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Abstract. Traditional approaches to combining classifiers attempt to improve 
classification accuracy at the cost of increased processing. They may be viewed 
as providing an accuracy-speed trade-off: higher accuracy for lower speed. In 
this paper we present a novel approach to combining multiple classifiers to 
solve the inverse problem of significantly improving classification speeds at the 
cost of slightly reduced classification accuracy. We propose a cascade architec-
ture for combining classifiers and cast the process of building such a cascade as 
a search and optimization problem. We present two algorithms based on steep-
est-descent and dynamic programming for producing approximate solutions 
fast. We also present a simulated annealing algorithm and a depth-first-search 
algorithm for finding optimal solutions. Results on handwritten optical charac-
ter recognition indicate that a) a speedup of 4-9 times is possible with no in-
crease in error and b) speedups of up to 15 times are possible when twice as 
many errors can be tolerated. 

1   Introduction 

Given a classification problem, several approaches exist for building a classifier using 
machine learning. Different machine learning algorithms produce different classifiers, 
usually with different classification errors. Several studies have pursued the goal of 
finding a machine learning algorithm that can solve any classification task with the 
highest (generalization) accuracy. The quest for such a super classifier and a universal 
machine learning algorithm for training its architecture still remain elusive. However, 
its absence has produced several comparable alternatives. This variety has been a 
boon to approaches that attempt to build better classifiers through combination. Such 
combination approaches most commonly utilize not only the classification outputs but 
also the classification confidences returned by each classifier. 

Recent investigations [1-6] have concentrated on combining two or more classifiers 
for improved classification accuracy. The intuition for why such an approach can 
work lies in the observation that the classification errors produced by radically differ-
ent classifiers have low correlation [3]. Further, one also observes that the more confi-
dent a classifier, the more likely that it is correct and vice versa. When more than two 



classifiers are available the combination alternatives become much more interesting 
with a greater potential for producing better qualifiers through combination. 

Today’s mobile electronic devices such as cell phones and digital cameras are ca-
pable of acquiring images at a sufficiently high resolution (3 MPix) to facilitate OCR 
of text in these images. There is a simultaneous explosion of software applications 
targeting these devices that can read and translate words in documents, traffic signs, 
restaurant menus, travel guides, etc. Given the low processing power of these devices, 
it is desirable to have high speed OCR systems that can be used on these machines. 
Though speed is a bottle neck, memory appears to be more freely available as these 
devices simultaneously target multimedia applications. 

In this paper, we investigate the inverse problem wherein classification speed is of 
interest and we are willing to accept slightly reduced classification accuracy in order 
to achieve significant speedup. We address the scenario where a set of pre-trained 
classifiers are available for combination, and we wish to produce various speed-error 
trade-offs for several different scenarios. For simplicity we assume that retraining 
during combination is not an option. We present an approach to build and combine 
classifiers that can significantly improve classification speeds with a pre-specified 
maximum (usually small) drop in classification accuracy. Section 2 briefly reviews 
existing classifier combination approaches both for accuracy and speed. The new 
approach and the underlying optimization problem are presented in Section 3 along 
with four algorithms for building such cascades. Experimental results are presented in 
Section 4 and we conclude in Section 5.  

2   Background 

Combining classifiers for improved optical character recognition (OCR) accuracy is a 
well studied problem. Simple classifier fusion methods such as minimum, maximum, 
average, median, and majority voting have recently been studied both theoretically [1] 
and empirically [3]. Rather than using such simple static rules, a combining classifier 
can be trained to takes the outputs from two or more classifiers as input and produce a 
combined output that better models the class posterior probabilities or likelihoods. 
Such approaches based on learning have greater potential for producing larger im-
provements in accuracy [2]. Successful applications of classifier combinations include 
combining fingerprint matches, face and voice recognition and document processing 
[3-7]. We emphasize that all of these approaches focus on accuracy and invariably 
result in slower classifiers. The combined classifier is 2-20 times slower with the 
number of errors dropping by 18%-63% [4-5]. 

Combining classifiers for speed provides a different approach to improving classi-
fiers. Such sequential combination is commonly addressed to improve not only classi-
fication accuracy, but also classification speed. Typically, the quickest classifiers are 
used first followed by slower (and frequently more accurate) classifiers [8]. Boosting 
is one such ensemble learning algorithm that sequentially adds weak classifiers to 
build a strong classifier. Using early stopping during sequential classifier combination 



can not only produce speed benefits, but also acts as a regularization technique to 
improve generalization [9]. 

3   Combining classifiers for speed 

In this paper we investigate combinations of a class of convolutional neural network 
classifiers [7]. These networks have two layers of convolutional nodes followed by a 
hidden layer and an output layer. Such a network achieved the best known error rate 
of 0.4% [7] for handwritten digit recognition (MNIST). It had 5 nodes in the first 
convolutional layer, 50 nodes in the second convolutional layer, 100 hidden nodes, 
and 10 output nodes (one for each digit 0-9). It can process about 250-300 chars/sec 
on a P4 3GHz machine. The network performs over half a million operations per 
classification. This network when used for recognizing documents would take over 15 
seconds per page and would be too slow.  
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Fig. 1. Rejection curve for a convolutional neural network on MNIST data.  

The factors contributing to the computation in the classifier are a) the input resolu-
tion, b) size of the convolutional layers, c) number of hidden nodes, and d) the number 
of output classes. The last parameter is defined by the problem and usually cannot be 
changed. For the remaining settings, smaller values produce faster but less accurate 
networks [7]. Further, it is well known that one observes a rate of diminishing returns 
in accuracy as complexity is increased. 

The convolutional NN is trained through backpropagation using cross-entropy and 
learns to predict class probabilities [7]. The output for each class lies in [0,1] and can 
be used as a confidence measure to reject samples that would be incorrectly classified. 
Figure 1 presents the rejection curve for a convolutional NN with 50 hidden nodes. 
The rejection curve is monotonically decreasing indicating that the higher the confi-
dence the less likely that the character will be misclassified. Even though the classifier 
only achieves an error rate of 1.25% on the MNIST data set, we can improve its error 



rate to 0.1% or even 0% by rejecting 9% or 26% of the data, respectively. This trade-
off is the key intuition behind the proposed cascade architecture. 

3.1   Cascade of Classifiers 

Figure 2 presents a cascade architecture for combining classifiers using a sequence of 
thresholds. Characters are processed by the cascade as follows: each input character 
image is initially presented to the first stage, S1.  If the classification output exceeds 
the first stage’s threshold, t1, then it is absorbed by the first stage and processing stops. 
If not, then the sample is rejected (by the first stage) and is passed on to the next stage. 
This process is repeated till the sample gets absorbed by some stage or we reach the 
last stage, SM, in the cascade. The last stage, SM, has a threshold of tM = 0 and is de-
signed to absorb all characters that reach it. The label assigned to the input character 
is that assigned by the absorbing stage.  

 

 

Fig. 2. Cascade of classifiers: Samples rejected at each stage are passed on to subsequent 
stages. Networks at the front of the cascade are fast and inaccurate while networks towards the 
end of the cascade are more accurate but slower. 

The cascade architecture has several merits for improving processing speed. If 
faster less accurate nets are placed towards the front of the cascade and slower more 
accurate nets are placed towards the end of the cascade, one can dramatically reduce 
the expected processing times for input characters. The speedup and error rate of the 
cascade is determined by the costs, errors, and thresholds of each stage. Lower cost 
implies a faster stage. 



3.2   Optimization problem 

In this paper, we study such cascades with the stages arranged such that costs mono-
tonically increase from left to right. Mathematically, 

C1 ≤ C2 ≤ … ≤ CM (1) 

where M is the number of stages and Ci is the cost of the i-th stage. Given the order-
ing, the costs are usually normalized such that C1 = 1.0. Unlike the costs the errors are 
not expected to be monotonically decreasing as we move through the cascade (see 
Tables 1 and 2). Given this architecture, the goal is to find the fastest cascade with an 
error rate less than a pre-defined value emax. Though the cascade can be used to im-
prove the error rate of the best classifier, in this paper, emax will be defined to be larger 
than the error incurred by the best single network in the cascade. The search space of 
solutions is S = {t1}×{t2}×…×{tM}, where {ti} is the set of all thresholds for stage i. 
The optimal threshold vector T* = [t1*, t2*, …, tM*] is given by 

T* = arg min {C(T) | T ∈ S, e(T) ≤ emax} (2) 

The optimum cost is C(T*) and the corresponding speedup is CM/C(T*). During opti-
mization a set of input samples, {xi}, is used to evaluate the cost, C(T), and error rate, 
e(T), of the cascade for each candidate threshold vector, T. If a stage rejects all sam-
ples (i.e., absorbs no samples) then it is considered to be pruned from the cascade and 
adds no cost to the cascade. Note that this problem formulation allows for some of the 
networks to be completely dropped from the cascade. It is easy to see that C(T*) can 
be no lower than C1. At the other extreme, the maximum possible expected cost per 
input sample is given by 

max C(T) = (NC1 + (N−1)C2 + … + (N−Μ)CM)/N (3) 

For N >> M, we get 

max C(T) = C1 + C2 + … + CM (4) 

Four different algorithms are presented for finding solutions to this problem, namely 
steepest descent (SD), dynamic programming (DP), simulated annealing (SA), and 
depth-first-search (DFS). While the SD and DP algorithms presented here are de-
signed for generating approximate solutions fast, the SA and DFS are designed to find 
the optimal solution. The SA algorithm is stochastic in nature and guarantees asymp-
totic convergence to the optimal solution. However, at any finite number of iterations, 
the best solution may only be approximate. Brief descriptions of the optimization 
algorithms are presented below: 

Steepest descent 
The algorithm is initialized with T0 = [1,1,…,1,0], i.e., every stage rejects all samples 
except for the last stage that absorbs them. Such a solution satisfies the emax constraint 
and has a cost C(T0) = CM. During each iteration, the change in cost ∆Ci,  i = 1,2,…,M  
and the change in error ∆ei,  i = 1,2,…,M are computed by lowering each threshold ti 
to the next possible value while keeping all other thresholds the same. Note that due to 



the monotonic increase in costs over the cascade ∆Ci < 0, i = 1,2,…,M. If the error 
decreases for any i (i.e., ∆ei < 0), the best such i with the lowest ∆ei is selected for 
update. If all ∆ei > 0, the i with the lowest cost change per unit error change = 
−∆Ci/∆ei is selected for update. The selected threshold is updated to the next lower 
value and the process is iterated. Search is terminated when the best possible update 
puts the error above emax. The steepest descent algorithm is sensitive to local optima 
and is used only as a baseline for comparing algorithms. The algorithm is simple and 
very fast. Each update takes at most O(M) evaluations and there are at most MN 
evaluations. Due to the incremental updates to the thresholds during successive 
evaluations, the cost and error evaluation can be done very efficiently by remembering 
which samples were absorbed at each of the stages and which ones are affected by the 
threshold update. The total running time is bounded by O(M2N). 

Dynamic programming 
The dynamic programming algorithm presented here builds a cascade by iteratively 
adding new stages. It starts with a two stage cascade containing only the first and last 
stages, S1, and SM, respectively. Note that such a two stage cascade has at most N 
possible threshold vectors. Each threshold vector represents a unique solution with a 
different second last stage threshold. Let these be represented as N paths of length 
one, each ending at a unique threshold. Each of these N paths is evaluated. Now con-
sider inserting stage S2 between S1, and SM. Each of the existing N paths can be ex-
tended in N possible ways through S2. All such N2 extensions are evaluated. For each 
threshold in S2, the best path extension (among the N2 possible extensions) is chosen 
and retained. This results in N paths of length 2 each passing through a different 
threshold in S2 and representing a different cascade with three stages. This process of 
adding a stage is repeated M − 2 times to obtain a set of N paths representing cascades 
with M stages. The best path among these remaining N paths is picked as the final 
solution. The algorithm is not guaranteed to find the optimal solution because only N 
paths are retained during each iteration. The running time is O(MN2). 

Simulated annealing 
A simulated annealing algorithm is presented that simultaneously optimizes all thresh-
olds in the cascade of M stages. As in the case of steepest descent, the initial solution 
is T0. At any given temperature, λ, each threshold, ti, is updated to a neighbor that is η 
= round( G(0, λ) ) steps away, where G(0, λ) is a zero mean Gaussian random vari-
able with standard deviation λ. Note that η can be positive or negative. Any thresholds 
that fall outside the valid limits (threshold indices: 1−N or threshold values 0−1) are 
reset to the limit violated. The initial temperature was set to N and the Metropolis 
algorithm was used to accept better solutions. Further, any solutions that didn’t satisfy 
the emax criterion were also rejected during the updates. The temperature was continu-
ously annealed down to 1.0 with a maximum of one million evaluations (= E). The 
running time is O(EM). 



Depth first search 
The above three algorithms do not guarantee finding the optimal solution after a finite 
amount of computation. A simple depth-first-search was used to search through all 
possible threshold settings. Every possible cascade with 2 to M stages can be repre-
sented as a node in a tree of maximum depth M − 2. Nodes at depth d represent cas-
cades of length d − 2.  The running time is O(NM-1), but extensive pruning is possible. 

3.3   Experiments 

Experiments were conducted with the MNIST and FUGU character datasets. The 
MNIST dataset consists of 60,000 hand written digits uniformly distributed over 0−9. 
The FUGU dataset contains a natural distribution of 925,702 Japanese kanji charac-
ters with up to 3 strokes (258 classes). For each dataset, 80% of the samples were used 
for training, 10% were used for validation (to determine when to stop training) and the 
remaining 10% were used for testing. The validation samples were also used to opti-
mize the thresholds.  

A total of 18 MNIST classifiers and 12 FUGU classifiers of varying sizes were 
trained. The parameters being varied were the input image size (5x5, 7x7, 9x9, 11x11, 
and 29x29), the number of convolution layers (2 layers or 0 layers), and the number of 
hidden nodes (50, 100, 200, and 300). Cascades of such trained networks were opti-
mized using the above algorithms. Approximate running times for SD, DP, and SA, on 
these two problems were 0.25, 45, and 250 seconds, respectively. Due to the computa-
tionally intensive nature of DFS, DFS experiments were conducted only on a toy prob-
lem consisting of 4 MNIST classifiers and 5000 samples. The quality of the optimal 
solutions found using DFS are compared with the other algorithms. 

Table 1. MNIST Results: Costs and Errors. 

SN Input Arch. Cost Train% Test% 
1 5x5 0,0,50,10 1.00 26.52 27.48 
2 5x5 0,0,100,10 1.22 25.06 26.81 
3 5x5 0,0,200,10 1.72 25.36 26.76 
4 5x5 0,0,300,10 2.24 25.57 27.07 
5 7x7 0,0,50,10 1.04 8.82 9.06 
6 7x7 0,0,100,10 1.35 8.17 8.38 
7 7x7 0,0,200,10 1.99 8.29 8.82 
8 7x7 0,0,300,10 2.61 8.04 8.36 
9 9x9 0,0,50,10 1.14 4.49 4.65 
10 9x9 0,0,100,10 1.53 4.13 4.20 
11 9x9 0,0,200,10 2.36 4.03 4.01 
12 9x9 0,0,300,10 3.17 3.78 3.89 
13 11x11 0,0,50,10 1.26 3.63 3.72 
14 11x11 0,0,300,10 3.84 2.35 2.27 
15 29x29 0,0,50,10 3.39 3.43 3.36 
16 29x29 0,0,300,10 16.3 1.82 1.81 
17 29x29 5,50,50,10 23.0 1.20 1.25 
18 29x29 5,50,300,10 41.6 1.10 1.19 



4   Results 

Training results for MNIST are presented in Table 1. The Train% is the error on the 
validation set used for stopping training and the Test% is the error on the test set. The 
best network (stage 18) had a validation error rate of 1.1% and a test error of 1.19%.  
On the other hand, the fastest network which was 41.6 times faster had an error rate of 
26.52%! The validation set was used to optimize the 18-thresholds in the cascade for 
11 values of emax ranging from 1.1%  (no extra error) to 2.2% (double the error). Fig-
ure 3 presents the speedup results obtained using SD, DP, and SA on the MNIST 
dataset. The speedup rapidly increases with increasing emax. It is quite remarkable that 
even with no change in error, a 4x speedup is possible using the cascade architecture. 
The speedup quickly rises above 5x for an emax of 1.2% and reaches 15x for an emax of 
2.2%. The curve for DP is wavy with certain lower error settings producing faster 
solutions. This is because DP only retains the best N paths during each iteration. 
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Figure 3. Speedup factor on MNIST. 

Table 2 presents training results for FUGU. The best network (stage 120 has an er-
ror rate of 5.79% on the validation set. The error on the test set was 5.85%.  On the 
other hand, the fastest network which is 17.61 times faster had an error rate of 
52.20%. The validation set was used to optimize the 12-thresholds in the cascade for 
11 values of emax ranging from 5.79% (no extra error) to 11.58% (twice the error). 
Figure 4 presents the speedup results obtained using SD, DP, and SA on the FUGU 
dataset. As in the case of MNIST, the speedup rapidly increases with increasing emax. 
It is interesting to note that using the cascade architecture, an almost 10x speedup is 
possible with no change in error. The speedup quickly rises to 12x for an emax of 
8.95% (55% more errors) and reaches 14x for an emax of 11.58% (twice the number 
of errors). Over an order of magnitude speedup was possible with little or no change 
in error rate. We conjecture that the reason for higher speedup factors with FUGU is 
the natural distribution of characters and an overall larger error rate. Further, the lower 
slope on the FUGU dataset is due to the lower cost range among constituent networks. 



At double the error rate, we come close to the maximum possible speedup factor of 
17.61. 

Table 3 presents results on the toy problem using the four algorithms. DFS finds 
optimal solutions within a few minutes. On the toy problem, the quality of solutions 
found using DP and SA closely match those found using DFS. However, further ex-
periments are necessary to determine how well these results generalize to larger prob-
lems with more stages and larger validation sets. 

5.8 6.3 6.8 7.4 7.9 8.4 8.9 9.5 10 10.5 11.1 11.6

2

4

6

8

10

12

14

Maximum Allowed Error (Percent)

S
pe

ed
up

 F
ac

to
r

SD
DP
SA

 
Figure 4. Speedup factor on FUGU. 

Table 2. FUGU Results: Costs and Errors  

SN Input Arch. Cost Train% Test% 
1 5x5 0,0,50,258 1.00 52.20 52.02 
2 5x5 0,0,300,258 1.06 49.48 49.47 
3 7x7 0,0,50,258 1.09 28.56 28.29 
4 7x7 0,0,300,258 1.12 20.57 20.53 
5 9x9 0,0,50,258 1.96 18.53 18.44 
6 9x9 0,0,300,258 2.86 11.91 11.99 
7 11x11 0,0,50,258 3.03 14.39 14.27 
8 11x11 0,0,300,258 3.25 9.41 9.43 
9 29x29 0,0,50,258 3.48 11.88 11.61 

10 29x29 0,0,300,258 8.12 7.29 7.23 
11 29x29 5,50,50,258 9.37 7.54 7.56 
12 29x29 5,50,300,258 17.61 5.79 5.85 

Table 3. Speedup comparisons against optimal speedup on a toy problem (4 classifiers, 5000 
samples) 

emax DFS (optimal) SA DP SA 
12.36% 5.1219 1.0250 5.1102 5.0493 

15% 7.9754 1.0699 7.9556 7.9193 
20% 20.5 1.6314 20.5 20.5 



5   Conclusion 

A cascade architecture for combining classifiers was presented along with four algo-
rithms for optimization. Results on character recognition show that significant speed-
ups can be obtained with little or no change in the error rate. The input to our opti-
mizer is a set of rejection curves computed by potential classifiers (of any type) and 
the output is a set of thresholds (which potentially eliminate the useless classifiers).  
The optimizer  is called off-line and its output yields a near speed-optimal combina-
tion classifier, ready for deployment. Future work will address scaling this approach to 
much larger data sets, larger cascade sizes, and re-training constituent classifiers in 
light of the role played by them in the cascade. 
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