2 • ρ1 would be non-empty). We use a frontier to find the nature of the cut
because ρ1 • ρ2 and ρ2 • ρ1 can be difficult to compute exactly. How to compute
a frontier and determine its nature is described in more detail in Sec. 3.1.

In case the cut is two-way, we start an exhaustive search for a cycle across
the cut by sequentially running simulations starting at each state in γρ1 . Each
simulation is run until either the current state in the simulation is outside of
region ρ or a lasso is found. If there is cycle across the cut, this search is guar-
anteed to find it because there would exist a state sρ1 on the cycle such that
δ(sρ1) = ρ2 and hence sρ1 ∈ ρ1 • ρ2 ⊆ γρ1 .
Lemma 2. FindInstability(νF) returns a simple non-trivial cycle (s0, k > 1)
iff there exists at least one non-trivial cycle in Q and returns null otherwise.

A rigorous proof of this statement can be sketched using structural induction
on regions following the reasoning above.

3.1 Concrete Implementations of Shrink and Cut

In this section we describe the concrete implementation of Shrink and Cut
that we used in our experiments.

Shrink: Given a region ρ, consider the modified target function T ρv of a
variable v:

T ρv (s) = min(V ρhi(v),max(V ρlo(v), Tv(s)))

Finding instability in biological models 9

Algorithm 1: FindInstability
Input: A region ρ
Output: Either a simple non-trivial cycle (s0, k > 1) within ρ or null if ρ does

not contain a non-trivial cycle
1 ρ← Shrink(ρ)
2 if ρ contains a single state then
3 return null
4 else
5 (ρ1, ρ2), γ ← Cut(ρ)
6 res1 ← FindInstability(ρ1)
7 if res1 6= null then return res1 res2 ← FindInstability(ρ2)
8 if res2 6= null then return res2 return

FindCycleAcrossCut((ρ1, ρ2), γ)
9 end

Algorithm 2: FindCycleAcrossCut
Input: A cut (ρ1, ρ2) of the region ρ1 ∪ ρ2 = ρ and frontier γ = (γρ1 , γρ2) of the

cut. The regions ρ1 and ρ2 do not have any cycles within them.
Output: Either a simple non-trivial cycle (s0, k > 1) within ρ s.t.

∃i, j ∈ {0, · · · , k}.δi(s0) ∈ ρ1 ∧ δj(s0) ∈ ρ2 or null if there is no such
cycle

1 if γ is one-way or zero-way then
2 return null
3 else
4 iterγ ← iterator(γρ1)
5 cyc← null
6 while cyc = null ∧ ¬exhausted?(iterγ) do
7 cur ← getElemAndAdvance(iterγ)
8 seen, i← emptyMap, 0
9 while cur 6∈ keys(seen) ∧ cur ∈ ρ do

10 seen[cur]← i
11 cur, i← δ(cur), i+ 1

12 end
13 if cur ∈ ρ then
14 len← i− seen[cur]
15 if len > 1 then cyc← (cur, len)

16

17 end
18 return cyc

19 end

10 Cook et al

The modified transition function δρ is defined using Eq. 1 by replacing Tv by
T ρv . The intention with T ρv is to create target functions tailored to ρ so that ρ
is closed wrt δρ, while still preserving all transitions that are completely within
ρ. This is done by forcing the target function value to be within [V ρlo(v), V

ρ
hi(v)],

truncating to the upper/lower bound if the original value is too large/too small.
The function Fρ is defined by replacing Tv by T ρv in Eq. 3. Let Sρ be the set

of all regions contained within ρ and (Sρ,w) be the corresponding partial order.
It can be shown that for every state s: (1) s ∈ ρ \ ρ• → δρ(s) = δ(s), and (2)
s ∈ ρ• → δρ(s) ∈ ρ. This means ρ is closed wrt to δρ and hence the greatest fixed
point νSρFρ on Sρ is well defined. Thus, νSρFρ is an over-approximation of the set
of states in ρ that are recurring wrt δρ. Also, if there exists a cycle (wrt δ) within
ρ, it will also be a cycle wrt δρ and hence be within νSρFρ. Shrink(ρ) = νSρFρ
can be computed following the approach in Sec. 2.

Cut: The straight-forward way to cut a region ρ is to split the interval of
one of the variables into two. Let ρ|[v]=I denote the region obtained from ρ
by replacing the interval corresponding to v by I and keeping other intervals
unchanged. Upon splitting v at α with V ρlo(v) ≤ α < V ρhi(v), we get the cut
(ρ1, ρ2) with ρ1 = ρ|[v]=[V ρlo(v),α]

and ρ2 = ρ|[v]=[α+1,V ρhi(v)]
. Since we know that

for every state s and variable v, δ(s)v differs from sv by at most 1, we can
safely choose (γρ1 , γρ2) as a frontier of this cut, where γρ1 = {s|s ∈ ρ|[v]=[α,α]}
and γρ2 = {s|s ∈ ρ|[v]=[α+1,α+1]}. The nature of this cut can be determined by
encoding the problem of checking the nature of the frontier as a boolean satisfia-
bility problem. Checking existence of a transition from γρ1 to γρ2 is equivalent to
checking existence of a state w s.t. w ∈ ρ1 ∧wv = α∧ δ(w) ∈ ρ2 ∧ δ(w)v = α+1,
where w ∈ ρ1 would be a conjunction of simple predicates restricting the range
of each variable in w to be within ρ1 and likewise for δ(w) ∈ ρ2.

We have n choices for variable v and then V ρhi(v) − V ρlo(v) choices for the
splitting point α for each v. Cut(ρ) enumerates through all these possibilities
and returns the first one that has a zero/one-way nature. A zero/one-way cut
saves the effort of finding cycles across it later. If all possibilities are two-way,
then it returns a balanced cut, one for which ρ1 and ρ2 are similar in size.

3.2 Efficiency of FindInstability

In the worst case, Algorithm 1 can be equivalent to a brute-force enumeration
over all states of the QN that tries to build cycles by running simulations, but the
effectiveness of Shrink to eliminate parts of the state space that do not contain
cycles and the existence of zero/one-way cuts makes it scale to considerably large
QNs. Experiments show that this can be better than a bounded model-checking
based approach by a few orders of magnitude. However, a stable system which
resisted an initial Shrink and for which only a two-way cut could be found
would be expected to require such a brute-force search. One possible approach
to reduce the search space would be to search specifically for two-way cuts whose
frontiers can be bisected into a two-way cut and a zero-way cut. In the continued
development of new models, we hope to discover examples of this behaviour,
and will be look to address this issue in future. In the absence of such models at

Finding instability in biological models 11

present however we have here restricted our testing to implementations of the
Algorithm 1.

3.3 Example

Fig.2 illustrates how Algorithm 1 makes progress on examples from Fig.1b and
Fig.1c. In Fig.2a, for the non-trivially stable system, Cut splits the interval
of A at 0 to produce two sub-regions. One Shrink operation on each of the
sub-regions reduces them to singletons, hence confirming non-existence of cycles
within them. Owing to the cut being one-way, non-existence of cycles across it is
also easily checked. In Fig.2b, Algorithm 1 is applied to the fixed point obtained
previously ([0, 1]× [0, 1]). Similar to the previous example, interval of A is split
at 0, and the sub-regions get reduced to singletons by Shrink. However, the cut
is two-way and Algorithm 2 successfully finds a cycle by running a simulation
from a point in the frontier.

(a) Non-trivially Stable

(b) Cyclic Instability

Fig. 2: Progress of Algorithm 1 on transition systems in Fig.1b,1c. Dotted lines rep-
resent the splitting point in Cut. Dotted arrows represent the modifications made to
transition functions of sub-regions in order to apply Shrink. Sharp-edged rectangles
denote frontiers. Other notation is the same as in Fig.1.

4 Benchmarks and Evaluation

We implemented the approach in a tool called BioModelAnalyzer+ (BMA+) and
compared directly against the approach from [6] implemented within BioMod-

12 Cook et al

elAnalyzer (BMA, [18, 21, 22]). For each benchmark, BMA+ first computes the
greatest fixed point νF . If stability cannot be proved, it tries to find a counter-
example of type multiple self-loops by encoding it as a satisfiability problem.
If such a counter-example cannot be found, Algorithm 1 is used to check for
existence of a cycle. All calculations were performed single-threaded on a Win-
dows 8 PC with an Intel i7 processor @ 2.1 GHz. There was an upper bound
of 2GB on memory usage. Time out was set at 15 mins. We used Z3 [23]
version 3 as the decision procedure. All benchmarks are available at http:
//www.cs.le.ac.uk/people/npiterman/publications/2014/instability/.

We study the results for models of different nature separately.

4.1 Trivially Stable Systems and Systems with Multiple Self-Loops

We benchmarked our new approach using a range of well characterized stable and
bifurcating (multiple self-loops) systems from previous studies [6, 8, 18, 21, 24].
Both tools run extremely fast and show similar performance for these bench-
marks, as would be expected. See Table 1. However, we still see a slowdown for
BMA+ arising from changes in the procedure which are not relevant here.

Model Nature N+1 |E| |V| BMA BMA+ BMA
BMA+

Leukaemia TS 3 81 51 71 94 0.8
Diabetes TS 3 125 87 66 93 0.7
Budding yeast TS 5 26 16 55 80 0.7
VPC lin15KO TS 3 140 85 56 122 0.5
Dicty single cell TS 2 12 8 47 111 0.4
Skin 1D unstable BF 5 89 75 2206 1973 1.1
Skin 1D BF 5 94 75 239 238 1
Skin 1D unstable 2 BF 5 89 75 383 357 1.1
Skin 2D 5x2 TF BF 5 239 198 337 315 1.1
MCP Array BF 2 104 45 140 241 0.6

Table 1: Results for trivially stable (TS) and bifurcating (BF) models. N+1 is the gran-
ularity, |E| is the number of edges in dependency graph, |V| is the number of variables.
BMA and BMA+ denote the running time of the respective tools in milliseconds.

4.2 Systems with cyclic instability

Oscillations occur in a wide range of different biological systems. In nerves under
constant stimulation the patterns of opening and closing of ion channels in an ac-
tion potential are expected to generate cycles. Oscillations are also widely found
in different biological systems as a mechanism for synchronizing populations
of cells in organs and whole animals. In Dictyostelium discoideum coordinated
oscillations in groups of cells signal the transition from unicellular growth to
multicellular development [25]. BMA+ consistently performs almost an order of
magnitude better than BMA for these benchmarks. See Table 2.

Finding instability in biological models 13

Model N+1 |E| |V| K BMA BMA+ BMA
BMA+

Dicty population 2 71 35 5 60066 2541 23.6
Firing Neuron 2 21 21 6 218 458 0.5
LModel 4 105 25 5 43934 9865 4.5
Leukaemia unstable 3 92 57 5 4497 446 10.1
SSkin 1D 5 46 30 11 TO 132350 >6.8
SSkin 2D 3 cells 2 layers 5 64 40 18 TO 2706 >322.6

Table 2: Results for models with cyclic instabilities. K is the length of the cycle found
by BMA+. TO denotes a time out. In comparing systems where BMA times out, the
speed up is calculated relative to the time limit (15 minutes) and noted with ">".
Other notation is same as in Table 1

4.3 Non-trivially stable systems

The non-trivially stable systems highlight important examples of stable biologi-
cal systems which cannot be proved to be stable with Shrink alone. Chemotaxis
in E. coli is a paradigm for bacterial signaling. Attractants and repellents bind
to a receptors at the cell pole, altering the activity of the kinase CheA. This
in turn both alters the switching behavior of the flagellar motor and changes
the sensitivity of the receptor array to allow for adaptation. The alteration of
receptor sensitivity is slower than motor activation, ensuring that the flagellar
switching behavior reverts to an equilibrium state in an unchanging environ-
ment. Similarly, an action potential passes along a neuron by the opening of ion
channels (triggered by changes in the local membrane potential), followed by
a delayed closure of the pore. The time delay aspects in both of these models
(speed of the adaptation machinery in chemotaxis, and the slow closure of the
ion channels) lead to them both being stable systems. However, proving stability
is non-trivial because of this property. Table 3 shows the benefit of BMA+ over
BMA. We observe significant speed up in all cases.

Particularly noteworthy is the improvement in the calculation of the stable
state in the E. coli signaling system, as despite being a significantly smaller
model than many others presented here (in terms of number of variables and
edges), proofs of stability using the previous approach were prohibitively costly.
Through a single application of the cut, the stability of the system was proved
comparably quickly to a simple example of the same size.

Model N+1 |E| |V| BMA BMA+ BMA
BMA+

Ion channel 2 7 10 499 173 2.9
Lambda phage 2 13 8 3113 197 15.8
Resting neuron 2 28 21 TO 244949 >3.7
E. coli chemotaxis 5 10 9 TO 250 >3600

Table 3: Results for non-trivially stable models. TO denotes time out. Other notation
is same as in Tables 1

and 2.

14 Cook et al

5 Conclusions

This paper describes a new algorithm for the formal analysis of biological mod-
els, which offers a rapid approach for proving instability arising from loops.
This technique builds on previous approaches by rapidly searching for cycles in
cases where stability cannot be proved trivially. We find a large speed up for
proving instability of cyclic systems, but additionally we show that it offers an
impressive speed up when considering the behavior of stable systems with timed
switches, such as bacterial chemotaxis. By proving stability in these new models
our findings further reinforce the importance of inherent biological robustness [6]
in signaling systems. In order to build accurate models of chemotaxis signaling
in E. coli and action potentials in a neuron we need to include timing effects to
reproduce realistic biological behavior. Without these timing effects, the models
unnaturally show bifurcation and cycling behavior respectively. Our new ap-
proach allows us to better identify loops and pseudo-loops in biological signaling
systems observed in this biomedically important class of systems.

Acknowledgments. We thank Dr C Pears and Dr A Watson for insightful
comments and advice.

References

1. Fisher, J., Henzinger, T.: Executable cell biology. Nature Biotechnology 25 (2007)
1239–49

2. Bonzanni, N., Feenstra, K., Fokkink, W., Krepska, E.: What can formal methods
bring to systems biology? In: Formal Methods. Volume 5850 of Lecture Notes in
Computer Science., Springer (2009) 16–22

3. Chabrier-Rivier, N., M., C., Danos, V., Fages, F., Schächter, V.: Modeling and
querying biomolecular interaction networks. Theor. Comput. Sci. 325 (2004) 25–
44

4. Bonzanni, N., Krepska, E., Feenstra, K.A., Fokkink, W., Kielmann, T., Bal, H.,
Heringa, J.: Executing multicellular differentiation: Quantitative predictive mod-
elling of C.elegans vulval development. Bioinformatics 25 (2009) 2049–2056

5. Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.: Predictive modeling of signaling
crosstalk during c. elegans vulval development. PLoS Computational Biology 3
(2007) e92

6. Cook, B., Fisher, J., Krepska, E., Piterman, N.: Proving stabilization of biolog-
ical systems. In: 12th International Conference on Verification, Model Checking,
and Abstract Interpretation. Volume 6538 of Lecture Notes in Computer Science.,
Springer-Verlag (2011) 134–149

7. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22 (1969) 437 – 467

8. Schaub, M., Henzinger, T., Fisher, J.: Qualitative networks: A symbolic approach
to analyze biological signaling networks. BMC Systems Biology 1 (2007)

9. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLoS ONE 6
(2011) e22649

10. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thi-
effry, D.: Integrative modelling of the influence of MAPK network on cancer cell
fate decision. PLoS Comput Biol 9 (2013) e1003286

Finding instability in biological models 15

11. Bonzanni, N., Garg, A., Feenstra, K.A., Schütte, J., Kinston, S., Miranda-Saavedra,
D., Heringa, J., Xenarios, I., Göttgens, B.: Hard-wired heterogeneity in blood stem
cells revealed using a dynamic regulatory network model. Bioinformatics 29 (2013)
i80–i88

12. Huang, S.: Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery. Journal of Molecular
Medicine 77 (1999) 469–480

13. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical
modelling of regulatory networks with GINsim 2.3. Biosystems 97 (2009) 134 –
139

14. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic
model verifier. In: Proceedings of the 11th International Conference on Computer
Aided Verification. CAV ’99, London, UK, UK, Springer-Verlag (1999) 495–499

15. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation
and analysis of logical models of genetic networks. In: Computational Methods in
Systems Biology. Volume 4695 of Lecture Notes in Computer Science., Springer
(2007) 233–247

16. Wadhams, G.H., Armitage, J.P.: Making sense of it all: bacterial chemotaxis. Nat.
Rev. Mol. Cell Biol. 5 (2004) 1024–1037

17. Hille, B.: Ion Channels of Excitable Membranes (3rd Edition). 3rd edition edn.
Sinauer Associates Inc 2001-07 (2001)

18. Claessen, K., Fisher, J., Ishtiaq, S., Piterman, N., Wang, Q.: Model-checking
signal transduction networks through decreasing reachability sets. In Sharygina,
N., Veith, H., eds.: CAV. Volume 8044 of Lecture Notes in Computer Science.,
Springer (2013) 85–100

19. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages. (1977) 238–252

20. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Dunod,
Paris, France (1976) 106–130

21. Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., Piterman,
N., Taylor, A., Vardi, M.: BMA: Visual tool for modeling and analyzing biologi-
cal networks. In: 24th International Conference on Computer Aided Verification.
Volume 7358 of Lecture Notes in Computer Science., Springer (2012) 686–692

22. Taylor, A.S., Piterman, N., Ishtiaq, S., Fisher, J., Cook, B., Cockerton, C., Bourton,
S., Benque, D.: At the interface of biology and computation. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ACM (2013)
493–502

23. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver Tools and Algorithms
for the Construction and Analysis of Systems. In Ramakrishnan, C., Rehof, J.,
eds.: Tools and Algorithms for the Construction and Analysis of Systems. Volume
4963/2008 of Lecture Notes in Computer Science., Berlin, Heidelberg, Springer
Berlin (2008) 337–340

24. Beyer, A., Thomason, P., Li, X., Scott, J., Fisher, J.: Mechanistic insights into
metabolic disturbance during type-2 diabetes and obesity using qualitative net-
works. T. Comp. Sys. Biology 12 (2010) 146–162

25. Söderbom, Fredrik and Loomis, William F: Cell-cell signaling during Dictyostelium
development. Trends in microbiology 6 (1998) 402–406

