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1 Canonical Correlation Analysis

Given a multi-view data, Canonical Correlation Analysis (CCA) [3] is a technique to find the projection
directions in each view so that the observations when projected along these directions are maximally aligned.
Let X (d1×n) and Y (d2×n)be the representation of data in both the views, then CCA finds the projection
directions a and b such that:

argmax
a,b

aTXY
Tb√

aTXXTa
√
bTY Y Tb

This objective function can be re-written as:

argmin
a,b

||XTa− Y
Tb||2 s.t. aTXX

Ta = 1 & bT
Y Y

Tb = 1 (1)

2 Spectral Embedding

Given a similarity matrix of size W (n × n), Spectral Embedding [4, 5] involves finding a vector u which
minimizes the following objective function:

argmin
u

1

2

∑

ij

Wij(ui − uj)
2 (2)

with an appropriate length constraint on u. The objective function in Eqn. 2 can be rewritten as [1]:

argmin
u

uT
Lu s.t. uT

Du = 1 (3)

where L = D −W is the unnormalized Laplacian matrix corresponding to W and D is the diagonal matrix
with Dii =

∑

j Wij . The above optimization function reduces to solving the generalized eigenproblem
Lu = λDu [5].

3 CCA via Spectral Embedding

Locality Preserving Projections (LPP) [2] is a technique that uses spectral embedding to find a lower di-
mensional representation of observations such that local neighbourhood is preserved. Here we propose a
generalization of this technique to the multi-view data. It turns out that our new formulation generalizes
CCA in many ways.
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Let Z be a (d1 + d2)× 2n matrix representing the multi-view data, p be a vector of length d1 + d2 and W

be a matrix of size 2n× 2n defined in the following way:

Z =

[

X 0

0 Y

]

(d1+d2)×2n

; p =

[

a(d1×1)

b(d2×1)

]

; W =

[

0 I

I 0

]

2n×2n

⇒ D =

[

I 0

0 I

]

2n×2n

(4)

and let ui = pT
Zi for i = 1 · · · 2n. Substituting these definitions in Eqn. 2:

1

2

2n
∑

i,j=1

Wij(ui − uj)
2 =

1

2

2n
∑

i,j=1

Wij(p
T
Zi − pT

Zj)
2

=
1

2

(

n
∑

i=1

(pT
Zi − pT

Zi+n)
2 +

2n
∑

i=1+1

(pT
Zi − pT

Zi−n)
2
)

=
1

2

(

n
∑

i=1

(aTXi − bT
Yi)

2 +
n
∑

i=1

(bT
Yi − aTXi)

2
)

=

n
∑

i=1

(aTXi − bT
Yi)

2 = ‖XTa− Y
Tb‖2 (5)

which is same as the CCA objective function in Eqn. 1 and similarly the constraint uT
Du = 1 reduces to the

constraints in Eqn. 1. Thus, with the above definitions of Z, p and W , both CCA and Spectral Embedding
solves the same optimization problem. Hence, CCA solution can also be obtained by solving the generalized
eigenvalue problem:

ZLZ
T

[

a

b

]

= λ ZDZ
T

[

a

b

]

(6)

where L and D are the unnormalized laplacian and the diagonal matrices corresponding to the weight matrix
W (as defined in Sec. 2).

The above formulation offers several advantages that are not trivial with the original definition (Eqn. 1).
First of which is the ability to incorporate varying types of local neighbour hood, i.e., by appropriately
defining the diagonal block matrices of weight matrix W we can take the intra-view similarities into account.
Moreover, the anti-diagonal block matrices can be perturbed to consider the ambiguous/noisy alignments in
the multi-view data. The second main advantage is its ability to consider common features across multiple
views. The p vector can be trivially modified to consider the shared features across different views.
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