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Abstract. We describe a novel software verification primitive called Oblivious 
Hashing. Unlike previous techniques that mainly verify the static shape of code, 
this primitive allows implicit computation of a hash value based on the actual 
execution (i.e., space-time history of computation) of the code. We also discuss 
its applications in local software tamper resistance and remote code 
authentication. 

1. Introduction 

A major challenge in Software Tamper Resistance is finding a stealthy and robust 
primitive to ascertain the operational correctness of protected software. A prevalent 
method used today verifies the shape of the code, and sometimes critical data, before 
or during the runtime. It is accomplished by computing a cryptographic checksum on 
one or more segments of the code that is being protected. 
 
The shape-verification approach has many  drawbacks of which we mention two here. 
First, it is quite straightforward to detect the verification routine, owing to the atypical 
nature of the operation, since most applications do not read their own code segments. 
Second, this approach fails to detect certain behavioral or data modifications to the 
software. For example, a hacker can temporarily change the return result by patching 
a register, right before the protected function returns, without having to alter the code. 

 
To address such problems, we propose a new concept called Oblivious Hashing 
(OH). The main idea is to hash the execution trace of a piece of code, thereby 
allowing us to verify probabilistically or deterministically the run-time behavior of the 
software. We accomplish this by injecting additional computation (hashing code) into 
the software (host code). The hashing code implicitly computes a hash value from the 
dynamic execution context of the host code. A main feature of our injection method is 
to  blend the hashing code seamlessly with the host code, making them locally 



indistinguishable and thus difficult to separate without non-trivial effort to run and 
observe the program’s execution repeatedly. 
 
Given OH as a primitive, a number of techniques can be used to make it an effective 
tool for tamper resistance. At the minimum,  there must be stealthy ways for checking 
and acting upon the execution hashes; invocations of the checks must be networked 
into a graph so as to make it combinatorially hard to identify the underlying graph 
structure  and remove these checks [1,11]. These techniques are critical to tamper 
resistance regardless of the software verification mechanism used. In this paper we 
focus on the oblivious hashing primitive itself, describing its concept and some 
implementation details. We also discuss its application to local tamper resistance and 
remote code authentication. 

2. Related Work 

Tamper-resistance techniques traditionally took advantage of software- and hardware-
specific features that were often un-documented (e.g., hidden functionality and 
“reserved” processor instructions).  Unfortunately, special features are invariably 
limited in quantity and unchangeable over time. Typically, it did not take long before 
an unrelenting hacker uncovered the “trick” and completely defeated the protection. 
Not surprisingly, the security-by-obscurity approach has gradually given ground to 
more systematic approaches. 
 
The last few years have seen active development of computation-based techniques in 
software tamper resistance. A typical such system incorporates both software integrity 
verification and software obfuscation as its two main weapons against tampering. 
 
Among software integrity verification methods, computing a checksum (or hash) of 
code bytes (or, Code Checksum) is perhaps the oldest. An obvious direct derivative of 
the long studied areas  of hashing for searching and sorting [18]  and  that of message 
authentication codes in cryptography [19], it is straightforward to implement and can 
be made quite efficient [1, 14, 15]. The main drawback of code checksum is that 
reading the code segment tends to stick out as an atypical operation during execution.  
The hackers can usually pin-point the checks by setting breakpoints or examining the 
code. Spreading many smaller checks over time and space, repeating atypical 
operations all over the code are the obvious heuristics to mitigate this problem. 
Furthermore, since this method only verifies the static shape of the code, it cannot 
detect certain run-time attacks whereby the hacker patches the instructions or return 
value (often held in a register) temporarily.  
 
Software obfuscation [1, 3, 4, 5] is another general but complementary technique that 
tries to make it difficult for attackers to understand and modify code in a useful 
manner.  Most commercial obfuscation deployments involve proprietary technologies  
without many published implementation details, except on sites run for and by 
hackers who enjoy reverse engineering. A popular technique in software obfuscation 



is Code Encryption. Unless almost all the code is encrypted, use of this technique is 
easy to identify and attack. It does, however, help prevent straightforward 
disassembly and patching [1].  In the extreme case, code can even be decrypted one 
instruction at a time and custom-generated on the fly. On processor architectures with 
variable-length instructions, for example Intel x86, one may also devise some anti-
disassembly and anti-decompilation techniques by embedding instructions within 
other instructions.  Furthermore, since a debugger is a primary tool of crackers, 
debugger-detection and -disabling techniques may be viewed as useful deterrents.  
Some protection methodologies have strived to detect and disable general tools that 
might be used for observation and modification of running programs, such as 
described in [9, 10, 20s]. 
 
Historically, hardware and software debugging methods use printing out the trace of 
an execution. Our contribution  can be viewed as a (probabilistic) compression of the 
trace from a security point of view.  This is quite sensitive to the  attack model, which 
in our case is that the program runs in a system owned by the adversary, who can use 
program analysis tools to detect, thwart and undo the checks and protection. This has 
to be contrasted with protection from downloaded code (where the adversary is 
external and the sandboxing can be an appropriate measure) or running a given code 
in an untrusted remote system and checking if the computations are properly carried 
out. The latter problem in a distributed execution environment is studied in [16], 
where a suitably embedded trace-gathering code ensures that the remote computer 
sends the result and the trace which can be locally cross-checked. Our trace-collection 
differs fundamentally on how it is done, used and the goals themselves. Our emphasis 
is on stealth and security via adequate randomization of the end results. OH gathers 
only a small subset of the execution states and state reduces the sequence of state 
changes to a small hash value to approximate and implement a light-weight 
progressive, one-way hash function designed to fingerprint the computation. It uses 
random keys and stresses the production of hash values that are hard to guess even if 
one has a functionally equivalent program that is not the exact copy of it.  It is 
suitable for both local tamper resistance and remote execution verification. 

 
An orthogonal but seemingly related task is program (or result) checking [2, 7, 8, 13] 
that attempts to verify the input-output behavior of a program, but not its full 
execution behavior as OH  does.  These techniques are applicable only to problems 
on algebraic domains (whereas OH is intended for general software) and have no 
stealth criterion. Ideally one would have an algorithm that transform any given 
program into an “obfuscated” version which, roughly speaking, can be executed in a 
black-box fashion as if on a secure co-processor. But this is impossible or unlikely 
[17] in many models, because there exist programs that do not admit such an 
algorithmic transformation. However, for large, practical programs (e.g., not the 
“hello world” type), under suitable engineering assumptions one still may be able to 
derive quantifiably secure systems, where a primitive such as oblivious hashing can 
play a significant role.  



3. Oblivious Hashing 

We first present the OH technique using an abstract, and then describe a software-
only implementation approach. 

3.1 Abstract Model 

In a simplified model of computation, a function (or a program)1 is represented by a 
sequence of abstract machine instructions I={i1, i2, …, iN} that read and write memory 
locations M={m1, m2, …, mK}, the initial configuration of the memory M0, an 
instruction counter C and its initial value C0. Our main idea is to capture the 
function’s execution trace T from which to compute a hash value H, as shown in 
Figure 1. Since the trace reflects the actual execution, the hash value thus computed 
serves as a robust signature on the function’s behavior. This value is a function of the 
code, data, the initial configuration of the machine, and the input parameter P: 

 
H ← H (T) ← H (I, M, C0, M0, P)  { ← means “depends on” } 

 
We observe that in this model, external environment to the function is encoded in the 
initial memory configuration M0. A slight modification of the code and/or data is 
likely to cause the hash value to change, provided that T contains sufficient 
information from the actual execution. 

 

 

Figure 1: an abstract model for oblivious hashing 

Attack model: The attacker changes the instruction sequence and memory content 
during runtime in order to produce a correct hash value for a given set of inputs 
(which can be exorbitantly large). 
 
Note that if we apply OH only to a portion of the code, e.g., licensing verification, the 
attacker can bypass the licensing check by modifying the rest of the application. In 

                                                           
1 Unless explicitly stated, the terms “function” and “program” are considered inter-changeable. 



general, protection must be extensive and spread out throughout the application. At 
the minimum, all the functions on the calling-hierarchy to the protected code must 
also be protected by OH and other mechanisms. 
 
The ideal trace T should include memory references made by each instruction and the 
instruction itself. One way to accomplish this is by using special-purpose hardware 
built into the microprocessor. A much less expensive and more flexible approach is to 
implement the hashing model in software. 

3.2 The Software Approach 

The naïve software approach is to build a machine simulator that mimics the behavior 
of the hashing co-processor. But this is quite  inefficient and vulnerable to a total 
break by a one-time attack on the simulator. A practical and efficient implementation 
can be done via code injection, which is common practice employed by profilers and 
bounds checkers. We inject into the host code “monitor” instructions that capture each 
step of the computation and compute the oblivious-hashing value as the computation 
proceeds, as illustrated in Figure 2. The hashing instructions, colored black in the 
figure, take the results of previous instructions and apply them to the hash values 
stored in main memory. The diagram illustrates multiple memory locations that 
jointly store the intermediate and final result. Note that these hashing instructions are 
the same kind of instructions as in the original software; they read and write data 
locations just like other instructions. With proper care when injecting the hashing 
instructions, we can make them blend seamlessly into the to-be-verified software both 
in appearance and during execution. 

 

Figure 2: Software-only Oblivious Hashing 

Compared with the hardware approach, the code-injection approach can achieve 
similar degree of efficiency, and yet requires no modifications to the underlying 
hardware and operating system. 
 
We term our method of hashing computation “oblivious hashing,” as an attacker is 
oblivious to the fact that part of the software is computing an execution hash value 
during the normal computation. 



4. Implementation 

To implement OH, we preferred not to perform binary editing on the compiled code 
and chose to work with a higher-level representation. Besides the obvious high 
overhead, binary-level code injection suffers from several practical constraints that 
make it difficult to obfuscate the identity of hashing instructions. For example, due to 
the register-oriented nature of modern processor architecture, our hashing injections 
have to use registers to store intermediate values. However, register allocation is 
already fixed by the time object code is generated and it is inefficient to reverse-
engineer the register-allocation at the binary level, and find  free registers for use by 
hashing code. Pushing-and-popping used registers will make the hashing instructions 
obvious and thus allow them to be easily spotted. Hence, injection of the hashing 
instructions at a higher level is preferred. 

4.1 Syntax-tree Modification 

This higher level that we have in mind is the syntax tree produced in the parsing stage 
of the compilation process. The syntax tree contains explicit dependency information, 
which makes it straightforward to insert additional statements while preserving the 
correctness of original computation. 
 
The second advantage in inserting OH code in the syntax tree is speed. The syntax-
tree representation can be thought of as a higher-level abstract machine: Instead of 
instructions, we have expressions and statements. Instrumenting the syntax tree is 
more efficient than instrumenting the machine code, because many intermediate 
computations are saved from hashing. For example, to hash the C statement  
X=Y+A*B–C/D, we need only hash the final assignment to X, because the 
intermediate value computations do not cause changes to the state of the function (or 
program). Were the attacker to change the intermediate computation, he would still be 
caught if X is assigned an incorrect value. 
 
The third advantage is that the optimizations performed in the subsequent stage may 
interleave the hashing code with the host code, making detection of the hashing code 
more difficult.  Temporary variables used by the hashing code are allocated 
identically to host-code variables by the second phase of the compiler, and thus are 
not easily distinguishable from host-code variables. 
 
Finally, instrumenting the syntax tree makes oblivious hashing machine-independent. 
Being used in early stages of compilation, syntax trees contain little or none 
information on the machine architecture. Oblivious hashing will thus produce the 
same results regardless of the final machine platform. This is especially useful for 
platforms such as MSIL and Java. 



 
We implemented OH for the Microsoft Visual C/C++ compiler, version 7.0. The 
compiler emits intermediate-level representation, C Intermediate Language (CIL) for 
every source file. The CIL representation is just like any compiler intermediate 
representation. The CIL files are stored temporarily on disk before being passed on to 
the compiler backend. The CIL representation contains just enough information for 
the C-style backend to perform optimization and code generation. Though 
information on complex types is lost in CIL, we found the representation adequate for 
adding OH code3. 

4.2 Hashing Sites 

Our next step is to determine the kind of programming constructs to hash. 
Assignments and control flows are two natural choices. Assignments change the state 
of a function or a program, and hence are the largest indicator of a program's 
behavior.  We found, however, that many functions served only to make high-level 
control flow decisions, and that few assignments were performed in coming to these 
decisions.  Adding control flow expressions to our set of hash sites made the final 
hash value much more sensitive to program behavior. 
 
While a more complete system could hash things such as function arguments, hashing 
assignments and control flows captures most of the dynamic behavior of a program . 
For example, since most function arguments are simply variables whose value has 
been computed in a previous assignment, hashing function arguments would not add 
much extra information to the hash.  
 
Assignment and expressions: The C operator we rely on is the comma operator, 
which is rarely used in programming.  Note that the comma operator is not the same 
as the comma used to separate function arguments.  A C expression (exp1, exp2, ..., 
expk) will evaluate exp1 through expk, and have the value of expk.  Thus, an 
assignment is transformed in the following way: 

a = exp  is transformed to a = (t = exp, HASH(t), t)  
Conditional expressions are similarly transformed: 

if (exp) {…} is transformed to if ( (t=exp, HASH(t), t) ) {…}   
Using the comma operator and a temporary variable t, this transformation lets us 
intercept the value of assignment, and at the same time preserve the C semantics that 
the assignment operator has a value of the assigned value. Here expression HASH(t) 
is an inline macro, as an explicit function call would violate our principle of making 
the hash code difficult to detect and not centrally located. 
 
Control flows: To capture the control flow within a function, we inject one or more 
hashing instructions within each basic block. In our syntax-tree representation of the 

                                                           
3 We later found out that CIL is inadequate for using static analysis to identify “unhashable” 

statements. A re-writable syntax tree with richer information would have been more suitable. 
Unfortunately, such a tool does not exist on Windows platform yet. 



function, a basic block is identified by a label that is either specified by the 
programmer or generated by the compiler front end. In the CIL representation, it is 
quite straightforward to locate the labels and inject hashing operations between two 
adjacent ones. 
 
Our OH-injection tool also allows the user to specify the percentage of a function to 
be hashed. This gives the user to control the amount of overhead, in terms of both 
code size increase and run-time overhead. This feature is especially useful when 
applying OH in remote code authentication (described in Section 5.2). 

4.3 Hash Computation 

The hashing instructions are executed every time the host code runs, and thus they 
must comprise inexpensive operations.  Fortunately, our situation is different from 
message authentication codes (MAC) so that such performance optimizations are 
possible. A MAC is applied to a piece of static data each time, whereas an oblivious 
hash is derived from the execution of the host code or a fraction of it. The execution 
of the host code depends on the input parameters. The attacker may be able to 
carefully modify the code so that the tampered code produces the correct oblivious 
hash for a given input parameter. But it would be much more difficult to do this for 
many different inputs. In fact, if a code segment yields the same OH values for 
sufficiently large number of inputs, there may be only one such segment.  An analogy 
to linear algebra will help illustrate this point.  
 

Let us imagine that the code including the hashing instructions is a vector of 
numbers denoted as Ω, that each input is a test vector, and that the dot 
product between the code vector and the input vector yields an oblivious 
hash. A collection of inputs I1, I2, .., In forms a test matrix Γ such that Γ · Ω 
= H = [H1, H2, …, Hn], where Hi is the corresponding hash value. Given a 
sufficient number of orthogonal vectors in Γ, Ω is uniquely determined. 

 
The above analogy is a gross over-simplification of oblivious hashing: The 
instructions in the hashed code do not correspond to numbers, and the inter-
relationship between instructions is far more complicated than that in a set of 
numbers. Even a simple analogy like this shows the difficulty faced by the hacker: It 
is very difficult to tamper with the code (i.e., the vector Ω) while producing correct 
hash results (i.e., preserving the relationship Γ · Ω = H). 
 
In reality, the amount of binary modifications that the hackers can do is quite limited, 
due to the lack of sufficient information in a compiled, released binary executable. 
The common operations employed by the hackers are replacing existing instructions 
with different ones, setting debug breakpoints to hijack controls from the code, and 
intercepting API calls to the underlying operating system. Given that the patched 
instructions must not result in program crashing, the attacker can generally patch only 
a tiny number of instructions. This greatly restricts his freedom in altering the code 
and yet producing the same hash results for more than one challenge input. We 



conjecture that weaker but efficient operations are adequate to compute the oblivious 
hash. 
 
In one of our implementations, the hash result is kept in a logical array of 32-bit 
words, initialized to a random pattern during compile time. Each hashing operation 
HASH(val) takes the general form 

 
  H[i] = H[i] op1 H[j] op2 X { op3 random_constant } 

 
where H[i] and H[j] are two elements in the hash result array, randomly chosen for 
the hashing operation. X is a random constant generated at the compile time. The 
three operators, op1, op2, and op3, are chosen randomly from a set of arithmetic and 
bit operators at the compile time. The operation “op3 random_constant” in the curly 
braces are optional. We can also profile the original program to bias the operation 
selection so as to avoid creating “obvious” hashing code such as one containing too 
many XOR operations. 

 
In principle, the hash array need not be contiguously allocated; it can be made up of a 
number of unrelated 32-bit variables scattered around in the heap. For convenience, 
our current implementation allocates the hash array contiguously, though minor 
change in our software will easily remove this artifact. 
 
The hash storage need not be in the global variables, either. Our hash injection tool 
can also modify the hashed functions4 and their call sites to have the hash variables 
passed by pointer. For example, in order to verify a function F(x, y) using oblivious 
hashing, the caller can simply allocate a hash variable h on its stack and passes it to F 
as an additional argument, e.g., F(x, y, &h). Note that our injection software can place 
the hash variable at an arbitrary place on hashed function’s argument list, as long as 
its position is consistent for all call (and hashing) sites. 

 
Code Sample: In the appendix, we illustrate oblivious hashing using a factorial 
function written in C. We compile the program using the Microsoft C/C++ compiler 
with the “-O2 –GB” optimization flags. Disassembly listing of the original function 
and two hashed versions are provided. In the first hashed version, 50% of the 
hashable statements are randomly chosen for hashing. In the second version, OH is 
performed on the entire function. For both versions, the 32-bit OH result is passed 
back and forth via an additional pointer argument to the function, which is created 
automatically by our OH-injection tool. 

                                                           
4 We here address only C  functions,  and omit  decorated names for modified C++ functions. 



4.4 Unhashable Statements 

So far we have assumed a simplistic function that is deterministic with respect to 

input data5. In reality, some code depends on external environment such as time of 
the day, user identity, etc., that is hard to control. The internal memory allocator may 
return different addresses depending on how the thread is scheduled. Unpredictable 
data, such as external input or return values of system calls, can cause oblivious 
hashes to vary arbitrarily. As a result, only a portion of the host code executes 
deterministically with respect to the input parameters. The question of what to 
fingerprint for an execution is a major problem. 

 
There are two obvious approaches to solving this problem. One can apply the usual 
static-analysis techniques to conservatively locate the deterministic portion of the host 
code. Alternatively, one can gather run-time traces on some test inputs, and use the 
traces to determine the portion of the execution path that remains the same across the 
test inputs. Once these “unhashable” expressions and side effects are determined, we 
can exclude them from the hash computation. We may also determine and specify 
“unhashable” sites manually, though automated analysis would prove much more 
convenient and less prone to human errors. 
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Figure 3: Hashable expressions per function 

We experimented with the second approach on a commercial application with anti-
tampering features. We instrumented the program to produce a trace of expression 
values that we are interested in.  We then ran the instrumented program multiple 
times, in all interesting execution contexts, and post-processed the tracing output to 
determine which expressions were constant across runs. The graph above (Figure 3) 
shows the distribution of functions according to the amount of hashable expressions 
in each. The results are quite telling. We found that even using such a strong 
requirement still left enough hashable expressions to provide good code coverage for 
our test program. However, we do want to point out that our test inputs may not 
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exhaust all possible code paths, although we have reasons to believe that they do by 
visual inspection.  In production code the situation may well be different. A 
conservative approach based on static analysis would be more assuring. Static 
analysis for oblivious hashing is still an on-going work. 

5. Applications of Oblivious Hashing 

As a method to verify the behavior of programs, oblivious hashing helps solve some 
currently important problems in both local-software security and network-oriented 
computing.  For software running locally on a single machine, oblivious hashing can 
prevent tampering by either a malicious hacker or malware (viruses, worms, and 
Trojans).  For client-server applications, oblivious hashing can prove a client’s 
authenticity and proper functioning to a server, and vice versa. 

5.1 Local Software Tamper Resistance 

For verifying the proper operation of a program in a simple manner, oblivious hashes 
can be used much like typical hashes or checksums of code bytes: The program 
computes hashes and compares them against pre-stored values.  However, if done 
naïvely (e.g., with one or a few simple Boolean checks), this is not likely to be strong; 
the problem of easily patched Boolean comparisons is the same as with verification of 
code-byte checksums. Additionally, oblivious hashes introduce a number of unique 
issues: 
 

Pre-computation of correct hashes: Unlike a code-byte hash, an oblivious hash is 
“active” in that the code to be protected must run (or be simulated) in order for the 
hash to be produced. 
 
Security coverage over code paths: An oblivious hash depends on the exact path 
through a program, as determined by input data.  If execution does not reach some 
part of a program during hash computation, that part is not hashed and thus 
unprotected. 
 
Unhashable data: As described earlier, data that are too variable or not predictable 
typically cannot be hashed obliviously. 

 
One strategy for addressing the above issues is as follows.  Prior to shipping a 
protected application, we choose a number of specific functions and inputs that 
exercise security-sensitive code paths.  We then run the given functions on the 
specified inputs, saving the resulting oblivious hashes.  Our security requirements and 
knowledge of the application’s semantics determine the functions and inputs used for 
oblivious hashing.  Alternately, static analysis or hints from the developer could 
automate the process of determining what to hash. 

 



Another unique issue with oblivious hashing involves cross-checking of different 
code sections, a technique essential for increasing the complexity of breaking 
protection [11].  With code-byte hashes, two code segments, A and B, can cross-
check each other simply by verifying each other’s hashes.  With oblivious hashing, 
however, a cross-check involves mutually recursive calls.  Without special methods of 
termination, this recursion is infinite.  Unfortunately, explicit termination measures 
could point the hacker’s attention to oblivious-hashing code, as well as create 
significant complexity when more involved cross-checking graphs and indirect 
recursion are present. A promising approach is to invoke cross-checks 
probabilistically. It’s a topic of our current research on OH. 

5.2 Remote Code Authentication 

Autonomy is the trend in network services: Software client agents act on behalf the 
users; servers talk to one another without human intervention. There is a growing 
demand for robust authentication of remote software entities.  

 
Remote code authentication is the problem of verifying the identity of a remote 
program. Authentication can occur at all levels: between a client and a server, 
between two servers, and between two communicating clients. Unless specifically 
noted, the terms “client” and “server” refer to the application software that runs on 
each client or server machine.  
 
Remote code authentication differs from the usual user-based authentication, in that it 
strives to verify the identity (or the authenticity) of the communicating application as 
opposed to the user who is running the software. Unlike passwords, a piece of code is 
an active entity. Verifying its dynamic behavior yields stronger authentication than 
checking its static shape, as the hacker can easily fool the latter mechanism by 
keeping a copy of the original, unhacked code around. 
 
Oblivious Hashing is an ideal fit for remote code authentication, as the oblivious hash 
represents a fingerprint of the code execution. In a simple embodiment (Figure 4), 
machine A authenticates a program P on machine B by generating a random input X 
to P and sending it to B. An identical copy of P (or a critical portion of P) is also 
present on machine A. Both A and B run P on the random input X and derive an 
oblivious hash value H. To forestall the man-in-the-middle attack, the hash value H is 
not transmitted over the wire. Instead, a session encryption key is derived from H; it is 
used to encrypt all subsequent communication between A and B. If B and A run the 
same version of P, they ought to derive the same session key. This is how A can 
verify the authenticity of program P on a remote machine B. 

 
An adversary can still attempt to crack this system by extracting the hashed 
computation from P or calling the computation directly. The problem thus becomes 
reverse-engineering the program P, which can be made quite difficult by usual 
obfuscation techniques such as OH for local tamper resistance, code encryption and 
anti-debugging mechanisms. 



 

 

Figure 4: Oblivious Hashing used in remote code authentication. 

6. Conclusions 

In this paper we presented a novel software integrity verification primitive, Oblivious 
Hashing, which implicitly computes a fingerprint of a  code fragment based on its 
actual execution.  Its construction makes it possible to thwart attacks using automatic 
program analysis tools or other static methods. This new method verifies the intended 
behavior of a piece of code by running it and obtaining the resulting fingerprint. It is 
more implicit than the traditional shape-verification methods, and addresses some 
attacks that cannot be detected by the latter. 
 
We also presented a software-only implementation that injects and blends hashing 
code into the syntax-tree representation of the program. This approach avoids many 
problems faced by a binary-editing method. Only critical expressions are hashed by 
our method. For example, intermediate computations are skipped as they do not 
directly affect the program state. The result is much lower overhead. Manipulating at 
the syntax-tree level also allows the injected code to blend well with the host code, 
achieving high degree of secrecy. This technique is suitable for local software tamper 
resistance and remote code authentication. 
 
Our experiment with a real-world program showed that a large portion of the code can 
be obliviously hashed for a majority of functions, which  is encouraging. Our method 
also raises questions about how to adapt existing program analysis techniques to suit 
our purposes. 
 
Oblivious Hashing has its own limitations. For example, it cannot detect x86 
debugger breakpoints implemented by using the INT3 instruction, whereas the 
traditional code-checksum method can. A robust software tamper-resistance solution 
should incorporate both OH and other methods. 
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Appendix 

C source code 
unsigned int factorial(int n) 
{ 
 unsigned int fact; 
 for (fact=1; n>0; n--) fact=fact*n; 
 return fact; 
} 

Assembly list of the original, unhashed function 
_factorial: 
  00000000: mov         ecx,dword ptr [esp+4] 
  00000004: test        ecx,ecx 
  00000006: mov         eax,1 
  0000000B: jle         00000018 
  0000000D: lea         ecx,[ecx] 
  00000010: imul        eax,ecx 
  00000013: dec         ecx 
  00000014: test        ecx,ecx 
  00000016: jg          00000010 
  00000018: ret 

Assembly listing of the 50%-hashed function 
_factorial: 
  00000000: mov         ecx,dword ptr [esp+4] 
  00000004: test        ecx,ecx 
  00000006: mov         eax,1 
  0000000B: jle         00000026 
  0000000D: push        esi 
  0000000E: mov         esi,dword ptr [esp+0Ch] 
  00000012: imul        eax,ecx 
  00000015: mov         edx,ecx 
  00000017: dec         ecx 
  00000018: xor         esi,edx 
  0000001A: test        ecx,ecx 
  0000001C: jg          00000012 
  0000001E: mov         eax,dword ptr [esp+0Ch] 
  00000022: mov         dword ptr [eax],esi 
  00000024: pop         esi 
  00000025: ret 
  00000026: mov         ecx,dword ptr [esp+8] 
  0000002A: mov         edx,dword ptr [esp+8] 
  0000002E: mov         dword ptr [ecx],edx 
  00000030: ret 

Assembly listing of the 100%-hashed function 
_factorial: 
  00000000: mov         ecx,dword ptr [esp+4] 



  00000004: xor         edx,edx 
  00000006: test        ecx,ecx 
  00000008: setg        dl 
  0000000B: push        esi 
  0000000C: mov         esi,dword ptr [esp+0Ch] 
  00000010: mov         eax,1 
  00000015: add         esi,edx 
  00000017: test        edx,edx 
  00000019: je          00000045 
  0000001B: push        ebx 
  0000001C: push        edi 
  0000001D: lea         ecx,[ecx] 
  00000020: imul        eax,ecx 
  00000023: mov         edi,ecx 
  00000025: xor         edx,edx 
  00000027: dec         ecx 
  00000028: test        ecx,ecx 
  0000002A: setg        dl 
  0000002D: mov         ebx,edx 
  0000002F: sub         ebx,esi 
  00000031: sub         ebx,eax 
  00000033: add         ebx,edi 
  00000035: test        edx,edx 
  00000037: mov         esi,ebx 
  00000039: jne         00000020 
  0000003B: mov         eax,dword ptr [esp+14h] 
  0000003F: pop         edi 
  00000040: pop         ebx 
  00000041: mov         dword ptr [eax],esi 
  00000043: pop         esi 
  00000044: ret 
  00000045: mov         ecx,dword ptr [esp+0Ch] 
  00000049: mov         dword ptr [ecx],esi 
  0000004B: pop         esi 
  0000004C: ret 

 


